DERIVATIONS WITH INVERTIBLE VALUES ON A LIE IDEAL

BY

JEFFREY BERGEN AND L. CARINI

ABSTRACT. Let R be a ring which possesses a unit element, a Lie ideal $U \notin Z$, and a derivation d such that $d(U) \neq 0$ and d(u) is 0 or invertible, for all $u \in U$. We prove that R must be either a division ring D or D_2 , the 2×2 matrices over a division ring unless d is not inner, R is not semiprime, and either 2R or 3R is 0. We also examine for which division rings D, D_2 can possess such a derivation and study when this derivation must be inner.

In a recent paper [1], Bergen, Herstein and Lanski have related the structure of a ring R to the special behavior of one of its derivations. More precisely, they proved that if R is a ring with unit and $d \neq 0$ is a derivation of R such that for every $x \in R$, d(x) = 0 or d(x) is invertible in R, then except for a special case which occurs when 2R = 0, R must be a division ring D or the ring D_2 of 2×2 matrices over a division ring.

Here we shall examine what happens when R is a ring with unit, U is a non-central Lie ideal of R, and d is a derivation of R such that for every $u \in U$, d(u) = 0 or d(u) is invertible in R. The results we will obtain have a similar flavor to those of [1]. In fact we shall prove the following:

THEOREM 1. Let R be a ring with 1, $U \not\subset Z$ a Lie ideal of R, and d a derivation of R such that $d(U) \neq 0$ and d(u) = 0 or d(u) is invertible, for every $u \in U$. Then R is either

1. a division ring D, or

2. D_2 ,

unless 2R or 3R is zero, d is not inner, and R is not semiprime. In this case, R = M + d(M), where M is the unique maximal ideal of R and $M^3 = 0$.

We then examine, for the case $R = D_2$, when d is inner and for which division rings D such a derivation exists. The result we obtain is

Received by the editors July 4, 1986.

The research of the first author was supported, in part, by a grant from the Faculty Research and Development Fund of the College of Liberal Arts and Sciences at DePaul University. Most of the work was done when he was a visitor at the Dipartimento di Matematica-Università di Messina and he would like to thank them for their hospitality.

The research of the second author was supported by a grant from "Ministero PI."

AMS Subject Classification Numbers: 16A68, 16A72.

[©] Canadian Mathematical Society 1986.

THEOREM 2. Suppose $R = D_2$, then:

1. if D is not commutative and $2R \neq 0$, every derivation of R such that d(u) = 0 or d(u) is invertible, for all u in a non-central Lie ideal, must be inner.

2. there exists an inner derivation d such that $d(U) \neq 0$ and d(u) = 0 or d(u) is invertible, for all u contained in a non-central Lie ideal U, if and only if D does not contain all quadratic extensions of Z or D is a field of characteristic 2.

For $a, b \in R$ set [a, b] = ab - ba and for subsets $U, V \subset R$ let [U, V] be the additive subgroup generated by all [u, v] for $u \in U$ and $v \in V$. We recall that a Lie ideal U of R is an additive subgroup of R such that $[U, R] \subset U$.

In all that follows, unless otherwise stated, R will be a ring with 1, Z = Z(R) the center R, $U \notin Z$ a Lie ideal of R and d a derivation of R such that $d(U) \neq 0$ and d(u) = 0 or d(u) is invertible, for all $u \in U$.

We begin with

LEMMA 1. $d([U, R]) \neq 0$.

PROOF. Suppose d([U, R]) = 0 and let $u \in U, r \in R$; then 0 = d([u, ur]) = d(u[u, r]) = d(u)[u, r]. Therefore, d(u) = 0 or [u, R] = 0 thus, for all $u \in U$, either d(u) = 0 or $u \in Z$. It now follows that d(U) = 0 or $U \subset Z$, a contradiction.

We now show that R is d-simple, that is, has no non-zero, proper ideals invariant under d.

LEMMA 2. If $I \neq 0$ is an ideal of R such that $d(I) \subset I$, then I = R.

PROOF. Suppose $d([U, I]) \neq 0$; then $0 \neq d([U, I]) \subset d(U) \cap I$, therefore I contains invertible elements and so, I = R.

On the other hand, if d([U, I]) = 0 then for $u \in U$ and $i \in I$, we have 0 = d([u, ui]) = d(u[u, i]) = d(u)[u, i]. As in the proof of Lemma 1, either d(U) = 0 or [U, I] = 0, thus [U, I] = 0. Hence 0 = [U, IR] = I[U, R].

