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Abstract

Let X be any set and P(X) the set of all partial transformations defined on X, that is, all functions α : A→ B
where A, B are subsets of X. Then P(X) is a semigroup under composition. Let Y be a subset of X.
Recently, Fernandes and Sanwong defined PT (X, Y) = {α ∈ P(X) : Xα ⊆ Y} and defined I(X, Y) to be the
set of all injective transformations in PT (X, Y). Hence PT (X, Y) and I(X, Y) are subsemigroups of P(X).
In this paper, we study properties of the so-called natural partial order ≤ on PT (X, Y) and I(X, Y) in terms
of domains, images and kernels, compare ≤ with the subset order, characterise the meet and join of these
two orders, then find elements of PT (X, Y) and I(X, Y) which are compatible. Also, the minimal and
maximal elements are described.
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1. Introduction

The natural partial order on a semigroup has been developed in a number of steps. In
the terminology of Clifford and Preston [1], a band B is a semigroup in which every
element is an idempotent. On such a semigroup there is a natural (partial) order defined
by the rule

e ≤ f if and only if e = e f = f e.

If the partial order ≤ is compatible with the multiplication in B, in the sense that e ≤ f
implies that eg ≤ f g and ge ≤ g f for all g ∈ B, we shall say that B is a naturally ordered
band. In 1966, Howie [4] described the structure of naturally ordered bands.
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[2] Semigroups of partial transformations with restricted range 101

In the year 1952, Vagner [13] defined the natural order on an inverse semigroup S
by

a ≤ b if and only if a = eb for some e ∈ E(S ).

About thirty years later, Hartwig [3] and Nambooripad [9] independently discovered
the generalisation of the above order. They defined it on a regular semigroup S by

a ≤ b if and only if a = eb = b f for some e, f ∈ E(S ). (1.1)

In general ≤ is not compatible with multiplication on S . In 1986, the natural order on a
regular semigroup was further extended to any semigroup S by Mitsch [8]. He defined

a ≤ b if and only if a = xb = by, xa = a for some x, y ∈ S 1.

The partial transformation semigroup on the set X, denoted P(X), is the set of all
functions from a subset of X into X, with the operation of composition. In addition,
the semigroups T (X) and I(X) are defined by

T (X) = {α ∈ P(X) : dom α = X},

I(X) = {α ∈ P(X) : α is injective}.

These semigroups T (X) and I(X) are called the full transformation semigroup and the
symmetric inverse semigroup, respectively. It is well known that P(X) and T (X) are
regular and that I(X) is an inverse semigroup.

In 1986, Kowol and Mitsch [6] studied the full transformation semigroup T (X) on
the set X with respect to the natural partial order which is defined by (1.1). They
characterised this order in terms of images and kernels. They also described the
maximal, minimal and covering elements. Additionally, they studied lower and upper
bounds for two transformations.

In 2003, Marques-Smith and Sullivan [7] studied the natural partial order on P(X)
and T (X). They also investigated the orders ⊆, Ω′ and Ω on P(X) which are defined as
follows.

(i) α ⊆ β if and only if dom α ⊆ dom β and xα = xβ for all x ∈ dom α.
(ii) (α, β) ∈Ω′ if and only if Xα ⊆ Xβ, dom α ⊆ dom β and

αβ−1 ∩ (dom α × dom α) ⊆ αα−1.

(iii) (α, β) ∈Ω if and only if (α, β) ∈Ω′ and

ββ−1 ∩ (dom α × dom α) ⊆ αα−1.

They proved that Ω = ⊆ ◦ ≤ is a join of ≤ and ⊆. Moreover, they found elements of
P(X) and T (X) which are compatible under ≤ and ⊆. Also, the maximal and minimal
elements were described. Recently in [11], the authors considered these orders on I(X)
and found that Ω = Ω′ and ⊆ is always properly contained in Ω for |X| > 1.
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Let Y be a nonempty subset of X. We consider a subsemigroup of T (X) defined by

T (X, Y) = {α ∈ T (X) : Xα ⊆ Y}

where Xα denotes the range of α. In 1975, Symons [12] introduced and studied the
semigroup T (X, Y). He described all the automorphisms of T (X, Y) and found that
the most difficult case occurs when |Y | = 2. He also determined when T (X1, Y1) is
isomorphic to T (X2, Y2). In 2008, Sanwong and Sommanee [10] obtained the largest
regular subsemigroup of T (X, Y) and a class of its maximal inverse subsemigroups.
Further, they characterised the Green’s relations on T (X, Y).

In [2], Fernandes and Sanwong introduced the partial transformation semigroup
with restricted range as follows.

Let Y be a subset of X. They considered the semigroup PT (X, Y) and I(X, Y) defined
by

PT (X, Y) = {α ∈ P(X) : Xα ⊆ Y} and I(X, Y) = I(X) ∩ PT (X, Y).

Clearly, PT (X, X) = P(X), T (X, X) = T (X), I(X, X) = I(X) and PT (X, ∅) = I(X, ∅) =

{∅}. Moreover, they proved that PF = {α ∈ PT (X, Y) : Xα = Yα} is the largest regular
subsemigroup of PT (X, Y) and that I(Y) is the largest regular subsemigroup of I(X, Y).

In this paper, we characterise ≤ and ⊆ on PT (X, Y) and I(X, Y), and describe the
meet and join of ≤ and ⊆. Then we compare ≤, ⊆ with other partial orders and find
elements of PT (X, Y), I(X, Y) which are compatible with ≤. Also, the minimal and
maximal elements of PT (X, Y) with respect to ≤ are obtained.

2. Preliminary notations and results

In this section, we give some notations and results which are used in this paper.
Recall that the natural partial order on any semigroup S is defined by

a ≤ b if and only if a = xb = by, xa = a for some x, y ∈ S 1,

or equivalently

a ≤ b if and only if a = wb = bz, az = a for some w, z ∈ S 1. (2.1)

In this paper, we use (2.1) to define the partial order on the semigroup S = PT (X, Y)
or I(X, Y); that is, for each α, β ∈ S

α ≤ β if and only if α = γβ = βµ, α = αµ for some γ, µ ∈ S 1.

We note that if Y ( X, then PT (X, Y) and I(X, Y) have no identity elements. Thus, in
this case PT (X, Y)1 , PT (X, Y) and I(X, Y)1 , I(X, Y).

In this paper, the kernel equivalence of α ∈ PT (X, Y), ker α, is defined by

(x, y) ∈ ker α if and only if xα = yα.

