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Abstract

The tempered fundamental group of a p-adic variety classifies analytic étale covers that
become topological covers for Berkovich topology after pullback by some finite étale
cover. This paper constructs cospecialization homomorphisms between the (p′) versions
of the tempered fundamental group of the fibers of a smooth morphism with polystable
reduction. We study the question for families of curves in another paper. To construct
them, we will start by describing the pro-(p′) tempered fundamental group of a smooth
and proper variety with polystable reduction in terms of the reduction endowed with its
log structure, thus defining tempered fundamental groups for log polystable varieties.

Introduction

This paper is a follow on to [Lep09]. In that article we studied the behavior of the tempered
fundamental groups of the fibers of a p-adic family of curves. More precisely, we proved the
following theorem.

Theorem 0.1 [Lep09, Theorem 0.1]. Let K be a complete discretely valued field. Let L be a
set of primes that does not contain the residual characteristic of K. Let Y →OK be a morphism
of log schemes. Let Y0 = Ytr ∩Yη ⊂ Y an, where Y is the completion of Y along its closed fiber.
Let X → Y be a proper semistable curve with compatible log structure. Let U =Xtr. Let η1 and
η2 be two Berkovich points of Y0 whose residue fields have discrete valuation, and let η̄1, η̄2 be
geometric points above them. Let s̄2→ s̄1 be a log specialization of their log reductions such
that there exists a specialization η̄2→ η̄1 for the algebraic étale topology such that the diagram
of specialization maps

η̄2

��

// η̄1

��
s̄2 // s̄1

is commutative. Then there is a cospecialization homomorphism

πtemp
1 (Uη̄1)L→ πtemp

1 (Uη̄2)L.

Moreover, it is an isomorphism if MY,s̄1 →MY,s̄2 is an isomorphism.
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E. Lepage

The aim of this paper is to generalize this result in higher dimension. However, in this paper,
we will only consider the case of vertical semistable morphisms X → Y (which means mainly
that Uη̄i =Xη̄i).

Recall that, if L is a set of primes, the L-tempered fundamental group is the prodiscrete group
that classifies the L-tempered covers, which are étale covers in the sense of A. J. de Jong (that
is to say, locally on the Berkovich topology, it is a direct sum of finite étale covers) such that,
after pulling back by some L-finite étale cover, they become topological covers (for the Berkovich
topology).

In this article, we shall study the following situation. Let K be a discretely valued field, OK
be its valuation ring, k be its residue field and p be its characteristic (which can be 0). Let
X → Y be a proper pluristable (for example semistable) morphism of schemes over OK with
geometrically connected fibers.

Let L be a set of primes that does not contain p. If η1 is a (Berkovich) point of the
generic fiber of Y , we first want to describe the geometric L-tempered fundamental group of
Xη1 in terms of Xs1 , where s1 is the reduction of η1. To be sure that this reduction exists,
we have to assume η1 is in the tube Yη of the special fiber of Y . Let us make sure at first
that we can get such a description for the pro-L completion, i.e. the algebraic fundamental
group. One cannot apply directly Grothendieck’s specialization theorems since the special fiber
is not smooth but only pluristable. Indeed, a pro-L geometric cover of the generic fiber will
generally only induce a Kummer cover on the special fiber. These are more naturally described
in terms of log geometry and of the log fundamental group. The log fundamental group classifies
Kummer log étale covers (or, equivalently, finite log étale covers): étale locally, these covers are
pullbacks of a morphism Spec Z[Q]→ Spec Z[P ] of a morphism of monoids P →Q, where Q
is the saturation of P in an extension of P gp of finite index invertible on the log scheme. For
a proper and log smooth log scheme over a complete discrete valuation ring, there is, as in
the proper and smooth case for Grothendieck’s fundamental group, a specialization morphism
from the pro-L log fundamental group of the generic fiber (which is isomorphic to the pro-L
algebraic fundamental group of the maximal open subset of the generic fiber, where the log
structure is trivial) to the pro-L log fundamental group of the closed fiber. We will have to
assume the field H(η1) to be with discrete valuation in order to get log schemes with good
finiteness properties (more precisely to be fs). Then one can endow Xs1 with a natural log
structure. The pro-L fundamental group of Xη1 is isomorphic to the pro-L log fundamental
group of Xs1 . To try to describe the L-tempered fundamental group, one has to describe
the topological behavior of any L-algebraic cover of Xη1 . Berkovich, in [Ber99], constructed
a combinatorial object (more precisely a polysimplicial set) depending only on Xs1 such that the
Berkovich generic fiber Xη1 is naturally homotopically equivalent to the geometric realization of
this combinatorial object, thus generalizing the case of curves with semistable reduction, where
the homotopy type of the generic fiber can be naturally described in terms of the graph of this
semistable reduction. We will extend such a description to our log covers: for every log cover
S→XOH(η1)

, we will construct a combinatorial object C(S), depending only on Ss1 , such that its
geometric realization |C(S)| is naturally homotopically equivalent to the Berkovich generic fiber
Sη1 . This will enable us to define a L-tempered fundamental group of our log reduction, which
is isomorphic to the tempered fundamental group of the generic fiber: for any Galois két cover
f : S→Xs1 , there is an action of Gal(S/Xs1) on C(S). Such an action defines an extension GS
of Gal(S/Xs1) by πtop

1 (|C(S)|) :GS = {(g1, g2) ∈Aut(|C(S)|∞)×Gal(S/Xs1)|πg1 = g2π}, where
π : |C(S)|∞→ |C(S)| is the universal topological cover of |C(S)|. The L-tempered fundamental
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group of Xs1 is the projective limits of these extensions GS , where S runs through pointed két
Galois covers of X of L order. In particular, one gets the following theorem.

Theorem 0.2 (see Theorem 3.2). The L-tempered fundamental group of Xη1 only depends on
the log reduction Xs1 .

Once we have a definition for the log geometric tempered fundamental group πtemp-geom
1 (Xs1)

of the log fibers in the special locus of Y , one can reformulate our cospecialization problem only
in terms of this special locus.

We will prove the following theorem.

Theorem 0.3 (Theorem 4.11). Let η1 and η2 be two Berkovich points with discrete valuation
fields of Y0 = Y an

tr ∩Yη. Let η̄1, η̄2 be geometric points above them. Let s̄2→ s̄1 be a specialization
of their log reductions such that there exists a specialization η̄2→ η̄1 for the algebraic étale
topology such that the obvious diagram of specialization maps commutes. Then there is a
cospecialization homomorphism πtemp-geom

1 (Xη̄1)L→ πtemp-geom
1 (Xη̄2)L.

Moreover, one can give a criterion for this cospecialization homomorphism to be an
isomorphism. To do this, we will have to make an assumption on the combinatorial behavior of the
geometric fibers of X → Y . More precisely, the polysimplicial set associated to those geometric
fibers will be assumed to be interiorly free (this is for example the case if X → Y is strictly
polystable or if X → Y is of relative dimension one, which explains why such a condition did
not appear in [Lep09]). If the morphism of monoids MY,s̄1 →MY,s̄2 is an isomorphism and the
polysimplicial sets of the geometric fibers of X → Y are interiorly free, then the cospecialization
homomorphism πtemp-geom

1 (Xη̄1)L→ πtemp-geom
1 (Xη̄2)L is an isomorphism.

Let K be a complete discretely valued field. Let L be a set of primes that does not contain
the residual characteristic of K. Let X → Y be a proper polystable fibration with compatible
log structures over OK and with geometrically connected fibers. Let η1 and η2 be two Berkovich
points with discrete valuation fields of Y0 = Y an

tr ∩Yη. Let η̄1, η̄2 be geometric points above them.
Let s̄2→ s̄1 be a specialization of their log reductions such that there exists a specialization
η̄2→ η̄1 for the algebraic étale topology such that the obvious diagram of specialization maps
commutes.

The first thing we need to construct the cospecialization homomorphism for tempered
fundamental groups is a specialization morphism for the L-log geometric fundamental groups
of Xs̄1 and Xs̄2 . More precisely, we would like to extend any L-log geometric cover of Xs1 to a
két neighborhood of s1. By restricting this extension to Xs̄2 , one obtains a functor from L-log
covers of Xs̄1 to L-log covers of Xs̄2 ; this functor induces the wanted specialization morphism of
L-log geometric fundamental groups. If one has such a specialization morphism, by comparing
it to the fundamental groups of Xη̄1 and Xη̄2 and using Grothendieck’s specialization theorem,
we will easily get that it must be an isomorphism. These specialization morphisms have already
been constructed in [Lep09, Proposition 2.10].

Then we have to study the combinatorial behavior of a két cover with respect to
cospecialization. By étale localization, one can assume that Y is strictly local with special point
s̄1. Thanks to our specialization results for log fundamental groups, any két cover Us̄1 of Xs̄1

extends, up to két localization of Y , to a két cover U of X. Up to further két localization
of Y , U → Y is saturated. For a stratum u of Us̄1 , there is among the strata of Us2 whose
closure contains u a stratum u′ with smallest closure (i.e. a biggest stratum for specialization):
it defines a map Str(Us̄1)→ Str(Us2). The fact that U → Y is saturated implies that the closures
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of the strata of U are flat over their images in Y and have geometrically reduced fibers.
Thanks to [EGA4, Corollary 18.9.8]), this implies that u′ is geometrically connected, whence
a cospecialization map Str(Us̄1)→ Str(Us̄2). This cospecialization map can be extended into
a morphism of polysimplicial sets. One gets by pullback a specialization functor between the
category of topological covers of the polysimplicial sets Us̄2 and Us̄1 . Since the cospecialization
morphisms of polysimplicial sets commute with két covers, the specialization functor can be
seen as a functor of fibered categories over the category of L-log covers of Xs̄1 (or, equivalently,
of L-finite étale covers of Xη̄1). But the fibered category of tempered covers over the category of
L-finite étale covers of Xη̄1 is naturally equivalent to the stack associated to the fibered category
of topological covers over the category of L-finite étale covers of Xη̄1 . Thanks to the specialization
isomorphism of log fundamental groups, the fibered category over the category of L-log covers
of Xs̄1 can also be considered as a category over the category of L-log covers of Xs̄2 : thus, one
gets a similar description of the stack associated to the fibered category of topological covers
over the category of L-finite étale covers of Xη̄1 . Thus, the topological specialization functor
gives us the wanted tempered specialization functor.

Let us now discuss the organization of the paper.

The first section of this paper will be devoted to recall the main tools we will need later.
We will recall the definition of the tempered fundamental group and its basic properties. We
will also consider an L-version of the tempered fundamental group, where L is a set of prime
numbers (L-tempered fundamental groups were already introduced in [Moc06] in the case of
curves). We will then recall the basics of log geometry, especially the theory of két covers and log
fundamental groups. We will end this part by recalling the topological structure of the generic
fiber (considered as a Berkovich space) of a pluristable formal scheme, as studied in [Ber99] and
in [Ber04].

In § 2, we define the tempered fundamental group of a nonempty connected pluristable log
scheme X over a log point. To do this, we define a functor C from the Kummer étale site of our
pluristable log scheme X to the category of polysimplicial sets (which extends the definition of
the polysimplicial set associated to a pluristable scheme defined by Berkovich in [Ber99]). We
also define a log geometric version by taking the projective limit over connected két extensions
of the base log point.

In § 3, for a connected, proper, generically smooth and pluristable scheme X over a complete
discretely valued ring OK (thus endowed with a canonical log structure), we construct a
specialization morphism between the L-tempered fundamental group of the generic fiber,
considered as a Berkovich space, and the L-tempered fundamental group of the special
fiber endowed with the inverse image log structure, which is an isomorphism if the residual
characteristic of K is not in L.

This specialization morphism is induced by the specialization morphism from the algebraic
fundamental group of the generic fiber to the log fundamental group of the special fiber, and
by the fact that the geometric realization of the polysimplicial set |C(S)| of a két cover S
of the special fiber of X is canonically homotopically equivalent to the Berkovich space San

η of
the corresponding étale cover of the generic fiber. This homotopy equivalence is obtained by
extending the strong deformation retraction of Xan

η to a strong deformation retraction of San
η

onto a subset canonically homeomorphic to |C(S)|.
In § 4, we construct cospecialization morphisms between the polysimplicial sets of the

geometric fibers of a polystable fibration. To do so, we first prove that, up to étale localization
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of Y at s̄1, for any stratum x of Xs̄1 , the set of strata of Xs2 whose closure contains x has a
biggest element (for the order induced by existence of specialization), and this biggest stratum
is geometrically irreducible. This will induce cospecialization morphisms on the set of strata
of the geometric fibers of X → Y . Up to két localization of Y , the same result is also true
for két covers of X. These cospecialization maps of sets of strata in fact come from maps of
polysimplicial sets. If we identify the categories of L-két covers of Xs̄1 and Xs̄2 by using our
specialization isomorphism of két fundamental groups, one gets, for U in this category, a map
|C(Us̄1)| → |C(Us̄2)| functorially in U (and, in particular, when U is Galois, compatible with
the action of the Galois group of U). We get from this cospecialization morphisms between the
L-geometric tempered fundamental groups of the fibers of our strictly polystable log fibration.

Thanks to the isomorphisms between the L-geometric tempered fundamental group of the
fiber over a discretely valued Berkovich point of the generic part of our base log scheme and
the L-geometric tempered fundamental group of the fiber over the reduction log point, we will
get Theorem 0.3.

1. Reminder of the skeleton of a Berkovich space with pluristable reduction

1.1 Polystable morphisms

Let K be a complete non-Archimedean field and let OK be its ring of integers.
If X is a locally finitely presented formal scheme over OK , Xη will denote the generic fiber of

X in the sense of Berkovich [Ber94, § 1].
Recall the definition of a polystable morphism of formal schemes.

Definition 1.1 ([Ber99, Definition 1.2], [Ber04, § 4.1]). Let φ : Y→ X be a locally finitely
presented morphism of formal schemes over OK . Then φ is said to be:

(i) strictly polystable if, for every point y ∈Y, there exist an open affine neighborhood
X′ = Spf(A) of x := φ(y) and an open neighborhood Y′ ⊂ φ−1(X′) of y such that the induced
morphism Y′→ X′ factors through an étale morphism Y′→ Spf(B0)×X′ · · · ×X′ Spf(Bp),
where each Bi is of the form A{T0, . . . , Tni}/(T0 · · · Tni − ai) with a ∈A and n> 0. It is
said to be nondegenerate if one can choose X′, Y′ and (Bi, ai) such that {x ∈ (Spf(A)η) |
ai(x) = 0} is nowhere dense;

(ii) polystable if there exists a surjective étale morphism Y′→Y such that Y′→ X is strictly
polystable. It is said to be nondegenerate if one can choose Y′ such that Y′→ X is
nondegenerate;

(iii) trivially polystable if, locally on the étale topology, it is isomorphic to Z×Spf OK X→ X,
where Z→ Spf OK is a polystable morphism.

Then a (nondegenerate) polystable fibration of length l over S is a sequence of (nondegenerate)
polystable morphisms X = (Xl→ · · · → X1→S).

Then K-Pstf ét
l (respectively K-Pstf sm

l , K-Pstf tps
l ) will denote the category of polystable

fibrations of length l over OK , where a morphism X→Y is a collection of étale (respectively
smooth, trivially polystable) morphisms (Xi→Yi)16i6l which satisfies the natural commutation
assumptions.
Pstf ét

l (respectively Pstf sm
l , Pstf tps

l ) will denote the category of couples (X, K1), where
K1 is a complete non-Archimedean field and X is a polystable fibration over OK1 , and a
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morphism (X, K1)→ (Y, K2) is a couple (φ, ψ), where φ is an isometric extension K2→K1

and ψ is a morphism X→Y⊗OK2
OK1 in K1-Pstf ét

l (respectively K1-Pstf sm
l , K1-Pstf tps

l ).

Pstét
l (respectively Pstsml , Psttps

l ) will denote the full subcategory of Pstf ét
l (respectively

Pstf sm
l , Pstf tps

l ) consisting of couples (X, K1), where K1 has trivial valuation. Equivalently,
this amounts to working over fields instead of complete non-Archimedean fields and to replace
in the previous definitions formal schemes over OK by schemes over K. If l = 1, we may omit
the index l in the notation.

Let k be a field. Let X be a k-scheme locally of finite type.
The normal locus Norm(Xred) is a dense open subset of X. Let us define inductively

X(0) =Xred, X(i+1) =X(i)\Norm(X(i)). The irreducible components of X(i)\X(i+1) are called
the strata of X (of rank i). This gives a partition of X. The set of the generic points of the strata
of X is denoted by Str(X) (this set is in natural bijection with the set of strata of X). There is
a natural partial order on Str(X) defined by x6 y if and only if y ∈ {x}.

