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Abstract

In this paper, we establish new characterization results concerning totally umbilical hypersurfaces of
the hyperbolic space Hn+1, under suitable constraints on the behavior of the Lorentzian Gauss map of
complete hypersurfaces having some constant higher order mean curvature. Furthermore, working with
different warped product models for Hn+1 and supposing that certain natural inequalities involving two
consecutive higher order mean curvature functions are satisfied, we study the rigidity and the nonexistence
of complete hypersurfaces immersed in Hn+1.
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1. Introduction

The study of the geometry of complete hypersurfaces with constant mean curvature
in a Riemannian space form constitutes a classical and fruitful theme in the theory
of geometric analysis. In this branch, do Carmo and Lawson [12] used the well-
known Alexandrov reflexion method to show that a complete hypersurface properly
embedded with constant mean curvature in the (n + 1)-dimensional hyperbolic space
Hn+1 with a single point at the asymptotic boundary must be a horosphere. Moreover,
they also observed that the statement is no longer true if we replace embedded by
immersed. Later on, Alı́as and Dajczer [2] proved that the horospheres are the only
surfaces properly immersed inH3 with constant mean curvature −1 ≤ H ≤ 1 and which
are contained in a slab (that is, the region between two horospheres that share the same
point in the asymptotic boundary).
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In [3], Alı́as et al. proved that a bounded, complete hypersurface in Hn+1 with
normal curvatures greater than −1 must be diffeomorphic to a Euclidean sphere Sn.
Afterwards, Wang and Xia [21] showed that a closed hypersurface in Hn+1 and whose
second fundamental form has constant norm must be totally umbilical. In [20], Shu
proved that a complete hypersurface in Hn+1 with constant normalized scalar curvature
and nonnegative sectional curvature must be either totally umbilical or isometric to a
hyperbolic cylinder ofHn+1. Next, the third author and Caminha [11] studied complete
vertical graphs of constant mean curvature in Hn+1. Under appropriate restrictions on
the values of the mean curvature and the growth of the height function, they established
necessary conditions for the existence of such a graph Σn and, when n = 2, they
proved that Σ2 must be a horosphere. By extending a technique due to Yau [22], these
same authors jointly with Camargo [9] obtained another rigidity result concerning the
horospheres of Hn+1, without the assumption of the constancy of the mean curvature.
Moreover, they also obtained a characterization theorem for the horospheres of Hn+1

under suitable constraints on two consecutive higher order mean curvatures. More
recently, the first and third authors [7] used some generalized maximum principles in
order to obtain several new characterization results for horospheres ofHn+1 via suitable
restrictions on the mean curvature function.

Meanwhile, in [5], these same authors jointly with Barros improved previous
results of [6], showing that the only complete constant mean curvature hypersurfaces
immersed in Hn+1 such that the image of the Lorentzian Gauss map lies in a totally
umbilical space-like hypersurface of the de Sitter space Sn+1

1 must be the totally
umbilical ones. The same conclusion holds when the assumption on the Lorentzian
Gauss map is replaced by scalar curvature bounded from below and whose angle
function fa, with respect to some fixed vector a of the (n + 2)-dimensional Lorentz–
Minkowski space Ln+2 such that the tangential component a> has Lebesgue integrable
norm, does not change sign. Afterwards, the first author [4] obtained extensions of
these results for the case of complete hypersurfaces of Hn+1 having constant scalar
curvature.

In this article, our purpose is to study the umbilicity of complete hypersurfaces
of the hyperbolic space Hn+1 via their higher order mean curvature functions.
Firstly, assuming that some higher order mean curvature is constant, we establish
new characterization results concerning totally umbilical hypersurfaces of Hn+1,
under appropriate constraints on the behavior of the Lorentzian Gauss map (see
Theorems 3.1, 3.4 and 3.6 and Corollary 3.5). Afterwards, working with different
warped product models for Hn+1 and supposing that two consecutive higher order
mean curvature functions satisfy certain natural inequalities, we study the rigidity and
the nonexistence of complete hypersurfaces of Hn+1 (see Theorems 4.2, 4.4 and 4.6).