To describe the natural partial order on PT (X, Y) and I(X, Y), we need the following
two lemmas which first appeared in [2]. For the sake of completeness, we present the
proofs here.
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[4] Semigroups of partial transformations with restricted range 103

L 2.1. Let α, β ∈ PT (X, Y). Then

dom α ⊆ dom β and ker β ∩ (dom β × dom α) ⊆ ker α

if and only if α = βγ for some γ ∈ PT (X, Y).

P. If α = βγ, for some γ ∈ PT (X, Y), then it is clear that dom α ⊆ dom β. On the
other hand, consider (a, b) ∈ ker β ∩ (dom β × dom α). Then we have aβ = bβ. Since
b ∈ dom α = dom βγ, it follows that bβγ exists, whence bβγ = (bβ)γ = (aβ)γ = aβγ,
and so we also obtain a ∈ dom βγ = dom α. Moreover, aα = (aβ)γ = (bβ)γ = bα,
whence (a, b) ∈ ker α. Thus ker β ∩ (dom β × dom α) ⊆ ker α.

Conversely, assume that the conditions hold. Let x ∈ (dom α)β. Then aβ =

x, for some a ∈ dom α. Notice that if b ∈ dom β is also such that bβ = x then
(b, a) ∈ ker β ∩ (dom β × dom α). Hence, by the hypothesis, we have bα = aα (and,
in particular, b ∈ dom α). Thus, we consider the transformation γ ∈ PT (X, Y) with
dom γ = (dom α)β defined by, for each x ∈ (dom α)β, xγ = aα, for some a ∈ dom α
such that aβ = x. Hence, α = βγ, as required. �

L 2.2. Let α, β ∈ I(X, Y). Then dom α ⊆ dom β if and only if α = βγ for some
γ ∈ I(X, Y).

P. If α = βγ, for some γ ∈ I(X, Y), then clearly, dom α ⊆ dom β. Conversely,
suppose that dom α ⊆ dom β. Then we can write α =

(
xi
ai

)
and β =

(
xi x j

bi b j

)
, where

{ai, bi, b j} ⊆ Y . Now define γ =
(

bi
ai

)
∈ I(X, Y); we have α = βγ, as required. �

We have the following simple result on PT (X, Y) which will be used throughout the
paper.

L 2.3. If A ⊆ B, then Aα ⊆ Bα for all α ∈ PT (X, Y).

The following convenient notation will be used: given α ∈ PT (X, Y), we write

α =

(
Xi

ai

)
and take as understood that the subscript i belongs to some (unmentioned) index set I,
that the abbreviation {ai} denotes {ai : i ∈ I}, and that Xα = {ai} and aiα

−1 = Xi.

3. Partial orders

If we regard α, β ∈ PT (X, Y) as subsets of X × Y , it is easy to see that

α ⊆ β if and only if dom α ⊆ dom β and xα = xβ for all x ∈ dom α. (3.1)

We also have ⊆ is a partial order on PT (X, Y) and ∅ ⊆ α for all α ∈ PT (X, Y). Similarly,
for α, β ∈ I(X, Y) we have α ⊆ β if and only if dom α ⊆ dom β and xα = xβ for all
x ∈ dom α; and ⊆ is a partial order on I(X, Y) with ∅ ⊆ α for all α ∈ I(X, Y).

To characterise the natural partial order ≤ and the subset order ⊆ on PT (X, Y) and
I(X, Y), we begin with the following lemma.
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L 3.1. Let α, β ∈ PT (X, Y). Then Xα ⊆ Yβ if and only if α = γβ for some γ ∈
PT (X, Y).

P. Assume that Xα ⊆ Yβ. Then for each x ∈ dom α, we have xα = yβ for some
y ∈ Y , which implies that y ∈ Y ∩ (xα)β−1 , ∅. Choose dx ∈ Y ∩ (xα)β−1, so dx ∈ Y
and dxβ = xα. Now, define γ : dom α→ Y by xγ = dx for all x ∈ dom α. Thus
γ ∈ PT (X, Y) and xγβ = (xγ)β = dxβ = xα for all x ∈ dom α. In addition, we obtain
dom γβ = (im γ ∩ dom β)γ−1 = (im γ)γ−1 = dom γ = dom α. The converse is clearly
true since Xα = Xγβ = (Xγ)β ⊆ Yβ. �

In the proof of Lemma 3.1, if α, β ∈ I(X, Y), then γ is also in I(X, Y). Hence, we
obtain the following lemma immediately.

L 3.2. Suppose that α, β ∈ I(X, Y). Then Xα ⊆ Yβ if and only if α = γβ for some
γ ∈ I(X, Y).

By Lemmas 3.1 and 2.1, we obtain the characterisation of ≤ on PT (X, Y) as follows.

T 3.3. Let α, β ∈ PT (X, Y). Then α ≤ β if and only if α = β or the following
statements hold.

(1) Xα ⊆ Yβ.
(2) dom α ⊆ dom β and ker β ∩ (dom β × dom α) ⊆ ker α.
(3) For each x ∈ dom β, if xβ ∈ Xα, then x ∈ dom α and xα = xβ.

P. Suppose that α ≤ β. Then there exist γ, µ ∈ PT (X, Y)1 such that α = γβ = βµ
and α = αµ. If γ = 1 or µ = 1, then α = β. If γ, µ ∈ PT (X, Y), then conditions (1) and
(2) hold by Lemmas 3.1 and 2.1. If x ∈ dom β and xβ ∈ Xα, then xβ = yα for some
y ∈ X, and thus

xβ = yα = yαµ = xβµ = xα.

Therefore, x ∈ dom α and xα = xβ. Conversely, assume that the conditions (1)–(3)
hold. Again by Lemmas 3.1 and 2.1, there exist γ, µ ∈ PT (X, Y) such that α = γβ = βµ.
Now, we prove that im α ⊆ dom µ, by letting y ∈ im α. Then there is x ∈ dom α such
that xα = y. Since α = γβ, we have y = xα = xγβ. By condition (3), xγ ∈ dom α and
xγα = xγβ. Thus xγβ = xγα = xγβµ = yµ, which implies that y ∈ dom µ. Therefore,
im α ⊆ dom µ. Hence

dom αµ = (im α ∩ dom µ)α−1 = (im α)α−1 = dom α.

For each x ∈ dom α, xα = xγβ. Again by condition (3), xγ ∈ dom α and xγα = xγβ.
Thus

xα = xγβ = xγα = xγβµ = xαµ.

Therefore, α = αµ. �

Notice that ∅ ≤ α for all α ∈ PT (X, Y).
Now, we consider the semigroup I(X, Y).
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T 3.4. Let α, β ∈ I(X, Y). Then α ≤ β if and only if α = β or the following
statements hold.