Berkovich defined another filtration X =X(0) ⊃X(1) ⊃ · · · such that X(i+1) is the closed
subset of points contained in at least two irreducible components of X(i). X is said to be
quasinormal if all of the irreducible components of each X(i), endowed with the reduced
subscheme structure, are normal (this property is local for the Zariski topology and remains true
after étale morphisms). If X is quasinormal, then X(i) =X(i) ·X is quasinormal if and only if the
closure of every stratum is normal. A strictly plurinodal scheme over a field is quasinormal [Ber99,
Proposition 2.1].

We say that a strictly plurinodal scheme X over a field K is elementary if Str(X) has a
biggest element; we say that it is geometrically elementary if it is elementary and all the strata
are geometrically irreducible. Finally, a strictly pluristable morphism Y →X is geometrically
elementary if all the fibers are geometrically elementary.

1.2 Polysimplicial sets
Berkovich defined polysimplicial sets in [Ber99, § 3] as follows.

For an integer n, let [n] denote {0, 1, . . . , n}.
For a tuple n = (n0, . . . , np) with either p= n0 = 0 or ni > 1 for all i, let [n] denote the set

[n0]× · · · × [np] and w(n) denote the number p.
Berkovich defined a category Λ whose objects are [n] and morphisms are maps [m]→ [n]

associated to triples (J, f, α), where:

• J is a subset of [w(m)] assumed to be empty if [m] = [0];
• f is an injective map J → [w(n)];
• α is a collection {αl}06l6p, where αl is an injective map [mf−1(l)]→ [nl] if l ∈ Im(f), and αl

is a map [0]→ [nl] otherwise.

The map γ : [m]→ [n] associated to (J, f, α) takes j = (j0, . . . , jw(m)) ∈ [m] to i = (i0, . . . , iw(n))
with il = αl(jf−1(l)) for l ∈ Im(f), and il = αl(0) otherwise.

A polysimplicial set is a functor Λop→ Set. Polysimplicial sets form a category denoted by
Λ◦ Set.

One considers Λ as a full subcategory of Λ◦ Set by the Yoneda functor. If C is a polysimplicial
set, Λ/ C is the category whose objects are morphisms [n]→ C in Λ◦ Set and morphisms from
[n]→ C to [m]→ C are morphisms [n]→ [m] that make the triangle commute. Objects of Λ/ C
are called polysimplices of C and, if x : [n]→ C is a polysimplex, n will be denoted by nx.
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A polysimplex x of a polysimplicial set C is said to be degenerate if there is a nonisomorphic
surjective map f of Λ such that x is the image by f of a polysimplex of C. Let Cnd

n be the subset
of nondegenerate polysimplices of Cn.

Thanks to an analog of the Eilenberg–Zilber lemma for polysimplicial sets [Ber99, Lemma 3.2],
a morphism C′→ C is bijective if and only if it maps nondegenerate polysimplices to
nondegenerate polysimplices and (C′)nd

n → Cnd
n is bijective for any n.

There is a functor O : Λ◦ Set→ Poset, where O(C) is the partially ordered set associated to
Ob(Λ/ C) endowed with the preorder, where x6 y if there is a morphism x→ y in Λ/ C. If one
sees O(C) as a category, there is an obvious functor Λ/ C→O(C). As a set, O(C) coincides with
the set of equivalence classes of nondegenerate polysimplices.

A polysimplicial set C is said to be interiorly free if Aut(n) acts freely on Cnd
n . If C1→ C2

is a morphism of polysimplicial sets mapping nondegenerate polysimplices to nondegenerate
polysimplices such that O(C1)→O(C2) is an isomorphism and C2 is interiorly free, then C1→ C2

is an isomorphism.

Berkovich also defined a strictly polysimplicial category Λ whose objects are those of Λ, but
with only injective morphisms between them. The functor Λ→Λ→Λ◦ Set extends to a functor
Λ◦ Set→Λ◦ Set which commutes with direct limits (the objects of Λ◦ Set will be called strictly
polysimplicial sets).

Berkovich then considered a functor Σ : Λ→Ke to the category of Kelley spaces,
i.e. topological spaces X such that a subset of X is closed whenever its intersection with
any compact subset of X is closed. This functor takes [n] to Σn = {(uil)06i6p,06l6ni ∈ [0, 1][n] |∑

l uil = 1}, and takes a map γ associated to (J, f, α) to Σ(γ) that maps u = (ujk) to u′ = (u′il)
defined as follows: if [m] 6= [0] and i /∈ Im(f) or [m] = [0], then u′il = 1 for l = αi(0) and u′il = 0
otherwise; if [m] 6= [0] and i ∈ Im(f), then u′il = uf−1(i),α−1

i (l) for l ∈ Im(αi) and u′il = 0 otherwise.

This induces a functor, the geometric realization, ‖ : Λ◦ Set→Ke (by extending Σ in such a
way that it commutes with direct limits). If O(C) is finite (respectively locally finite), then |C|
is compact (respectively locally compact).

There is also a bifunctor � : Λ◦ Set×Λ◦ Set→Λ◦ Set which commutes with direct limits
and defined by [(n0, . . . , np)]�[(n′0, . . . , n

′
p′)] = [(n0, . . . , np, n

′
0, . . . , n

′
p′)]. Thus, | C� C′ |=

|C| × |C′|, where the product on the right is the product of Kelley spaces (which is the same as
the product of topological spaces whenever O(C) and O(C′) are locally finite).

1.3 Polysimplicial set of a polystable fibration

If X is strictly polystable over k and x ∈ Str(X), Irr(X, x) will denote the metric space of
irreducible components of X passing through x, where d(X1, X2) = codimx(X1 ∩X2). On a tuple
[n], one can consider the metric d defined by d((n0, . . . , np), (n′0, . . . , n

′
p)) = |{i ∈ [[0, p]]|ni 6=

n′i}|. Then there is a unique tuple [n] such that Irr(X, x) is bijectively isometric to [n]. If
[m]→ [n] is isometric, there exist a unique y ∈ Str(X) with y 6 x and a unique isometric bijection
[m]→ Irr(X, y) such that

[n] // Irr(X, x)

[m]

OO

// Irr(X, y)

OO

commutes.
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The functor which associates to [n] the set of couples (x, µ), where x ∈ Str(X) and µ is
an isometric bijection [n]→ Irr(X, x), defines a strict polysimplicial set C(X) (and thus a
polysimplicial set C(X)).

There is a functorial isomorphism of partially ordered sets O(C(X))' Str(X).

Proposition 1.2 [Ber99, Proposition 3.14]. One has a functor C : Pstsm→Λ◦ Set such that
C(X) is defined as above if X is strictly polystable and, for every étale surjective morphism
X ′→X,

C(X) = Coker(C(X ′ ×X X ′)⇒ C(X ′)).

This functor extends to a functor C for polystable fibrations over K of length l.

Proposition 1.3 [Ber99, Proposition 6.9]. There is a functor C : Psttps
l →Λ Set such that:

(i) for every étale surjective morphism of polystable fibrations X ′→X,

C(X) = Coker(C(X ′ ×X X ′)⇒ C(X ′));

(ii) O(C(X))' Str(X).

By étale descent, one reduces to the case of strictly polystable fibrations, and one builds this
functor inductively on l.

Let us assume we already constructed C for strictly polystable fibrations of length l − 1 such
that O(C(X)) = Str(Xl−1). Let X :Xl→Xl−1→ · · · → Spec k be a strictly polystable fibration,
and let X l−1 :Xl−1→ · · · → Spec k. Then, for every x′ 6 x ∈ Str(Xl−1), one has the following
lemma.

Lemma 1.4 [Ber99, Corollary 6.2, Proposition 2.9]. There is a canonical cospecialization
morphism C(Xl,x)→ C(Xl,x′) and, if x′′ 6 x′ 6 x, the morphism C(Xl,x)→ C(Xl,x′′) coincides
with the composition C(Xl,x)→ C(Xl,x′)→ C(Xl,x′′).

The induced map Str(Xl,x)→ Str(Xl,x′) obtained by applying the functor O is characterized
by the following property: the image of a stratum z ∈ Str(Xl,x) is the biggest element of
{z′ ∈ Str(Xl,x′) | z is in the closure of z′}.

This gives a functor Str(Xl−1)op→Λ◦ Set that maps an object x in Str(Xl−1)op to C(Xl,x)
and an arrow x′→ x to the cospecialization morphism C(Xl,x)→ C(Xl,x′) given by Lemma 1.4.
If one composes this functor with (Λ/(C(X l−1)))op→O(C(X l−1))op = Str(Xl−1)op, one gets a
functor

D : (Λ/(C(X l−1)))op→Λ◦ Set.
Berkovich then defined a polysimplicial set (where we set C = C(X l−1))

C(X) = C�D := Coker
( ∐
y→x∈Λ/ C

[ny]�Dx⇒
∐

x∈Λ/ C

[nx]�Dx

)
,

where, for a morphism f : y→ x in Λ/ C, the upper arrow sends [ny]�Dx to [nx]�Dx by
the morphism [f ]� idDx and the lower arrow sends [ny]�Dx to [ny]�Dy by the morphism
id[ny ] �Df .

1.4 Skeleton of a Berkovich space
Berkovich attached to a polystable fibration X = (Xl→ Xl−1→ · · · → Spf(OK)) a subset of the
generic fiber Xl,η of Xl, the skeleton S(X) of X, which is canonically homeomorphic to |C(Xs)|
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(see [Ber99, Theorem 8.2]). In fact, when X is nondegenerate, for example generically smooth
(we will only apply the results of Berkovich to such polystable fibrations), the skeleton of X

depends only on Xl according to [Ber04, Proposition 4.3.1(ii)]; such a formal scheme that fits
into a polystable fibration will be called pluristable, and we will denote this skeleton by S(Xl).

In this case, [Ber04, Proposition 4.3.1(ii)] gives a description of S(Xl), which is independent
of the retraction. For any x, y ∈ Xl,η, we write x� y if, for every étale morphism X′→ Xl and
any x′ over x, there exists y′ over y such that for any f ∈O(Xη), |f(x′)|6 |f(y′)| (� is a partial
order on Xl,η). Then S(Xl) is just the set of maximal points of Xl,η for �.

Moreover, there is a strong deformation retraction of Xl,η to S(X) and this construction is
compatible with étale morphisms; more precisely, one has the following theorem.

Theorem 1.5 [Ber99, Theorem 8.1]. There is, for every polystable fibration X = (Xl
fl−1−−−−→

· · · f1−−→ X1→ Spf(OK)), a natural proper strong deformation retraction Φl : Xl,η × [0, l]→ Xl,η

of Xl,η onto a closed subset S(X) of X, which is called the skeleton of X. It satisfies the following
properties:

(i) S(X) =
⋃
x∈S(Xl−1) S(Xl,x) (set-theoretic disjoint union), where Xl−1 := (Xl−1→ · · · →

Spf(OK)) and S(Xl,x) is the skeleton of the polystable morphism Xl ×Xl−1
Spf OH(x)→

Spf OH(x);

(ii) if φ : Y→ X is a morphism of fibrations in Pstf ét
l , one has φl,η(yt) = φl,η(y)t for every

y ∈Yl,η.

Let us describe more precisely how the retraction is defined. First assume l = 1.
If X = Spf OK{P}/(pi − zi), where P is isomorphic to

⊕
06i6p Nni+1, pi = (1, . . . , 1) ∈Nni+1

and zi ∈OK , let Gm be the formal multiplicative group Spf OK{T, 1/T} over OK , let us denote
for any n by Gm

(n) the kernel of the multiplication Gm
n+1→Gm and let G be the formal

completion at the identity of
∏
i Gm

(ni) (it is a formal group). Then G acts on X. The group
G= Gη acts then on Xη. The group G has canonical subgroups Gt for t ∈ [0, 1] defined by the
inequalities |Tij − 1|6 t, where Tij are the coordinates in G. The space Gt has a maximal point gt.
Similarly, for any complete extension K ′/K, Gt ⊗K K ′ has a maximal point gt,K′ . If x ∈X, one
defines xt := gt ∗ x to be the image of gt,H(x) by the map Gt ⊗K K ′ = (Gt ×X)x ⊂Gt ×X →X.

If X is étale over Spf OK{P}/(pi − zi), the action of G extends in a unique way to an action
on X, and xt is still defined by gt ∗ x. For any X polystable over OK , one has thus defined the
strong deformation locally for the quasi-étale topology of Xan

η , and Berkovich checked that it
indeed descends to a strong deformation on X.

Consider now the case l bigger than 1. Let X→ Xl−1→ · · · → Spf OK be a polystable
fibration. Let S(X/Xl−1) :=

⋃
x∈Xl−1,η

S(Xl,x).

First assume that X→ Xl−1 is of the kind Spf B→ Spf A with B =A{P}/(pi − ai) (this will
be called a standard polystable morphism); then one first retracts fiber by fiber on S(X/Xl−1),
which are strictly polystable. The image obtained can be identified with S = {(x, r0, . . . , rp) ∈
Xl−1,η, ri0 · · · rini = |ai(x)|}; one then has a homotopy Ψ : S × [0, 1]→ S defined by

Ψ(x, r0, . . . , rp, t) = (xt, ψn0(r0, |a0(xt)|), . . . , ψnp(rp, |ap(xt)|)),

where ψn is some strong deformation of [0, 1]n+1 to (1, . . . , 1) ∈ [0, 1]n+1 defined by Berkovich
(we will just need that ψn(ri, t)λk = ψn(rλi , t

λ)k for any λ ∈R∗+ and any k ∈ [0, n]), and xt is
defined by the strong deformation of Xl−1,η.
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If X→ X′→ Xl−1 is a geometrically elementary composition of a surjective étale morphism
and a standard polystable morphism, then S(X/Xl−1)→ S(X′/Xl−1) is an isomorphism, so that
we deform X fiber by fiber onto S(X/Xl−1), then we just do the same retraction as for S(X′/Xl−1).
For an arbitrary polystable fibration X → · · · →OK , this defines the retraction locally for the
quasi-étale topology of Xη, and Berkovich checked that it descends to a deformation retraction
on X.

Berkovich deduced from Theorem 1.5(ii) the following corollary.

Corollary 1.6 [Ber99, Corollary 8.5]. Let K ′ be a finite Galois extension of K and let X be
a polystable fibration over OK′ with a normal generic fiber Xl,η. Suppose we are given an action
of a finite group G on X over OK and a Zariski open dense subset U of Xl,η which is stable under
the action of G. Then there is a strong deformation retraction of the Berkovich space G\U to a
closed subset homeomorphic to G\|C(X)|.

More precisely, in this corollary, the closed subset in question is the image of S(X) (which is
G-equivariant and contained in U) by U →G\U .

Theorem 1.5 also implies that the skeleton is functorial with respect to pluristable morphisms.

Proposition 1.7 [Ber04, Proposition 4.3.2(i)]. If φ : X→Y is a pluristable morphism between
nondegenerate pluristable formal schemes over OK , φη(S(X))⊂ S(Y).

It follows more precisely from the construction that S(X) =
⋃
y∈S(Y) S(Xy).

2. Tempered fundamental group of a polystable log scheme

In this section, we define a tempered fundamental group for a polystable fibration over a field,
endowed with some compatible log structure (we will call this a polystable log fibration). To
define our tempered fundamental group, we will need a notion of ‘topological cover’ of a két
cover Z of our polystable log fibration X → · · · → k. To do this, we will define for any Z a
polysimplicial set C(Z) over the polysimplicial set C(X), functorially in Z. Thus, if Z is a finite
Galois cover of X with Galois group G, there is an action of G on C(Z) which defines an extension
of groups:

1→ πtop
1 (|C(Z)|)→ΠZ →G→ 1.

Our tempered fundamental group will be the projective limits of ΠZ when Z runs through
pointed Galois covers of X.

2.1 Polystable log schemes
All monoids are assumed to be commutative. We will use multiplicative notation. If X is an fs
log scheme, we will denote by X̊ the underlying scheme, by MX the étale sheaf of monoids on
X̊ defining the log structure and by Xtr the open subset of X where the log structure is trivial.

A strict étale morphism of an fs log scheme Y →X is a strict morphism of log schemes such
that Y̊ → X̊ is étale. If we talk about étale topology on X, it will mean strict étale topology on
X (or, equivalently, étale topology on X̊), and not log étale topology.

Let S be an fs log scheme.

