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A%, CONDITION

F.J. MARTIN-REYES, L. PICK AND A. DE LA TORRE

ABSTRACT  The good weights for the one-sided Hardy-Littlewood operators have
been characterized by conditions A; (A,) In this paper we introduce a new condition
Af_ which 1s analogous to A, We show several characterizations of A%, For example,
we prove that the class of A%, weights 1s the union of A; classes We also give a new
characterization of A; weights Frnally, as an application of A}, condition, we charac-
terize the weights for one-sided fractional integrals and one-sided fractional maximal
operators

1. Introduction. Forf and g locally integrable functions and g positive on the real
line, we define the one-sided Hardy-Littlewood maximal functions M;f and M, f at x by

S Iflg - Sinlflg
Mif(x) = sup =——, M, f(x) = sup ==1—2
o w0 [ g # w0 Jing

Recently ([S], [M], [O1], [MOT]), weighted inequalities for these operators have been
studied. In particular, the following characterization has been proved.

THEOREM ([S], [M], [O1], [MOT]). Let g and w be positive, locally integrable
functions on the real line. Let 1 < p < 00 and let p' be such thatp + p' = pp'. Then the
following are equivalent.

(a) There exists a constant K > 0 such that for all A > 0 and every f € LP(w)

K oo
< — P
/{x MEf()>X} W= bV /—oo 17w.

(b) w satisfies A;(g) (w € A;(g)), 1.e., there exists a constant K > 0 such that for all

numbers a < b < ¢ 1
. 1 \P~ X
[o(FC) ) <k([s)

(c) There exists a constant K > 0 such that for every f € L’ (w)
00 +oip < 00 P .
/—oo IMgf! w= K/;oo lf' Y
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If p = 1 then (a) is equivalent to saying that w satisfies A7(g), i.e., there exists a
constant K > 0 such that Mg’(wg“) < Kwg .

The analogous theorem holds for M, f and the corresponding A, (g) classes. We say
that w satisfies A, (g) (I < p < 00) if there exists a constant K > 0 such that for all

numbersa < b < ¢ ol
c 1 \P~ rc
Lo f 8 s) <x([o

A weight w satisfies A (g) if there exists a constant K > 0 such that M;(wg‘ < Kwg™!.

The first aim of this note is to introduce some A} (g) (A5 (g)) condition similar to the
Aoo(g) condition (for g = 1 see [CF], [GR] and their references). In particular, we obtain
that A% (g) is the union of A;(g) classes and the equivalence with the weak reverse Holder
inequality (see (f) in Theorem 1) which was the key step in the proof of A;(g) = A;_.(g)
in [M] and [O1]. In addition, we show that w € A} (g) if and only if g¢ € AZ_ (w). Then,
in Section 3 we apply A% (g) to obtain a new characterization of A;(g) weights. Finally,
Section 4 is dedicated to the characterization of the good weights for one-sided fractional
integrals and one-sided fractional maximal operators. The results for the fractional in-
tegral are consequences of those for the fractional maximal operator and a distribution
function weighted inequality (Lemma 7) in which the A7 (g) weights play an important
role.

Before starting with the definition of A} (g) (A (g)) let us fix some notation. From
now on, h(E) stands for [g h for a positive, locally integrable function 4 and a measurable
set E. If E is an interval (a, b) then we will simply write h(a, b). The letter K will mean a
positive finite constant not necessarily the same at each occurrence, w and g will denote
positive, locally integrable functions and if 1 < p < oo then p’ will be the number such
that p + p’ = pp'. Finally, for a locally integrable function f, we define

I Ifle
M f(x) = su ' .
gf s,h>pO f :i}: 4

2. A}, (g) condition. In order to define A} (g), it is convenient to know that the
restricted weak type (p, p) inequality for Myf was characterized in the following way.