(1) Xα ⊆ Yβ.
(2) dom α ⊆ dom β.
(3) For each x ∈ dom β, if xβ ∈ Xα, then x ∈ dom α and xα = xβ.

P. Since α, β ∈ I(X, Y) ⊆ PT (X, Y) and α ≤ β, we have by Theorem 3.3 that α = β
or the conditions (1)–(3) hold.

Using Lemmas 3.2 and 2.2 in the proof as given for Theorem 3.3, we obtain the
converse of the theorem. �

Clearly, if ρ and σ are partial orders on X then the intersection of ρ and σ, ρ ∩ σ,
is also a partial order on X. Now we have three partial orders on PT (X, Y), namely,
≤, ⊆ and ≤ ∩ ⊆. The following lemma shows that if |Y | ≥ 2, then ⊆ \ ≤ and ≤ \ ⊆ on
PT (X, Y) are nonempty. Consequently, the meet of ≤ and ⊆ cannot equal ≤ or ⊆, so
these three partial orders are different.

L 3.5. If |X| ≥ 2, then the following statements hold on PT (X, Y).

(1) ⊆ \ ≤ is nonempty.
(2) ≤ \ ⊆ is nonempty if and only if |Y | ≥ 2.

P. (1) Let a ∈ X, b ∈ Y be such that a , b and let

α =

(
a
b

)
, β =

(
{a, b}

b

)
.

Then α ⊆ β, and bβ = b ∈ Xαwhile b < dom α. Hence α � β; that is, ⊆ \ ≤ is nonempty.
(2) Suppose that |Y | ≥ 2. Let a, b ∈ Y ⊆ X be such that a , b, and define

α =

(
{a, b}

b

)
, β =

(
a b
a b

)
.

Then α * β. We see that Xα = {b} ⊆ {a, b} = Yβ and dom α ⊆ dom β. Also,

ker β ∩ (dom β × dom α) = {(a, a), (b, b)} ⊆ {(a, a), (b, b), (a, b), (b, a)} = ker α,

and bβ = b ∈ Xα implies b ∈ dom α and bα = bβ. Hence α ≤ β; that is, ≤ \ ⊆ is
nonempty.

Conversely, suppose that |Y | = 1. Let α, β ∈ PT (X, Y) be such that α ≤ β. Then
dom α ⊆ dom β and, if x ∈ dom α, we have x ∈ dom β and xα = xβ since |Y | = 1. Thus
α ⊆ β, and hence ≤ ⊆ ⊆, which implies that ≤ \ ⊆ is empty. �

We now intend to determine their join.

L 3.6. The join ⊆ ◦ ≤ is a partial order on PT (X, Y).
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P. It is clear that ⊆ ◦ ≤ is reflexive. Let α, β ∈ PT (X, Y) be such that
(α, β), (β, α) ∈ ⊆ ◦ ≤. Then there exist γ, µ ∈ PT (X, Y) such that α ⊆ γ ≤ β and β ⊆
µ ≤ α. Hence

dom α ⊆ dom γ ⊆ dom β ⊆ dom µ ⊆ dom α.

Therefore, dom α = dom β. Now, we prove that α = β. For each x ∈ dom α, xα =

xγ ∈ Xγ ⊆ Yβ since α ⊆ γ ≤ β. Hence xγ = yβ for some y ∈ Y , and then yβ ∈ Xγ,
which implies that y ∈ dom γ and yβ = yγ, since γ ≤ β. Since β ⊆ µ, we obtain
yβ = yµ ∈ Xµ ⊆ Yα, so yµ = zα for some z ∈ Y . Thus zα ∈ Xµ, from which it follows
that z ∈ dom µ and zα = zµ since µ ≤ α. Hence

zα = yµ = yβ = xγ = xα.

This means that (x, z) ∈ ker α ∩ (dom α × dom µ) ⊆ ker µ, whence xµ = zµ. Since
β ⊆ µ, we obtain xβ = xµ. Hence

xβ = xµ = zµ = zα = xα.

Thus α = β, and therefore ⊆ ◦ ≤ is antisymmetric.
Next, we prove the transitivity of ⊆ ◦ ≤. Let (α, γ), (γ, β) ∈ ⊆ ◦ ≤. Then there are

µ, ξ ∈ PT (X, Y) such that α ⊆ µ ≤ γ and γ ⊆ ξ ≤ β. Thus

dom α ⊆ dom µ ⊆ dom γ ⊆ dom ξ ⊆ dom β,

and
Xα ⊆ Xµ ⊆ Yγ ⊆ Xγ ⊆ Xξ ⊆ Yβ.

Hence we can write

α =

(
Ai

xi

)
, β =

(
Bi B j

xi x j

)
,

where
⋃

Ai ⊆ (
⋃

Bi) ∪ (
⋃

B j) and Bi ∩ Y , ∅ for all i. Let

Ji = { j ∈ J : B j ∩ Ai , ∅} and Ci =
⋃
{B j : j ∈ Ji}.

Define

θ =

(
Ai ∪ Bi ∪Ci

xi

)
.

To see that θ is well defined, let i1, i2 ∈ I be such that i1 , i2 and suppose that
there exists j ∈ Ji1 ∩ Ji2 . Then B j ∩ Ai1 , ∅ , B j ∩ Ai2 . Let x ∈ B j ∩ Ai1 and y ∈
B j ∩ Ai2 . Hence xβ = x j = yβ and x, y ∈ dom α ⊆ dom β. Since ξ ≤ β and (x, y) ∈
ker β ∩ (dom β × dom ξ) ⊆ ker ξ, we obtain xξ = yξ, from which it follows that xγ = yγ
since γ ⊆ ξ. Using the condition α ⊆ µ ≤ γ, we obtain xµ = yµ and xα = yα. Thus
xi1 = xα = yα = xi2 , which is a contradiction. Hence Ji1 ∩ Ji2 = ∅, which implies that θ
is well defined. It is clear that α ⊆ θ. Also, by the definition of θ, we see that θ and β
satisfy conditions (1)–(3) of Theorem 3.3, and thus θ ≤ β. Therefore, (α, β) ∈ ⊆ ◦ ≤. �
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Since ⊆, ≤ and ⊆ ◦ ≤ are partial orders on PT (X, Y), we obtain the following
theorem immediately.

T 3.7. The partial order ⊆ ◦ ≤ is the join of ⊆ and ≤ on PT (X, Y).