Definition 2.1. A morphism φ : Y →X of fs log schemes will be said to be:

– standard nodal if X has an fs chart X → Spec P and Y is isomorphic to X ×Spec Z[P ] Z[Q]
with Q= (P ⊕ uN⊕ vN)/(u · v = a) with a ∈ P ;
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– a strictly plurinodal morphism of log schemes if, for every point y ∈ Y , there exist a Zariski
open neighborhood X ′ of φ(y) and a Zariski open neighborhood Y ′ of y in Y ×X X ′ such
that Y ′→X ′ is a composition of strict étale morphisms and standard nodal morphisms (in
particular, X and Y are Zariski log schemes);

– a plurinodal morphism of log schemes if, locally for the étale topology of X and Y , it is
strictly plurinodal;

– a strictly polystable morphism of log schemes if, for every point y ∈ Y , there exist an affine
Zariski open neighborhood X ′ = SpecA of φ(y), an fs chart P →A of the log structure of
X ′ and a Zariski open neighborhood Y ′ of y in Y ×X X ′ such that Y ′→X factors through a
strict étale morphism Y ′→X ′ ×Z[P ] Z[Q], where Q= (P ⊕

⊕p
i=0〈Ti0, . . . , Tini〉)/(Ti0 · · · · ·

Tini = ai) with ai ∈ P (in particular, X and Y are Zariski log schemes);
– a polystable morphism of log schemes if, locally for the étale topology of Y and X, it is a

strict polystable morphism of log schemes.

A polystable log fibration (respectively strictly polystable log fibration) X over S of length l is a
sequence of polystable (respectively strictly polystable) morphisms of log schemes Xl→ · · · →
X1→X0 = S.

A morphism of polystable log fibrations of length l f : Y →X is given by morphisms
fi : Yi→Xi of fs log schemes for every i such that the obvious diagram commutes.

A morphism f of polystable fibrations will be said to be két (respectively strict étale) if fi is
két (respectively strict étale) for all i.

A polystable (respectively strictly polystable) morphism of log schemes is plurinodal
(respectively strictly plurinodal).

A plurinodal morphism is log smooth and saturated.

Remark. If φ : Y →X is a strictly polystable morphism of log schemes, then for any y ∈ Y ,
for any Zariski open neighborhood X ′ of φ(y) and for any chart X ′→ Spec P , there are
a Zariski open neighborhood X ′′ ⊂X ′ of φ(y) and a Zariski open neighborhood Y ′ of y in
Y ×X X ′′ such that Y ′→X factors through a strict étale morphism Y ′→X ′ ×Z[P ] Z[Q], where
Q= (P ⊕

⊕p
i=0〈Ti0, . . . , Tini〉)/(Ti0 · · · · · Tini = ai) with ai ∈ P .

Lemma 2.2. Let φ : Y →X be a plurinodal (respectively strictly plurinodal, respectively
polystable, respectively strictly polystable) morphism of schemes, such that X has a log
regular log structure MX and φ is smooth over Xtr. Then (Y, OY ∩ j∗O∗YXtr

)→ (X,MX)
is a plurinodal (respectively strictly plurinodal, respectively polystable, respectively strictly
polystable) morphism of log schemes.

Proof. Let us prove it for the case of a strictly polystable morphism.
One can assume that X = Spec(A) has a chart ψ : P →A and that Y =B0 ×X · · · ×X Bp

with Bi = SpecA[Ti0, . . . , Tini ]/Ti0 · · · Tini − ai with ai ∈A. Since φ is smooth over Xtr, ai
is invertible over Xtr; thus, after multiplying ai by an element of A∗ (we can do that by
also multiplying Ti0 by this element), we may assume that ai = ψ(bi) for some bi ∈ P . Thus,
Y =X ×Z[P ] Z[Q], where Q= (P ⊕

⊕p
i=0〈Ti0, . . . , Tini〉)/(Ti0 · · · · · Tini = bi) with bi ∈ P . If we

endow Y with the log structure MY associated to Q, Y →X becomes a strictly polystable
morphism of log schemes. In particular, Y is log regular [Kat94, Theorem 8.2]. Since the
set of points of Y where MY is trivial is YXtr , MY =OY ∩ j∗O∗YXtr

according to [Niz06,
Proposition 2.6]. 2

1453

https://doi.org/10.1112/S0010437X12000218 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000218


E. Lepage

2.2 Strata of log schemes
For a polystable (log) fibration X :X → · · · → Spec k, Berkovich defined a polysimplicial set
C(X). In this part, we want to generalize this construction to any két log scheme Z over X. To
do this, we will study the stratification of an fs log scheme defined by rk(z) = rk(Mgp

z ), which
corresponds to Berkovich stratification for plurinodal schemes, and we will show that étale locally
a két morphism X → Y induces an isomorphism between the posets of the strata of X and Y .
This will enable us to define the polysimplicial set of Z étale locally. We will then descend it so
that it satisfies the same descent property as in Proposition 1.3.

Let Z be an fs log scheme; one gets a stratification on Z by saying that a point z of Z is of
rank r if rklog(z) = rk(Mgp

z̄ /O∗z̄) = r (where z̄ is some geometric point over z and where rk is the
rank of an abelian group of finite type).

The subset of points of Z such that the rank is 6r is an open subset of Z [Ogu,
Corollary II.2.3.5]. We thus get a good stratification.

The strata of rank r of Z are then the connected components of the subset of points z of
rank r. This is a partition of Z, and a stratum of rank r is open in the closed subset of points x
of rank > r. It is endowed with the reduced subscheme structure of Z.

The set of strata is partially ordered by x6 y if and only if y ⊂ x̄. One denotes by Strx(Z) the
poset of strata below x. More generally, if z is a point of Z, we denote by Strz(Z) the set of strata
y of Z such that z ∈ ȳ (Strz(Z) is simply Strx(Z), where x is the stratum of z containing x). If
z̄ is a geometric point of Z, let Strgeom

z̄ (Z) = lim←−(U,ū)
Strū(U), where (U, ū) goes through étale

neighborhoods of z̄; it can be identified with Str(Z(z̄)), where Z(z̄) is the strict localization of
Z at z̄.

If f : Z ′→ Z is a két morphism and x ∈ Z ′, then rklog(x) = rklog(f(x)), so the strata of Z ′

are the connected components of the preimages of the strata of Z.
If f : P →OZ is an fs chart of Z, it induces a continuous map f∗ : Z→ Spec P that maps

a point z to the prime pz = P\f−1(O∗Z,z) of P . If Fz = P\pz is the corresponding face, then
MZ,z = P/Fz. One deduces from it that the strata of Z are exactly the connected components
of the preimages by f∗ of points in Spec P . In particular, one gets a map Str(Z)→ Spec P . If
z is a point of Z, the map Z(z)→ Spec P factorizes through a map Z(z)→ SpecMZ,z, which
does not depend on the choice of the chart. One gets a map Strz(Z)→ SpecMZ,z. For a general
fs log scheme Z, if z̄ is a geometric point of Z, one gets a map Strgeom

z̄ (Z)→ SpecMZ,z̄.
Let P be a sharp fs monoid. Let us look at the structure of the strata of Spec k[P ]

endowed with the log structure for which f : P → k[P ] is a chart. Let f∗ denote the map
Spec k[P ]→ Spec P , let p be a prime of P and let F = P\p be the corresponding face of P .
Then f∗,−1({p}) is a closed subset of Spec k[P ], which, endowed with its structure of reduced
closed subscheme, is Spec k[P ]/(p), where (p) =

⊕
pi∈p k · pi ⊂ k[P ] ((p) is a prime ideal of k[P ]).

Moreover, the obvious morphism of rings k[F ]→ k[P ]/(p) is an isomorphism, inducing thus
an isomorphism of schemes f∗,−1({p}) = Spec k[P ]/(p)' Spec k[F ]. However, the log structure
on Spec k[F ] for which F is a chart does not correspond in general with the log structure on
Spec k[P ]/(p) for which P is a chart. The open immersion f∗,−1({p})⊂ f∗,−1({p}) corresponds
then to the open immersion Spec k[F gp]→ Spec k[F ]. Since P is sharp, F gp is torsionfree and
Spec k[F gp] is connected. In particular, there is a unique stratum of Spec k[P ] above p and thus
Str(Spec k[P ])→ Spec P is bijective.

Let Z be a plurinodal log scheme over some log point (k, Mk) of characteristic p and of rank
r0 and let z be a point of Z. One has rklog(z) = r0 + rk(z), where rk(z) is the codimension of
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the strata containing z in Z for the Berkovich stratification of plurinodal schemes. Thus, the
strata are the same for this stratification and the stratification of Berkovich. The strata of Z are
normal.

We will often denote abusively in the same way a stratum and its generic point.

Recall that Z is said to be quasinormal if the closure of any stratum endowed with its reduced
scheme structure is normal.

Lemma 2.3. Let f : Z→ S = Spec k be a log smooth morphism. Let z̄ be a geometric point of Z.
Let f∗ denote the natural morphism SpecMZ,z̄→ SpecMS,s̄. Let p0 ∈ SpecMS,s̄ be the prime
MS,s̄\M∗S,s̄. Then φZ,z̄ : Strgeom

z̄ (Z)→ SpecMZ,z̄ is injective and its image is f−1
∗ (p0). Moreover,

Z(z̄) is quasinormal. In particular, every stratum of Z is normal.

Proof. Since the unique stratum of S is mapped to p0 by the map Strgeom
s̄ (S)→ SpecMS,s̄, one

has Im φZ,z̄ ⊂ f−1
∗ (p0).

The lemma can be proven étale locally: one can assume that S has a chart S→ Spec k[P ],
where P is sharp, and that Z = S ×Spec k[P ] Spec k[Q], where ψ : P →Q is injective and the
torsion part of Coker ψgp is finite. Let q′ ∈ f−1

∗ (p0) and let q be its image in SpecQ. The image
of q in Spec P is the image p of M∗S,s̄. Let F =Q\q and F0 = P\p. The morphism S→ Spec k[P ]
factors through Spec k[F gp

0 ]. Let φ : Z→ SpecQ and let ZF be the closed subset ψ−1({q}) of Z
(z̄ lies in ZF ). Then ZF is the support of the closed subscheme Z ×Spec k[Q] Spec k[Q]/(q), which
we also denote by ZF . Then

ZF = Z ×Spec k[Q] Spec k[F ] = S ×Spec k[P ] Spec k[F ]
= S ×Spec k[F0] Spec k[F ] = S ×Spec k[F gp

0 ] Spec k[FF gp
0 ].

Let T0 be the saturation of F gp
0 in F gp and let T1 be a subgroup of F gp such that F gp =

T0 ⊕ T1. The morphism S′ := S ×Spec k[F gp
0 ] Spec k[T0]→ S is finite étale and Galois, so that

S′ is a disjoint union
∐
i Spec k′ of copies of Spec k′ for some separable extension k′ of k.

Then ZF = S′ ×Spec k′[T0] Spec k′[FF gp
0 ] =

∐
i Spec k′[FF gp

0 ∩ T1]. But FF gp
0 ∩ T1 is a saturated

monoid, hence Spec k′[FF gp
0 ∩ T1] is normal. Thus, ZF (z̄) is irreducible. Moreover, if F ′ ( F ,

then ZF ′ does not contain any connected component of ZF : the generic point of each component
of ZF lies above q. One thus obtains that there is a unique stratum of Z(z̄) lying above q. 2

Lemma 2.4. Let Z be a Zariski log scheme, let Z→ Spec k be a log smooth morphism and let
Z ′→ Z be a két morphism. The natural map Strz′(Z ′)→ Strz(Z) is an isomorphism of posets.

Proof. There is the following commutative diagram.

Strgeom
z̄′ (Z ′) //

����

Strgeom
z̄ (Z) � � //

����

SpecMZ,z̄

Strz′(Z ′) // Strz(Z) // SpecMZ,z

Since Strgeom
z̄ (Z)→ SpecMZ,z is injective, Strgeom

z̄ (Z)→ Strz(Z) must be bijective. The
morphism Strgeom

z̄′ (Z ′)→ Strgeom
z̄ (Z) is bijective thanks to Lemma 2.3 because SpecMZ′,z′ →

SpecMZ,z is bijective since MZ,z→MZ′,z′ is Kummer. Hence, Strz′(Z ′)→ Strz(Z) must also be
bijective.
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If z′1 and z′2 are elements of Strz′(Z ′), then Strz′1(Z ′1)→ Strz1(Z1) is also bijective, so that
z′2 ∈ Strz′1(Z ′1) if and only if z2 ∈ Strz1(Z1), i.e. z′2 6 z

′
1 if and only if z2 6 z1. 2

In particular, one can apply Lemma 2.4 if Z is strictly plurinodal.

2.3 Polysimplicial set of a két log scheme over a polystable log scheme

Let C→ C′ be a morphism of polysimplicial sets. Let α : S→O(C) (respectively α′ : S′→O(C′))
be a morphism of posets such that S6x

'−−→O(C)6α(x) (respectively S′6x
'−−→O(C′)6α′(x) for

any x). Then α defines a functor O(C)op→ Set by sending c to α−1(c) and, if c6 c′, then the
map α−1(c′)→ α−1(c) sends x′ ∈ α−1(c′) to the unique preimage of c by the map S6x′ →O(C)6c′ .
One gets a functor F : (Λ/ C)op→O(C)op→ Set (respectively F ′ : (Λ/ C′)op→O(C′)op→ Set),
which defines a polysimplicial set D = C×F (respectively D′ = C′ ×F ′):

D = Coker
(∐
x→y

∐
F (x)

[ny]⇒
∐
x

∐
F (x)

[nx]
)
.

If we consider F as a functor (Λ/ C)op→Λ◦ Set, then D is nothing else than C� F (but this is
a very simple case of �-product where all the fibers are discrete). To give a slightly more explicit
description of D, Dn =

∐
x∈Cn

F (x) and, if f : m→ n is a morphism of Λ and z ∈ F (x) with
x ∈ Cn, f∗(z) = F (f̄) ∈ F (f∗(x)), where f̄ is the morphism f∗(x)→ x in Λ/ C. Since F maps
surjective morphisms to isomorphisms, a polysimplex z ∈ F (x) of D is nondegenerate if and only
if x is nondegenerate. One gets that O(D) = S and that D is interiorly free if C is.

If α : S→O(C) is an isomorphism, then the natural morphism D→ C is also an isomorphism.

Then any morphism of posets f : S→ S′ such that

S //

��

S′

��
O(C) // O(C′)

is commutative induces a unique morphism of polysimplicial sets f :D→D′ over C→ C′ such
that O(f) = f .

Let us consider now a strictly polystable log fibration X :X →Xl−1→ · · · → s, where s is an
fs log point. In particular, X is a Zariski log scheme. If f : Z→X is két, the map of posets
Str(f) : Str(Z)→ Str(X) =O(C(X)) is such that Str(Z)6z ' Str(X)6f(z) for any z ∈ Str(Z)
according to Lemma 2.4. Thus, one gets a functor DZ = (Λ/ C(X))op→ Set and a polysimplicial
set CX(Z) = C(X)×DZ (we will often write C(Z) instead of CX(Z)). This polysimplicial set is
still interiorly free and O(C(Z)) is functorially isomorphic to Str(Z).

Lemma 2.5. If X →X ′ is a két morphism of strictly polystable log fibrations, then there is a
canonical isomorphism CX′(Xl)' C(X) such that Str(Xl) =O(CX′(Xl))→ Str(Xl) =O(C(X))
is the identity of Str(Xl).

Proof. Assume we have already constructed the isomorphism CX′l−1
(Xl−1)' C(X l−1). Then

CX′(Xl) =D1 � C(X ′l−1) and C(X) =D2 � C(X ′l−1), where, if x is the generic point of a stratum
of X ′l−1, D1(x) = CX′l,x

(Xl,x) and D2(x) = C(Xl,x). By induction on l, the problem is thus reduced
to the case where l = 1 and X →X ′ is a két morphism of strictly polystable objects over Spec k.
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We have CX′(X) =DX × C(X ′), where DX maps x′ ∈ Str(X ′) to the set of strata of X above
x′. Then CX′(X) is associated to the strictly polysimplicial set C ′ =DX × C(X ′). Then

C ′n ={(x, x′, µ), x ∈ Str(X), x′=f(x), µ : n' Irr(X ′, x′)}={(x, µ), x ∈ Str(X), µ : n' Irr(X, x)}

because Irr(X, x)→ Irr(X ′, x′) is an isomorphism. Thus, C ′n ' Cn (and the bijection is
compatible with maps of Λ), which gives the wanted isomorphism. 2

Let us consider a commutative diagram

Z //

��

Z ′

��
X // X ′

where X →X ′ is a két morphism of strictly polystable log fibrations and Z→Xl and Z ′→X ′l
are két morphisms. Then

CX(Z) = DZ/X × C(X)'DZ/X × CX′(X)
= DZ/X × (DX/X′ × C(X ′)) =DZ/X′ × C(X ′) = CX′(Z),

where DZ/X(x) = Str(Z→X)−1(x), DX/X′(x′) = Str(X →X ′)−1(x′) and DZ/X′(x′) =
Str(Z→X ′)−1(x′). There is a morphism of functors DZ/X′ →DZ′/X′ which induces a morphism
of polysimplicial sets

CX(Z) =DZ/X′ × C(X ′)→DZ′/X′ × C(X ′) = CX′(Z
′).

