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LOCAL BORCHERDS PRODUCTS FOR
UNITARY GROUPS

ERIC HOFMANN

Abstract. For the modular variety attached to an arithmetic subgroup of

an indefinite unitary group of signature (1, n + 1), with n> 1, we study

Heegner divisors in the local Picard group over a boundary component of a

compactification. For this purpose, we introduce local Borcherds products. We

obtain a precise criterion for local Heegner divisors to be torsion elements in the

Picard group, and further, as an application, we show that the obstructions to a

local Heegner divisor being a torsion element can be described by certain spaces

of vector-valued elliptic cusp forms, transforming under a Weil representation.

§1. Introduction and statement of results

A local Borcherds product is a holomorphic function, which, like a
Borcherds form has an absolutely convergent infinite product expansion
and an arithmetically defined divisor, called a local Heegner divisor. Here,
“local” refers to boundary components of a modular variety. Such products
were first introduced by Bruinier and Freitag [4], who studied the local
divisor class groups of generic boundary components for the modular
varieties of indefinite orthogonal groups O(2, l), l > 3. Since then, local
Borcherds products have appeared in several places in the literature, for
example in [6], for the Hilbert modular group, and in [7], where they are
introduced to study a specific problem in the geometry of Siegel three folds.

The aim of the present paper is to develop a theory similar to that of
Bruinier and Freitag for unitary groups of signature (1, n+ 1), n> 1.

Let k = Q(
√
Dk) be an imaginary quadratic number field with discrim-

inant Dk, which we consider as a subset of C. Denote by Ok the ring of
integers in k, by d−1

k the inverse different ideal and by δk the square root of
Dk, with the principal branch of the complex square root.

Let V be an indefinite Hermitian vector space over k of signature

(1, n+ 1), equipped with a nondegenerate Hermitian form 〈·, ·〉. Let L be a

lattice in V , of full rank as an Ok-module, so that L⊗Ok
k = V . We assume

that L is an even and integral lattice, hence 〈λ, λ〉 ∈ Z for all λ ∈ L. In this
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140 E. HOFMANN

introductory section only, we additionally assume that L is unimodular over

Z, that is L= L′ = {µ ∈ V ; 〈λ, µ〉 ∈ d−1
k , ∀λ ∈ L}.

We denote by U(V ) the unitary group of V and by U(L)⊂U(V ) the

isometry group of L. Subgroups of finite index in U(L) are called unitary

modular groups.

We consider U(V ) as an algebraic group defined over Q. Its set of real

points, denoted U(V )(R), is the unitary group of the complex Hermitian

space V ⊗k C. A symmetric domain for the operation of this group is given

by the quotient

D = U(V )(R)/K,

where K is a maximal compact subgroup of U(V )(R). If Γ⊂U(L) is a

unitary modular group, we denote by XΓ the modular variety given by the

quotient Γ\D. Note that XΓ is noncompact.

The boundary points of D correspond one to one to the elements I

of the set of rational one-dimensional isotropic subspaces of V , denoted

Iso(V ). For every cusp of XΓ one can thus introduce a small open

neighborhood Uε(I). These neighborhoods are then glued to XΓ, furnishing

a compactification. We describe this procedure in Section 2.4 both for the

Baily–Borel compactification, in which singularities remain at the cusps,

and for a toroidal compactification, which turns XΓ into a normal complex

space without singularities at the cusps.

We study the Picard groups of such (suitably small) open neighborhoods

Uε(I). Since the construction we carry out is local in nature, it suffices

to examine only one fixed cusp. For this purpose, we choose a primitive

isotropic lattice vector ` ∈ L. Fixing a vector `′ ∈ L with 〈`, `′〉 6= 0, denote

by D the definite lattice L ∩ `⊥ ∩ `′⊥. The stabilizer StabΓ(`) of ` in Γ

contains a Heisenberg group, denoted Γ`. This group has finite index in

the stabilizer. Its elements can be written as pairs [h, t], with h a rational

number and t a lattice vector. The set of all such t’s constitutes a sublattice

D`,Γ ⊆D.

Following [4], we define the Picard group Pic(XΓ, `) as the direct limit

lim−→ Pic(U reg
ε (`)), where U reg

ε (`) is the regular locus of Uε(`) in the Baily–

Borel compactification.