Since ⊆ \ ≤ and ≤ \ ⊆ on PT (X, Y) are nonempty, the join of ⊆ and ≤ is equal to
neither ⊆ nor ≤ when |Y | ≥ 2, so we now have four different nontrivial partial orders
on PT (X, Y), namely ⊆ ∩ ≤, ⊆, ≤ and ⊆ ◦ ≤.

4. Comparable partial orders

Recall that in [7] the authors defined the partial orders Ω′ and Ω on P(X) as follows,
where α, β ∈ P(X).

(i) (α, β) ∈Ω′ if and only if Xα ⊆ Xβ, dom α ⊆ dom β and

αβ−1 ∩ (dom α × dom α) ⊆ αα−1.

(ii) (α, β) ∈Ω if and only if (α, β) ∈Ω′ and

ββ−1 ∩ (dom α × dom α) ⊆ αα−1.

Since PT (X, Y) is a subset of P(X), we see that the relations Ω′ and Ω are also partial
orders on PT (X, Y) and Ω ⊆Ω′. In [7], the authors showed that Ω is a join and Ω′ is
an upper bound of ⊆ and ≤ on P(X). By the following theorem, Ω is an upper bound
of ⊆ and ≤ on PT (X, Y).

T 4.1. The partial order Ω is an upper bound of ⊆ and ≤ on PT (X, Y).
Consequently, ⊆ ◦ ≤ is contained in Ω.

P. Let α, β ∈ PT (X, Y). If α ⊆ β, then Xα ⊆ Xβ and dom α ⊆ dom β. For (x, y) ∈
αβ−1 ∩ (dom α × dom α), we have xα = yβ. Thus xα = yβ = yα since α ⊆ β, which
implies that (x, y) ∈ αα−1. Similarly, we can show that

ββ−1 ∩ (dom α × dom α) ⊆ αα−1.

Hence (α, β) ∈Ω.
Now, if α ≤ β, then Xα ⊆ Yβ ⊆ Xβ, dom α ⊆ dom β and ker β ∩ (dom β × dom α) ⊆

ker α. Let
(x, y) ∈ αβ−1 ∩ (dom α × dom α).

Then x, y ∈ dom α and xα = yβ, which implies that yβ ∈ Xα. Since α ≤ β, we have
yα = yβ. Hence xα = yα, from which it follows that (x, y) ∈ αα−1. Therefore,
(α, β) ∈Ω′. Let

(p, q) ∈ ββ−1 ∩ (dom α × dom α).

Then p, q ∈ dom α ⊆ dom β and pβ = qβ, which implies that

(p, q) ∈ ker β ∩ (dom β × dom α) ⊆ ker α.

Thus pα = qα and (p, q) ∈ αα−1. Therefore, (α, β) ∈Ω. �
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The following two lemmas characterise when Ω = ⊆ ◦ ≤ and Ω′ = Ω on PT (X, Y).

L 4.2. The partial order Ω = ⊆ ◦ ≤ on PT (X, Y) if and only if Y = X or |Y | = 1.

P. If Y = X, then Ω = ⊆ ◦ ≤ on PT (X, X) = P(X) by [7, Theorem 7]. Assume that
|Y | = 1 and let (α, β) ∈Ω. Then dom α ⊆ dom β. If α = ∅, then α ⊆ β, but if α , ∅,
then for each x ∈ dom α it is true that xα = xβ, since |Y | = 1. Hence α ⊆ β, and thus
α ⊆ β ≤ β, which implies that (α, β) ∈ ⊆ ◦ ≤.

Conversely, suppose that Y ( X and |Y | ≥ 2. Then there are three distinct elements
x, y, z such that x ∈ X \ Y and y, z ∈ Y . Define α, β by

α =

(
y
y

)
, β =

(
x y
y z

)
.

Then α, β ∈ PT (X, Y), Xα ⊆ Xβ, dom α ⊆ dom β,

αβ−1 ∩ (dom α × dom α) = ∅ ⊆ αα−1

and
ββ−1 ∩ (dom α × dom α) = {(y, y)} = αα−1.

Hence (α, β) ∈Ω. Assume that (α, β) ∈ ⊆ ◦ ≤. Then there is γ ∈ PT (X, Y) such that
α ⊆ γ ≤ β. If γ = β, then y = yα = yγ = yβ = z, which is a contradiction. Hence γ , β
and Xγ ⊆ Yβ. Thus {y} = Xα ⊆ Xγ ⊆ Yβ = {z}, which is also a contradiction. Therefore,
(α, β) < ⊆ ◦ ≤, which implies that Ω\ ⊆ ◦ ≤ is nonempty. �

L 4.3. The partial order Ω′ = Ω on PT (X, Y) if and only if |Y | ≤ 2.

P. Suppose that |Y | ≤ 2 and let (α, β) ∈Ω′. Then Xα ⊆ Xβ, dom α ⊆ dom β and

αβ−1 ∩ (dom α × dom α) ⊆ αα−1.

Let
(x, y) ∈ ββ−1 ∩ (dom α × dom α).

Then xβ = yβ and x, y ∈ dom α. If xα = yα, then (x, y) ∈ αα−1. However, if xα ,
yα, then xα = yβ or yα = xβ since |Y | ≤ 2. Hence (x, y) or (y, x) ∈ αβ−1 ∩ (dom α ×
dom α) ⊆ αα−1, and so (x, y) ∈ αα−1. Therefore, ββ−1 ∩ (dom α × dom α) ⊆ αα−1.

Conversely, assume that |Y | ≥ 3. If Y = X, then Ω′ \Ω is nonempty by [7, p. 110].
If Y ( X, then we suppose {s, t, u, v} ⊆ X such that s, t, u ∈ Y , and define

α =

(
s t
s t

)
, β =

(
{s, t} u v

u s t

)
.

Therefore, α, β ∈ PT (X, Y), Xα ⊆ Xβ, dom α ⊆ dom β and

αβ−1 ∩ (dom α × dom α) = ∅ ⊆ αα−1.

Hence (α, β) ∈Ω′. Since

ββ−1 ∩ (dom α × dom α) = {(s, s), (t, t), (s, t), (t, s)} * {(s, s), (t, t)} = αα−1,

we have (α, β) <Ω, and therefore Ω′ \Ω is nonempty. �
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By the two lemmas above, we conclude that if Y ( X and |Y | ≥ 3, then the three
partial orders ⊆ ◦ ≤, Ω and Ω′ on PT (X, Y) are different. Hence, we now have
six distinct nontrivial partial orders on PT (X, Y), with inclusions as indicated in the
following diagram.