This morphism is an isomorphism if and only if Str(Z)→ Str(Z ′) is bijective.
Let X :X → · · · → s be a strictly polystable log fibration and let Z→X be a két morphism.

Let Z ′→ Z be a két covering, let Z ′′ = Z ′ ×Z Z ′ and let x be a stratum of X; then DZ(x) =
Coker(DZ′′(x)⇒DZ′(x)). We deduce from it that

C(Z) = Coker(C(Z ′′)⇒ C(Z ′)).

One may also define CX(Z) for X a general polystable fibration. Let X ′→X be an étale
covering, where X ′ is strictly polystable, let X ′′ =X ′ ×X X ′ and let Z ′ and Z ′′ be the pullbacks
of Z to X ′ and X ′′. Then one defines CX(Z) = Coker(CX′′(Z ′′)⇒ CX′(Z ′)) (it does not depend
of the choice of X ′).

If Z ′→ Z is a surjective morphism between két log schemes over X and Z ′′ = Z ′ ×Z Z ′,
Str(Z) = Coker(Str(Z ′′)⇒ Str(Z ′)). One thus gets the following proposition (két(X) denotes
the category of két log schemes over X).

Proposition 2.6. Let X :X → · · · → s be a polystable log fibration; one has a functor CX :
két(X)→Λ◦ Set such that:

– if Z ′→ Z is a két covering of két(X), then

CX(Z) = Coker(CX(Z ′ ×Z Z ′)⇒ CX(Z ′));

– O(CX(Z)) is functorially isomorphic to Str(Z).

Remark. If one has a két morphism Y →X of polystable fibrations of length l, the polysimplicial
complex C(Yl) we have just defined by considering Yl as két over Xl is canonically isomorphic
to the polysimplicial complex of the polystable fibration C(Y ) defined by Berkovich.
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We say that an fs log scheme Z over a log point s is log geometrically irreducible if the
underlying scheme of Z ×s s′ is irreducible for any morphism s′→ s of log points. If Z̊/̊s is
geometrically irreducible and Z→ s is saturated, then Z/s is log geometrically irreducible since
the underlying scheme of Z ×s s′ is Z̊ ×s̊ s̊′.

If Z is quasicompact, then there is a connected két cover s′→ s such that all the strata
of Zs′ are geometrically irreducible and Zs′ → s′ is saturated. Then all the strata of Zs′

are log geometrically irreducible. In particular, for any morphism of fs log points s′′→ s′,
C(Zs′′)→ C(Zs′) is an isomorphism. The polysimplicial complex C(Zs′) for such an s′ is denoted
by Cgeom(Z/s).

Let z̄ be a geometric point of Z. Let U be an étale neighborhood of z̄ such that Strgeom
z̄ (Z)→

Str(U) is an isomorphism. One defines C(Z)z̄ := C(U) (it does not depend on the choice of U).
If Z→X is két, C(Z)z̄→ C(X)x̄ is an isomorphism of polysimplicial sets.

Lemma 2.7. The space |C(Z)z̄| is contractible.

Proof. Let Φn : |[n]| × [0, 1]→ |[n]| be defined by Φn((uil), t)il = (1− t)uil + (t/ni). This is a
deformation retraction to a point. These deformation retractions are compatible with surjective
maps m→ n.

One can assume that X
ψ−−→Xl−1→ · · · → s is a strictly polystable fibration of length l and

that Z =X. Let x̄′ be the image of x̄ := z̄ inXl−1. One can also assume that Strgeom
x̄ (X)→ Str(X)

and Strgeom
x̄′ (Xl−1)→ Str(Xl−1) are bijections. By induction on l, one can assume that |C(Xl−1)|

is contractible.

If y′ is a stratum of Xl−1, Xy′ has a biggest stratum y and C(Xy′)' [ny]. Then

|C(X)|= Coker
( ∐

f :y1→y2∈
Λ/ C(Xl−1)

|[ny′1 ]| × |[ny2 ]|
a,b

⇒
∐

y′∈Λ/ C

|[ny′ ]| × |[ny]|
)
,

where a maps |[ny′1 ]| × |[ny2 ]| to |[ny′1 ]| × |[ny1 ]| by id×f0, where f0 is the cospecialization map
C(Xy2)→ C(Xy1) given by Lemma 1.4, and b maps |[ny′1 ]| × |[ny2 ]| to |[ny′2 ]| × |[ny2 ]| f∗ × id.

One defines a deformation retraction Φ of
∐
y′∈Λ/ C(Xl−1) |[ny′ ]| × |[ny]| by Φ(u, v, t) =

(u, Φny(v, t)). Moreover, if (z1, z2) ∈ |[ny′1 ]| × |[ny2 ]|,

Φ(a(z1, z2), t) = (z1, Φny1
(f0(z2), t)) = (z1, f0(Φny2

(z2, t))) = a(z1, Φny2
(z2, t))

because the map ny2 → ny1 inducing f0 is surjective, and

Φ(b(z1, z2), t) = (f∗z1, Φny2
(z2, t)) = b(z1, Φny2

(z2, t)).

Thus, Φ induces a deformation retraction of C(X), also denoted by Φ by abuse of notation.
This retraction is compatible with ψ : |C(X)| → |C(Xl−1)| in the sense that ψ(Φ(z, t)) = ψ(z)
for every t ∈ [0, 1]. Let S be the image of this retraction. Let u ∈ |C(Xl−1)| and let y′ be the
stratum of Xl−1 corresponding to the cell of |C(Xl−1)| containing u. Then ψ−1(u) is canonically
homeomorphic to |[ny]| (cf. [Ber99, Corollary 6.6]), and the deformation retraction of ψ−1(u)
induced by Φ is just Φny . Thus, S ∩ ψ−1(u) is reduced to a point: the map S→ |C(Xl−1)| is
bijective. Since Str(X) is finite, |C(X)| is compact and S is also compact since it is the image of
|C(X)| by a continuous map. The map S→ C(Xl−1) is thus a homeomorphism, and C(Xl−1) is
contractible by induction. Thus, C(X) is contractible. 2
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2.4 Tempered fundamental group of a polystable log fibration
Here we define the tempered fundamental group of a log fibration X over an fs log point. If T
is a két cover of X, the topological covers of |C(T )| will play the role of the topological covers
of T .

Let us start by a categorical definition of tempered fundamental groups that we will use later
in our log geometric situation.

Consider a fibered category D→ C such that:

– C is a Galois category;

– for every connected object U of C, DU is a category equivalent to ΠU -Set for some discrete
group ΠU ;

– if U and V are two objects of C, the functor DU ∐
V →DU ×DV is an equivalence;

– if f : U → V is a morphism in C, f∗ :DV →DU is exact.

Then one can define a fibered category D′→C such that the fiber in U is the category of
descent data of D→ C with respect to the morphism U → e (where e is the final element of C).

Let U be a connected Galois object of C and let G be the Galois group of U/e. Then D′U can
be described in the following way:

– its objects are couples (SU , (ψg)g∈G), where SU is an object of DU and ψg : SU → g∗SU is an
isomorphism in DU such that for any g, g′ ∈G, (g∗ψ′g) ◦ ψg = ψg′g (after identifying (g′g)∗

and g∗g′∗ by the canonical isomorphism to lighten the notation);

– a morphism (SU , (ψg))→ (S′U , ψ
′
g) is a morphism φ : SU → S′U in DU such that for any

g ∈G, ψ′gφ= (g∗φ)ψg.

There is a natural functor F0 :D′U →DU , which maps (SU , (ψg)) to SU . Let FU be a fundamental
functor DU → Set such that Aut FU = ΠU .

Let F = FUF0 :D′U → Set and Π′U = Aut F . The functor F can be enriched into a functor
F :D′U →Π′U -Set.

Proposition 2.8. (i) The functor F :D′U →Π′U -Set is an equivalence.

(ii) There is a natural exact sequence

1→ΠU →Π′U →G→ 1.

Proof. First notice that D′U is a boolean topos (i.e. if A is a subobject of an object S, there exists
a subobject B of S such that S =A

∐
B) and that F is a conservative point of the topos D′U .

A pointed object of D′U is by definition a pair (S, s) with S an object of D′U , and s ∈ F (S).
Let us show that, to prove (i), it is enough to show that there exists a pointed object (T∞, t∞)
of D′U such that for every pointed object (S, s) of D′U , the map Hom(T∞, S)→ F (S) that maps
f to F (f)(t∞) is bijective (i.e. T∞ represents the functor F ).

First we remark that the only subobjects of T∞ are ∅ and T∞. Otherwise, by booleanness
of D′U , one would have a nontrivial decomposition T∞ =A

∐
B. By symmetry, one can assume

t∞ ∈ F (A). Then one easily constructs two different morphisms T∞→A
∐
B
∐
B mapping t∞

to the same element of F (A)⊂ F (A
∐
B
∐
B).

Thus, if f : T∞→ T∞ is a morphism, its image is a nonempty subobject of T∞; therefore,
it must be T∞, and thus F (f) is surjective. Let t0 ∈ (F (f))−1(t∞) and let g be the unique
morphism T∞→ T∞ mapping t∞ to t0. Then fg maps t∞ to t∞ and therefore fg = idT∞ .
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Since F (g) must be surjective, F (f) is bijective, and thus f is an isomorphism. Thus, End T∞ =
Aut T∞.

The group Aut(T∞) acts on Hom(T∞, S) = F (S) by action on the left compatibly for every
S: one gets a morphism a : Aut(T∞)→Aut(F ), which is bijective by Yoneda’s lemma.

If S0 ⊂ F (S) is stable by Aut F , then the subobject S0 of S defined as the union of the
images of morphisms φ : T∞→ S such that F (φ)(t∞) ∈ S0 satisfies F (S0) = S0. Thus, if S, S′

are objects of D′U ,

Hom(S, S′) = {S0 ↪→ S × S′ | S0
∼−−→ S}

= {S0 ⊂ F (S)× F (S′) stable by the action of Aut F | S0
∼−−→ F (S)}

= HomΠ′U
(F (S), F (S′)).

Thus, F is fully faithful. Let S be a Π′U -set. There exists an epimorphism S′→ S such that Π′U
acts freely on S′ and on S′′ := S′ ×S S′. Thus, there exist S′′ and S′ such that F(S′) = S′ and
F(S′′) = S′′ (S′ and S′′ are direct sums of copies of T∞). Let S = Coker(S′′⇒ S′), where the
two morphisms are defined thanks to the full faithfulness of F . Then F(S) = S. Thus, F is an
equivalence.

Let us construct T∞. If S is an object of DU , let S̃ =
∐
g∈G g

∗S, and

ψh : S̃ =
∐
g∈G

g∗S =
∐
gh∈G

(gh)∗S '−−→
∐
g∈G

h∗g∗S = h∗
(∐
g∈G

g∗S

)
= h∗S̃.

This defines an object S̃ of D′U . Then, for any object T of D′U , there is a natural map

HomD′U (S̃, T ) α−−→HomDU (S, F0(T ))

that maps ψ to the restriction of F0(ψ) to the subobject S of F0(S̃).
The restriction of F0(ψ) to g∗S ⊂ F0(S̃) is ψ−1

g g∗α(ψ). Hence, F0(ψ) only depends on α(ψ),
which shows the injectivity of α, since F is faithful. Conversely, if β ∈HomDU (S, F0(T )),

one defines β0 : F0(S̃) =
∐
g g
∗S→ F0(T ) by glueing the composite morphisms g∗S

g∗β−−−→

g∗F0(T )
ψ−1
g−−−−→ F0(T ). The following diagram is commutative.

F0(S̃) =
∐
g∗S

ψh

//
∐
g∗F0(T )

∐
ψ−1
g // F0(T )

ψh
��

h∗F0(S̃) =
∐
h∗g∗S //

∐
h∗g∗F0(T )

∐
h∗ψ−1

g // h∗F0(T )

Thus, β0 defines a morphism ψ ∈HomD′U (S̃, T ) such that α(ψ) = β. Thus, α is bijective.
If (S∞, s∞) is a universal pointed object of DU , then, for every T ,

Hom(S̃∞, T ) ∼−−→Hom(S∞, F0(T )) ∼−−→ F (T ).

Thus, (S̃∞, s∞) is a universal pointed object of D′U .
The functor F0 induces a morphism ΠU →Π′U . There is also a natural exact functor

F1 :G -Set→D′U which maps a G-set Y to (Y =
∐
y∈Y {y}, (ψh)), where Y is a constant object of

DU and ψh maps y to h · y. FF1 is canonically isomorphic to the forgetful functor, G -Set→ Set,
the functor F1, and thus induces a morphism Π′U →G. Since ΠU = FU (S∞) and Π′U = F (S̃∞),
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one only has to see that the following exact sequence of pointed sets is exact:

1→ FU (S∞)→ F (S̃∞) =
∐
g

FU (g∗S∞)→G→ 1,

where the map
∐
g FU (g∗S∞)→G maps FU (g∗S∞) to g. 2

If (Ui, ui)i∈I is a cofinal projective system of pointed Galois objects (and let P be the
corresponding object of pro-C), one may define Btemp(D/C, P ) to be the category Lim−−→i

D′Ui . An
isomorphism of pro-objects P → P ′ induces an equivalence Btemp(D/C, P ′)→Btemp(D/C, P ), so
that Btemp(D/C, P ) does not depend up to equivalence on the choice of (Ui)i. Moreover, if h ∈
Gi = Gal(Ui/e), the endofunctor h∗ :D′Ui →D

′
Ui

maps S = (SUi , ψg) to h∗S = (h∗SUi , ψhgψ
−1
h ).

Then ψh : SUi → h∗SUi defines an isomorphism S→ h∗S functorially in S. Thus, h∗ :D′Ui →D
′
Ui

is canonically isomorphic to the identity of D′Ui . Thus, every automorphism of the pro-object
P induces an endofunctor of Btemp(D/C, P ) which is canonically isomorphic to the identity
(functorially on Aut P ).

Let (Fi)i∈I be a family of fundamental functors Fi :DUi → Set and assume one has a family
(αf )f :Ui→Uj , indexed on the set of morphisms in I, of isomorphisms of functors Fif∗→ Fj such

that for any Ui
f−−→ Uj

g−−→ Uk, αg(αf · g∗) = αgf (after identifying (gf)∗ and f∗g∗ to lighten the
notation). Such a family exists if I is just N. Then this induces a projective system (Π′Ui)i∈I
(unique up to isomorphism independently of (αf ) if I = N and the functors D′Ui →D

′
Uj

are fully
faithful), so that one can define

πtemp
1 (D/C, (Fi)) = lim←−Π′Ui .

Assume one has a 2-commutative diagram with fibered vertical arrows:

D1
//

��

D2

��
C1

f // C2

such that f : C1→C2 is exact, and D1,U →D2,f(U) is exact for every object U of C1.
One then gets a functor Btemp(D1/C1)→Btemp(D2/C2).
For example, let X be a smooth variety over K, C be the category of finite étale covers of

X and D→ C be the fibered category such that DU is the category of topological covers of Uan.
Then, since finite étale covers are morphisms of effective descent for tempered covers, D′U can be
identified functorially with the full subcategory of Covtemp(X) of tempered covers S such that
SU is a topological cover of Uan. If (Ui, ui) is a cofinal system of pointed Galois covers of (X, x),
then Btemp(C/D) becomes canonically equivalent with Covtemp(X).

Let us apply our categorical definition of tempered fundamental groups to our log geometrical
case.

Let X :X →Xl−1→ · · · → Spec(k) be a polystable log fibration, and assume that X is
connected.

Let KCov(X) be the category of két covers of X.
Then one has a functor Ctop : KCov(X)→Ke obtained by composing the functor C of

Proposition 2.6 with the geometric realization functor.
One can thus define a fibered category Dtop→KCov(X) such that the fiber of a két cover of

Y of X is the category of topological covers of Ctop(Y ) (which is equivalent to πtop
1 (Ctop(Y ))-Set).
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Let L be a set of prime numbers. By restriction to the category KCov(X)L of két covers
with order a product of elements of L, one gets a fibered category abusively denoted by
Dtop→KCov(X)L. One defines the category of tempered covers of X to be

Btemp,L(X) := Btemp(Dtop/KCov(X)L).