By Lemma 1, there exist $u \in U$ and $r \in R$ such that $d([u, r]) \neq 0$. If $i \in I$ then 0 = d(i[u, r]) = id([u, r]) + d(i)[u, r]. However, since $d(i) \in I$, we obtain Id([u, r]) = 0, a contradiction.

We proceed with

LEMMA 3. If $I \neq R$ is an ideal of R, then $I^3 = 0$.

PROOF. Since $d([U, I^2]) \subset d(U) \cap I$ and $I \neq R$, it follows that $d([U, I^2]) = 0$. Using the identical argument as in the proof of Lemma 2, $I^2[U, R] = 0$ and 0 = d(i[u, r]) = d(i)[u, r] + id([u, r]), for $i \in I^2$, $u \in U$, and $r \in R$. However, if $i \in I^3$ then $d(i) \in I^2$, hence $I^3d([U, R]) = 0$ and, by Lemma 1, $I^3 = 0$.

We continue with

DERIVATIONS

LEMMA 4. If $2R \neq 0$ and $3R \neq 0$ then R is simple.

PROOF. If R is not simple, let M be the sum of all proper ideals of R. By Lemma 3, every proper ideal of R has cube zero, hence M is nil and so, $M^3 = 0$. Obviously M is the unique maximal ideal of R and, by Lemma 2, $d(M) \notin M$.

Since M + d(M) is an ideal of R properly containing M, M + d(M) = R. Consequently there exist $a, b \in M$ such that 1 = a + d(b). Now, $0 = d^3(b^3) = d^3(b^2b) = d^3(b^2)b + 3d^2(b^2)d(b) + 3d(b^2)d^2(b) + b^2d^3(b)$, hence $3d^2(b^2)d(b) \in M$. Since $d^2(b^2) = d^2(b)b + 2d(b)^2 + bd^2(b)$, we obtain $6d(b)^3 \in M$. If $2R \neq 0$ and $3R \neq 0$ then, by Lemma 2, 2R = 3R = R, hence 6R = R. However, d(b) = 1 - a is invertible therefore $6 \in M$ and so, M = R, a contradiction. As a result, R is simple.

Combining Lemmas 2, 3, and 4 we immediately obtain

LEMMA 5. If either d is inner, R is semiprime, or both 2R and 3R are nonzero then R is simple. In addition, if R is not simple then R = M + d(M) where M is the unique maximal ideal of R and $M^3 = 0$.

At this point, the proof of Theorem 1 reduces to showing that when R is simple either R = D or D_2 . By Theorem 1.5 of [3], if R is simple then either $U \supset [R, R]$ or R is of characteristic 2 and of dimension at most 4 over its center. In the latter case, there is nothing left to prove. However, in the first case it is relatively easy to see that $d([R, R]) \neq 0$ and $[R, R] \not\subset Z$. Therefore, throughout Lemmas 6, 7, 8, 9 we will assume that R is simple, U = [R, R], and R is not of characteristic 2 with dimension ≤ 4 over its center.

LEMMA 6. If $0 \neq a \in R$ is such that d(a) = 0, then a is invertible.

PROOF. Suppose that $[a, d(R)] \neq 0$; then let $x \in R$ such that $[a, d(x)] \neq 0$. Since d(a) = 0, we obtain d([a, x]) = [a, d(x)] and d([a, ax]) = d(a[a, x]) = a[a, d(x)]. Moreover $d([a, x]), d([a, ax]) \in d([R, R])$, therefore [a, d(x)] is invertible, hence a[a, d(x)] is non-zero and so, a[a, d(x)] is also invertible, finally resulting in a invertible.

Now suppose that [a, d(R)] = 0; then, by Theorem 1 of [5], $d^2 = 0$, $a^2 \in Z$, char R = 2, and d is an inner derivation induced by a central multiple of a. Furthermore, by Theorem 2 of [4], if [d(R), d(R)] = 0 then R has dimension ≤ 4 , over its center. Therefore, without loss of generality, we may assume that $d^2 = 0$, d(r) = [a, r] for all $r \in R$, and there exist s, $t \in R$ such that $[d(s), d(t)] \neq 0$. Consider d([s, d(t)]) = [d(s), d(t)] and d([s, ad(t)]) = [d(s), ad(t)] = a[d(s), d(t)]. Since [d(s), d(t)], $a[d(s), d(t)] \in d([R, R])$ we conclude, as in the previous paragraph, that a is invertible.