2. Preliminaries

This section is devoted to recalling some basic facts concerning hypersurfaces
immersed in the hyperbolic space. For this, let us consider the Lorentz–Minkowski
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space Ln+2, that is, the Euclidean vector space Rn+2 equipped with the metric

〈v,w〉 =

n+1∑
j=1

v jw j − vn+2wn+2.

The (n + 1)-dimensional hyperbolic space can be regarded as being the following
hyperquadric of Ln+2:

Hn+1 = {p ∈ Ln+2; 〈p, p〉 = −1; pn+2 ≥ 1}.

In this context, we will deal with connected and oriented isometrically immersed
hypersurfaces ψ : Σn → Hn+1 ⊂ Ln+2. We recall that the unit normal vector field N
of Σn can be considered as a map N : Σn → Sn+1

1 , where Sn+1
1 stands for the (n + 1)-

dimensional unitary de Sitter space, that is,

Sn+1
1 = {p ∈ Ln+2; 〈p, p〉 = 1}.

In this setting, N is called the Lorentzian Gauss map of Σn.
Let us denote by A : X(Σ)→ X(Σ) the Weingarten endomorphism of Σn with respect

to the vector field N. Recall that, if ∇0, ∇ and ∇ stand for the Levi-Civita connections
in Ln+2, Hn+1 and Σn, respectively, then the Gauss and Weingarten formulas provide

∇XY = ∇XY + 〈AX,Y〉N

and
AX = −∇XN = −∇0

XN

for all tangent vector fields X,Y ∈ X(Σ).
Since the Weingarten operator A restricts to a self-adjoint linear map

Ap : TpΣ→ TpΣ, at each p ∈ Σn,

det(tI − A) =

n∑
r=0

(−1)rS rtn−r,

where I stands for the identity operator, S r(p) is the rth elementary symmetric function
on the eigenvalues of Ap, for 1 ≤ r ≤ n, and S 0 = 1 by convention. We define the rth
mean curvature Hr of Σn, 0 ≤ r ≤ n, by(

n
r

)
Hr = S r.

We observe that H0 = 1, while H1 = (1/n)S 1 is the usual mean curvature H of Σn.
For 0 ≤ r ≤ n, one defines the rth Newton transformation Pr on Σn by setting P0 = I

and, for 1 ≤ r ≤ n, via the recurrence relation

Pr = S rI − APr−1.

On the other hand, given f ∈ C∞(Σ), for each 0 ≤ r ≤ n, the second-order differential
operator Lr is defined as follows:

Lr f = tr(Pr∇
2 f ).
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Here ∇2 f : X(Σ)→ X(Σ) denotes the self-adjoint linear operator metrically equivalent
to the Hessian of f , and it is given by

〈∇2 f (X),Y〉 = 〈∇X∇ f ,Y〉

for all X, Y ∈ X(Σ). It is important to note that this operator is of divergence type
provided that we have a hypersurface Σn → Qn+1(c), where Qn+1(c) stands for a
Riemannian space form of constant sectional curvature c. This fact was proved by
Rosenberg in [19] and it reads as follows:

Lr f = div(Pr∇ f ).

Fixing a nonzero vector a ∈ Ln+2, we will consider two particular functions naturally
attached to a hypersurface ψ : Σn → Hn+1, namely, the height and angle functions,
which are defined, respectively, by la = 〈ψ, a〉 and fa = 〈N, a〉.