Up to torsion, this local Picard group can also be described by the direct

limit lim−→ Pic(Γ`\Uε(`)), see p. 152 for details. Thus, if we only want to

describe the position of certain special divisors in Pic(XΓ, `) up to torsion,

we can work in Pic(Γ`\Uε(`)), with a sufficiently small ε > 0.
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LOCAL BORCHERDS PRODUCTS FOR UNITARY GROUPS 141

For a lattice vector λ ∈ L of negative norm, that is 〈λ, λ〉 ∈ Z<0, a

primitive Heegner divisor H(λ) is defined by the orthogonal complement

λ⊥ with respect to 〈·, ·〉 of λ in D. If ` lies in λ⊥, we attach a local Heegner

divisor to λ by setting H∞(λ) :=
∑

α∈d−1
k

H(λ+ α`).

A Heegner divisor of D is a Γ-invariant finite linear combination of

primitive Heegner divisors and the pre-image under the canonical projection

of a divisor on XΓ. By a local Heegner divisor, we mean a finite linear

combination of local Heegner divisors of the form H∞(λ), which corresponds

to the pre-image of an element of the divisor group Div(Γ`\Uε(`)), see

Section 4.1 for details.

We want to describe the position of local Heegner divisors in the

local Picard group Pic(XΓ, `) (up to torsion) through their position in

Pic(Γ`\Uε(`)). This is where local Borcherds products come into play. For a

negative-norm lattice vector λ we define the local Borcherds product Ψλ(z)

as follows (see Section 4.2):

Ψλ(z) :=
∏
α∈d−1

k

(1− e(σ(α)〈z, λ− α`〉)).

Here, λ− α` runs over finitely many orbits under the operation of Γ`, and

σ(µ) is a sign introduced to assure absolute convergence. The product has

divisor H∞(λ). However, because of the sign σ(α), it is not invariant under

Γ`. Instead, there is a nontrivial automorphy factor.

This is actually a desirable situation: by calculating the automorphy

factor, we are able to determine the Chern class of H∞(λ) in the cohomology

group H2(Γ`, Z) (see Sections 4.2 and 4.3). It turns out to be given by the

image [cλ] of a bilinear form in the cohomology:

(1)
cλ([h, t], [h′, t′]) =−=[|δk|Fλ(t, t′)] (for [h, t], [h′, t′] ∈ Γ`),

where Fλ(x, y) := 〈x, λ〉〈y, λ〉+ 〈λ, x〉〈y, λ〉 (x, y ∈D ⊗Ok
C).

Through this, we know the Chern class of every local Heegner divisor

as a finite linear combination, and can thus describe its position in the

cohomology.

For this we use results prepared in Section 3, from calculations in

the group cohomology for Γ`, concerning the properties of cocycles in

H2(Γ`, Z). We obtain an equivalent condition for the Chern class of a linear

combination of Heegner divisors to be a torsion element, in Lemma 4.1. From

the proof, we also obtain a further, necessary condition, see Corollary 4.1.
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142 E. HOFMANN

Finally, our main result, Theorem 4.1, describes exactly when Heegner

divisors are torsion elements in the Picard group Pic(Γ`\Uε(`)). For a

unimodular lattice L, the theorem can be formulated as follows, for the

general version, see Theorem 4.1 on p. 161:

Theorem 1.1. A finite linear combination of local Heegner divisors of

the form

H =
1

2

∑
m∈Z
m<0

c(m)
∑
λ∈D
〈λ,λ〉=m

H∞(λ)

with coefficients c(m) ∈ Z, is a torsion element in the Picard group

Pic(Γ`\Uε(`)), if and only if the equation∑
m∈Z
m<0

c(m)
∑
λ∈D

q(λ)=m

[
Fλ(t, t′)− |Dk|

〈λ, λ〉
n
〈t′, t〉

]
= 0

holds for all t, t′ ∈D`,Γ. Here, Fλ is the bilinear form from (1) above.

As an application of the theorem, we study the obstructions for a (local)

Heegner divisor to be a torsion element. It turns out that they are given

by certain spaces of cusp forms spanned by theta series. This result is

Theorem 5.1 in Section 5, which here can stated as follows, with G= SL2(Z)

and k = n+ 2:

Theorem 1.2. A finite linear combination of Heegner divisors

H =
1

2

∑
m∈Z
m<0

c(m)
∑
λ∈D
〈λ,λ〉=m

H∞(λ)

is a torsion element in Pic(Γ`\Uε(`)) if and only if∑
m∈Z
m<0

c(m)a(−m) = 0

for all cusp forms f ∈ SΘ
k (G) with Fourier coefficients a(m). Here, SΘ

k (G)⊂
Sk(G) denotes a space of cusp forms spanned by certain (positive-definite)

theta series, see p. 167 for the precise definition.

