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DERIVATIONS WITH INVERTIBLE VALUES ON A LIE IDEAL 

BY 

JEFFREY BERGEN AND L. CARINI 

ABSTRACT. Let R be a ring which possesses a unit element, a Lie 
ideal U <£ Z, and a derivation d such that d(U) =£ 0 and d(u) is 0 or 
invertible, for all u e (/. We prove that # must be either a division 
ring D or Z)2, the 2 X 2 matrices over a division ring unless d is not 
inner, /? is not semiprime, and either 2Ror3R is 0. We also examine 
for which division rings D, D2 can possess such a derivation and 
study when this derivation must be inner. 

In a recent paper [1], Bergen, Herstein and Lanski have related the structure 
of a ring R to the special behavior of one of its derivations. More precisely, they 
proved that if R is a ring with unit and d ¥= 0 is a derivation of R such that for 
every x e R, d(x) = 0 or d(x) is invertible in R, then except for a special 
case which occurs when 2R = 0, R must be a division ring D or the ring D2 of 
2 X 2 matrices over a division ring. 

Here we shall examine what happens when R is a ring with unit, U is a 
non-central Lie ideal of R, and J is a derivation of R such that for every u e (7, 
d(w) = 0 or <i(w) is invertible in i?. The results we will obtain have a similar 
flavor to those of [1]. In fact we shall prove the following: 

THEOREM 1. Let R be a ring with 1, U <£ Z a Lie ideal of R, and d a derivation 
of R such that d(U) ¥= 0 and d(u) = 0 or d{u) is invertible, for every u G U. Then 
R is either 

1. a division ring Z), or 
2. £>2, 

unless 2R or 3R is zero, d is not inner, and R is not semiprime. In this case, 
R = M -h d(M), where M is the unique maximal ideal of R and M = 0. 

We then examine, for the case R = D2, when d is inner and for which division 
rings D such a derivation exists. The result we obtain is 
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THEOREM 2. Suppose R = Z>2, then: 
1. if D is not commutative and 2R ^ 0, every derivation of R such that d(u) = 0 

or d(u) is invertible, for all u in a non-central Lie ideal, must be inner. 
2. there exists an inner derivation d such that d(U) ¥= 0 and d(u) = 0 or d(u) is 

invertible, for all u contained in a non-central Lie ideal U, if and only if D does not 
contain all quadratic extensions of Z or D is afield of characteristic 2. 

For a,b^R set [a, b] = ab - ba and for subsets U, V c R let [U, V] be the 
additive subgroup generated by all [w, v] for u e U and v e V. We recall that a 
Lie ideal U of R is an additive subgroup of R such that [U, R] c U. 

In all that follows, unless otherwise stated, R will be a ring with 1, Z = Z(#) 
the center R, U (£ Z & Lie ideal of JR and d a derivation of i? such that 
d(U) ¥= 0 and d(w) = 0 or d(w) is invertible, for all u <E U. 

We begin with 

LEMMA 1. d([U, R\) ¥= 0. 

PROOF. Suppose d([U,R]) = 0 and let u e U, r <E R; then 0 = d( [M, wr] ) = 
d(u[u, r] ) = d(u)[u, r\. Therefore, d(w) = 0 or [w, R] = 0 thus, for all u e £/, 
either J(w) = 0 or w e Z. It now follows that J ( [ / ) = 0 or [/ c Z, a 
contradiction. 

We now show that i? is d-simple, that is, has no non-zero, proper ideals 
invariant under d. 

LEMMA 2. If I =£ 0 is an ideal of R such that d(I) c /, then I = R. 

PROOF. Suppose d([U,I])¥>0; then 0 ¥= d([U, I]) a d(U) n I, therefore / 
contains invertible elements and so, I = R. 

On the other hand, if d( [ U, I ] ) = 0 then for u e U and / e /, we have 
0 = d( [u, wz] ) = d(u[u, i] ) = d(u)[u, /]. As in the proof of Lemma 1, either 
d(U) = 0 or [£/, / ] = 0, thus [£/, / ] = 0. Hence 0 = [£/, //*] = /[£/, R]. 

By Lemma 1, there exist u e £/ and r ^ R such that d( [w, r] ) ^ 0. If / e / 
then 0 = d(/[w, r] ) = /<i( [w, r] ) -f d(z)[w, r]. However, since d(i) e /, we obtain 
Id( [u, r] ) = 0, a contradiction. 

We proceed with 

LEMMA 3. If I ^ R is an ideal of R, then I3 = 0. 