Let x be a log geometric point of X and let (Y, y) be a log geometrically pointed connected
Galois két cover of (X, x). Let ỹ := |C(Y )y| → |C(Y )|. The space ỹ is contractible according to
Lemma 2.7. Then one has a fundamental functor Fy :DtopY → Covtop(ỹ) = Set that corresponds
to the base point ỹ (Fy(S) is the set of connected components of S ×|C(Y )| ỹ). Moreover, for any
morphism f : (Y ′, y′)→ (Y, y), the two functors Fy′f∗ and Fy are canonically isomorphic.

Then one defines

πtemp
1 (X, x)L = πtemp

1 (Dtop/KCov(X)L, (Fy)).

If x2→ x1 is a specialization of log geometric points of X, it induces a natural equivalence
between the category of pointed covers of (X, x2) and the category of pointed covers of (X, x1)
(we thus identify the two categories). If Y is a pointed cover (Y, y1) of (X, x1), the corresponding
pointed cover of (X, x2) is (Y, y2), where y2 is the unique log geometric point above x2 such
that there is a specialization y2→ y1 (and this specialization is unique). There is the following
commutative diagram.

ỹ1

""FF
FF

FF
FF

F
// ỹ2

��
|C(Y )|

This induces a canonical isomorphism Fy1 ' Fy2 , functorial in Y , so that one gets a canonical
isomorphism πtemp

1 (X, x1)L→ πtemp
1 (X, x2)L. If X is connected and x1, x2 are two log geometric

points of X, there exists a sequence of specializations and cospecializations joining x1 to x2, so
that πtemp

1 (X, x1)L and πtemp
1 (X, x2)L are isomorphic.

One has an equivalence of categories between Btemp,L(X, x) and the category
πtemp

1 (X, x)L -Set of sets with an action of πtemp
1 (X, x)L that goes through a discrete quotient of

πtemp
1 (X, x)L.

Assume now that X is log geometrically connected, i.e. that Xk′ is connected for any két
extension k′ of k. Let k̄ be a log geometric point on k and let x̄= (x̄k′) be a compatible system
of log geometric points of Xk′ , where k′ runs through két extensions of (k, k̄) (for every k′, the
set of geometric points above x̄k is a nonempty finite set and thus the set of compatible systems
of log geometric points is a nonempty profinite set).

Then one defines πtemp-geom
1 (X, x̄)L = lim←−k′ π

temp
1 (Xk′ , x̄k′)L, where k′ runs through két

extensions of k in a log geometric point k̄. Let KCovgeom(X) = Lim−−→KCov(Xk′), where k′ runs
through két extensions of k in k̄. It is the category of log geometric covers of X.

If Y →X is a log geometric cover, defined over k′, Cgeom(Yk′) does not depend on k′, so
that one gets a functor KCovgeom(X)→Ke which maps Y to |Cgeom(Y )|. One thus get a fibered
category Dtop-geom→KCovgeom(X), whose fiber in Y is the category of topological covers of
|Cgeom(Y )|. Let

Btemp-geom,L(X, x̄) := Btemp(Dtop-geom /KCovgeom(X)L).

Let x̄ be a compatible system of log geometric points of Xk′ . For any pointed log
geometric cover (Y, ȳ) of (X, x̄), one gets a fundamental functor Fȳ of Dtop-geomY ; for any
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morphism f : (Y ′, ȳ′)→ (Y, ȳ), the two functors Fy′f∗ and Fy are canonically isomorphic. Then

πtemp-geom
1 (X, x̄)L := πtemp

1 (Dtop-geom/KCovgeom(X), (Fȳ))L.

3. Comparison result for the pro-(p′) tempered fundamental group

IfX :X → · · · → Spec(OK) is a proper polystable log fibration, we want to compare the tempered
fundamental group of the generic fiber Xη with the tempered fundamental group of the special
fiber endowed with its natural log structure. The specialization theory of the log fundamental
group already gives us a functor from két covers of the special fiber to algebraic covers of
the generic fiber. To extend this to tempered fundamental groups, one has to compare, for
any két cover Ts of the special fiber, the topological space C(Ts) with the Berkovich space
of the corresponding cover Tη of the generic fiber. Thus, we will define, as in [Ber99], a strong
deformation retraction of T an

η to a subset canonically homeomorphic to |C(Ts)|. We will construct
this retraction étale locally, where T has a Galois cover V ′ by some polystable log fibration over
a finite tamely ramified extension of OK . Then the retraction of the tube of Ts is obtained by
descending the retraction of the tube of V ′s , defined in [Ber99]. We will then check that the
retraction does not depend on the choice of V ′, so that we can descend the retraction we defined
étale locally.

3.1 Skeleton of a két log scheme over a pluristable log scheme
If X → SpecOK is a morphism of finite type, we denote by X the completion of X along the
closed fiber Xs. The generic fiber, in the sense of Berkovich, of a locally topologically finitely
generated formal scheme X over Spf OK will be denoted by Xη.

Let X :X → · · · → Spec(OK) be a polystable log fibration over Spec(OK).

Proposition 3.1. For every két morphism T →X, let Tη be the generic fiber, in the sense of
Berkovich, of the formal completion of T along its special fiber. Then there is a functorial map
|C(Ts)| → Tη which identifies |C(Ts)| with a subset S(T ) of Tη on which Tη retracts by strong
deformation.

Remark. Tη is naturally an analytic subdomain of T an
η . Moreover, if T is proper over OK (for

example, if X is proper, and T is a finite két cover), then Tη→ T an
η is an isomorphism.

Proof. Let f : T →X be a két morphism. Let x ∈ Ts. Let U : Ul→ · · · → U0 be a polystable
fibration étale over X such that (Ul, xl) is an étale neighborhood of f(x) such that, for
every i, Ui has an exact chart Pi→Ai and compatible morphisms Pi→ Pi+1 such that the
induced morphism Ui+1→ Ui ×Spec Z[Pi] Spec Z[Pi+1] is étale. One has an étale neighborhood
i : (V, x′)→ (T, x) of x, a (p′)-Kummer morphism Pl→Q such that V →X factors through
an étale morphism V → Ul ×Spec Z[Pl] Spec Z[Q]. By definition of a (p′)-Kummer morphism,
there exists n prime to p such that Pl→ (1/n)Pl factors through Pl→Q. Thus, V has a két
Galois cover that comes from a polystable fibration U ′ = V ′→ U ′l−1→ · · · → SpecOK′ , where
U ′i = Ui ×Spec Z[Pi] Spec Z[(1/n)Pi] for i6 l and V ′ = V ×Z[Q] Z[(1/n)Pl] (so that there is a strict
étale morphism V ′→ U ′l ) over OK′ for some finite tamely ramified extension K ′ =K[π1/n] of K.
Let us call G= ((1/n)P gp/Qgp)∨ the Galois group of this két cover.

The deformation retraction of V′η defined in Theorem 1.5 is G-equivariant, so that it defines
a deformation retraction of Vη. Let S( ) denote the image of the retraction of ( )η. Then
S(Vη) =G\S(V′η) =G\|C(V ′s )|= |G\ C(V ′s )|= |C(Vs)| (Corollary 1.6).
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Let us show that the previously defined retraction of Uη does not depend on n. Let us start
with the case of a polystable morphism.

Let
ψ : Z1 = SpecA[P ]/(pi − λi)→ Z2 = SpecA[P ]/(pi − λsi )

be induced by the multiplication by s on P , where P = N|r| =
⊕

(i,j)∈r Neij , pi =
∑

j eij , s is an
integer prime to p and λi ∈A.

Let G be the generic fiber of the formal completion of G(r)
m at the identity; it acts on Z1 and

Z2. One has ψ(g · x) = gs · ψ(x).
Let Tij be the coordinates of G. Then |T sij − 1|= |Tij − 1| if |Tij − 1|< 1. Thus, for t < 1,

( )s :G→G induces an isomorphism ( )s :Gt→Gt, and gst = gt.
Thus, if t < 1 (and also for t= 1 by continuity),

ψ(xt) = ψ(gt ∗ x) = gst ∗ ψ(x) = gt ∗ ψ(x) = ψ(x)t.

For a standard polystable fibration, the same result will easily follow by induction using that
ψn(ri, t)1/s = ψn(r1/s

i , t1/s) (we kept the notation from the sketch of the proof of Theorem 1.5).
More precisely, suppose we have the diagram

B =B′[Yij ]/(Yi0 · · · Yini − bi) B′oo

A=A′[Xij ]/(Xi0 · · ·Xini − ai)

φ

OO

A′

φ′

OO

oo

where φ(Xij) = Y s
ij and thus φ′(ai) = bsi , and φ̃′ := Spf φ′ : Spf B′→ Spf A′ is a két morphism of

polystable log fibrations and assume by induction that we already know that φ̃(xt) = φ̃(x)t.
Let X (respectively X′, Y, Y′) denote Spf A (respectively Spf A′, Spf B, Spf B′).
The first part of the retraction of Xan

η and Yan
η (consisting of the retraction fiber by fiber)

commutes with φ̃ := Spf φ according to the previous case. We thus just have to study the second
part of the retraction.

The morphism φ̃ induces a map

SA = {(x, rij) ∈ (X′)an
η × [0, 1][n]|ri0 · · · rini = |ai(x)|} ⊂ Xan

η

��
SB = {(y, rij) ∈ (Y′)an

η × [0, 1][n]|ri0 · · · rini = |bi(y)|} ⊂Yan
η

which maps (x, rij) to (φ̃′(x), r1/s
ij ) (we remark that |ai(x)|= |bi(φ̃′(x))|s).

Then, if (x, rij) ∈ SA (we will write y := φ̃′(x); by the induction assumption, φ̃′(xt) = yt)

φ̃((x, rij)t) = φ̃((xt, ψni(rij , |ai(xt)|)k))
= (yt, ψni(rij , |ai(xt)|)

1/s
k )

= (yt, ψni(r
1/s
ij , |ai(xt)|1/s)k)

= (yt, ψni(r
1/s
ij , |bi(yt)|)k)

= (y, r1/s
ij )t

= φ̃(x, rij)t.

Thus, we get that the retraction of Uη does not depend on n.
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Let W → T be another neighborhood of x satisfying the same properties as V , and W ′

defined in the same way. One may assume by the previous remark that we chose the same n. Let
W ′′ = V ′ ×T W ′. We have the following commutative diagram.

W ′′

p

��

p′ // W ′

i′

��
V ′

i // T

Let us show that p :W ′′→ V ′ is étale (symmetrically, p′ is étale too). Since p is két, it is enough
to prove that p is strict, i.e. that for any geometric point z ∈W ′′, MV ′,p(z)→MW ′′,z is an
isomorphism. Let v = p(z), w = p′(z), τ = i(v) = i′(w) and ξ = f(τ) ∈X. Then MX,ξ = Pl/F ,
where F is a face of Pl. Then MV ′,v = (1/n)Pl/Fn = (1/n)MX,ξ, where Fn is the saturation of
F in (1/n)P . Symmetrically, one also has MW ′,w = (1/n)MX,ξ. Thus,

MW ′′,z = MV ′,v ⊕MT,τ
MW ′,w

= MV ′,v ⊕MT,τ
MW ′,w

=
1
n
MX,ξ ⊕MT,τ

1
n
MX,ξ

=
1
n
MX,ξ ⊕

1
n
M

gp
X,ξ/M

gp
T,τ

=
1
n
MX,ξ,

where the sums are sums in the category of fs monoids. Thus, p is strict, and therefore étale.
Let thus v ∈V′η and w ∈W′η with the same image τ in Tη. Let z ∈W′′η be above v and

w. Then, for every t ∈ [0, 1], vt = p(zt) and wt = p′(zt) according to Theorem 1.5(ii). Thus,
i(vt) = ip(zt) = i′p′(zt) = i′(y′t). Thus, the retractions of the different Vη are compatible and
define a map Tη × [0, 1]→ Tη. This map is continuous, since

∐
Vi is a covering of T,

∐
Vi,η→ Tη

is quasi-étale and surjective and thus a topological factor map (as in the proof of Theorem 1.5 of
Berkovich; cf. [Ber99, Lemma 5.11]). Moreover, if φ : T1→ T2 is a két morphism of két log schemes
over X, φ(xt) = φ(x)t. As in Theorem 1.5(vi), it is also compatible with isometric extensions of K.

Let Ṽ =
⋃
i Vi be a covering of T such that every Vi satisfies the same property as V . Since

f : Ṽη→ T̃η is a topological factor map, S(Ṽη) = f−1(S(T̃η))→ S(T̃η) is also a topological factor
map. Thus one gets an isomorphism, functorial in T ,

S(Tη) = Coker(S(Ṽη)×S(Tη) S(Ṽη)⇒ S(Ṽη)))
= Coker(|C(Vs)| ×|C(Ts)| |C(Vs)|⇒ |C(Vs)|) = |C(Ts)|. 2

3.2 Comparison theorem

Let K be a complete discrete valuation field. Let p be the residual characteristic (which can be
0). Let X :X → · · · → SpecOK be a proper polystable log fibration.

Let us now compare the tempered fundamental group of the generic fiber, as a K-manifold,
and the tempered fundamental group of its special fiber as defined in § 2.4.

A geometric point x̄ of Xan
η is given by an algebraically closed complete non-Archimedean

extension Ω of K and a K-morphism x̄ : Spec Ω→X. Since X → SpecOK is proper, x̄ extends
uniquely to a morphism SpecOΩ→X. If one endows SpecOΩ with the log structure induced
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by OΩ\{0}, one can extend SpecOΩ→X into a morphism of log schemes. By looking at the
closed fiber, one gets a morphism of log schemes x̃ : Spec kΩ→Xs, where Spec kΩ has the log
structure induced by OΩ\{0} (it is a log geometric point). The log geometric point x̃ is called
the log reduction of x̄.

Theorem 3.2. Let x̄ be a geometric point of Xan
η and let x̃ be its log reduction. One has a

morphism πtemp
1 (Xan

η , x̄)L→ πtemp
1 (Xs, x̃)L which is an isomorphism if p /∈ L.

These morphisms are compatible with finite extensions of K.

Proof. One has two functors L-KCov(X)→ L-Covalg(Xη), which is an equivalence of categories
if p /∈ L (see [Ill02, Theorem 7.6]), and L-KCov(X)→ L-KCov(Xs), which is an equivalence of
categories (see [Lep09, Theorem 2.4]). One has a fibered category Dan

top(Xη) over L-Covalg(Xη)
whose fiber at a L-finite étale cover T of Xη is the category of topological covers of T an. Let us
call Dan

top(X) the pullback of Dan
top(Xη)/L-Covalg(Xη) to L-KCov(X): the fiber at a L-finite két

cover T of X is the category of topological covers of T an
η . One has also another fibered category

Dsp
top(X) over L-KCov(X) obtained by pulling back the fibered category Dtop(Xs)→ L-KCov(Xs)

defined in Part 2.4 along L-KCov(X)→ L-KCov(Xs): the fiber at a L-finite két cover T of
X is the category of topological covers of |C(Ts)|. Proposition 3.1 induces an equivalence of
fibered categories Dan

top(X)→Dsp
top(X), and thus an isomorphism πtemp

1 (Dan
top(X)/L-KCov(X))'

πtemp
1 (Dsp

top(X)/L-KCov(X)).
The 2-commutative diagram

Dan
top(X) //

��

Dan
top(Xη)

��
L-KCov(X) // L-Covalg(Xη)

induces a morphism

πtemp
1 (Xan

η )L = πtemp
1 (Dan

top(Xη)/L-Covalg(Xη))→ πtemp
1 (Dan

top(X)/L-KCov(X))

which is an isomorphism if p /∈ L. Similarly,

Dsp
top(X) //

��

Dsp
top(Xs)

��
L-KCov(X) // L-KCov(Xs)

induces an isomorphism

πtemp
1 (Xs)L→ πtemp

1 (Dsp
top(X)/L-KCov(X))

since L-KCov(X)→ L-KCov(Xs) is an equivalence of categories. 2

3.3 Geometric comparison theorem

We will assume in this section that p /∈ L.

Theorem 3.3. There is a natural isomorphism

πtemp-geom
1 (Xs)L ' πtemp

1 (Xη̄)L.

1466

https://doi.org/10.1112/S0010437X12000218 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000218


Cospecialization of tempered groups

Proof. One knows, according to [And03, Proposition 5.1.1], that

πtemp
1 (Xη̄)' lim←−

Ki

πtemp
1 (XKi),

where Ki runs through the finite extensions of K in K. This induces an analogous result for the
L-version.