Theorem 1.2 can be seen a local analog to the global obstruction result

showed by the author in [9, Section 5], which in turn is a unitary group
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version of the obstruction theory developed by Borcherds using Serre duality

(see [1, Theorem 3.1]). We discuss the relationship between the local and the

global obstruction theories in Section 5.1, and also how the two theorems

relate to the quite similar results obtained by Bruinier and Freitag in the

setting of orthogonal groups (see [4, Proposition 5.2, Theorem 5.4]). Our

results are also to some extent related to the results of Bruinier et al. [5]

and to recent work of Funke and Millson.

The paper is structured as follows: in the first section, we present the setup

and notation used throughout. We introduce a Siegel domain model of the

symmetric domain, with the fixed isotropic lattice vector ` corresponding

to the cusp at infinity. We then describe the stabilizer of this cusp and

define the Heisenberg group Γ`. Also, we sketch the construction of the

compactification used for XΓ.

In Section 3, we study the cohomology of the Heisenberg group Γ` and

derive criteria describing when certain two-cocycles obtained from bilinear

forms are torsion elements in the cohomology group H2(Γ`, Z). The following

Section 4 is the main part of the paper: here, we study Heegner divisors,

we introduce the local Borcherds products and we determine their Chern

classes. Using the results established in the second section, we get an

equivalent condition for a linear combination of Heegner divisors to be

a torsion element in the cohomology, Lemma 4.1 on p. 159. A further,

necessary condition follows from the proof, see Corollary 4.1. Finally, as

our main result, we derive Theorem 4.1, part of which follows from the

lemma, while the converse is proved constructively.

The last section closes with the application to modular forms: in Theo-

rem 5.1 we find that cusp forms arising from certain theta series constitute

the obstructions for a local Heegner divisor to be a torsion element in the

Picard group.

§2. Hermitian lattices and symmetric domains

2.1 Hermitian spaces and lattices

Let k = Q(
√
Dk) be an imaginary quadratic number field of discriminant

Dk, with Dk a square-free negative integer. Let Ok ⊂ k be the ring of

integers in k. Denote by dk the different ideal and by d−1
k the inverse different

ideal.

We shall consider k as a subset of the complex numbers C and denote by

δk the square root of the discriminant, with the usual choice of the complex

square root. Then, dk is given by δkOk and d−1
k by δ−1

k Ok.
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144 E. HOFMANN

Let V = Vk be an indefinite Hermitian space over k of signature (1, n+ 1),

endowed with a nondegenerate Hermitian form denoted 〈·, ·〉, linear in the

left and conjugate linear in the right argument. A complex Hermitian space

VC = V ⊗k C is obtained by extension of scalars. We denote by VQ the Q-

vector space underlying V , which bears the structure of a quadratic space of

signature (2, 2n+ 2) with the quadratic form q(·) defined by q(x) := 〈x, x〉.
Similarly, the real quadratic space underlying VC is denoted VR. We have

VR = VQ ⊗Q R.

Let L be a lattice in V , with L⊗Ok
k = V . We denote by L′ the Z-dual

of L, defined as the set

L′ = {x ∈ V ; 〈x, y〉 ∈ d−1
k for all y ∈ L}

= {x ∈ V ; Trk/Q〈x, y〉 ∈ Z for all y ∈ L}.

Naturally, L′ is a lattice in V , too. If L⊆ L′, the lattice L is called integral.

If further for all x ∈ L, 〈x, x〉 ∈ Z, then L is called even. Finally, L is

unimodular, if L′ = L. The quotient L′/L is referred to as the discriminant

group of L.

More generally in the context of this paper, by a Hermitian lattice we

mean a discrete subgroup M of V , for which the ring of multipliers O(M)

is an order in k. (A multiplier of M is a complex number α with αM ⊂M .)

Most lattices will occur here as sublattices of a fixed lattice L, with L as

above, of full rank, Hermitian and even.