PROOF. Since d([U, I2]) c d(U) n / and / ^ #, it follows that 
<i( [£/, L] ) = 0. Using the identical argument as in the proof of Lemma 2, 
I2[U, R] = 0 and 0 = J(/[w, r] ) = d(i)[u, r] + W( [w, r] ), for / <= /2, u e {/, and 
r e / ? . However, if / G 73 then </(/) (= I2, hence 73</( [(7, #] ) = 0 and, by 
Lemma 1, /3 = 0. 

We continue with 
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LEMMA 4.I/2R ¥= 0 and 3R ¥* 0 then R is simple. 

PROOF. If R is not simple, let M be the sum of all proper ideals of R. By 
Lemma 3, every proper ideal of R has cube zero, hence M is nil and so, M3 = 0. 
Obviously M is the unique maximal ideal of R and, by Lemma 2, d(M) £ M. 

Since M + d(M) is an ideal of R properly containing M, M + d(M) = R. 
Consequently there exist a, b e M such that 1 = Û -f- d(b). Now, 0 = d3(&3) = 
d\b2b) = </3(62)Z> + 3d2(b2)d(b) + 3d(b2)d2(b) + 62</3(6), hence 3d\b2)d(b) e 
M. Since </2(Z>2) = d2(Z>)£ + 2d(6)2 4- W2(i), we obtain 6d(6)3 G M. If 
2# =̂ 0 and 3JR ^ 0 then, by Lemma 2, 2i? - 3# = #, hence 6R - R. How
ever, d(b) = 1 — a is invertible therefore 6 e M and so, M = #, a contradic
tion. As a result, R is simple. 

Combining Lemmas 2, 3, and 4 we immediately obtain 

LEMMA 5. If either d is inner, R is semiprime, or both 2R and 3R are nonzero 
then R is simple. In addition, if R is not simple then R = M + d(M) where M is 
the unique maximal ideal of R and M = 0. 

At this point, the proof of Theorem 1 reduces to showing that when R 
is simple either R = D or D2. By Theorem 1.5 of [3], if R is simple then either 
U D [R, R] or R is of characteristic 2 and of dimension at most 4 over its center. 
In the latter case, there is nothing left to prove. However, in the first case it is 
relatively easy to see that d( [R, R] ) ¥= 0 and [R, R] ç£ Z. Therefore, throughout 
Lemmas 6, 7, 8, 9 we will assume that R is simple, U = [R, R], and R is not of 
characteristic 2 with dimension ^ 4 over its center. 

LEMMA 6.1f0 ¥= a e R is such that d(a) = 0, then a is invertible. 

PROOF. Suppose that [a, d(R) ] ¥= 0; then let x e R such that [a, d(x) ] ¥= 0. 
Since d(a) = 0, we obtain d( [a, x] ) = [a, d(x) ] and d( [a, ax] ) = d(a[a, x] ) = 
a[a, d(x) ]. Moreover d{ [a, x] ), d( [a, ax] ) e d( [R, R] ), therefore [a, d(x) ] is 
invertible, hence a[a, d(x) ] is non-zero and so, a[a, d(x) ] is also invertible, 
finally resulting in a invertible. 

Now suppose that [a, d(R) ] = 0; then, by Theorem 1 of [5], d2 = 0, 
a2 e Z, char R = 2, and d is an inner derivation induced by a central 
multiple of a. Furthermore, by Theorem 2 of [4], if [d(R), d(R) ] = 0 then 
R has dimension ^ 4 , over its center. Therefore, without loss of generality, 
we may assume that d = 0, d(r) = [a, r] for all r e R, and there exist 
s, t <E R such that [J(j), d(t) ] ¥= 0. Consider d{ [s, d(t) ] ) = [d(s)9 d(i) ] 
and d([s, ad(i)]) = [d(s)y ad(t)] = a[d(s\ d(t)]. Since [d(s), </(/)], 
a[d(is), rf(f) ] e d( [R, R] ) we conclude, as in the previous paragraph, that a 
is invertible. 

We continue with 
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LEMMA 7. If L ¥= 0 is a right ideal of R, then R = L + d(L). 

PROOF. Since R is simple either R is a field or [L, L] ^ 0. If R is not a field, 
let 0 ¥= x e [L, L]; by the previous lemma, we get that either x or d(x) must be 
invertible. This implies that L + d(L) is a right ideal which contains invertible 
elements, hence L + d(L) = #. 

Since R is simple with 1, it is primitive. Therefore R has a faithful, irreducible 
right module V and R acts densely on V, viewing V as a vector space over the 
division ring D where D is the commuting ring of R on V. 