THEOREM ([O1]). Let 1 < p < 0o. The following are equivalent.
(a) There exists K > 0 such that for all X > 0 and every measurable set E

K
< =
./{x:M;xE(x)>)\} W= \P /b w
(b) There exists K > 0 such that for for all numbers a < b < c and all sets E C (b, ¢)

g(E) <1<( w(E) )!
gla,c) = \w(a,b)

Keeping in mind this result, Proposition 1 in [KT] and the definition of A, (cf. [GR]
for instance), we define A _(g) and AZ (g).
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DEFINITION 1. We say that w is in A (g) if there exist positive numbers K and §
such that for all numbers a < b < ¢ and all measurable sets E C (b, ¢)

é
g(E) <K( w(E) ) ‘
gla,c) — \w(a,b)

DEFINITION 2. We say that w is in A (g) if there exist positive numbers K and ¢
such that for all numbers a < b < ¢ and all measurable sets E C (a, b)

6
9B _ K( W(E) ) .
gla,c) = \w(b,c)

THEOREM 1.  The following are equivalent.

(@) w € A%, (g).

(b) There exists p such thatw € A;(g).

(c) For every a, 0 < a < 1, there exists 3 > 0 such that, for all numbers a < b < ¢
and every E C (b, c) with fél% < f3, we have f((% <a.

(d) For every a, 0 < o < 1, there exists 3 > 0 such that the following implication

holds: given X > 0 and an interval (a, b) such that A < %(5,%)2 forall x € (a,b), then

g({x € (ab): % >B/\}) > agla,b).

(e) For every o, 0 < a < 1, there exists 3 > 0 such that the following implication
holds: given A > 0 and an interval (a, b) such that W((“Z; A< Z(%:*))‘for all x € (a,b),
then

g({x € (a,b): % >ﬁ)\}) > ag(a,b).

(f) Weak reverse Holder's inequality.
There exist positive numbers 6 and K such that for all numbers a < b

LY o))

(g) There exist positive numbers b and K such that for all numbers a < b

M (%) ) 0 < K, (gmm)(b))é.

(h) There exists p such that g € A; (w).
(i) g € A, (w).
(j) There exist 7, 0 < v < %, and K > 0 such that

w(a, b) 1 d g
g(a.b) e""(g(a 5 ). gloe E) =K
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for all numbers a < b < ¢ <d such that g(a,b) = g(c,d) = vg(a,d)

PROOF OF THEOREM 1 (b) = (a) We may assume p > | (if w € AJ(g) then
w e A;(g) forevery p > 1) Let a < b < c and let E be any measurable set E C (b, ¢)
By Holder’s inequality we have

(sB)) <wer( f(£) lg)p |

Since E C (b, ¢) and w satisfies A;(g), we get from the last inequality

P p W(E)
(8B))" < K(g(a,0)) b

what 18 A} (g) with ¢ = %
(a) = (c) 1s obvious
(c)=>(d) Leta < band let A > 0 such that A < 292 forall x € (a,b) Letxy = b

glax)
and for k, a negative integer, let x;, a < x; < x4, be such that

Xk 1 Xk
Xk a

Let £/ = {x € (a,b) %3 < BA}, E;, = E' N [x, %) and [, = [x 1,%) From our

assumption and the definition of the sequence x; we have

wa, xie1) _, wlli)
— gla, xpi1) g(a,xis1)’

and by the definition of E;

w(Ey) _ BA&(EY _ 4 8(E)  wly)

Wi = wdo = Py gl
Then, taking 3 small enough, we get from (c) that
'
g—(%(f—%s <~ forsome?y € (O,%)
Hence
o(fre@n 22> m)) —e@n - 3 e
8x) s

> gla,b) =7 3" gl 1, Xka1)
K1

> (1 —2v)g(a,b)

(d) = (e) 1s obvious
(e)=(f) Leta <b Put )y = Mg(—g’ﬁx(a »)(b) and

00 = {x M, (Zxn)w > 1]
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for A > Ao. Then O(\) = U\(a), b)) such that (a;,b,) C (a, b), the intervals (a,, b,) are
pairwise disjoint and

_ w(a;, b)) < w(a,, x)
gla;, b)) — gla,x)

forall x € (a;, b)).