Denote by U(V ) the unitary group of V , and by SU(V ) the special unitary

group. The isometry group of a lattice L in U(V ) is denoted U(L), similarly

for SU(L). The discriminant kernel ΓL is the subgroup of finite index in

SU(L) which acts trivially on the discriminant group of L. We refer to

subgroups of finite index in ΓL as unitary modular groups. In the following,

Γ will always denote a unitary modular group.

2.2 A symmetric domain

Viewing U(V ) as an algebraic group, its set of real points, denoted

U(V )(R), is the unitary group of VC. A symmetric domain for the action of

U(V )(R) on VC is given by the quotient D = U(V )(R)/K with a maximal

compact subgroup K. Denote by PVC the projective space of VC. A projective

model for D is given by the positive cone

C = {[v] ∈ PVC; 〈v, v〉> 0}.
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We briefly review the construction of an affine model. Denote by Iso(V )

the set of one-dimensional isotropic subspaces of Vk. Its elements are in

one-to-one correspondence with the rational boundary components of the

symmetric domain. In particular, we fix an element I ∈ Iso(V ) by choosing

a primitive isotropic lattice vector ` ∈ L and setting I = k`. Further, we

choose a primitive vector `′ ∈ L′ such that 〈`, `′〉 6= 0. We shall assume that

`′ is isotropic, too. Note that this is a nontrivial assumption about the

Hermitian lattice L and its dual.

For a ∈ V , we denote by a⊥ the orthogonal complement with respect to

〈·, ·〉. We set D := L ∩ `⊥ ∩ `′⊥. Equipped with the restriction of 〈·, ·〉, D
is a definite Hermitian lattice of signature (0, n). Denote by W =Wk the

subspace D ⊗Ok
k, and let WC =W ⊗k C.

Now, an affine model for D, called the Siegel domain model, is given by

the following generalized upper-half-plane:

H`,`′ = {(τ, σ) ∈ C×WC; 2=(τ)|δk||〈`, `′〉|2 >−〈σ, σ〉}.

For (τ, σ) ∈H`,`′ , we set

z = z(τ, σ) := `′ − δkτ〈`′, `〉`+ σ.

Clearly, under the canonical projection πV : VC→ PVC, we have πV (z) ∈ C
for all (τ, σ) ∈H`,`′ . Conversely, every [v] ∈ C contains a representative of

the form z(τ, σ) for some pair (τ, σ) ∈H`,`′ . Usually, in the following, since

` and `′ are fixed, we shall simply write H=H`,`′ .
The isotropic line IC = I ⊗k C = [`] corresponds to the cusp at infinity

of H.

2.3 Stabilizer of the cusp

Next, we describe the stabilizer in Γ of the cusp [`]. Consider the following

transformations corresponding to elements of SU(V ):

[h, 0] : v 7→ v − 〈v, `〉δkh` for h ∈Q,(2)

[0, t] : v 7→ v + 〈v, `〉t− 〈v, t〉`− 1
2〈v, `〉〈t, t〉` for t ∈W.(3)

Clearly, these transformations stabilize the isotropic subspace k`. Their

action on H is given as follows:

[h, 0] : (τ, σ) 7→ (τ + h, σ),

https://doi.org/10.1017/nmj.2017.37 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.37


146 E. HOFMANN

[0, t] : (τ, σ) 7→
(
τ +

〈σ, t〉
δk〈`′, `〉

+
1

2

〈t, t〉
δk

, σ + 〈`′, `〉t
)
.

The Heisenberg group attached to `, denoted Heis`, is the set of pairs [h, t]

with group law given by

(4) [h, t] ◦ [h′, t′] =

[
h+ h′ +

=〈t′, t〉
|δk|

, t+ t′
]
.

Here, we follow the convention that ([h, t] ◦ [h′, t′])v = [h, t]([h′, t′] v) for

v ∈ Vk. The center of the Heisenberg group consists of transformations of

type (2).

We denote by Γ` the subgroup of Γ given by the intersection Γ ∩Heis`,

its center we denote by Γ`,T . The full stabilizer of the cusp in Γ is given by

the semidirect product

Γ` n (U(W ) ∩ Γ) = StabΓ(`).

Note that Γ` has finite index in the stabilizer. The elements of Γ` can be

described as follows (this is well-known):

Remark 2.1. Suppose Γ is a unitary modular group and let Γ` =

Γ ∩Heis`. Then there exist a positive rational number N`,Γ and a lattice

D`,Γ of finite index in D, such that [h, t] ∈ Γ` for all h ∈N`,ΓZ, t ∈D`,Γ, and

that |δk|−1=〈t′, t〉 ∈N`,ΓZ for all t, t′ ∈D`,Γ.