A direct computation allows us to conclude that the gradients of such functions are
given by ∇la = a> and ∇ fa = −A(a>), where a> is the orthogonal projection of a onto
the tangent bundle TΣ, that is,

a> = a − faN + laψ. (2.1)

Based on the ideas of the classical paper of Reilly [18], Rosenberg [19] obtained
suitable formulas for the operator Lr acting on the height and angle functions of a
hypersurface of a Riemannian space form. For the case of the hyperbolic space, these
formulas read as follows (compare [1, Section 3] or [19, Section 5]):

Lrla = cr(Hr+1 fa + Hrla) (2.2)

and

Lr fa = −

( n
r + 1

crHHr+1 − cr+1Hr+2

)
fa − crHr+1la −

cr

r + 1
〈∇Hr+1, a>〉, (2.3)

where cr = (r + 1)
(

n
r+1

)
= (n − r)

(
n
r

)
.

Now, we observe that for r = 0, (2.2) particularizes to ∆la = nH fa + nla. Then,
combining this formula with (2.3) for the case Hr+1 constant,

div
(
Pr∇ fa +

cr

n
Hr+1∇la

)
= cr+1(Hr+2 − HHr+1) fa. (2.4)

Our next auxiliary result establishes an analytical tool to detect the umbilicity of a
hypersurface immersed in Hn+1. For this, we recall that a point p0 in a hypersurface
ψ : Σn → Hn+1 is said to be elliptic when all principal curvatures λi(p0) are positive
with respect to an appropriate choice of the Lorentzian Gauss map of Σn.

Lemma 2.1. Let ψ : Σn → Hn+1 ⊂ Ln+2 be a hypersurface immersed in the hyperbolic
space with Hr+1 positive. Assume that there exist an elliptic point in Σn. Then

Hr+2 − HHr+1 ≤ 0

and equality holds if, and only if, Σn is totally umbilical.
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Proof. Making use of [17, Lemma 1], we have that any Hi, i ≤ r, is also positive.
Moreover,

Hr+2 ≤ H(r+2)/(r+1)
r+1 = Hr+1H1/(r+1)

r+1 ≤ Hr+1H1/r
r ≤ HHr+1,

with equality at any stage only at umbilical points, which completes the proof
(alternatively, see [1, page 204]). �

We close this section by obtaining the following result.

Lemma 2.2. Let ψ : Σn → Hn+1 ⊂ Ln+2 be a hypersurface immersed in the hyperbolic
space with Hr+1 positive. Then∣∣∣∣∣cr

n
Hr+1I − APr

∣∣∣∣∣ ≤ (
n − 1

r

)
|Hr+1| +

(
n
r

)
|Hr ||A| + |A2Pr−1|.

In particular, if Σn has an elliptic point and H is bounded, then∣∣∣∣∣cr

n
Hr+1I − APr

∣∣∣∣∣
is bounded on Σn.

Proof. Using the definition of Pr,

cr

n
Hr+1I − APr =

(
n − 1

r

)
Hr+1I −

(
n
r

)
HrA + A2Pr−1.

On the other hand, we observe that |A| ≤ n2H2 − n(n − 1)H2 and

|A2Pr−1| ≤ tr(A2Pr−1) =

(
crHr+1 −

n
r

cr−1HHr

)
.

If Σn has an elliptic point, since we are assuming that Hr+1 is positive, then we can
reason as in the proof of Lemma 2.1 to get that H j > 0 for any j ≤ r. Hence, the
result follows on observing that the hypothesis that H is bounded implies, by [17,
Equation (11)], that H j is also bounded for all j ≤ r + 1. �

3. Main results

In order to establish our first results, we recall the description of totally umbilical
space-like hypersurfaces of the de Sitter space Sn+1

1 due to Montiel in [15] and its dual
relation with totally umbilical hypersurfaces of the hyperbolic space Hn+1 described
by López and Montiel in [14]. For this, we note that Sn+1

1 admits a foliation by means
of totally umbilical space-like hypersurfaces

L(τ) = {p ∈ Sn+1
1 ; 〈p, a〉 = τ},

where a ∈ Ln+2, 〈a, a〉 = 1, 0,−1 and τ2 > 〈a, a〉 (cf. [15, Example 1]). Consequently,
we have that there exists a natural duality between the foliations of Sn+1

1 and Hn+1

through totally umbilical hypersurfaces. This duality follows from the fact that the
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totally umbilical hypersurfaces of Hn+1 can be realized in the Lorentz–Minkowski
model in the following way:

L(%) = {p ∈ Hn+1; 〈p, a〉 = %},

where a ∈ Ln+2 is a nonzero fixed vector and %2 + 〈a, a〉 > 0 (cf. [14]). Furthermore,
with a straightforward computation it is not difficult to verify that the Lorentzian Gauss
mapping N : L(%)→ Sn+1

1 of such a hypersurface is given by

N(p) =
1√

%2 + 〈a, a〉
(a + %p). (3.1)

Hence, from (3.1), we have that the angle function fa of a totally umbilical
hypersurface of Hn+1 satisfies

fa = 〈N, a〉 =

√
%2 + 〈a, a〉 = τ = constant.

Therefore, Montiel’s result [15] allows us to conclude that one of the following
situations holds:

(i) if a is a unit space-like vector, then N(L(%)) is isometric to an n-dimensional
hyperbolic space of constant sectional curvature −1/(τ2 − 1);

(ii) if a is a nonzero null vector, then N(L(%)) is isometric to the Euclidean space Rn;
(iii) if a is a unit time-like vector, then N(L(%)) is isometric to an n-dimensional

sphere of constant sectional curvature 1/(τ2 + 1).

This description of the totally umbilical space-like hypersurfaces of Sn+1
1 enables

us to characterize some particular regions in Sn+1
1 . In the case that a ∈ Ln+2 is a

unit time-like vector, the level set L(0) = {p ∈ Sn+1
1 ; 〈p, a〉 = 0} defines a round sphere

of radius one, which is a totally geodesic hypersurface in Sn+1
1 . According to the

terminology established by Aledo et al. [1], we refer to this round sphere as being the
equator of Sn+1

1 determined by a and we observe that it divides Sn+1
1 into two connected

components, the chronological future, which is given by

{p ∈ Sn+1
1 ; 〈p, a〉 < 0},

and the chronological past, given by

{p ∈ Sn+1
1 ; 〈p, a〉 > 0}.

We note that the first and third authors obtained a characterization of totally
umbilical geodesic round spheres as the only closed constant mean curvature
hypersurfaces immersed in the hyperbolic space Hn+1 having its image by the
Lorentzian Gauss map contained in the closure of a chronological future (or past)
of an equator of Sn+1

1 (cf. [6, Theorem 3.4]). Here, working with a new approach,
we are able to give an extension of this result. More precisely, we have the following
theorem.
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Theorem 3.1. Let ψ : Σn → Hn+1 ⊂ Ln+2 be a closed hypersurface immersed in the
hyperbolic space with some constant (r + 1)th mean curvature. If the image of the
Lorentzian Gauss map of Σn is contained in the closure of the chronological future
(or past) of an equator of Sn+1

1 , then Σn must be a totally umbilical geodesic sphere
of Hn+1.

Proof. Initially, we observe that, since Σn is closed, [8, Proposition 3.2] (see also
[3, Lemma 8]) guarantees that there exists an elliptic point in Σn. Consequently, taking
into account its constancy, it follows that Hr+1 > 0 on Σn. Thus, from Lemma 2.1,

Hr+2 − HHr+1 ≤ 0 on Σn. (3.2)

Moreover, our hypothesis on the Lorentzian Gauss image N(Σ) assures that there
exists a time-like vector a ∈ Ln+2 such that the corresponding angle function fa does
not change sign on Σn. Hence, from (2.4) and (3.2), we conclude that the following
divergence:

div
(
Pr∇ fa +

cr

n
Hr+1∇la

)
= cr+1(Hr+2 − HHr+1) fa (3.3)

does not change sign on Σn. Consequently, using the divergence theorem in (3.3), we
conclude that the following equation holds on Σn:

(Hr+2 − HHr+1) fa = 0.