By (e), we have for some positive numbers 3 and «,

w({x €(a,b): g—((_)) > )\}) <> wla,b) = )\Zg(aj,bj)
J

A re{fremn )

lfrewn 201

Multiplying by A*~!, integrating over ()¢, 00) and applying Tonnelli’s theorem we get

5
%/{xe(a,b) g(x)>x(,}w((§> B XE’) = (1 +6;aﬁ“5 /:(g)tsw

This inequality implies easily that
1 8 pY 1 8
L) = [ < g L (5)
1 1
(i~ ) L)' <3 (o (B0

which, for 6 small enough, gives (f). Details can be found in [CF] or [M] and thus are
omitted.

(f) = (g). The statement (g) is a direct consequence of (f).

(g) = (h). Let a < b < c. From the definition of M,, and (g) it follows that we have
for all x € (b,c)

or

1

(W(;,c) ab<§>6w)% < (Mw((g)bX(ax)))é(x)

< KM ( (a,x)>(x)

< KM= xao )0,

Now the fact that M, is of weak type (1, 1) with respect to g(x) dx gives

1
5

gb,c) < K(w(a,c))% (/:(%)éw) w(a, c).

Thus g € A, (w) withp = 14 and therefore (h) holds.

https://doi.org/10.4153/CJM-1993-069-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1993-069-9

1236 F J MARTIN REYES L PICK AND A DE LA TORRE

The chain of implications that we have just proved shows that (b) = (h) via (a), (c),
(d), (e), (f) and (g) In a symmetric way 1t 1s proved that (h) = (b) and therefore (a),
(b), (c), (d), (e), (f), (g) and (h) are equivalent, and 1n addition we get that each of these
statements 1s equivalent to (1) To finish the proof of the Theorem, we will prove (b) = (j)
and (J) = (e)

(b) = (3) We will prove that (j) holds withb = cand ¥ = %

Since w € A;(g) we have

(a,b 1 ne !
:(Zb))(ﬁ_d)/:g(%)p ) =K

for all numbers a < b < d such that g(a,b) = g(b,d) On the other hand, by Jensen’s
mequality,

p 1
1 1 1
exp(g@—’—d—) /bdglog %) = (exp(m/jglog<§>ﬁ ))
1 ne !
= (g(b,d)[b g(éy )

Putting both 1nequalities together we get (j)
(J) = (e) The proof of this implication follows the 1dea from [GR] (see pp 405-406)

Let a, A and (a, b) be as 1n statement (e) Let xo = b and for every negative integer k
let x; be such that a < x; < x4 and g(xy, xk1) = Yg(a, xx4) For fixed £, let y, be such
that g(a, yx) = g(x,xx+1) Now we choose for every negative integer k the number o,
such that

/XM glogi =0
Xk oW

Applying (3) to the quadruple (a, yi, Xy, Xg1) We get

(xk_w(a,_yk) <K forevery k < —1
g(a,y)

Therefore, by the properties of the points of the interval (a, b) we get

aw(a, yi)

g\ <
¢ gla,y)

<K foreveryk < —1
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The last inequality and the way of choosing oy give for every 3 > 0

g({x € (XpXks1) (x)) < BA ])

1
= g({x € (X, Xpe1) - 10g<1 + akﬁ)\) < lOg(l * Otff:()x)) })

1
= log(1 + /Xk glo g<l+%>

0(3/\)

1 Xie
—_— /“glog(l+g—k—vx>
lOg(l"i—m)”‘k 8

1 Xkt 1
<—mMmMm— oGw
log(1 + o ﬂ) /

K /‘\'lul
——— w
~ Alog(1+ 5 ) X

wlab) _

Summing in & and keeping in mind that b = A we get

g({xe (a,b) : —@ <6)\}) < —K—w(a,b)

g ~ Mog(1 + g5)
K
~logi+ )"

Hence, given « € (0, 1), we can take 3 small enough to obtain

({x € (a,b): udSl </3)\}) < (1 —a)gla,b),
8()

and therefore (e) holds.