However, we would like to know, in the case where p /∈ L, if one can only take the projective
limit over tamely ramified extensions of K (i.e. két extensions of OK). Then the isomorphism
we want would simply be obtained from Theorem 3.2 by taking the projective limit over két
extensions of OK .

We have to show that any L-tempered cover of Xη̄ is already defined over some tamely
ramified extension of K. One only has to prove this for a cofinal set of L-tempered covers of Xη̄,
for example universal topological covers of L-finite étale covers of Xη̄. Thus, we have to show
that if T ′ is a L-finite két geometric cover of X (which is defined over a finite tamely ramified
extension of K according to [Kis00, Proposition 1.15]: one can thus assume that T ′ is defined
over K), the universal topological cover T̃ ′η̄ of T ′η̄ is defined over some tamely ramified extension
of K.

By changing SpecOK by some két cover (which amounts to changing K by some tamely
ramified extension), one may assume that T ′→ SpecOK is saturated.

One already knows that T̃ ′η̄ is defined over some finite extension K2 of K (see [And03,
Lemmas 5.1.3, 5.1.4]). Let K1 be the maximal unramified extension of K in K2. As T ′→OK
is saturated, the underlying scheme of T ′OK2

is obtained by the base change of schemes
SpecOK2 → SpecOK1 of the underlying scheme of T ′OK1

. By looking at the special fiber, as
k1 = k2 (as schemes), the morphism T ′k2

→ T ′k1
induces an isomorphism between the underlying

schemes, thus a bijection between their strata and thus homeomorphisms |C(T ′k2
)| → |C(T ′k1

)|
and S(T ′OK2

)→ S(T ′OK1
). Thus, T̃ ′η̄ is defined over K1. 2

This isomorphism is Gal(K̄, K)-equivariant (since the isomorphism for each Galois extension
Ki of K is Gal(Ki/K)-equivariant).

Remark. If X is a proper and smooth K-variety that does not have log smooth reduction, it
is not true in general that the universal cover of X is defined over a tamely ramified extension
of K.

Indeed, let E = Gm /qZ be a Tate elliptic curve over K. The principal homogeneous
spaces of E are parameterized by H1(GK , E(K)). Since H1(GK , K

∗) = 0, the exact sequence
0→ Z→K

∗→ E(K) gives us H1(GK , E(K)) = Ker(H2(GK , Z)→H2(GK , K
∗)). Assume now

that BrK = 0 (e.g. K = Qur
p ), so that principal homogeneous spaces of E are parameterized

by H2(GK , Z) = Hom(GK ,Q/Z). If X is a principal homogeneous space corresponding to a
morphism ψ :GK →Q/Z, then πtop

1 (Xη̄) = πtop
1 (Eη̄) is a subgroup of index the cardinal of Im(ψ)

of πtop
1 (X)' Z. Thus, the universal topological cover of X is defined over K if and only if X is

a trivial principal homogeneous space. If ψ is chosen to be nontrivial on the wild ramification
subgroup of GK , then X does not become trivial after any tamely ramified extension of K.
Therefore, the universal topological cover of Xη̄ is not defined over any tamely ramified extension
of K.
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4. Cospecialization of pro-(p′) tempered fundamental groups

Let X → Y be a proper polystable log fibration such that Y is proper over OK (the properness of
Y →OK is only assumed so that every point of Yη has a reduction in Ys, but the cospecialization
morphisms we will construct only depend on Y locally). In this section, we will construct the
cospecialization morphisms for the (p′)-tempered fundamental group of the geometric fibers of
Xη→ Yη. Thanks to Theorem 3.3, we will be reduced to construct cospecialization morphisms
for the (p′)-tempered fundamental group of the log geometric fibers of Xs→ Ys. Let thus s̄2→ s̄1

be a specialization of log geometric points of Y , where s̄1 and s̄2 are the reductions of geometric
points η̄1, η̄2 of Yη.

We constructed in [Lep09, Theorem 0.2] an equivalence of geometric (p′)-két covers of Xs1

and Xs2 . Now we must compare, for any such két cover Zs1 corresponding to Zs2 (which extends
over the preimage XU of some két neighborhood U of s1 in Y ), their polysimplicial sets as defined
in Proposition 2.6. We will construct the cospecialization morphism of polysimplicial sets étale
locally, so that we can assume X to be strictly polystable (the properness will not be used for
this). This cospecialization morphism of polysimplicial sets will be constructed in the following
way. Let z be a geometric stratum of Zs1 . After some két localization of the base, ZU becomes
saturated. Then the set of strata z2 of Zs2 such that z is in the closure of z2 has a unique
maximal element (as in Lemma 1.4), which we call z′. Then, thanks to the fact that ZU → U is
saturated, the closure of z′ in the strict localization of the generic point of the stratum z in Z is
separable onto its image. According to [EGA4, Corollary 18.9.8], z′ is geometrically connected,
thus defining a geometric stratum of Zs2 . One thus obtains a map from the set of geometric
strata of Zs1 to the set of geometric strata of Zs2 ; this map induces a morphism of polysimplicial
sets. In the case where polysimplicial sets of the geometric fibers of Y →X are interiorly free,
the cospecialization morphism of polysimplicial sets is an isomorphism if s1 and s2 are in the
same stratum. We will end this article by glueing our specialization isomorphism of (p′)-log
tempered fundamental groups with our cospecialization morphisms of polysimplicial sets in a
cospecialization morphism of tempered fundamental groups.

4.1 Cospecialization of polysimplicial sets

In this section, we construct a cospecialization map of polysimplicial sets for a composition of a
két morphism and of a log polystable fibration.

Lemma 4.1. If φ : P →Q is an integral (respectively saturated) morphism of fs monoids and F ′

is a face of Q, let F = φ−1(F ′). Then F → F ′ is also integral (respectively saturated).

Proof. To prove that F → F ′ is integral, thanks to [Ogu, Proposition I.4.3.11], one only has to
prove that if f ′1, f

′
2 ∈ F ′ and f1, f2 ∈ F are such that f ′1φ(f1) = f ′2φ(f2), there are g′ ∈ F ′ and

g1, g2 ∈ F such that f ′1 = g′φ(g1) and f ′2 = g′φ(g2).

But there exist g′ ∈Q and g1, g2 ∈ P that satisfy those properties, since P →Q is integral.
But, since F ′ is a face of Q, g′, φ(g1), φ(g2) must be in F ′, and thus g1 and g2 are in F .

Thanks to a criterion of Tsuji [Tsu97, Proposition 4.1], an integral morphism of fs monoids
f : P0→Q0 is saturated if and only if for any a ∈ P0, b ∈Q0 and any prime number p such that
f(a)|bp, there exists c ∈ P0 such that a|cp and f(c)|b. Let a ∈ F, b ∈ F ′ and p be a prime such
that φ(a)|bp. Then, since φ : P →Q is saturated, there exists c ∈ P such that a|cp and f(c)|b.
But f(c)|b implies that f(c) ∈ F ′, whence c ∈ F . 2
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Proposition 4.2. Let f :X → Y be a saturated log smooth morphism of fs log schemes. Assume
Y̊ is noetherian and strictly henselian of special point ȳ1 and let y2 ∈ Y . Let x ∈Xȳ1 . The set
A := {Z ∈ Str(Xy2) | x ∈ Z} has a biggest element Z0. Moreover, Z0 is geometrically connected.

The stratum Z0 is characterized in A by the fact that the map MX,x̄ ⊕MY,ȳ1
MY,ȳ2 →MX,z̄0

is an isomorphism, where the amalgamated sum is an amalgamated sum in the category of fs
monoids and z̄0 is a geometric point over the generic point of Z0.

Proof. Up to replacing Y̊ by a closed subscheme, one can assume that Y̊ is integral and y2 is
the generic point of Y . One can assume that f has a chart

X ′ //

��

Spec Z[Q]

��
Y // Spec Z[P ]

where P is sharp, φ : P →Q is an injective saturated morphism of fs monoids, X ′→ YQ =
Y ×Spec Z[P ] Spec Z[Q] is étale, X ′→ Y factorizes through f and g :X ′→X is étale. One also
assumes that X ′ has a unique point x′ above x. If A′ := {Z ′ ∈ Str(X ′y2

) | x′ ∈ Z ′} has a biggest
element Z ′0, g(Z0) is the biggest element of A. Moreover, if Z ′0 is geometrically connected, g(Z ′0)
is also geometrically connected. One can thus assume X ′ =X.

Let F ′2 be the preimage of the face M∗Y,y2
by the map P →MY,y2 and let p2 := P\F ′2. Since y2

is the generic point of Y , Y → Spec Z[P ] factorizes through Y → Spec Z[P ]/(p2)' Z[F ′2]. Let F1

be the preimage of the face M∗X,x by the map Q→MX,x and let q1 =Q\F1. Let F = 〈F1, φ(F ′2)〉
be the face of Q generated by F1 and φ(F ′2), and let q2 =Q\F . Then q2 is the biggest element of
SpecQ above p2 contained in q1. Let X0 :=X ×Spec Z[Q] Spec Z[Q]/(q2): it is a closed subscheme
of X. Set-theoretically, it is the union of the strata of X whose image q by Str(X)→ SpecQ
satisfies q2 ⊂ q. Thus, x ∈X0, since q2 ⊂ q1.

Let us show that X0→ Y is separable (i.e. flat with geometrically reduced fibers). Since
X0→ YF = Y ×Spec Z[P ] Spec Z[Q]/(q2)' Y ×Spec Z[F ′2] Spec Z[F ] is étale, it is enough to show
that Spec Z[F ]→ Spec Z[F ′2] is separable. But F ′2→ F is saturated thanks to Lemma 4.1; this
implies that Spec Z[F ]→ Spec Z[F ′2] is separable. Since Y is noetherian and strictly henselian
and X0→ Y is separable and locally of finite type, one can apply [EGA4, Corollary 18.9.8]:
for every y ∈ Y , X0(x)y is geometrically connected (where X0(x) denotes the localization of X0

at x). Set-theoretically, X0(x)y2 is the subset of Xy2 consisting of points z which specialize to x
and such that the preimage Fz of M∗X,z by the map Q→MX,z is contained in F . For every point
z of X0(x)y2 , the face Fz of Q corresponding to z is contained in F , contains F1 because x is a
specialization of z and contains φ(φ−1(Fz)) = φ(F ′2) because the face corresponding to y2 is F ′2:
thus, Fz = F . In particular,

MX,z =Q/F =Q/〈F1, φ(F ′2)〉=Q/F1 ⊕P P/F ′2 =MX,x ⊕MY,ȳ1
MY,ȳ2 .

Since the image of X0(x)y2 → SpecQ has a unique element F and X0(x)y2 is connected, X0(x)y2

is contained in a single stratum Z0 of Xy2 (Z0 is an element of A). Since X0,y2 is a union of
strata of Xy2 , the generic point z0 of Z0 lies in X0,y2 . Since X0(x)y2 , seen as a subset of X0,y2 , is
stable under generization, z0 is in X0(x)y2 . Since z0 is the generic point of Z0 and X0(x)y2 ⊂ Z0,
z0 is also the generic point of X0(x)y2 . Therefore, Z0 must also be geometrically connected.

Let Z 6= Z0 be in A a maximal element and let z be its generic point. Let qZ be the cor-
responding prime of Q. Then qZ ⊂ q1 and φ−1(qZ) = p2. Thus, qZ ⊂ q2. Let XqZ =X ×Spec Z[Q]
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Spec Z[Q]/(qZ) (this is the union of the strata of X whose image q by StrX →Q satisfies
qZ ⊂ q). As previously, XqZ (x)y2 is geometrically connected and contains z as a generic point.
It also contains z0. Since Z is open in (XqZ )y2 , and Z ∩XqZ (x)y2 (XqZ (x)y2 , z must specialize
in XqZ (x)y2 to an element z′ that is not in Z. The stratum containing z′ is in A and is bigger
than Z. Thus, A has no maximal element other than Z0. Since A is locally finite, Z0 must be
the biggest element of A. If Z 6= Z0 ∈A, then rklog(Z)< rklog(Z0) and therefore the description
of MX,z̄0 characterizes Z0 in A. 2

If f :X → Y is a saturated log smooth morphism of fs log schemes with Y̊ locally noetherian
and ȳ2→ ȳ1 is a specialization of geometric points of Y̊ , then one can apply Proposition 4.2 to the
pullback of f to the strict henselization of ȳ1: one gets a nondecreasing map Str(Xȳ1)→ Str(Xȳ2).

If Z→X is két, if X → Y is a saturated log smooth morphism of fs log schemes and ȳ2→ ȳ1

is a két specialization of log geometric points, there exists a két neighborhood U of ȳ1 such that
XU :=X ×Y U → U is saturated. One thus gets a cospecialization map

Str(Zȳ1)→ Str(Zȳ2).

Proposition 4.3. Let X → Y be a saturated log smooth morphism of fs log schemes with Y̊
locally noetherian and let ȳ3→ ȳ2→ ȳ1 be specializations of geometric points of Y̊ . Then the
diagram

Str(Xȳ1)

�� &&LLLLLLLLLL

Str(Xȳ2) // Str(Xȳ3)

is commutative.

Proof. Let Z1 be a stratum of Xȳ1 , let Z2 be the corresponding stratum of Xȳ2 , let Z3 be
the image of Z2 by the map Str(Xȳ2)→ Str(Xȳ3) and let Z ′3 be the image of Z1 by the map
Str(Xȳ1)→ Str(Xȳ3). Since Z3 specializes to Z1, Z3 6 Z ′3. Let z̄3→ z̄2→ z̄1 be cospecializations
between geometric generic points of Z3, Z2 and Z1. Then

MX,z̄3 =MX,z̄2 ⊕MY,ȳ2
MY,ȳ3 = (MX,z̄1 ⊕MY,ȳ1

MY,ȳ2)⊕MY,ȳ2
MY,ȳ3 =MX,z1 ⊕MY,ȳ1

MY,ȳ3 .

Therefore, Z3 = Z ′3. 2

Proposition 4.4. Let X → Y be a saturated log smooth morphism of fs log schemes with Y̊
locally noetherian and let ȳ2→ ȳ1 be a specialization of geometric points of Y̊ . If X → Y is proper
and MY,ȳ1 →MY,ȳ2 is an isomorphism, then the cospecialization map Str(Xȳ1)→ Str(Xȳ2) is
bijective.

Proof. Assume Y̊ = SpecA is strictly local with special point ȳ1, integral with generic point ȳ2,
and X → Y is saturated. By pulling back along the normalization of Y̊ , one can also assume
that A is normal. Let ψ : Str(Xȳ1)→ Str(Xȳ2).

First we remark that if Z1 is a stratum of Xȳ1 and Z2 is the corresponding stratum of Xy2

by the cospecialization map, then

MX,z̄2 =MX,z̄1 ⊕MY,ȳ1
MY,ȳ2 =MX,z̄1 ,

where z̄2→ z̄1 is a specialization between geometric generic points of Z2 and Z1. Conversely, if
Z1 is a stratum of Xȳ1 and Z2 is a stratum of Xy2 such that the image of Z1 in X is contained
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in the closure of Z2 in X and such that MX,z̄1 →MX,z̄2 is an isomorphism, then Z2 is the image
of Z1 by the cospecialization map Str(Xȳ1)→ Str(Xȳ2).

Let Z be a stratum of X̊y2 and let z be its generic point. Let Z̃ be the normalization of the
closure Z of Z (endowed with the pullback log structure). Let v : V →X be an étale morphism
such that V → Y has a global chart

V //

��

Spec Z[Q]

��
Y // Spec Z[P ]

such that V → YQ = Spec Z[Q]×Spec Z[P ] Y is étale, P is sharp and φ : P →Q is injective and
saturated.

Let p ∈ Spec P be the image of ȳ2 by the map Y → Spec P . Let F be P\p, i.e. F is the
preimage of M∗Y,ȳ2

by the map P →MY,ȳ2 . Since MY,ȳ1 →MY,ȳ2 is an isomorphism, F is also
the preimage of M∗Y,ȳ1

by the map P →MY,ȳ1 . The morphism Y → Spec Z[P ] factorizes through
Y → Spec Z[F ], where Spec Z[F ] is the closure of the stratum of Spec Z[P ] corresponding to
p. Since MY,ȳ1 →MY,ȳ2 is an isomorphism, it even factorizes through Y → Spec Z[F gp], where
Spec Z[F gp] is the stratum of Spec Z[P ] corresponding to p.