We claim that, in fact, the function h = Hr+2 − HHr+1 vanishes identically on Σn.
Indeed, if there exists p0 ∈ Σn such that h(p0) , 0, then there exists a neighborhood
U of p0 in Σn in which h , 0 and fa = 0 in U. Thus, taking into account (2.3),
this will give that fa and la are simultaneously zero in U. But such a situation
cannot occur since (2.1) implies that |∇la|2 + f 2

a − l2a = −1. Therefore, we must have
h = Hr+2 − HHr+1 = 0 on Σn and, hence, Lemma 2.1 assures that Σn is a totally
umbilical geodesic sphere of Hn+1. �

Remark 3.2. In the previous theorem, the compactness of Σn cannot be dropped. In
fact, it is possible to show that the hyperbolic cylinder

Σn = Sk(ρ) × Hn−k
(√

1 + ρ2
)
→ Hn+1

has the following Lorentzian Gauss map:

N(p) = −
1

ρ
√

1 + ρ2
(ν(p) + ρ2 p), (3.4)

where ν : Σn → Ln+2 is given by ν(p) = (p1, . . . , pk+1, 0, . . . , 0). The hyperbolic
cylinders are examples of complete isoparametric hypersurfaces of Hn+1. Now, let
us consider the time-like vector a = (0, . . . , 0, 1). After a simple computation, we have
from the expression in (3.4) that the corresponding angle and height functions satisfy
the following linear dependence relation:

fa = −
ρ√

1 + ρ2
la.
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Hence, using the reverse Cauchy–Schwarz inequality, we obtain that the angle
function satisfies | fa| ≥ ρ/

√
1 + ρ2 > 0 and, therefore, this means that the image of

the Lorentzian Gauss map of Σn is contained in the chronological future (or past) of
the equator of Sn+1

1 determined by a.

In order to present our next theorems, we will quote another auxiliary lemma, which
is a consequence of the version of Stokes’ theorem given by Karp in [13] (see also [10,
Proposition 2.1]). In what follows, L1(Σ) denotes the space of Lebesgue integrable
functions on Σn.

Lemma 3.3. Let X be a smooth vector field on the n-dimensional complete noncompact
oriented Riemannian manifold Σn, such that divX does not change sign on Σn. If
|X| ∈ L1(Σ), then divX = 0.

Motivated by the fact that the Lorentzian Gauss map N of a totally umbilical
hypersurface of Hn+1 satisfies fa = 〈N, a〉 = τ for some nonzero vector a ∈ Ln+2 and
some constant τ ∈ R, we obtain the following result.

Theorem 3.4. Let ψ : Σn → Hn+1 ⊂ Ln+2 be a complete hypersurface immersed in the
hyperbolic space with some constant (r + 1)th mean curvature. Suppose that Σn has an
elliptic point and the image of the Lorentzian Gauss map of Σn is contained in a totally
umbilical space-like hypersurface of Sn+1

1 orthogonal to some nonzero vector a ∈ Ln+2.
If |a>| ∈ L1(Σ), then Σn must be a totally umbilical hypersurface of Hn+1 orthogonal to
a.

Proof. We note that our constraint on the Lorentzian Gauss map of Σn implies that the
angle function fa = τ for some constant τ. We claim that τ , 0. Indeed, if τ = 0, from
(2.3) we also get that la = 0 on Σn. Thus, since |∇la|2 + f 2

a − l2a = 〈a, a〉, a must be a
nonzero null vector. But, by completeness, Σn should be a horosphere of Hn+1, which
contradicts the fact that la = 0.

Now, from (2.4),

∆la =
nτcr+1

crHr+1
(Hr+2 − HHr+1). (3.5)

Hence, from (3.5) and Lemma 2.1, we have that ∆la does not change sign on Σn and,
since we are supposing that |a>| ∈ L1(Σ), we can apply Lemma 3.3 to conclude that la
is, in fact, a harmonic function on Σn.