Ω′

Ω

⊆ ◦ ≤

yy
yy

yy
yy

y

EE
EE

EE
EE

E

⊆

EE
EE

EE
EE

E ≤

yy
yy

yy
yy

y

⊆ ∩ ≤

Next, we compare the partial orders on I(X, Y). It is well known that the natural
order and the subset order are the same on I(X) [5, Proposition V.2.3], but in the
semigroup I(X, Y) we have the following result.

T 4.4. For α, β ∈ I(X, Y), α ≤ β implies α ⊆ β.

P. Let α, β ∈ I(X, Y) be such that α ≤ β. By Theorem 3.4, we have dom α ⊆
dom β, and for each x ∈ dom α we have xα ∈ Xα ⊆ Yβ, which implies that xα = yβ
for some y ∈ Y , and hence yβ ∈ Xα. Again by Theorem 3.4, we have y ∈ dom α and
yα = yβ. Hence xα = yα and x = y, since α is injective. Thus xα = xβ and therefore
α ⊆ β. �

Hence the meet and join of these two partial orders on I(X, Y) are ≤ and ⊆
respectively. Next, we determine when these two relations on I(X, Y) are equal.

T 4.5. On I(X, Y), ⊆ = ≤ if and only if X = Y or |Y | = 1.

P. If X = Y , then I(X, Y) = I(X), which implies that ⊆ = ≤ by [5, Proposition
V.2.3]. If |Y | = 1, let Y = {a}, and thus

I(X, Y) =

{(
x
a

)
: x ∈ X

}
∪ {∅}.

Hence, we see that if α, β ∈ I(X, Y) with α ⊆ β, then α ≤ β. We conclude that ⊆ = ≤.
Now, suppose that⊆ = ≤. If Y ( X and |Y | > 1, then there exist a ∈ X \ Y and b, c ∈ Y

such that b , c. Define

α =

(
a
b

)
, β =

(
a b
b c

)
.
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Then it is clear that α ⊆ β. Since ⊆ = ≤, we obtain α ≤ β, from which it follows that
{b} = Xα ⊆ Yβ = {c}, which is a contradiction. Therefore, X = Y or |Y | = 1. �

As with PT (X, Y), the relations Ω′ and Ω defined at the beginning of Section 4 are
also partial orders on I(X, Y). In [11], the authors showed that Ω and Ω′ are equal
on I(X); thus, using the same proof as given for [11, Theorem 2.5], these two partial
orders are also equal on I(X, Y), and we also have ⊆ ⊆ Ω. Finally, we characterise
when Ω and ⊆ are equal on I(X, Y).

T 4.6. The partial order Ω = ⊆ on I(X, Y) if and only if |Y | = 1.

P. Suppose that |Y | > 1. Then there are two distinct elements x, y ∈ Y ⊆ X. Define

α =

(
x
x

)
, β =

(
x y
y x

)
.

We can see that (α, β) < ⊆ but (α, β) ∈Ω′ = Ω.
Conversely, suppose that |Y | = 1 and let (α, β) ∈Ω′ = Ω. If α = ∅, then α ⊆ β.

However, if α , ∅ then, since |Y | = 1, we have α = β. Hence α ⊆ β and Ω ⊆ ⊆.
Similarly, we can show that ⊆ ⊆ Ω. �

From Theorems 4.5 and 4.6, we conclude that if Y ( X and |Y | > 1 then the three
partial orders ⊆, ≤,Ω are distinct.

5. Compatible elements in the partial orders

Let � be a partial order on a semigroup S . An element c ∈ S is said to be left
(respectively, right) compatible if ca � cb (respectively, ac � bc) for each a, b ∈ S . In
this section, we characterise all elements in PT (X, Y) and I(X, Y) which are compatible
with respect to ≤. We note that ⊆ is always left and right compatible.

L 5.1. Let |Y | = 1 and α, β ∈ PT (X, Y). If α ≤ β, then α = β or α = ∅.

P. Suppose that α ≤ β and α , ∅. Hence 1 ≤ |Xα| ≤ |Y | = 1, and then Xα = Y .
For each x ∈ dom β, we have xβ ∈ Xβ ⊆ Y = Xα and hence x ∈ dom α and xα = xβ by
Theorem 3.3. Thus dom β ⊆ dom α. Since α ≤ β, we have dom α ⊆ dom β. Therefore,
dom α = dom β which implies that α = β. �

By this lemma, we conclude that if |Y | = 1, then every element in PT (X, Y) and
I(X, Y) is left and right compatible with respect to ≤.

T 5.2. Let |Y | > 1 and γ ∈ PT (X, Y).

(1) γ is left compatible with ≤ if and only if Yγ = Y.
(2) γ is right compatible with ≤ if and only if (Y ⊆ dom γ and γ|Y is injective) or

Y ∩ dom γ = ∅.
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P. (1) Suppose that Yγ ( Y . Then there exists y ∈ Y \ Yγ. Choose a, b ∈ Yγ and
define α, β ∈ PT (X, Y) by

α =

(
{b, y}

y

)
, β =

(
a b y
a b y

)
.

Then α ≤ β. If y ∈ Xγ, then Xγα = {y} , {a, b, y} = Xγβ, so γα , γβ. Also, if y < Xγ,
we then have Xγα = {y} , {a, b} = Xγβ, that is γα , γβ. Therefore, γα , γβ. Since
y ∈ Xγα but y < Yγβ, we conclude that γα � γβ.

Conversely, assume that Yγ = Y . Let α, β ∈ PT (X, Y) be such that α ≤ β. Hence
Xγα ⊆ Xα ⊆ Yβ = Yγβ and

dom γα = (im γ ∩ dom α)γ−1 ⊆ (im γ ∩ dom β)γ−1 = dom γβ.

Let
(x, y) ∈ ker γβ ∩ (dom γβ × dom γα).

Then xγβ = yγβ, x ∈ dom γβ and y ∈ dom γα. Thus xγ ∈ dom β and yγ ∈ dom α, and
hence

(xγ, yγ) ∈ ker β ∩ (dom β × dom α) ⊆ ker α.

Therefore, xγα = yγα implies (x, y) ∈ ker γα. For each z ∈ dom γβ, if zγβ ∈ Xγα,
we have zγβ ∈ Xα; thus zγ ∈ dom α (that is, z ∈ dom γα) and zγβ = zγα. Therefore,
γα ≤ γβ.