REMARKS. (1) Because of the symmetry between (a) and (i) or between (b) and (h)
all the other statements can be written changing the roles of @ and w by the corresponding
ones of b and g. More equivalent conditions can be obtained keeping in mind that w €
A;(g) if and only if (£)"'g € A (g).

(2) The implication (b) = (j) can be obtained by letting p tend to oo in the inequality
of the A[‘;(g) condition (see [GR]). In this way we can consider A} (w) as the limit of
A(8).

(3) As we said in the introduction, the weak reverse Holder inequality is the key step
to prove that if w € A;(g), 1 < p < 00, then there exists s, | < s < p, such that
w € A} (g). See [M] for a proof in the case g = 1.

(4) The proof of (b) = (j) shows that the number 7 in (j) can be taken equal to 1/2.
This remark will be used in the proof of Theorem 2. Statement (j) with other values of Y
is useful in a forthcoming paper about one-sided BMO spaces.
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3 A characterization of A;(g). If w satisfies A;( g) then by Theorem 1 we know
that w € A} (g) Of course, we also have the c9rrespondmg result for A;(g) classes
On the other hand, w € A;(g) if and only 1f (;%)” “lg e AL(g) Therefore, 1f w satisfies

A;;(g) thenw € A?_(g) and (;%)”Hg € A (g) The questions 1f the converse 1s true as 1n
Muckenhoupt’s classes The purpose of the next theorem 1s to give an affirmative answer
to this question It includes another characterization of A;(g)

THEOREM 2 Let 1 < p < oo The following are equivalent
(a)we AL (g)and (Y ~'g € AL(g)
(b) There exists a positive constant K such that for all numbers a < b

p 1
Me(Zxian)0) < K (Mo Exan ) )
where o = (&)”I']g
(c)w € Ay (g)

PROOF OF THEOREM 2 We only have to prove (a) = (b) and (b) = (c)
(@) = (b) Leta < b Let xp = a and for a nonnegative integer k let x, < xgy < b
such that

1
8(Xps X)) = gg(xk,b)
It 1s clear that (a, b) = U2 (xk, xk+1] For fixed k let y be the point such that
8k Xis1) = 8O0, b)

Therefore g(xy, x¢41) = g(xks1,y) = g(y,b) Since w € A} (g), statement (j) of Theorem 1
holds with ¥ = 1/2 (see the remark after the proof of Theorem 1) Thus

WXk, Xgr1) ( Y g)
glog=| <K
8(Xk, Xyi1) 8(Xks1,) -/ml w

Simularly, the version of () equivalent to o € A (g) applied to (x;,1,y, b) gives

0-(y$ b) ( y g)
€X log=| <K
g, b) P 8(Xkr1>Y) Jrin 8108 o) —

Raising this inequality to p — 1 and multiplying the last two 1nequalities we get

g, b))
a(y, b))

P
< Ko X )(Ma<§x(a n)®)

W Xee1) < Ko e )(

1

Summing 1n k yields
1

w(a, b) g p
2ab) < K(MU<;X(H b))(b))
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Now, the statement (b) follows, as @ was an arbitrary number less than b.
(b) = (c). Let a < b < c. For every x € (b,c) we have

w(a, b) <
gla,c) —

Mg (% X(a,x)) ().

This inequality and (b) give for all x € (b, ¢)

%%f—)) < K(Mc,(gX(ax))(x))P“ < K(MG<§X(a,c))(x))

Then since M, is of weak type (1, 1) with respect to o(x) dx, we obtain

p'—1
7.0 = U({x : M”(gX(a,a)(x) > K(W("’b)) })

p—1

gla,c)

gla,c)

p'—1
w(a, b)) 8@.c)

<(
which means that (c) holds.