We continue with

1988]

LEMMA 7. If $L \neq 0$ is a right ideal of R, then R = L + d(L).

PROOF. Since R is simple either R is a field or $[L, L] \neq 0$. If R is not a field, let $0 \neq x \in [L, L]$; by the previous lemma, we get that either x or d(x) must be invertible. This implies that L + d(L) is a right ideal which contains invertible elements, hence L + d(L) = R.

Since R is simple with 1, it is primitive. Therefore R has a faithful, irreducible right module V and R acts densely on V, viewing V as a vector space over the division ring D where D is the commuting ring of R on V.

We now prove the technical, but very useful

LEMMA 8. Let V be a faithful, irreducible, right R-module. If $0 \neq v \in V$ and $0 \neq a \in R$ are such that va = 0, then $vd(a) \neq 0$.

PROOF. By Lemma 7 we get aR + d(aR) = R. Therefore, V = vR = v(aR + ad(R) + d(a)R) = vd(a)R, thus $vd(a) \neq 0$.

We now narrow in on the structure of R.

LEMMA 9. R = D or $R = D_2$.

PROOF. It suffices to show that $\dim_D V = 1$ or 2. Suppose $\dim_D V \ge 3$; then there exist linearly independent $v_1, v_2, v_3 \in V$ and an $r \in R$ such that $v_1r = 0, v_2r = 0$, and $v_3r = v_3$. Let $T = \{r \in R | v_1r = v_2r = 0\}$; since $r \neq 0 \in T$, T is a non-zero right ideal of R, hence, by Lemma 7, R = T + d(T).

Now, let $x, y \in R$ such that $v_1x = v_1, v_2x = v_2, v_1y = 0$, and $v_2y = v_2$. In addition, since R = T + d(T), let $a, b \in T$ such that x = a + d(b). As a result, $v_1 = v_1x = v_1(a + d(b)) = v_1d(b)$ and $v_2 = v_2x = v_2(a + d(b)) = v_2d(b)$. Hence $v_1d(by) = v_1(bd(y) + d(b)y) = v_1d(b)y = v_1y = 0$ which, by Lemma 8, implies by = 0. However, in this case $0 = v_2d(by) = v_2(bd(y) + d(b)y) = v_2d(b)y = v_2d(b)y = v_2y = v_2$, a contradiction, thereby proving the lemma.

By combining Lemmas 5 and 9 we obtain our first main result, which we mentioned at the outset of this paper.

THEOREM 1. Let R be a ring with 1, $U \not\subset Z$ a Lie ideal of R, and d a derivation of R such that $d(U) \neq 0$ and d(u) = 0 or d(u) is invertible, for every $u \in U$. Then R is either

1. a division ring D, or

2. *D*₂

unless 2R or 3R is zero, d is not inner, and R is not semiprime. In this case, R = M + d(M), where M is the unique maximal ideal of R and $M^3 = 0$.

DERIVATIONS

In [1] it is shown that the only example of a ring $R \neq D$ or D_2 with a derivation $d \neq 0$ such that d(x) = 0 or is invertible, for all $x \in R$, is $D[x]/(x^2)$ where char D = 2, d(D) = 0, and d(x) = 1 + ax, for some *a* in the center of *D*. Therefore, with the hypothesis of Theorem 1, when 2R = 0 there exists an example where $R \neq D$ or D_2 . However, when 3R = 0 we have neither been able to either prove that R = D or D_2 nor been able to produce a counterexample. On the other hand, it does follow from Theorem 1 that if $R \neq D$ or D_2 , with 3R = 0, then *R* and *d* are rather special.

We now try to characterize those division rings D for which $R = D_2$ has a derivation $d \neq 0$ all of whose values are zero or invertible on a non-central Lie ideal. In addition, we shall examine when such a d must be inner. To do this, we will refer to several calculations which were done in Lemma 8 of [1] and will be omitted here for brevity.

LEMMA 10. If $R = D_2$, where $2R \neq 0$ and D is non-commutative, then d is inner.