Returning to (3.5), we infer that Hr+2 − HHr+1 = 0 on Σn and, consequently, Σn

must be totally umbilical. Moreover, considering r = 0 in (2.2), we get that la is also
constant on Σn and, therefore, Σn is orthogonal to a. �

Taking into account once more the existence of an elliptic point for closed
hypersurfaces of the hyperbolic space, from Theorem 3.4 we get the following
consequence.
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Corollary 3.5. The only closed hypersurfaces immersed in Hn+1 ⊂ Ln+2 with some
constant (r + 1)th mean curvature and whose image of the Lorentzian Gauss map
is contained in a totally umbilical space-like hypersurface of Sn+1

1 are the totally
umbilical geodesic spheres.

Adopting the terminology due to López and Montiel in [14], when a ∈ Ln+2 is either
a nonzero null or a space-like vector, we will refer to the interior domain enclosed by
L(τ) as being the set

{p ∈ Sn+1
1 ; 〈p, a〉 ≥ τ},

while the exterior domain enclosed by L(τ) is given by

{p ∈ Sn+1
1 ; 〈p, a〉 ≤ τ}.

In this setting, we get the following result. Compare with [5, Theorem 1.2].

Theorem 3.6. Let ψ : Σn → Hn+1 ⊂ Ln+2 be a complete noncompact hypersurface
immersed in the hyperbolic space with some constant (r + 1)th mean curvature.
Suppose that Σn has an elliptic point, its mean curvature H is bounded and the image
of its Lorentzian Gauss map is contained in a domain enclosed by a totally umbilical
space-like hypersurface of Sn+1

1 determined by either a nonzero null or a space-like
vector a ∈ Ln+2. If | a>| ∈ L1(Σ), then Σn must be a totally umbilical hypersurface of
Hn+1.

Proof. Proceeding as in the proof of Theorem 3.1,

div
(
Pr∇ fa +

cr

n
Hr+1∇la

)
= cr+1(Hr+2 − HHr+1) fa

does not change sign on Σn for some nonzero null (space-like) vector a ∈ Ln+2. On the
other hand, since the mean curvature H of Σn is bounded, it follows from Lemma 2.2
that ∣∣∣∣∣Pr∇ fa +

cr

n
Hr+1∇la

∣∣∣∣∣ ≤ ∣∣∣∣∣APr +
cr

n
Hr+1

∣∣∣∣∣|a>| ∈ L1(Σ).

Thus, from Lemma 3.3, we get (Hr+2 − HHr+1) fa = 0 on Σn. Therefore, observing
that the angle function fa has strict sign on Σn, we conclude that Hr+2 − HHr+1

vanishes identically on Σn and, hence, Lemma 2.1 assures that Σn is a totally umbilical
hypersurface of Hn+1. �

4. Other rigidity and nonexistence results

In this last section, we will use different warped product models for the
hyperbolic space Hn+1 to obtain rigidity and nonexistence results concerning complete
hypersurfaces in Hn+1 having two consecutive higher order mean curvatures obeying
a suitable inequality. For this, we will need the following generalized maximum
principle due to Yau (cf. [22, Theorem 3]).
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Lemma 4.1. Let Σn be a complete Riemannian manifold. If f is a nonnegative
subharmonic function on Σn such that f ∈ Lq(Σ) for some q > 1, then f must be
constant.

Based on this fact, we get the following result.

Theorem 4.2. Let ψ : Σn → Hn+1 ⊂ Ln+2 be a complete hypersurface immersed in the
hyperbolic space. Assume that, for some 0 ≤ r ≤ n − 1, Pr is bounded from above (in
the sense of quadratic forms). Suppose that, for some fixed time-like vector a ∈ Ln+1,
the following inequality is satisfied:

0 ≤ Hr+1 ≤ HHr, (4.1)

where H(p) stands for the mean curvature of the totally umbilical geodesic sphere
L(%) of Hn+1 which is orthogonal to a and passes through p ∈ ψ(Σ). If la ∈ Lq(Σ) for
some q > 1, then Σn must be isometric to a totally umbilical geodesic sphere L(%0) for
some %0 > 1.