Let (zi)i∈I be the family of preimages of z in V . Let qi ∈ SpecQ be the image of zi by the
map V → SpecQ. Let Fi = SpecQ\qi. According to Lemma 4.1, F → Fi is a saturated morphism
of fs monoids. Then {zi} is an irreducible component of VFi = V ×Spec Z[Q] Spec Z[Fi], which
is étale above YQ ×Spec Z[Q] Spec Z[Fi] = SpecA⊗Z[F gp] Z[F−1Fi] = SpecA[F−1Fi ∩ T ], where T
is a direct summand of F gp in Qgp. The monoid F−1Fi ∩ T is saturated: according to [Ogu,
Proposition I.3.3.1], SpecA[F−1Fi ∩ T ] is normal. Hence, {zi} is a connected component of
VFi and is normal. Thus, Z̃ ×X V =

∐
{zi}. Since the geometric fibers of SpecA[F−1Fi ∩ T ]→

SpecA are normal for any choice of V , the geometric fibers of Z̃→ Y are also normal, and in
particular reduced. Moreover, A[F−1Fi ∩ T ] is a free, hence flat, A-module: Z̃→ Y is therefore
flat.

Moreover, the generic point of any fiber of SpecA⊗Z[F gp] Z[F−1Fi]→ SpecA maps to qi via
the map SpecA⊗Z[F gp] Z[F−1Fi]→ SpecQ. Therefore, the generic point vi of ({zi})ȳ1 maps also
to qi, and thus M Z̃×XV,vi →M Z̃×XV,zi is an isomorphism (both are isomorphic to Q/Fi).

The morphism Z̃→ Y is proper. Let Z̃→W → Y be its Stein factorization. Since Z̃→ Y is
separable, according to [SGA1, Proposition X.1.2], W → Y is an étale cover. Since Y is strictly
henselian, W is a direct sum of copies of Y . Since Z̃y2 is connected, W = Y . Thus, all the
fibers of Z̃→ Y are geometrically connected. Since they are normal, they are also geometrically
irreducible. Since Z̃→ Z is surjective, Z ȳ1 is also irreducible. Let z1 be the generic point of Z ȳ1 .
Let z̄→ z̄1 be a specialization of geometric points above z→ z1. If V is an étale neighborhood of z̄
as considered before, the homomorphism M Z̃×XV,z̄1 →M Z̃×XV,z̄ is an isomorphism. Since the log
structure of Z̃ ×X V is the pullback of the log structure of X, one gets that MX,z̄1 →MX,z̄ is an
isomorphism and therefore the stratum Z1 of Xȳ1 cospecializes to Z. This shows the surjectivity
of Str(Xȳ1)→ Str(Xȳ2).

If Z ′1 ∈ Str(Xy1) cospecializes to Z, then Z ′1 ⊂ Z ȳ1 and thus Z ′1 is bigger than Z1 but then
the morphism MX,z̄′1

→MX,z̄1 , where z̄′1 is a geometric point over the generic point of Z ′1, is also
an isomorphism, and thus Z ′1 = Z1, which shows the injectivity of the cospecialization map. 2
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We now want to define cospecialization maps of polysimplicial complexes.

Proposition 4.5. Let X be a polystable log fibration over Y of length l with Y̊ locally
noetherian. Let ȳ2→ ȳ1 be a két specialization of log geometric points. There is, for every
két morphism Z→X, a cospecialization map ψ : Cgeom(Zy1/y1)→ Cgeom(Zy2/y2), functorial in
Z, in X for két morphisms of polystable log fibration and in ȳ1→ ȳ2, such that O(ψ) is the
cospecialization map φ : Str(Zȳ1)→ Str(Zȳ2). If MY,ȳ1 →MY,ȳ2 is an isomorphism, then ψ maps
nondegenerate polysimplices to nondegenerate polysimplices.

We will construct ψ in different steps and check functoriality at every step.
The first step of the proof is the case where Z =X and X → Y is a strictly polystable

morphism. The construction of the cospecialization map ψ is perfectly identical in this case
to the construction of the cospecialization map of Lemma 1.4 given by Berkovich in [Ber99,
Lemma 6.1, Corollary 6.2].

The second step is the case where Z =X and X is a strictly polystable fibration. The
cospecialization map is constructed by induction on l. To do so, we construct for every generic
point x1 of a stratum of Xl−1,ȳ1 a morphism C(Xx1)→ C(Xx2), where x2 is the image of
x1 by the cospecialization map Str(Xl−1,ȳ1)→ Str(Xl−1,ȳ2). We remark that if x̄2→ x̄1 is a
specialization of geometric points above x1 and x2, the first step already gives us a morphism
C(Xx̄1)→ C(Xx̄2). The cospecialization map Str(Xȳ1)→ Str(Xȳ2) maps Str(Xx1)⊂ Str(Xȳ1) to
Str(Xx2)⊂ Str(Xȳ2). One thus gets a map Str(Xx1)→ Str(Xx2) and one can construct C(Xx1)→
C(Xx2) in the same way as in Step 1 and Lemma 1.4. The functoriality of C(Xx̄1)→ C(Xx̄2)
with respect to x̄1→ x̄2 proven in Step 1 ensures the compatibility of C(Xx1)→ C(Xx2) with
respect to change of stratum x1: one can then glue this morphism C(Xx1)→ C(Xx2) to get a
morphism C(Xȳ1)→ C(Xȳ2).

One then gets the result for a general Z by using the remark at the beginning of § 2.3 and
for a general polystable fibration by étale descent using the functoriality with respect to étale
morphisms proven in the previous steps.

Proof. Step 1. Z =X and X → Y is a strictly polystable morphism.
Let us begin with an analog of [Ber99, Lemma 6.1].

Lemma 4.6. Let X → Y be a strictly polystable morphism of log schemes with Y̊ locally
noetherian and let ȳ2→ ȳ1 be a specialization of geometric points of Y . Let x1 be a stratum of Xȳ1

and let x2 be its image in Str(Xȳ2) by the cospecialization map. Then, given an isometric bijection
µ : [n]→ Irr(Xȳ1 , x1), there exists a unique couple (I, µ′) consisting of a subset I ⊂ [w(n)] and
of an isometric bijection µ′ : [nI ]→ Irr(Xȳ2 , x2) such that

[n] //

��

Irr(Xȳ1 , x1)

��
[nI ] // Irr(Xȳ2 , x2)

commutes. If moreover MY,ȳ1 →MY,ȳ2 is an isomorphism, then I = [w(n)].

Proof. The uniqueness is obvious, since there is no isometric bijection [nI ]→ [nJ ] for I 6= J and
[n]→ [nI ] is surjective. One can replace Y by its strict henselization at ȳ1 and assume Y = SpecA.
Let π :MY,ȳ1 →A. Thanks to [Ber99, Lemma 2.10], the proposition is local on the étale topology
of X so that one can assume X = SpecB, where B =B1 ⊗A · · · ⊗A Bp ⊗A C, where p= w(n)
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and
Bi =A[Ti0, . . . , Tini ]/(Ti0 · · · Tini − π(mi))

with π(mi)(ȳ1) = 0 and C smooth over A. Let I = {i ∈ [p] | π(mi)(ȳ2)}= 0. Then one gets an
isometric bijection Irr(Xȳ2 , x2)' [nI ]. If MY,ȳ1 →MY,ȳ2 is an isomorphism, for every i ∈ [wn)],
the image of π(mi) in MY,ȳ2 is not invertible and therefore π(mi)(ȳ2) = 0: one gets that
I = w(n). 2

We will now deduce from Lemma 4.6 our cospecialization morphism C(Xȳ1)→ C(Xȳ2), in
the same way that one deduces [Ber99, Corollary 6.2, Lemma 6.1].

Recall that if X → Spec k is strictly polystable, then C(X) is the polysimplicial set which
associates to [n] the set of triples (x, I, µ), where x ∈ Str(X), I ⊂ w(n) and µ is an isometric
bijection [nI ]→ Irr(X, x). Thus, if X → Y is strictly polystable and ȳ2→ ȳ1 is a specialization of
geometric points of Y , then Str(Xȳ1)→ Str(Xȳ2) induces a natural cospecialization morphism of
polysimplicial sets C(Xȳ1)→ C(Xȳ2) that maps (x1, I1, µ1) to (x2, I2, µ2), where x2 is the image
of x1 by the cospecialization map Str(Xȳ1)→ Str(Xȳ2) and (I2, µ2) is the unique couple consisting
of a subset I2 ⊂ I1 ⊂ [w(n)] and of an isometric bijection µ2 : [nI2 ]→ Irr(Xȳ2 , x2) such that

[nI1 ] //

��

Irr(Xȳ1 , x1)

��
[nI2 ] // Irr(Xȳ2 , x2)

commutes.

Remark. In the particular case where Y fits in a polystable fibration Y → · · · → Spec k over some
field and ȳ1 and ȳ2 lie over generic points y1 and y2 of strata of Y , the morphism C(Xȳ1)→ C(Xȳ2)
we have just constructed is compatible with the morphism C(Xy1)→ C(Xy2) given by Lemma 1.4,
i.e. the diagram

C(Xȳ1)

��

// C(Xȳ2)

��
C(Xy1) // C(Xy2)

(1)

commutes, and one could have used in this particular setting the construction of the beginning
of § 2.3 and Lemma 1.4 to define the morphism C(Xȳ1)→ C(Xȳ2).

If MY,ȳ1 →MY,ȳ2 is an isomorphism, then, with the previous notation, I2 = I1, and therefore
C(Xȳ1)→ C(Xȳ2) maps nondegenerate polysimplices to nondegenerate polysimplices.

Let us check now the wanted functorialities of the cospecialization morphism. Keeping the
same notation, if ȳ3→ ȳ2 is a specialization of geometric points, and (x3, I3, µ3) is the image of
(x2, I2, µ2) by the cospecialization morphism C(Xȳ2)→ C(Xȳ3), then

[nI1 ] //

��

Irr(Xȳ1 , x1)

��
[nI3 ] // Irr(Xȳ3 , x3)

also commutes and therefore (x3, I3, µ3) is the image of (x1, I1, µ1) by the cospecialization
morphism C(Xȳ1)→ C(Xȳ3). Therefore, the cospecialization morphisms of polysimplicial sets
are functorial with respect to specializations of geometric points.

1473

https://doi.org/10.1112/S0010437X12000218 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000218


E. Lepage

Let X ′→X be a két morphism such that X ′→ Y is strictly polystable, let x′1 be a stratum
of X ′ȳ1

, let x1 be the image of x′1 in Str(Xȳ1), let x′2 be the image of x′1 by the cospecialization
map Str(X ′ȳ1

)→ Str(X ′ȳ2
) and let x2 be the image of x′2 in Str(X ′ȳ1

). The diagram

Irr(X ′ȳ1
, x′1)

��

// Irr(Xȳ1 , x1)

��
Irr(X ′ȳ2

, x′2) // Irr(Xȳ2 , x2)

is commutative and the horizontal maps are isometric bijections. Therefore, if

[nI1 ] //

��

Irr(X ′ȳ1
, x′1)

��
[nI2 ] // Irr(X ′ȳ2

, x′2)

is a commutative diagram such that the horizontal maps are isometric bijections, then the
diagram

[nI1 ] //

��

Irr(Xȳ1 , x1)

��
[nI2 ] // Irr(Xȳ2 , x2)

is also commutative and the horizontal maps are isometric bijections. Therefore, the diagram

C(X ′ȳ1
)

��

// C(X ′ȳ2
)

��
C(Xȳ1) // C(Xȳ2)

(2)

is commutative.

Step 2. Z =X and X is a strictly polystable log fibration.
Let us now construct cospecialization morphisms of polysimplicial sets for a strictly polystable

fibration of length l by induction on l.
Let X :X =Xl

α−−→Xl−1→ · · · → Y be a strictly polystable fibration. Assume Y to be
strictly local. We want to construct a cospecialization morphism ψ : C(Xȳ1)→ C(Xȳ2) compatible
with the cospecialization map φ : Str(Xȳ1)→ Str(Xȳ2).

Assume by induction that we already constructed a cospecialization morphism of polysim-
plicial sets ψl−1 : C(Xl−1,ȳ1)→ C(Xl−1,ȳ2) such that the induced map φl−1 : Str(Xl−1,ȳ1)→
Str(Xl−1,ȳ2) obtained by applying O is the cospecialization map already defined. One has
C(Xȳ1) = C(Xl−1,ȳ1)�D1 and C(Xȳ2) = C(Xl−1,ȳ2)�D2, where D1 : Str(Xl−1,ȳ1)→Λ◦ Set is
the functor mapping a stratum x1 to the polysimplicial set C(Xx1) andD2 : Str(Xl−1,ȳ2)→Λ◦ Set
is the functor mapping a stratum x2 to the polysimplicial set C(Xx2).

To construct the morphism ψ : C(Xȳ1)→ C(Xȳ2), we shall first construct a morphism of func-
tors ψ0 :D1→D2φl−1. Such a functor induces a morphism C(Xl−1,ȳ1)�D1→ C(Xl−2,ȳ2)�D2,
i.e. a morphism ψ : C(Xȳ1)→ C(Xȳ2), in the following way. One gets a map∐

x∈Λ/ C(Xl−1,ȳ1
)

[nx]�D1,x→
∐

x′∈Λ/ C(Xl−2,ȳ2
)

[nx′ ]�D2,x′
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by glueing the maps [nx]�D1,x
id � ψ0(x)−−−−−−−→ [nφ(x)]�D2,φ(x), since nx = nφ(x) by definition of

morphisms of polysimplicial sets. Similarly, one gets a map∐
y→x∈Λ/ C(Xl−1,ȳ1

)

[ny]�D1,x→
∐

y′→x′∈Λ/ C(Xl−2,ȳ2
)

[ny′ ]�D2,x′

by glueing the maps [ny]�D1,x
id � ψ0(x)−−−−−−−→ [nφ(y)]�D2,φ(x). Taking the cokernel, one gets the

wanted morphism C(Xl−1,ȳ1)�D1→ C(Xl−2, ȳ2)�D2.
Let x1 ∈ Str(Xl−1,ȳ1) and let x2 := φl−1(x1); we have to build a morphism D1(x1)→

D2φl−1(x1), i.e. a morphism C(Xx1)→ C(Xx2). Let us first build the map Str(Xx1)→ Str(Xx2).
To do so, we consider Str(Xx1) as a subset of Str(Xȳ1) and Str(Xx2) as a subset of Str(Xȳ2)
(as in [Ber99, Proposition 2.7(ii)]) and show that the cospecialization map Str(Xȳ1)→ Str(Xȳ2)
maps Str(Xx1) to Str(Xx2).

Lemma 4.7. Let x̄1 (respectively x̄2) be a geometric point of Xl−1 lying at x1 (respectively x2)
and let x̄2→ x̄1 be a specialization above ȳ2→ ȳ1. The diagram

Str(Xx̄1) // //

��

Str(Xx1) � � // Str(Xȳ1)

��
Str(Xx̄2) // // Str(Xx2) � � // Str(Xȳ2)

commutes. In particular, the map Str(Xȳ1)→ Str(Xȳ2) maps Str(Xx1) into Str(Xx2) and the
induced map Str(Xx1)→ Str(Xx2) makes the whole diagram commute.

Proof. Let a1 be a stratum of Xx̄1 and let a2 be its image by the cospecialization map Str(Xx̄1)→
Str(Xx̄2). Let b1 (respectively b2) be the image of a1 (respectively a2) in Str(Xȳ1) (respectively
Str(Xȳ2)). Let b′2 be the image of b1 by the cospecialization map Str(Xȳ1)→ Str(Xȳ2). Since the
image of a1 in XXl−1(x̄1) is in the closure of the image of a2, the image of b1 in XY (ȳ1) is also in
the closure of the image of b2. Therefore, b2 6 b′2.

Since Xx̄1 →Xȳ1 (respectively Xx̄2 →Xȳ2) is a strict morphism of log schemes, MXȳ1 ,b1
→

MXx̄1 ,a1 (respectively MXȳ2 ,b2
→MXx̄2 ,a2) is an isomorphism. Moreover, according to Proposi-

tion 4.2,

MXl−1,x̄2 =MXl−1,x̄1 ⊕MY,ȳ1
MY,ȳ2 .

Therefore,

MXȳ2 ,b2
= MXx̄2 ,a2

= MXx̄1 ,a1 ⊕MXl−1,x̄1
MXl−1,x̄2

= MXȳ1 ,b1
⊕MY,ȳ1

MY,ȳ2 .