We now prove the technical, but very useful 

LEMMA 8. Let V be a faithful, irreducible, right R-module. If0¥=v^ V and 
0 ¥= a e R are such that va = 0, then vd(a) ¥= 0. 

PROOF. By Lemma 7 we get aR + d(aR) = i?. Therefore, K = v/Ê = 
v(a# + ad(R) 4- rf(û)#) = vd(a)#, thus vd(a) ¥= 0. 

We now narrow in on the structure of R. 

LEMMA 9. R = D or R = D2. 

PROOF. It suffices to show that dimD V = 1 or 2. Suppose dimD V = 3; 
then there exist linearly independent v1? v2, v3 e V and a n r G i? such that 
Vjr = 0, v2r = 0, and v3r = v3. Let r = {r e R\vxr = v2r — 0}; since 
r ¥^ 0 e T, T is a non-zero right ideal of # , hence, by Lemma 1, R = 
T + d(r). 

Now, let x, 7 e # such that VjX = vl5 v2x = v2, vxy = 0, and v2 j = v2. In 
addition, since JR = T + d(T), let a, b e 7" such that x = a + d(b). As a result, 
V! = VjX = vx(a + d(b) ) = vxd(b) and v2 = v2x = v2(a -f- d(b) ) = v2d(b). 
Hence vxd(by) = vx(bd{y) + d(b)y) = Vjrf(è)y = Vj_y = 0 which, by Lemma 8, 
implies by = 0. However, in this case 0 = v2d(by) = v2(bd(y) 4- d(b)y) = 
v2d{b)y = v2y = v2, a contradiction, thereby proving the lemma. 

By combining Lemmas 5 and 9 we obtain our first main result, which we 
mentioned at the outset of this paper. 

THEOREM 1. Let R be a ring with 1, U <£ Z a Lie ideal of R, and d a derivation 
of R such that d(U) ¥* 0 and d(u) — 0 or d(u) is invertible, for every u G U. Then 
R is either 

1. a division ring D, or 
2. D2 

unless 2R or 3R is zero, d is not inner, and R is not semiprime. In this case, R = 
M + d(M), where M is the unique maximal ideal of R and M = 0. 
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In [1] it is shown that the only example of a ring R ¥= D or D2 with a 
derivation d ¥= 0 such that d(x) = 0 or is invertible, for all x e R, is D[x]/(x2) 
where char D = 2, d(D) = 0, and d(x) = 1 + ax, for some a in the center of D. 
Therefore, with the hypothesis of Theorem 1, when 2R = 0 there exists an 
example where R ¥= D or D2. However, when 3R = 0 we have neither been able 
to either prove that R = D or D2 nor been able to produce a counterexample. 
On the other hand, it does follow from Theorem 1 that if R =£ D or D2, with 
3R = 0, then R and d are rather special. 

We now try to characterize those division rings D for which R = D2 has a 
derivation d ^ 0 all of whose values are zero or invertible on a non-central Lie 
ideal. In addition, we shall examine when such a d must be inner. To do this, we 
will refer to several calculations which were done in Lemma 8 of [ 1 ] and will be 
omitted here for brevity. 

LEMMA 10. If R = D2, where 2R ¥= 0 and D is non-commutative, then d is 
inner. 

PROOF. If d is a derivation of D2, then d has the form: 

a b\ __ If (a) — bfi — ae f(b) -f aa -h by — ae \ 
c e) \f(c) + fia — eft — yc f(e) + ey — ye + fib + ca J 

for all a, b, c, e e Z>; where a, fi, y ^ D and / i s a derivation of Z). Furthermore, 
it is shown in Lemma 7 of [1] that d is inner on Z)2 if and only if fis inner on D. 
Therefore it will be enough to show t h a t / i s inner. 

Let 

T={a*D\(o o H * ' 4 
since D is non-commutative, T is a non-central subset of D invariant under all 
automorphisms of D. By a result of Brauer-Cartan-Hua [2], the subdivision ring 
T of D generated by T is all of D. As noted in the discussion before Lemma 5, 
we may assume that U D [R, R]. 

Suppose a = 0; if a G T then 

la 0\lf(a)0\ 
a\0 0} \0a 0) 

is zero or invertible. Therefore/(a) = 0, hence 0 = f(T) = f(T) = f(D), 
implying that fis inner. As a result, we may now assume that a ^ 0. It now 
follows from the calculations in Lemma 8 of [1], that there is a T e D such that 
f(a) = ra — ar, for all a G D satisfying 

(a-\f, x -\ \^[R,Rl \a j (a) a aa) 

i 
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However, if a e T then aaa e T, therefore 

( -a -° ) 
\a f(a) a aa) 
_ la + a~]aa 0\ / 0 0\ l-a~~laa 0\ 
" I 0 0/ \a~lf(a) 0 / \ 0 «"W/ 

/ 0 0\ /0 1\] 
\a~laa 0/' \0 O/J 

e [/I, R]. 