2.4 Boundary components

The modular variety XΓ is given by the quotient

Γ\D' Γ\U(V )(R)/K ' Γ\H.

Note that XΓ is noncompact. The usual Baily–Borel compactification X∗Γ,BB
is obtained by introducing a topology and a complex structure on the

quotient

Γ\(H ∪ {IR; I ∈ Iso(V )}).

We sketch this for the cusp at infinity, defined by [`]. The following sets

constitute a system of neighborhoods of the cusp

(5) Uε(`) =

{
[z] ∈ C; 〈z, z〉

|〈z, `〉|2
|〈`′, `〉|2 > 1

ε

}
(ε > 0).
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A subset V of C ∪ {[`]} is called open if V ∩ C is open in the usual sense and

further if [`] ∈ V implies Uε(`)⊂ V for some ε > 0.

Through the quotient topology, this construction yields a topology on

Γ\(C ∪ {[`]}). The complex structure is defined though the pullback under

the canonical projection C ∩ {IR; I ∈ Iso(V )}→X∗Γ,BB, locally for each

cusp, see [8] for details. This way, one gets the structure of a normal complex

space on X∗Γ,BB. In general, however, there are still singularities at the

boundary points.

This difficulty can be avoided by using a toroidal compactification,

instead. We recall the construction briefly; see [8, Chapter 1.1.5] and, in

particular [5, Section 4.3] for more details. In the following, identify the sets

Uε(`)⊂ C with the corresponding sets of representatives in H`,`′ . Clearly,

the Heisenberg group Γ` operates on Uε(`). For sufficiently small ε, there is

an open immersion

Γ`\Uε(`)→XΓ.

Recall that for the center C(Γ`) = Γ`,T , we have Γ`,T ' ZN`,Γ. We set q` :=

exp(2πiτ/N`,Γ). The quotient Γ`,T \Uε(`) can now be viewed as bundle of

punctured disks over WC:

Vε(`) := Γ`,T \Uε(`)'
{

(q`, σ); 0< |q`|< exp

(
π〈σ, σ〉+ ε−1

|δk|2|〈`′, `〉|2

)}
.

Adding the center to each disk, we get the disk bundle

Ṽε(`) :=

{
(q`, σ); |q`|< exp

(
π〈σ, σ〉+ ε−1

|δk|2|〈`′, `〉|2

)}
.

The action of Γ` is well-defined at each center, leaving the divisor q = 0

fixed. Also, if Γ is sufficiently small, the operation is free, hence we get an

open immersion

(6) Γ`\Uε(`)→ (Γ`/Γ`,T )\Ṽε(`),

by which the right-hand side can be glued to XΓ, yielding a partial

compactification. For a point (0, σ0) ∈ Ṽε(`), we define a system of open

sets

Bδ(0, σ0) = {(q`, σ) ∈ Ṽε(`); 〈σ − σ0, σ − σ0〉< δ, |q`|< δ} (δ > 0).

Under the immersion (6) the images of these sets form a system of open

neighborhoods for the boundary point at (0, σ0).

Repeating this construction and the gluing procedure for every

I ∈ Γ\Iso(V ) yields a compactification of XΓ, which we denote X∗Γ,tor.
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§3. The local cohomology group

In the following, let Γ be a unitary modular group and let Γ` ⊂ Γ be a

Heisenberg group of the form Γ` =N`,ΓZ oD`,Γ with N`,Γ ∈Q>0 and D`,Γ ⊆
D as introduced in Remark 2.1. We are interested in the cohomology of Γ`,

more specifically the second cohomology group H2(Γ`, Z).

As usual, ifG is a group acting on an abelian groupA, the nth cohomology

group is defined as the quotient

Hn(G, A) =
ker(Cn(G, A)

∂−→ Cn+1(G, A))

im(Cn−1(G, A)
∂−→ Cn(G, A))

,

wherein Cn is the set of n-cocycles, consisting of all functions f :Gn→A,

and ∂ is the coboundary operator. In the present setting, G= Γ`, A= Z and

the action of G is trivial.

Let Uε(`) be a neighborhood of the cusp of infinity, as defined in (5) above,

with ε sufficiently small, so that the map in (6) is indeed an open immersion.