(2) It is clear that if Y ∩ dom γ = ∅, then αγ = ∅ = βγ for all α, β ∈ PT (X, Y).
Assume that Y ⊆ dom γ and γ|Y is injective. Let α, β ∈ PT (X, Y) be such that α ≤ β.
Then Xα ⊆ Yβ, which implies that Xαγ ⊆ Yβγ. Since Y ⊆ dom γ,

dom αγ = (im α ∩ dom γ)α−1 ⊆ (Y ∩ dom γ)α−1

= Yα−1 = dom α ⊆ dom β = (im β ∩ Y)β−1

⊆ (im β ∩ dom γ)β−1 = dom βγ.

Let (x, y) ∈ ker βγ ∩ (dom βγ × dom αγ). Then xβγ = yβγ, x ∈ dom βγ ⊆ dom β and
y ∈ dom αγ ⊆ dom α. Since γ|Y is injective, we obtain xβ = yβ, from which it follows
that (x, y) ∈ ker β ∩ (dom β × dom α) ⊆ ker α since α ≤ β. Hence, xα = yα implies
xαγ = yαγ, and so (x, y) ∈ ker αγ. For each z ∈ dom βγ with zβγ ∈ Xαγ, we have
zβγ = yαγ for some y ∈ X. Since γ|Y is injective, we have zβ = yα ∈ Xα, and thus
z ∈ dom α and zα = zβ. Hence

z ∈ dom α = (im α ∩ Y)α−1 ⊆ (im α ∩ dom γ)α−1 = dom αγ and zαγ = zβγ.

Therefore, αγ ≤ βγ.
Conversely, assume that Y ∩ dom γ , ∅ and (γ|Y is not injective or Y * dom γ).
If Y ∩ dom γ , ∅ and γ|Y is not injective, then there are a, b ∈ Y ∩ dom γ such that

a , b and aγ = bγ . Define α, β ∈ PT (X, Y) by

α =

(
a
a

)
, β =

(
a b
a b

)
.
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Hence, we obtain α ≤ β by Theorem 3.3 and αγ , βγ since b ∈ dom βγ but b < dom αγ.
We also have αγ � βγ since (b, a) ∈ ker βγ ∩ (dom βγ × dom αγ) but (b, a) < ker αγ.

If Y ∩ dom γ , ∅ and Y * dom γ, then there are a ∈ Y ∩ dom γ and b ∈ Y \ dom γ.
Define α, β ∈ PT (X, Y) by

α =

(
{a, b}

a

)
, β =

(
a b
a b

)
.

Thus α ≤ β and αγ , βγ. Also, αγ � βγ since

dom αγ = {a, b} * {a} = dom βγ.

Therefore, γ is not right compatible. �

It is clear that for each γ ∈ I(X, Y) it is the case that dom γ ⊆ Y if and only if
Yγ = Xγ. We use this fact to prove the following theorem.

T 5.3. Let |Y | > 1 and γ ∈ I(X, Y). Then we have the following results.

(1) γ is left compatible with respect to ≤ if and only if dom γ ⊆ Y or γ is a constant
map.

(2) γ is always right compatible with respect to ≤.

P. (1) Suppose that dom γ * Y and γ is not a constant map. Then Yγ ( Xγ
and |Xγ| > 1, which implies that there exist y ∈ Xγ \ Yγ and y , z ∈ Xγ. Define
α, β ∈ I(X, Y) by

α =

(
y
y

)
, β =

(
y z
y z

)
.

We can see that α ≤ β. Since Xγα = {y} , {y, z} = Xγβ, we obtain γα , γβ. Since y ∈
Xγα but y < Yγβ, we have Xγα * Yγβ, from which it follows that γα � γβ. Therefore,
γ is not left compatible.

Conversely, let α, β ∈ I(X, Y) be such that α ≤ β. If dom γ ⊆ Y , then Yγ = Xγ.
Hence, we have Xγα ⊆ Xγβ = Yγβ since α ⊆ β by Theorem 4.4 and

dom γα = (im γ ∩ dom α)γ−1 ⊆ (im γ ∩ dom β)γ−1 = dom γβ.

Let x ∈ dom γβ and xγβ ∈ Xγα. Then (xγ)β ∈ Xα, from which it follows that xγα =

xγβ since α ≤ β. Therefore, γα ≤ γβ. Now, if γ is a constant map, then we can write
γ =

(
x
a

)
. If a < dom α, then γα = ∅ ≤ γβ. If a ∈ dom α, then a ∈ dom β since dom α ⊆

dom β and hence dom γα = {x} = dom γβ. Furthermore, xγα = aα = aβ = xγβ since
α ⊆ β. Therefore, γα = γβ.

(2) Let α, β ∈ I(X, Y) be such that α ≤ β. Then α ⊆ β, from which it follows that
αγ ⊆ βγ. Hence dom αγ ⊆ dom βγ. Since α ≤ β, we have Xαγ ⊆ Yβγ. Let xβγ ∈ Xαγ.
Then xβγ = yαγ for some y ∈ X. Since γ is injective, we obtain xβ = yα ∈ Xα, which
implies that xβ = xα. Hence xβγ = xαγ, and therefore αγ ≤ βγ. �
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6. Maximal and minimal elements

We aim now to find all maximal and minimal elements in PT (X, Y) \ {∅} with
respect to the subset order. To do this, we first note that the empty set ∅ acts as a
minimum with respect to ⊆ and ≤ for PT (X, Y).

T 6.1. In PT (X, Y) \ {∅} with ⊆, the following statements hold.

(1) α is minimal with respect to ⊆ if and only if |dom α| = 1.
(2) α is maximal with respect to ⊆ if and only if dom α = X.

P. (1) If |dom α| = 1, then for each β ∈ PT (X, Y) with ∅ , β ⊆ α, it is clear that
α = β, and thus α is minimal with respect to ⊆. If |dom α| > 1, then there are
a, b ∈ dom α such that a , b. Define β =

(
a

aα

)
, so ∅ , β ( α, which implies that α is

not minimal.
(2) If dom α = X and α ⊆ β, then X = dom α ⊆ dom β ⊆ X, from which it follows

that α = β, and hence α is maximal.
Conversely, assume that dom α ( X. Write α =

(
Ai
ai

)
and define

γ =

(
Ai X \ dom α
ai a

)
for some a ∈ Y . It is clear that α ( γ, so α is not maximal. �

Next, we determine the maximal and minimal elements for PT (X, Y) using the
partial orders ≤.

T 6.2. In PT (X, Y) \ {∅} with ≤, α is minimal if and only if α is a constant map
or Y ∩ dom α = ∅.