Thus/(a) = [T, a] for all a e 7, hence/(a) - [T, Û] for al a e f = D, thereby 
proving t h a t / i s inner on D. 

At this point, we should note that the assumption 2R ¥* 0 in Lemma 10 
cannot be dropped, as an example is given in [1] of a division ring D of 
characteristic 2 such that R = D2 has a derivation d ^ 0 all of whose values on 
R are 0 or invertible, yet d is not inner. We have not, however, been able to 
determine whether the assumption in Lemma 10, that D be non-commutative, 
is necessary. 

We will now characterize those D such that R = D2 possesses an inner 
derivation d such that d(U) ¥= 0 and d(u) = 0 or is invertible, for all u in a Lie 
ideal U <£ Z. The condition "D does not contain all quadratic extensions of 
Z" will come up. By this we mean that there exist y, 8 in the center of D such 
that the polynomial t2 + yt + 8 has no root in D. Note that the following 
lemma places no restriction on either the characteristic or the non-
commutativity of D. 

LEMMA \\. R = D2 has an inner derivation d such that d(U) ¥= 0 and d(u) is 0 
or invertible, for all u in a Lie ideal U <£ Z, if and only if D does not contain all 
quadratic extensions of Z or D is afield of characteristic 2. 

PROOF. It is shown in Lemma 9 of [1] that if D does not contain all quadratic 
extensions of Z, then there exists an inner derivation d ^ 0 such that d(x) = 0 
or is invertible for all x e R. In addition, if D is a field of characteristic 
2, then 

is a non-central Lie ideal of R and it is easy to see that the inner derivation d 
induced by (° Q) has the properties that d(U) ¥> 0 and d(U) c Z(R). 

Conversely, suppose that D is not a field of characteristic 2 and that d ¥= 0 is 
inner such that d(U) ¥* 0 and d(u) = 0 or is invertible, for all u in a Lie ideal 
U <£ Z. Therefore, by Lemma 6 and the discussion preceeding it, we may 
assume that U = [R, R] and that every element in the kernel of d is 0 or 

a -f a aa 0 
0 0 

0\ / l 0 0 
a~lf(a) 0 M 0 0/J + 
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invertible. Using essentially the same argument as in Lemma 9 of [1], we may 
also assume that d is induced by an element of the form (a ^). 

We claim that a and fi lie in the center of D. Clearly when D is commutative 
there is nothing to prove. If D is non-commutative, let T be as in Lemma 
10; then T, the subdivision ring of D generated by T, is all of D. Suppose 
a e T; then 

Àa °) = ( ° ° ] 
\0 a) \aa — aa fia — afi) 

is a non-invertible element of d( [R, R] ), hence is zero. Therefore aa = aa 
and fia = a fi for all a G T, hence also for all a G T = D, thereby proving 
the claim. Furthermore, since d(a ]g) = 0, (a ^) must be invertible thus 
a ¥= 0. 

Suppose fi = 0; if x e D then 

% x) = (a 0)\a x) ~ [a x)\a 0/ = \0 oj' 

Since (x
a
 ]
x) is not zero, it must be invertible, hence its determinant x2 — a ¥= 0. 

As a result the quadratic polynomial t — a has coefficients in Z, but no roots 
in Z), thus D does not contain all quadratic extensions of Z. Finally, suppose 
fi ¥= 0 and for x G Z), consider 

^ ;) -1° JX! ;) - (! X i) 

Since (^_ a x ^c^i) is n o t z e r o > 2t a l s o is invertible, hence its determinant 
-(ax - I)2 + fi2x = -a2x2 + (2a + fi2)x - 1 =* 0. Therefore the 
polynomial 

r - -^(2a + fi2)t + -^ 
az az 

has no roots in 2), thereby concluding the proof. 
We now conclude this paper by combining Lemmas 10 and 11 to obtain 

THEOREM 2. Suppose R = D2\ then: 
l.i/D is not commutative and 2R ¥" 0, every derivation dsuch that d(u) = 0 is 

invertible, for all u in a non-central Lie ideal, must be inner. 
2. there exists an inner derivation dsuch that d(U) ¥= 0 and d(u) = 0 or d(u) is 

invertible, for all u contained in a non-central Lie ideal U, if and only if D does not 
contain all quadratic extensions of Z or D is afield of characteristic 2. 
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