Further, denote by Oε =Oε(Uε(`)) the sheaf of holomorphic functions on

Uε(`) and by O∗ε =Oε(Uε(`))∗ the sheaf of invertible holomorphic functions.

The action of Γ` on Uε(`) naturally induces an action on Oε and O∗ε . The

exact sequence

0 0 Z Oε O∗ε 0ı e 0

thus induces an exact sequence of cohomology groups:

(7)

0 H1(Γ`, Z) H1(Γ`,Oε) H1(Γ`,O∗ε ) H2(Γ`, Z) H2(Γ`,Oε).δ 0

The Picard group of Γ`\Uε(`) is given by H1(Γ`\Uε(`),O∗ε ). Since the open

neighborhoods Uε(`) are contractible, all analytic line bundles on Uε(`) are

trivial. Therefore,

(8) Pic(Γ`\Uε(`)) = H1(Γ`,O∗ε ).

Further, let Pε denote the functions in Oε which are periodic for the action

of N`,ΓZ. As N`,ΓZ = Γ`,T is a normal subgroup with Γ`/N`,ΓZ =D`,Γ, and

since N`,ΓZ\Uε(`) is contractible, we have Hp(Γ`,Oε) = Hp(D`,Γ, Pε) (p=

1, 2, . . . ). Thus, from the exact sequences in (7) and (8), we get the exact

sequence

(9) 0
Hom(D`,Γ, Pε)
Hom(D`,Γ, Z)

Pic(Γ`\Uε(`)) H2(Γ`, Z) H2(Γ`,Oε). 0
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Further, since D`,Γ is a free group, the following sequence is exact:

0 0 Hom(D`,Γ, Z) Hom(D`,Γ, Pε) Hom(D`,Γ, P∗ε ) 0. 0

Whence, from (9) we find the exact sequence

(10) 0 Hom(D`,Γ, P∗ε ) Pic(Γ`\Uε(`)) H2(Γ`, Z) H2(Γ`,Oε). 0

Thus, to study Pic(Γ`\Uε(`)) we want to examine the structure of H2(Γ`, Z).

3.1 Bilinear forms in the cohomology

In this subsection, we examine the image of certain bilinear forms

in the cohomology. All calculations are carried out using the standard

inhomogeneous complex of group cohomology (cf. [10, Chapter 8]).

Definition 3.1. Consider the set of bilinear forms B :WC ⊗WC→ R,

for which there is either a Hermitian formH or a symmetric complex bilinear

form G such that B = =H or B = =G, respectively. Such forms generate a

vector space of real bilinear forms on WC, which we denote BIL. Further, let

BILZ denote the set of forms in BIL which are Z-valued on the lattice D`,Γ.

To a bilinear form in BIL we can associate an element of H2(Γ`,Oε).
Define the two-cocycle in C2(Γ`,Oε) by setting

(11) B([h, t], [h′, t′]) :=B(t, t′) ([h, t], [h′, t′] ∈ Γ`).

The class [B] of this cocycle is the image of B in the cohomology. For

B ∈ BILZ we also define a two-cocycle in C2(Γ`, Z) and the attached element

in H2(Γ`, Z). Thus, composing with the natural map H2(Γ`, Z)→H2(Γ`,Oε)
from (7) we have a sequence

(12) 0 BILZ H2(Γ`, Z) H2(Γ`,Oε). 0

The composition of the two maps in (12) is just the restriction to BILZ of

the map BIL→H2(Γ`,Oε) defined by (11). It turns out that the sequence

is exact:

Proposition 3.1. The image of BIL in H2(Γ`,Oε) vanishes.

Proof. In the following, let B denote an element of BIL. Clearly, it suffices

to consider the following two cases: either B arises from a Hermitian form

or B arises from a bilinear form.
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(1) Let H :WC ×WC −→ C be a Hermitian form. Consider the following

one-cocycle in C1(Γ`,Oε):

u([h, t], z) =
1

2i

[
2

〈`′, `〉
H(σ, t) +H(t, t)

]
.

Its image under the coboundary map it given by

∂u([h, t], [h′, t′], z) = [h, t]u([h′, t′], z)− u([h, t][h′, t′], z) + u([h, t])

=
1

2i
(2H(t, t′)−H(t, t′)−H(t′, t)).