According to Proposition 4.2, this shows that b2 = b′2. 2

Let us now construct a morphism C(Xx1)→ C(Xx2) from the map Str(Xx1)→ Str(Xx2) we
constructed. Let x̄2→ x̄1 be a specialization morphism as in Lemma 4.7. Let z1 be a stratum
of Xx1 and let z2 be the image of z1 in Str(Xx2). Let z1 ∈ Str(Xx1) be a preimage of z1 and
let z2 be the image of z1 by Str(Xx1)→ Str(Xx2), so that z2 is also a preimage of z2. Since
every irreducible component of Xx1 (respectively Xx2) is smooth over x1 (respectively x2),
the map Irr(Xx1 , z1)→ Irr(Xx1 , z1) (respectively Irr(Xx2 , z2)→ Irr(Xx2 , z2)) is an isomorphism.
Therefore, by applying Lemma 4.6 to Irr(Xx̄1 , z̄1) and Irr(Xx̄2 , z̄2), one gets that, given an
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isometric bijection µ : [n]→ Irr(Xx1 , z1), there exists a unique couple (I, µ′) consisting of a subset
I ⊂ [w(n)] and of an isometric bijection µ′ : [nI ]→ Irr(Xx2 , z2) such that

[n] //

��

Irr(Xx1 , z1)

��
[nI ] // Irr(Xx2 , z2)

commutes. This induces, as in Step 1, a morphism C(Xx1)→ C(Xx2), i.e. a morphism D1(x1)→
D2φl−1(x1), such that

C(Xx̄1)

��

// C(Xx̄2)

��
C(Xx1) // C(Xx2)

(3)

commutes. Since MXl−1,x̄1 =MXl−1,x̄1 ⊕MY,ȳ1
MY,ȳ2 according to Proposition 4.2, if MY,ȳ1 →

MY,ȳ2 is an isomorphism, then MXl−1,x̄1 →MXl−1,x̄2 is also an isomorphism. Thus, C(Xx̄1)→
C(Xx̄2) maps nondegenerate polysimplices to nondegenerate polysimplices, and therefore so does
C(Xx1)→ C(Xx1).

Consider now a specialization ȳ2→ ȳ3, and let x3 be the image of x2 by the map Str(Xȳ2)→
Str(Xȳ3). According to Proposition 4.3, x3 is also the image of x1 by the map Str(Xȳ1)→
Str(Xȳ3). Let x̄3 be a generic point above x3 and x̄2→ x̄3 be a specialization compatible with
ȳ2→ ȳ3. Then, according to Step 1, the following diagram of cospecialization morphisms is
commutative.

C(Xx̄1)

�� %%KKKKKKKKK

C(Xx̄2) // C(Xx̄3)

Since C(Xx̄1)→ C(Xx1) is surjective and diagrams such as (3) are commutative, the following
diagram is also commutative.

C(Xx1)

�� %%KKKKKKKKK

C(Xx2) // C(Xx3)

(4)

Let X ′→X be a két morphism of strictly polystable log fibrations. Let x′1 be a stratum
of X ′l−1,ȳ1

, let x′2 be the image of x′1 by the cospecialization map Str(X ′l−1,ȳ1
)→ Str(X ′l−1,ȳ2

)
and let x1 (respectively x2) be the image of x′1 (respectively x′2) in Str(Xl−1,ȳ1) (respectively
Str(Xl−1,ȳ2)). Let

x̄′1

��

// x̄′2

��
x̄1 // x̄2
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be a commutative diagram of geometric points, where x̄1, x̄2, x̄
′
1 and x̄′2 lie above x1, x2, x

′
1

and x′2. Then, since the diagram (2) is commutative, the diagram

C(X ′x̄′1) //

��

C(X ′x̄′2)

��
C(Xx̄1) // C(Xx̄2)

is commutative, and since C(X ′x̄′1)→ C(X ′x′1) is surjective and diagrams such as (3) are
commutative, the diagram

C(X ′x′1) //

��

C(X ′x′2)

��
C(Xx1) // C(Xx2)

(5)

is also commutative.

We now have to check that the morphism D1(x1)→D2φl−1(x1) we constructed for every
x1 ∈ Str(Xl−1,ȳ1) induces a morphism of functors D1→D2φl−1.

Lemma 4.8. If x′1 6 x1 ∈ Str(Xl−1,ȳ1) and x′2 is the image of x′1 by the cospecialization map
Str(Xl−1,ȳ1)→ Str(Xl−1,ȳ2) (thus x′2 6 x2), then the following diagram is commutative.

C(Xx1)

��

// C(Xx′1
)

��
C(Xx2) // C(Xx′2

)

Here the horizontal arrows are given by Lemma 1.4.

Proof. Let x̄1, x̄′1, x̄2 and x̄′2 be geometric points above x1, x′1, x2 and x′2 with compatible
specializations of geometric points. Since C(Xx̄1)→ C(Xx1) is surjective and the diagrams (1)
and (3) are commutative, it is enough to show that the diagram

C(Xx̄1)

��

// C(Xx̄′1
)

��
C(Xx̄2) // C(Xx̄′2

)

is commutative, but this comes from the functoriality of cospecialization morphisms of
polysimplicial sets for strictly polystable morphisms with respect to specializations of geometric
points. 2

Thus, the morphism D1(x1)→D2φl−1(x1) is functorial in x1: one has a morphism of functors
ψ0 :D1→D2φ.

This induces a morphism ψ : C(Xȳ1)→ C(Xȳ2) above the morphism ψl−1. Since the
map Str(Xx1) =O(D1(x1))→O(D2φl−1(x1)) = Str(Xx2) is the one induced by φ : Str(Xȳ1)→
Str(Xȳ2), one has O(ψ) = φ.
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If MY,ȳ1 →MY,ȳ2 is an isomorphism, then D1(x1)→D2φl−1(x1) maps nondegenerate
polysimplices to nondegenerate polysimplices. By induction on l, one gets that C(Xȳ1)→ C(Xȳ2)
maps nondegenerate polysimplices to nondegenerate polysimplices.

Let us now check functoriality of the cospecialization map. If ȳ2→ ȳ3 is a specialization map,
then, since the diagram (4) is commutative, the diagram

D1

�� &&MMMMMMMMMMM

D2φl−1
// D3φ

′
l−1φl−1

where φ′l−1 is the cospecialization map Str(Xl−1,ȳ2)→ Str(Xl−1,ȳ3), is commutative and therefore
one gets by induction on l that

C(Xȳ1)

�� %%JJJJJJJJJ

C(Xȳ2) // C(Xȳ3)

is commutative.

If f :X ′→X is a két morphism of strictly polystable fibrations, then, since the diagram (5)
is commutative,

D′1
//

��

D′2φ
′
l−1

��
D1f1,∗ // D2φ

′
l−1f1,∗

where f1,∗ : Str(X ′l−1,ȳ1
)→ Str(Xl−1,ȳ1) is the map induced by f , is commutative and, therefore,

by induction on l, one gets that

C(X ′ȳ1
)

��

// C(X ′ȳ2
)

��
C(Xȳ1) // C(Xȳ2)

is commutative.

Step 3. X is a strictly polystable fibration.

If Z→X is a két morphism, then, according to § 2.3, the commutative diagram

Str(Zȳ1)

��

// Str(Zȳ2)

��
O(C(Xȳ1)) = Str(Xȳ1) // O(C(Xȳ2)) = Str(Xȳ2)

induces functorially a morphism Cgeom(Zy1/ȳ1)→ Cgeom(Zy2/y2).
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Step 4. The general case.
Assume now X is a polystable fibration over Y and Z→X is két. Let X ′→X be étale

and surjective such that X is a strictly polystable fibration over Y . Let X ′′ =X ′ ×X X ′,
Z ′ = Z ×X X ′ and Z ′′ = Z ×X X ′′. Then the commutative diagram

Cgeom(Z ′′y1
/y1) ////

��

Cgeom(Z ′y1
/y1)

��
Cgeom(Z ′′y2

/y2) //// Cgeom(Z ′y2
/y2)

induces functorially a cospecialization morphism of polysimplicial sets Cgeom(Zy1/y1)→
Cgeom(Zy2/y2), which does not depend on the choice of X ′ thanks to the functoriality of the
construction in Steps 2 and 3 with respect to étale morphisms. 2

Let us assume now that Z→ Y is proper and that MY,ȳ1 →MY,ȳ2 is an isomorphism. The
morphism Cgeom(Zy1/y1)→ Cgeom(Zy2/y2) maps nondegenerate polysimplices to nondegenerate
polysimplices and, according to Proposition 4.4, Str(Zȳ1)→ Str(Zȳ2) is bijective.

Therefore, if one assumes moreover that Cgeom(Zy2/y2) is interiorly free, then

Cgeom(Zy2/y1)→ Cgeom(Zy2/y2)

is also an isomorphism. It can be hoped that it is also true in the noninteriorly free case.

4.2 Specialization of tempered fundamental groups of log schemes
First, recall the result we proved in [Lep09, § 2.4] about specialization of log fundamental groups.

Let X → Y be a proper and saturated morphism of log schemes with Y̊ locally noetherian.
Assume moreover X → Y to have log geometrically connected fibers. Let ȳ2→ ȳ1 be a
specialization of log geometric points of Y .

Let T be the strictly local scheme of Y at ȳ1 endowed with the inverse image log structure,
and let z be its closed point, endowed with the inverse image log structure.

One has the following arrows (defined up to inner homomorphisms):

πlog-geom
1 (Xy2/y2)(p′)→ πlog-geom

1 (Xz/z)(p′) '−−→ πlog-geom
1 (XT /T )(p′)← πlog-geom

1 (Xy1/y1)(p′).

Theorem 4.9 [Lep09, Proposition 2.4]. One has a specialization morphism

πlog-geom
1 (Xȳ2/y2)(p′)→ πlog-geom

1 (Xȳ1/y1)(p′)

that factors through πlog-geom
1 (XT /T )(p′).

It would be interesting to know in the case where X → Y is log smooth if this specialization
morphism is an isomorphism. It is known to be true for example in the case where Y is moreover
log regular. It is also true in the setting of § 4.3.

We can now use Theorem 4.9 with our cospecialization morphism of polysimplicial sets when
these are isomorphisms.

Proposition 4.10. Let Y be an fs log scheme and let X → Y be a proper polystable log
fibration with geometrically connected fibers. Assume moreover that the polysimplicial set
Cgeom(Xs̄) of any geometric fiber is interiorly free. Let ȳ2→ ȳ1 be a specialization of log geometric
points over fs log points y2→ y1 of Y such that MY,ȳ1 →MY,ȳ2 is an isomorphism. Let L be a
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set of primes which does not contain the residual characteristic of y1. One has a specialization
morphism defined up to inner automorphism:

πtemp-geom
1 (Xȳ2)L→ πtemp-geom

1 (Xȳ1)L.

Proof. One can assume that Y̊ is strictly local with closed point y1. There is a functor

F : KCovgeom(Xy1/ȳ1)L→KCovgeom(Xy2/ȳ2)L.

According to Theorem 4.9, if Zȳ1 is some geometric két cover of Xy1/y1, it extends to a geometric
két cover of X/Y : there is a connected finite pointed két cover (U, ū1) of (Y, ȳ1) such that Zȳ1

extends to a két cover ZU →XU :=X ×Y U . This extension becomes unique after replacing U
by some bigger cover. If ū2→ ū1 is the két specialization of log geometric points lifting ȳ2→ ȳ1,
then (ZU )ū2 is nothing but the geometric két cover F (Zȳ1) of Xȳ2 . We will simply denote it
by Zȳ2 . One has an isomorphism Cgeom(Zy1/y1)' Cgeom(Zy2/y2) functorially in Zȳ1 . One gets a
cospecialization functor of fibered categories:

Dtop-geom(Xȳ1) //

��

Dtop-geom(Xȳ2)

��
KCovgeom(Xy1/y1)L // KCovgeom(Xy2/y2)L

and thus a specialization morphism πtemp-geom
1 (Xȳ2)L→ πtemp-geom

1 (Xȳ1)L. 2

4.3 Cospecialization morphisms of pro-(p′) tempered fundamental groups
Let K be a discrete valuation field, let SpecOK be endowed with its usual log structure and
assume that the residual characteristic p of K is not in L. Let Y → SpecOK be a morphism of
fs log schemes such that Y̊ is locally noetherian. Let Y be the formal completion of Y along its
closed fiber. Then Yη is an analytic domain of Y an

K . Let Y0 = Yη ∩ Y an
tr ⊂ Y an

K .
Let X → Y be a proper and polystable log fibration with geometrically connected fibers.
Let ỹ be a K ′-point of Y0, where K ′ is a complete extension of K. One has a canonical

morphism of log schemes SpecOK′ → Y , where SpecOK′ is endowed with the log structure
given by OK′\{0}→OK′ . The log reduction s̃ of ỹ is the log point of Y corresponding to the
special point of SpecOK′ with the inverse image of the log structure of SpecOK′ . If K ′ has
discrete valuation, then s̃ is an fs log point. If K ′ is algebraically closed, s̃ is a geometric log
point.

Let P̃t
an

(Y ) be the category whose objects are geometric points ȳ of Y0, such that H(y)
is discretely valued (where y is the underlying point of ȳ) and Hom(ȳ, ȳ′) is the set of két
specializations from s̄ to s̄′, where s̄ and s̄′ are the log reductions of ȳ and ȳ′, such that there
exists some specialization ȳ→ ȳ′ of geometric points in the sense of algebraic étale topology for
which the following diagram commutes.

ȳ //

��

s̄

��
ȳ′ // s̄′

Let Ptan(Y ) be the category defined from P̃t
an

(Y ) by inverting the class of morphisms ȳ→ ȳ′

for which s̄→ s̄′ is an isomorphism in the category of points of the két topos of Y , i.e. the
underlying Zariski points s and s′ are equal.
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Let Ptan
0 (Y ) be the category obtained from P̃t

an
(Y ) by inverting the class of morphisms

ȳ→ ȳ′ such that MY,s̄′ →MY,s̄ is an isomorphism.
Let OutGptop be the category of topological groups with outer morphisms.

Theorem 4.11. There is a functor πtemp
1 (X(·)) : Ptan(Y )op→OutGptop sending ȳ to πtemp

1 (Xȳ).
If, for every geometric point s̄ of Y , the polysimplicial set C(Xs̄) is interiorly free, then the

functor πtemp
1 (X(·)) factors through Ptan

0 (Y )op.

Proof. Let ȳ2→ ȳ1 be a morphism in P̃t
an

(Y ). One has to construct a cospecialization morphism
πtemp

1 (Xȳ1)→ πtemp
1 (Xȳ2).

One has a cospecialization functor

F : KCovgeom(Xs1/s1)L→KCovgeom(Xs2/s2)L

which factors through KCovgeom(XT /T )L, where T is the strict localization at s1.
The cospecialization functor KCovgeom(Xsi/si)

L→ Covalg(Xȳi) is an equivalence, since
yi ∈ Ytr [Kis00, Theorem 1.4]. If one chooses a specialization ȳ2→ ȳ1 above s̄2→ s̄1, the functor
Covalg(Xȳ1)L→ Covalg(Xȳ2)L is also an equivalence. One gets that F is an equivalence.

If Zs1 is some geometric két cover of Xs1 , it extends thanks to Corollary 4.9 to some két
neighborhood (U, ū1) of s̄1 in T . Let ZU → U be this extension (unique after replacing U by some
smaller neighborhood of s̄1). Let ū2→ ū1 be the unique lifting of s̄2→ s̄1. Then Zs̄2 := F (Zs̄1) is
nothing but Zū2 . One has a cospecialization morphism Cgeom(Zs̄1)→ Cgeom(Zs̄2), which induces
a specialization functor

Dtop-geomXs2
(Zs2)→Dtop-geomXs1

(Zs1).

It is an equivalence of categories if s̄2→ s̄1 is a cospecialization isomorphism or if MY,s̄1 →MY,s̄2

is an isomorphism and all the geometric fibers of X → Y have interiorly free polysimplicial sets.
Thus, we have the following 2-commutative diagram.

Dtop-geomXs2
//

��

Dtop-geomXs1

��
KCovgeom(Xs2/s2)L F−1

// KCovgeom(Xs1/s1)L

Here F−1 is some quasi-inverse of F . This induces a cospecialization outer morphism

πtemp-geom
1 (Xs1/s1)L→ πtemp-geom

1 (Xs2/s2)L.

The comparison of morphisms of Theorem 3.3 gives us the wanted morphism, which is an
isomorphism if s̄2→ s̄1 is an isomorphism or if MY,s̄1 →MY,s̄2 is an isomorphism and all the
geometric fibers of X → Y have interiorly free polysimplicial sets. 2
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