P. Let α, γ ∈ PT (X, Y) be such that ∅ , γ ≤ α. If α is a constant map, then Xα =

{a} for some a ∈ Y and Xγ ⊆ Yα = {a} from which it follows that Xγ = {a}. Suppose
that dom γ ( dom α; then |dom α| ≥ 2. Let p, q ∈ dom α be such that p ∈ dom γ and
q < dom γ. We can see that (q, p) ∈ ker α ∩ (dom α × dom γ), but (q, p) < ker γ, which
is a contradiction. Thus dom γ = dom α, and hence α = γ. Now, if Y ∩ dom α = ∅,
then γ < α implies that Xγ ⊆ Yα = ∅, which contradicts γ , ∅, so we obtain α = γ.

Conversely, assume that α is not a constant map and Y ∩ dom α , ∅. Choose
a ∈ Y ∩ dom α and define γ : dom α→ {aα}. Since |Xγ| = 1 < |Xα|, we obtain α , γ. It
is obvious that Xγ ⊆ Yα, dom γ ⊆ dom α and

ker α ∩ (dom α × dom γ) = ker α ∩ (dom γ × dom γ)

⊆ dom γ × dom γ = ker γ.

If x ∈ dom α and xα ∈ Xγ, then xα = aα = xγ. Therefore, γ < α and α is not
minimal. �

Recall that PF = {α ∈ PT (X, Y) : Xα = Yα} and that when Y = X we have
PF = P(X).
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L 6.3. If α, β ∈ PT (X, Y) such that α ≤ β and α , β, then α ∈ PF.

P. Let α, β ∈ PT (X, Y) be such that α ≤ β and α , β. Suppose that α < PF. Then
there exists x ∈ X \ Y such that xα < Yα. Since xα ∈ Xα ⊆ Yβ, we have xα = yβ for
some y ∈ Y . Thus yβ = xα ∈ Xα implies y ∈ dom α and yα = yβ, and hence xα = yα ∈
Yα, which is a contradiction. �

Since |Y | ≥ 1, we then have ∅ is not maximal in PT (X, Y).

T 6.4. Let ∅ , α ∈ PT (X, Y). Then α is maximal with respect to ≤ if and only
if one of the following statements hold.

(1) α < PF.
(2) α is surjective.
(3) α is injective and dom α = X.

P. If Y = X, then the theorem holds by [7, Theorem 14]. Now, we consider the
case when Y ( X. Assume that α ∈ PF and Xα ( Y . Hence there is a ∈ Y \ Xα.

If α is not injective, then there exists b ∈ Y such that |bα−1| > 1. Choose c ∈ bα−1 if
bα−1 ⊆ Y , otherwise choose c ∈ bα−1 \ Y . Define β : dom α→ Y by

zβ =

zα if z , c,

a if z = c.

Hence α , β, and it is clear that α, β satisfy conditions (1)–(3) of Theorem 3.3. Thus
α < β, and therefore α is not maximal.

If dom α ( X, then there exists b ∈ X \ dom α. Define β : dom α ∪ {b} → Y by

zβ =

zα if z ∈ dom α,

a if z = b.

Hence α , β and α < β since α, β satisfy conditions (1)–(3) of Theorem 3.3, so α is not
maximal in PT (X, Y).

Conversely, let β ∈ PT (X, Y) be such that α ≤ β. If α < PF, then α = β by
Lemma 6.3. If α is surjective, then xβ ∈ Y = Xα for all x ∈ dom β, and thus x ∈ dom α
and xα = xβ, and hence α = β. Now, consider the case when α is injective and
dom α = X. Since α ≤ β, we obtain X = dom α ⊆ dom β ⊆ X from which it follows
that dom β = X = dom α. For each x ∈ X, xα ∈ Xα ⊆ Yβ, that is, xα = yβ for some
y ∈ Y , which implies that yβ = xα ∈ Xα. Thus y ∈ dom α and yα = yβ. Then yα = xα,
from which it follows that x = y since α is injective; hence xα = xβ and therefore α = β.
�

T 6.5. Let α ∈ PT (X, Y). Then there exists a maximal element β ∈ PT (X, Y)
such that α ≤ β.

P. Suppose that α is not maximal. Then there are two cases.
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Case I: α is not injective. Then α ∈ PF, α is not surjective and dom α ( X. Let
C(α) = {xα−1 : x ∈ Y and |xα−1| > 1}. Since α is not injective, we have C(α) is
nonempty. Since α ∈ PF and α is not surjective, we obtain Yα = Xα ( Y , which
implies that Y \ Xα , ∅. For each C ∈C(α), we obtain C = xα−1 for some x ∈ Y and
|xα−1| > 1. Since x ∈ Xα = Yα, we have x = yα for some y ∈ Y . Thus y ∈C ∩ Y since
y ∈ xα−1 = C. Hence C ∩ Y , ∅; choose dC ∈C ∩ Y . We can see that C \ {dC} , ∅ since
|C| = |xα−1| > 1. We consider two subcases.

Subcase I: ∣∣∣∣∣ ⋃
C∈C(α)

(C \ {dC}) ∪ (X \ dom α)
∣∣∣∣∣ ≥ |Y \ Xα|.

Then there is an injection

γ : Y \ Xα→
⋃

C∈C(α)

(C \ {dC}) ∪ (X \ dom α).

For each z ∈ im γ, we have |zγ−1| = 1, so let zγ−1 = {gz}. Define β ∈ PT (X, Y) by

zβ =

gz if z ∈ im γ,

zα if z ∈ dom α \ im γ.

Then β , α. To show that α < β, let x ∈ Xα = Yα. Then x = yα for some y ∈ Y . If
y ∈ dom α \ im γ, then x = yα = yβ ∈ Yβ. If y ∈ im γ, then

y ∈
⋃

C∈C(α)

(C \ {dC}) ∪ (X \ dom α).

It is clear that y ∈ dom α, and hence y ∈C \ {dC} for some C ∈C(α). Since y ∈ xα−1, we
conclude that C = xα−1. Thus x = dCα = dCβ ∈ Yβ since dC < im γ. Hence Xα ⊆ Yβ. It
is clear that dom α ⊆ dom β. Let (x, y) ∈ ker β ∩ (dom β × dom α). Then xβ = yβ, x ∈
dom β and y ∈ dom α. Thus by the definition of β, we have x, y ∈ im γ or x, y < im γ.
If x, y ∈ im γ, then gx = xβ = yβ = gy, which implies that xγ−1 = {gx} = {gy} = yγ−1.
Hence x = y since γ is injective. Therefore, x = y ∈ dom α and xα = yα. If x, y <
im γ, then x, y ∈ dom α \ im γ. Hence xα = xβ = yβ = yα; that is, (x, y) ∈ ker α. Let
x ∈ dom β and xβ ∈ Xα. Thus, x ∈ dom α \ im γ (for if x ∈ im γ, then xβ = gx ∈ Y \ Xα,
which is a contradiction), from which it follows that xα = xβ. Therefore, α < β.