PROOF. If d is a derivation of D_2 , then d has the form:

$$d\begin{pmatrix} a & b \\ c & e \end{pmatrix} = \begin{pmatrix} f(a) - b\beta - \alpha e & f(b) + a\alpha + b\gamma - \alpha e \\ f(c) + \beta a - e\beta - \gamma c & f(e) + e\gamma - \gamma e + \beta b + c\alpha \end{pmatrix}$$

for all $a, b, c, e \in D$; where $\alpha, \beta, \gamma \in D$ and f is a derivation of D. Furthermore, it is shown in Lemma 7 of [1] that d is inner on D_2 if and only if f is inner on D. Therefore it will be enough to show that f is inner.

Let

$$T = \left\{ a \in D \middle| \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in [R, R] \right\};$$

since D is non-commutative, T is a non-central subset of D invariant under all automorphisms of D. By a result of Brauer-Cartan-Hua [2], the subdivision ring \overline{T} of D generated by T is all of D. As noted in the discussion before Lemma 5, we may assume that $U \supset [R, R]$.

Suppose $\alpha = 0$; if $a \in T$ then

$$d\begin{pmatrix}a&0\\0&0\end{pmatrix} = \begin{pmatrix}f(a)&0\\\beta a&0\end{pmatrix}$$

is zero or invertible. Therefore f(a) = 0, hence $0 = f(T) = f(\overline{T}) = f(D)$, implying that f is inner. As a result, we may now assume that $\alpha \neq 0$. It now follows from the calculations in Lemma 8 of [1], that there is a $\tau \in D$ such that $f(a) = \tau a - a\tau$, for all $a \in D$ satisfying

$$\begin{pmatrix} a & 0\\ \alpha^{-1}f(a) & \alpha^{-1}a\alpha \end{pmatrix} \in [R, R].$$

https://doi.org/10.4153/CMB-1988-016-x Published online by Cambridge University Press

1988]

However, if $a \in T$ then $\alpha a \alpha^{-1} \in T$, therefore

$$\begin{pmatrix} a & 0 \\ \alpha^{-1}f(a) & \alpha^{-1}a\alpha \end{pmatrix}$$

$$= \begin{pmatrix} a + \alpha^{-1}a\alpha & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ \alpha^{-1}f(a) & 0 \end{pmatrix} + \begin{pmatrix} -\alpha^{-1}a\alpha & 0 \\ 0 & \alpha^{-1}a\alpha \end{pmatrix}$$

$$= \begin{pmatrix} a + \alpha^{-1}a\alpha & 0 \\ 0 & 0 \end{pmatrix} + \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ \alpha^{-1}f(a) & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ \alpha^{-1}a\alpha & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$\in [R, R].$$

Thus $f(a) = [\tau, a]$ for all $a \in T$, hence $f(a) = [\tau, a]$ for al $a \in \overline{T} = D$, thereby proving that f is inner on D.

At this point, we should note that the assumption $2R \neq 0$ in Lemma 10 cannot be dropped, as an example is given in [1] of a division ring D of characteristic 2 such that $R = D_2$ has a derivation $d \neq 0$ all of whose values on R are 0 or invertible, yet d is not inner. We have not, however, been able to determine whether the assumption in Lemma 10, that D be non-commutative, is necessary.

We will now characterize those D such that $R = D_2$ possesses an inner derivation d such that $d(U) \neq 0$ and d(u) = 0 or is invertible, for all u in a Lie ideal $U \notin Z$. The condition "D does not contain all quadratic extensions of Z" will come up. By this we mean that there exist γ , δ in the center of D such that the polynomial $t^2 + \gamma t + \delta$ has no root in D. Note that the following lemma places no restriction on either the characteristic or the noncommutativity of D.

LEMMA 11. $R = D_2$ has an inner derivation d such that $d(U) \neq 0$ and d(u) is 0 or invertible, for all u in a Lie ideal $U \not\subset Z$, if and only if D does not contain all quadratic extensions of Z or D is a field of characteristic 2.

PROOF. It is shown in Lemma 9 of [1] that if D does not contain all quadratic extensions of Z, then there exists an inner derivation $d \neq 0$ such that d(x) = 0 or is invertible for all $x \in R$. In addition, if D is a field of characteristic 2, then

$$U = \left\{ \begin{pmatrix} a & b \\ b & a \end{pmatrix} \middle| a, b \in D \right\}$$

is a non-central Lie ideal of R and it is easy to see that the inner derivation d induced by $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ has the properties that $d(U) \neq 0$ and $d(U) \subset Z(R)$.