4. Fractional integrals. This section is devoted to the study of weighted inequali-
ties for one-sided fractional integrals and one-sided fractional maximal operators. More
precisely, we consider, for 0 < o < 1 and g as above, the following operators:

x+h d
x f(y)g(yl)_a dy and M) = sup I8 V(y)lg(yl)_ b
(8(x.y)) 10 (g(x,x +h))

The good weights for these operators (g = 1) were studied in [AS] and [MT] and the
pairs of weights for M, , to be of strong type (p, ), p < g, can be found in [02]. We shall
characterize the weights w for which the operators I, , and M, , take the space L7(w’g)
either into LI(wg) or into the weak LI(w?g), where & = p~' — g~!. Our proofs are new
even in the case g = 1.

Observe that M, .f < I}, ,(/f|). We do not have an opposite pointwise inequality, but
we can obtain the following integral inequalities where the A} (g) weights play a crucial
role.

L f(x) =

THEOREM 3.  If w satisfies A% (g), 0 < g < ooand 0 < a < 1, then there exists K
such that for every non negative function f

[ g@ltw <K [ M flw
and

sup /\qw({x D f () > /\}) < Ksup X’w({x P MG f () > /\})
A>0 A>0

This theorem reduces the study of weights for 7, , to the corresponding ones for M, ,.
For that reason, we will first study the weights for the fractional maximal operators.
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THEOREM4. Let0<a<1,1<p<
function. The following are equivalent.
(a) There exists K such that for every A > 0 and all measurable functions f

(wig({x: Mz 0 > A1) < ( N Wwpg) .

(b) Thefunction wig satisﬁes Af(g) wherer =1+ 5—
Ifl<p<-= and L — 1_7 — « then (a) and (b) are eqmvalent to
(c) There exzsts K such that for all measurable functions

([t <6([7 rws)

é, é = % —a. Let w be a positive measurable

PROOF OF THEOREM 4. (b) follows from (a) in the usual way, i.e., fixed a < b < c,
we test the inequality by functionsf = w P yg where E C (b, c)if p > 1 and by functions
f = xe if p = 1. For the converse we will need the following lemma.

LEMMA 5. Let o, p and q be as in Theorem 4. If the function wig satisfies AT(g)
wherer = 1 + ,% then

(MG o) < K17y ang Mg (P77 ™)
for all measurable functions.

Assume that (b) holds. By Lemma 5,
wi ({x M+gf(x) > )\}) <wt ({x M, LW D () > K)\qu[]p,W,m}),

and because My, is of weak type (1, 1) with respect to the measure wg we obtain

wi ({x M*gf(X)>>\}) = )\qn}(””( )Hf“u(w/g) /\,,anu(wvg)
wPg

which is (a).

Now assume 0 < o < 1,1 < p < 1 é = % — a. It is clear that (c) = (a).
The implication (b) = (c) is a consequence of (b) = (a) and the fact that w9g € Af(g)
implies wig € A} (g) for some s, 1 <'s < r (see Remarks after Theorem 1). Details can

be found in [MW].

PROOF OF LEMMA 5.  For x and 4 fixed, we choose a decreasing sequence {x;} such
that

xo = x+h and wig(xper, xi) = wig(x, xpp).