To show that β is surjective, let y ∈ Y . If y ∈ Y \ Xα, then yγ ∈ im γ, so we obtain
(yγ)β = gyγ ∈ (yγ)γ−1 = {y} since γ is injective. Hence y = (yγ)β. Now, if y ∈ Xα, then
y = xα for some x ∈ X. If x ∈ im γ, then x ∈C for some C ∈C(α) and y = xα = dCα =

dCβ. If x < im γ, then y = xα = xβ. Therefore, β is maximal by Theorem 6.4.

Subcase II: ∣∣∣∣∣ ⋃
C∈C(α)

(C \ {dC}) ∪ (X \ dom α)
∣∣∣∣∣ < |Y \ Xα|.
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Then there exists an injection

γ :
⋃

C∈C(α)

(C \ {dC}) ∪ (X \ dom α)→ Y \ Xα.

Define β ∈ PT (X, Y) by

zβ =

zγ if z ∈ dom γ,

zα if z ∈ dom α \ dom γ.

Then α , β. Let x ∈ Xα = Yα. Then x = yα for some y ∈ Y . If y ∈ dom α \ dom γ, then
x = yα = yβ ∈ Yβ. If y ∈ dom γ, then

y ∈
⋃

C∈C(α)

(C \ {dC}) ∪ (X \ dom α).

Since y ∈ dom α, we obtain y ∈C \ {dC} for some C ∈C(α). Since y ∈ xα−1, so
C = xα−1. Hence x = dCα = dCβ ∈ Yβ. Thus Xα ⊆ Yβ. It is clear that dom α ⊆ dom β.
Let (x, y) ∈ ker β ∩ (dom β × dom α). Then xβ = yβ, x ∈ dom β and y ∈ dom α. Hence,
by the definition of β, we conclude that x, y ∈ dom γ or x, y ∈ dom α \ dom γ. If
x, y ∈ dom γ, then xγ = xβ = yβ = yγ, which implies that x = y since γ is injective.
Hence x = y ∈ dom α and xα = yα. If x, y ∈ dom α \ dom γ, then xα = xβ = yβ = yα.
Thus (x, y) ∈ ker α. Let x ∈ dom β and xβ ∈ Xα. If x ∈ dom γ, then xβ = xγ ∈ Y \ Xα,
which is a contradiction. Hence x < dom γ; so x ∈ dom α \ dom γ, from which it
follows that xβ = xα. Therefore, α < β.

To show that β is injective, let x, y ∈ dom β be such that xβ = yβ. Then x, y ∈ dom γ
or x, y ∈ dom α \ dom γ by the definition of β. If x, y ∈ dom γ, then x = y by the
same proof as given above. If x, y ∈ dom α \ dom γ, then xα = yα (see above). Let
xα = z = yα. Then x, y ∈ zα−1 implies zα−1 = C for some C ∈C(α). We conclude that
x = dC = y. We can see that dom β = dom α ∪ dom γ = X. Therefore, β is maximal by
Theorem 6.4.

Case II: α is injective. Then α ∈ PF, α is not surjective and dom α ( X. Hence
Y \ Xα , ∅ , X \ dom α.

Subcase I: |X \ dom α| ≥ |Y \ Xα|. Then there is an injection

γ : Y \ Xα→ X \ dom α.

For each z ∈ im γ, we have |zγ−1| = 1 since γ is injective, so let zγ−1 = {gz}. Define
β ∈ PT (X, Y) by

zβ =

gz if z ∈ im γ,

zα if z ∈ dom α.

We see that α , β. Let x ∈ Xα = Yα. Then x = yα for some y ∈ Y , which implies that
y ∈ dom α. Thus x = yα = yβ ∈ Yβ. That is, Xα ⊆ Yβ. It is clear that dom α ⊆ dom β.
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Let (x, y) ∈ ker β ∩ (dom β × dom α). Then xβ = yβ, x ∈ dom β and y ∈ dom α. If
x ∈ im γ, then yα = yβ = xβ = gx ∈ Y \ Xα (since y ∈ dom α), which is a contradiction.
Hence x ∈ dom α and xα = xβ = yβ = yα. Thus (x, y) ∈ ker α. Let x ∈ dom β and
xβ ∈ Xα. Then x ∈ dom α and xα = xβ. Hence α < β.

To show that β is surjective, let y ∈ Y . If y ∈ Y \ Xα, then by the same proof as given
for case I (subcase I), we have y = (yγ)β. If y ∈ Xα, then y = xα for some x ∈ X. Hence
y = xα = xβ. Therefore, β is maximal by Theorem 6.4.

Subcase II: |X \ dom α| < |Y \ Xα|. Then there is an injection

γ : X \ dom α→ Y \ Xα.

Define β ∈ PT (X, Y) by

zβ =

zγ if z ∈ dom γ,

zα if z ∈ dom α.

Therefore, α , β. Let x ∈ Xα = Yα. Then x = yα for some y ∈ Y , which implies that
y ∈ dom α. Hence x = yα = yβ ∈ Yβ. Thus Xα ⊆ Yβ. It is clear that dom α ⊆ dom β.
Let

(x, y) ∈ ker β ∩ (dom β × dom α).

Then xβ = yβ, x ∈ dom β and y ∈ dom α. If x ∈ dom γ, then yα = yβ = xβ = xγ ∈
Y \ Xα, which is a contradiction. Hence x ∈ dom α and xα = xβ = yβ = yα. Thus
(x, y) ∈ ker α. Let x ∈ dom β and xβ ∈ Xα. If x ∈ dom γ, then xβ = xγ ∈ Y \ Xα, which
is a contradiction. Therefore, x ∈ dom α and xα = xβ. Hence α < β.

To show that β is injective, let x, y ∈ dom β be such that xβ = yβ. If x, y ∈ dom γ,
then x = y since γ is injective. If x, y < dom γ, then x, y ∈ dom α, which implies that
xα = xβ = yβ = yα. Since α is injective, x = y. We can see that dom β = dom α ∪
dom γ = X. Therefore, β is maximal by Theorem 6.4. �

We end this section with the following remark.

R 6.6. We believe that with some mild modifications of the proofs which are
given for PT (X, Y), we obtain all maximal and minimal elements for I(X, Y) with
respect to the orders ≤ and ⊆.
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