Proof. Considering the vector field X(p) = a + 〈p, a〉p defined on Hn+1 and since
a ∈ Ln+2 is a time-like vector, we can apply item (a) of [16, Proposition 2] to see that
Hn+1 is isometric to the warped product space R+ ×sinh t S

n, where each slice {t} × Sn

corresponds to a totally umbilical geodesic sphere L(%) ⊂ Hn+1 which is orthogonal
to a. In this setting, up to isometry, we have that X = sinh t∂t and la = cosh h, where
h = πR+ |Σ stands for the vertical height function of Σn.

Consequently, subtending the isometry between the quadric and this warped product
model of Hn+1 and assuming that there exists a positive constant β such that Pr ≤ β, it
is not difficult to see that from (2.2),

β∆la ≥ Lrla = cr(cosh h Hr + sinh h Hr+1〈N, ∂t〉). (4.2)

On the other hand, from [16, Proposition 1], we have that the mean curvature of a
slice {t} × Sn oriented by −∂t is equal to coth t. Thus, inequality (4.1) amounts to

0 ≤ Hr+1 ≤ coth hHr. (4.3)

From (4.2) and (4.3),

∆la ≥
cr sinh h

β
(coth hHr − Hr+1) ≥ 0.

Therefore, since la ≥ 1 and using our hypothesis that la ∈ Lq(Σ) for some q > 1, we
can apply Lemma 4.1 to conclude that la is constant on Σn and, hence, Σn must be
isometric to L(%0) for some %0 > 1. �

Remark 4.3. Fix a point p ∈ H3 ⊂ L4; let us consider an orthonormal basis {e1, e2, e3}

of TpH
3. According to [3, Example 10], we can define a revolution torus ψ :

[0, 2π] × [0, 2π]→ H3 as follows:

ψ(θ, φ) = cosh r(cosh R p + sinh R(cos θe1 + sin θe2)
+ sinh r(cos φ(sinh R p + cosh R(cos θe1 + sin θe2))) + sin θe3),
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where R > r > 0. With a straightforward computation we can verify that the principal
curvatures λ1 and λ2 of this immersion are given by

λ1 =
sinh r sinh R + cosh r cosh R cos φ
cosh r sinh R + sinh r cosh R cos φ

and
λ2 = −coth r.

In particular, through such a torus, we see that hypothesis (4.1) in Theorem 4.2 is, in
fact, necessary to conclude that the hypersurface be isometric to a totally umbilical
geodesic sphere of the hyperbolic space.

Fixing a nonzero space-like vector a ∈ Ln+1, in analogy with the terminology used
in the Euclidean sphere, we will call the totally geodesic hyperbolic hyperplane
L(0) = {p ∈ Hn+1; 〈p, a〉 = 0} the equator ofHn+1 determined by a. So, such an equator
naturally divides Hn+1 into two closed hemispheres, which are given by

H+
a = {p ∈ Hn+1; 〈p, a〉 ≥ 0}

and
H−a = {p ∈ Hn+1; 〈p, a〉 ≤ 0}.

In this setting, reasoning in a similar way as that in the proof of Theorem 4.2, we
obtain the following result.

Theorem 4.4. Let ψ : Σn → Hn+1 ⊂ Ln+2 be a complete hypersurface immersed in the
hyperbolic space. Assume that, for some 0 ≤ r ≤ n − 1, Pr is bounded from above (in
the sense of quadratic forms). Suppose that, for some fixed nonzero space-like vector
a ∈ Ln+1, ψ(Σ) ⊂ H+

a and that the following inequality is satisfied:

0 ≤ Hr+1 ≤ HHr, (4.4)

where H(p) stands for the mean curvature of the totally umbilical hyperbolic
hyperplane L(%) of Hn+1 which is orthogonal to a and passes through p ∈ ψ(Σ). If
la ∈ Lq(Σ) for some q > 1, then Σn must be isometric to the totally geodesic hyperbolic
hyperplane L(0).