Observe that w?g(x;42, Xk ) is comparable to wig(x, x;). More precisely

wig(x, x;) = 4wl g(Xsa, Xes1 )
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Assume p > 1. Then, from the Holder inequality and wig € A¥(g),

[Mre=% " re< ([ ) ([ wr's)

o ([ |fPwrg)r -
L——]' ( +2 )
/;) (qu(xk+2,xk+1))5 (g Hrze )

SKZ(M mpwpg) (" V'pwpg),e—z; ()

=0\ wiglx, x;)

|-

<K

Now, from the definition of Mj,, and the Holder inequality applied to the sum, we obtain

x+h !
/x Iflg < KMoglfIPw? )5 @) (gCex + 1) IF IS0 e

which proves the case p > 1 of the lemma taking into account the relation between «, p
and g.
Now assume p=1. Then w?g € A](g) and therefore

B 2 )
[ lflg~Z [ lflgww‘<KZ [ v (———Wf;(k—;—))

(S [flgw 7 Xk -1 a
< K};}(m) (/XM lflgw) (8042 %))

As before, this inequality proves the case p = 1 of the lemma.
Once we have studied weights for fractional maximal operators, we can state the re-
sults for fractional integrals.

THEOREM 6. Let0<a<1,1<p<
function. The following are equivalent.
(a) There exists K such that for every \ > 0 and all measurable functions f

(w" ({x I+gf(x)>/\}) (/ [f[”wpg)_.

(b) Thefunction wig satisﬁes Af(g) wherer =1+ 1

L1 — 1 _ o Letw bea positive measurable
a’q T p

Ifl<p<= and L — 1—) — « then (a) and (b) are equtvalent to
(c) There extsts K such that for all measurable functions

([ s <K )

This theorem follows from Theorems 3 and 4 (¢f. also [MW]). Therefore we will only
prove Theorem 3 . In fact (see [MW]), it is well known that the inequalities in Theorem 3
are consequences of distribution function inequalities. More precisely, Theorem 3 is a
corollary of the following lemma.
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LEMMA 7 LetO0 < o < l andletw € A% (g) Then there exist positive constants
K and 6 such that for every non negative measurable functionf all A > 0 and each Y
0<r<1

w({x L5 f(0) > 20 ML f(0) <IN} S KT w({x I (0 > A})

PROOF OF LEMMA 7  We may assume without loss of generality that f 1s bounded
with compact support Let {/,} be the connected components of {x I}, Jx) > A} Then
1t 1s enough to prove

w{x €1, I, f() > 20, M}, f(0) <IN}) < KyTaw(l,)
Fix I, = (a,b) Let {x;} be the sequence defined by
Xo = a and g(xy, Xge1) = 8(Xks1, )

Observe that
8(xk, b) = 4g(xps15 Xpa2)

We will prove that if

Ep = {x € (uxin) I f (1) > 20, M}, f(x) < YA}

then

@1 8(E) < KYT7 g(Xer1» X2)

Keeping 1n mind this inequality and the fact that w € A} (g) if and only if g € A (w)
(see Theorem 1), we apply A (w) to the weight g, the points x, X, X472, and the set E;
Then we obtain for some § > 0

5
w(E) < KY7 e w(xy, X42)

Summuing over k we obtain the desired inequality

Now we will prove (4 1) Fix k and let f; = f on (x, ) and O elsewhere, let f, = f —f)
Assume that there 1s a # € (xi, x441) such that Mg, f(#) < YA, otherwise (4 1) 1s obvious
Let #; be the infimum of such #’s Let x € (x, xi+1) Then

fg) dy < F»gW)

I o) = _dy < dy =1 f(b) < A
o b (g )’ b (b))’ d

Therefore
Ep CH{x € (t,xin1) Iy f1(x) > A}
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Since the operator I, , is of weak type (1
the classical case [St]), we have

7o D{) with respect to g (this can be done as in

80 < g({x: I (fixuea)® > A}) <K( A )"

< K( (80005)' M5 @) " < Kelt by
< Kg(to b)Y ™5 = 4Kg(xip1, X2V 75 -

REMARK. Using the methods of Bagby and Kurtz (see [BK] and [K]) instead of
Lemma 7, the second author has obtained another proof of Theorem 3, restrictedtog > 1,
with a better constant. The proof will appear elsewhere.
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