Conversely, suppose that D is not a field of characteristic 2 and that $d \neq 0$ is inner such that $d(U) \neq 0$ and d(u) = 0 or is invertible, for all u in a Lie ideal $U \notin Z$. Therefore, by Lemma 6 and the discussion preceding it, we may assume that U = [R, R] and that every element in the kernel of d is 0 or DERIVATIONS

invertible. Using essentially the same argument as in Lemma 9 of [1], we may also assume that d is induced by an element of the form $\begin{pmatrix} 0 & 1 \\ \alpha & \beta \end{pmatrix}$.

We claim that α and β lie in the center of *D*. Clearly when *D* is commutative there is nothing to prove. If *D* is non-commutative, let *T* be as in Lemma 10; then \overline{T} , the subdivision ring of *D* generated by *T*, is all of *D*. Suppose $a \in T$; then

$$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ \alpha a - a\alpha & \beta a - a\beta \end{pmatrix}$$

is a non-invertible element of d([R, R]), hence is zero. Therefore $\alpha a = a\alpha$ and $\beta a = a\beta$ for all $a \in T$, hence also for all $a \in \overline{T} = D$, thereby proving the claim. Furthermore, since $d\begin{pmatrix} 0 & 1\\ \alpha & \beta \end{pmatrix} = 0$, $\begin{pmatrix} 0 & 1\\ \alpha & \beta \end{pmatrix}$ must be invertible thus $\alpha \neq 0$.

Suppose $\beta = 0$; if $x \in D$ then

$$d\begin{pmatrix} x & 1 \\ \alpha & x \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \alpha & 0 \end{pmatrix} \begin{pmatrix} x & 1 \\ \alpha & x \end{pmatrix} - \begin{pmatrix} x & 1 \\ \alpha & x \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \alpha & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Since $\binom{x}{\alpha} \frac{1}{x}$ is not zero, it must be invertible, hence its determinant $x^2 - \alpha \neq 0$. As a result the quadratic polynomial $t^2 - \alpha$ has coefficients in Z, but no roots in D, thus D does not contain all quadratic extensions of Z. Finally, suppose $\beta \neq 0$ and for $x \in D$, consider

$$d\begin{pmatrix} 0 & x \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ \alpha & \beta \end{pmatrix} \begin{pmatrix} 0 & x \\ 1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & x \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ \alpha & \beta \end{pmatrix}$$
$$= \begin{pmatrix} 1 - \alpha x & -\beta x \\ \beta & \alpha x - 1 \end{pmatrix} \in d([R, R]).$$

Since $\begin{pmatrix} 1-\alpha x & -\beta x \\ \alpha x - 1 \end{pmatrix}$ is not zero, it also is invertible, hence its determinant $-(\alpha x - 1)^2 + \beta^2 x = -\alpha^2 x^2 + (2\alpha + \beta^2)x - 1 \neq 0$. Therefore the polynomial

$$t^2 - \frac{1}{\alpha^2}(2\alpha + \beta^2)t + \frac{1}{\alpha^2}$$

has no roots in D, thereby concluding the proof.

We now conclude this paper by combining Lemmas 10 and 11 to obtain

THEOREM 2. Suppose $R = D_2$; then:

1. if D is not commutative and $2R \neq 0$, every derivation d such that d(u) = 0 is invertible, for all u in a non-central Lie ideal, must be inner.

2. there exists an inner derivation d such that $d(U) \neq 0$ and d(u) = 0 or d(u) is invertible, for all u contained in a non-central Lie ideal U, if and only if D does not contain all quadratic extensions of Z or D is a field of characteristic 2.

J. BERGEN AND L. CARINI

References

1. J. Bergen, I. N. Herstein and C. Lanski, *Derivations with invertible values*, Can. J. Math. 35 (1983), pp. 300-310.

2. R. Brauer, On a theorem of H. Cartan, Bull. Amer. Math. Soc. 55 (1949), pp. 619-620.

3. I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, Chicago, 1959.

4. I. N. Herstein, A note on derivations, Can. Math. Bull. 21 (1978), pp. 369-370.

5. I. N. Herstein, A note on derivations II, Can. Math. Bull. 22 (1979), pp. 509-511.

DEPAUL UNIVERSITY CHICAGO, IL 60614 USA

DIPARTIMENTO DI MATEMATICA Dell' Università Via C. Battisti 90, 98100 Messina, Italy