Proof. Considering the vector field X(p) = a + 〈p, a〉p defined on Hn+1 and since
a ∈ Ln+2 is a nonzero space-like vector, we can apply item (c) of [16, Proposition 2]
to see that Hn+1 is isometric to the warped product space R ×cosh t H

n, where each
slice {t} × Hn corresponds to a totally umbilical hyperbolic hyperplane L(%) ⊂ Hn+1

which is orthogonal to a. In this setting, up to isometry, we have that X = cosh t ∂t and
la = sinh h, where h = πR|Σ stands for the vertical height function of Σn.

Consequently, subtending the isometry between the quadric and this warped product
model of Hn+1 and assuming that there exists a positive constant β such that Pr ≤ β, it
is not difficult to see that from (2.2),

β∆la ≥ Lrla = cr(sinh h Hr + cosh h Hr+1〈N, ∂t〉). (4.5)

https://doi.org/10.1017/S1446788716000549 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000549


56 C. P. Aquino, M. Batista and H. F. de Lima [12]

On the other hand, from [16, Proposition 1], we have that the mean curvature of a
slice {t} × Hn oriented by −∂t is equal to tanh t. Thus, inequality (4.4) amounts to

0 ≤ Hr+1 ≤ tanh hHr. (4.6)

From (4.5) and (4.6),

∆la ≥
cr cosh h

β
(tanh hHr − Hr+1) ≥ 0.

Moreover, we note that our hypothesis that ψ(Σ) ⊂ H+
a implies that la ≥ 0. Therefore,

since we are also assuming that la ∈ Lq(Σ) for some q > 1, we can apply Lemma 4.1
to conclude that la is constant on Σn and, hence, Σn must be isometric to L(%) for some
% ≥ 0. Finally, taking into account once more that la ∈ Lq(Σ) for some q > 1, we see
that, in fact, % = 0. �

Remark 4.5. Considering the totally umbilical geodesic spheres of Hn+1 which are
contained in H+

a , we see that hypothesis (4.4) in Theorem 4.4 is necessary to conclude
that the hypersurface Σn is isometric to the totally geodesic hyperbolic hyperplane
L(0).

To close our paper, we will reason once more as in the proof of Theorem 4.2 to
establish the following nonexistence result.

Theorem 4.6. There exists no complete hypersurface ψ : Σn → Hn+1 ⊂ Ln+2 such that,
for some 0 ≤ r ≤ n − 1, Pr is bounded from above (in the sense of quadratic forms),
0 ≤ Hr+1 ≤ Hr and, for some nonzero null vector a ∈ Ln+2, la ∈ Lq(Σ) with q > 1.

Proof. Suppose, by contradiction, that there exists such a hypersurface. Considering
the vector field X(p) = a + 〈p, a〉p defined on Hn+1 and since a ∈ Ln+2 is a nonzero null
vector, we can apply item (b) of [16, Proposition 2] to see that Hn+1 is isometric to
the warped product space R ×et Rn, where each slice {t} × Rn corresponds to a totally
umbilical Euclidean hyperplane L(%) ⊂ Hn+1 which is orthogonal to a. In this setting,
since l−a = −la, we have (up to isometry) that X = et ∂t and la = eh, where h = πR|Σ
stands for the vertical height function of Σn.

Consequently, subtending the isometry between the quadric and this warped product
model of Hn+1, it is not difficult to see that from (2.2),

β∆la ≥ Lrla = creh(Hr + Hr+1〈N, ∂t〉). (4.7)

Thus, since we are assuming that 0 ≤ Hr+1 ≤ Hr, from (4.7),

∆la ≥
creh

β
(Hr − Hr+1) ≥ 0.

Hence, from la ∈ Lq(Σ) for some q > 1, we can apply Lemma 4.1 to conclude that
la is a positive constant on Σn and, consequently, Σn must be a horosphere of Hn+1. In
particular, we get that Σn is isometric to Rn. Therefore, since the hypothesis la ∈ Lq(Σ)
also implies that Σn must have finite volume, we have reached a contradiction. �
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