Thus, we see that B = =H is indeed trivialized by a cochain. Hence,

its image H2(Γ`,Oε) vanishes

(2) Let G :WC ×WC −→ C be a symmetric complex bilinear form. We

consider the following one-cocycle valued in Oε:

u([h, t], z) =
i

2

(
1

〈`′, `〉
G(σ, t) +

1

2
G(t, t)

)
.

Its image under the coboundary map is given by

∂u([h, t], [h′, t′], z) =
1

2i

(
G(t′, t)− 1

2
G(t, t′)− 1

2
G(t′, t)

)
=

1

2i
(G(t′, t)−G(t′, t)).

Thus B = =G is trivialized by a cochain, and [B] = 0 in H2(Γ`,Oε).

Remark 3.1. We note that under a map of the type defined in (11),

the real parts of sesquilinear forms have vanishing image in H2(Γ`,Oε), too.

The proof is quite similar.

Now that we know the sequence (12) to be exact, we study the first map

BILZ→H2(Γ`, Z). It is far from being injective. The following lemma and

its proof are essentially due to Freitag, a sketch is contained in (E. Freitag,

personal communication, 2007).

Lemma 3.1. The kernel of the map BILZ→H2(Γ`, Z) is the cyclic group

generated by the antisymmetric bilinear form

1

N`,Γ

=〈·, ·〉
|δk|

.

In particular, the image of an element B ∈ BILZ is a torsion element in

H2(Γ`, Z) if and if B and |δk|−1=〈·, ·〉 are linear dependent over Z.
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Proof. The proof uses a transgression map, which we introduce next.

First note that, since the action of Z is trivial, the map BILZ→H2(Γ`, Z)

factors over H2(D`,Γ, Z) = H2((Γ`/N`,ΓZ), Z). With Proposition 3.1 we have:

0 BILZ H2(D`,Γ, Z) H2(Γ`, Z) 0. 0

Now, the transgression tg is defined as the map for which the sequence

(13) 0 Z H2(D`,Γ, Z) H2(Γ`, Z) 0
tg

0

becomes exact. Thus, the kernel of the map into H2(Γ`, Z) is generated

by the image of the identity map 1 : Z→ Z under tg. The image tg(1) is

represented by a coboundary (t, t′) 7→ (∂u)([·, t], [·, t′]), with a one-cochain

u : Γ`→ Z, which has to satisfy two conditions:

(1) u([N`,Γ h, 0]) = h for all h ∈ Z and

(2) (∂u)([h, t], [h′, t′]) does not depend on h or h′.

A suitable u is obtained by setting u([N`,Γh, t]) := h. We get

(∂u)([h, t], [h′, t′]) = [h, t]u([h′, t′])− u([h, t][h′, t′]) + u([h, t])

= − 1

N`,Γ

=〈t′, t〉
|δk|

.

Hence, tg(1) is represented by the cocycle

(t, t′) 7−→ 1

N`,Γ

=〈t, t′〉
|δk|

,

any integer multiple of which is then contained in the kernel. Thus, for any

B ∈ BILZ the image [B] is a torsion element precisely if it is linear dependent

to tg(1) over Z.

The linear dependence condition in the lemma can more conveniently be

formulated thus: if B ∈ BILZ, the image is a torsion element if and only

if there is a rational number Q, such that for all t, t′ ∈D`,Γ, the following

equation holds:

(14) B(t, t′)−Q=〈t, t
′〉

|δk|
= 0.

SinceD`,Γ has full rank inWk, by linear extension, equivalently, the equation

holds for all t, t′ ∈W ; similarly for all t, t′ ∈WC. As an example for this, we

give an application to Hermitian forms.
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Remark 3.2. Let H be a k-valued Hermitian form on Wk, and assume

that |δk|−1=H ∈ BILZ. Further assume that H is linear in its left argument

(otherwise, invert the sign in the equation below).

Then, the map H 7→ |δk|−1=H defines a torsion element in H2(Γ`, Z) if

and only if the following equation holds for all t, t′ ∈D`,Γ:

(15) H(t, t′) +
TrH

n
=〈t, t′〉= 0,

where the trace Tr is taken over a normalized orthogonal basis for 〈·, ·〉.

Proof. Taking the imaginary part of (15), we see that indeed, if the

equation holds, =H is a rational multiple of =〈·, ·〉 and thus |δk|−1=H defines

a torsion element by the lemma.

Conversely, assume that the image is a torsion element in H2(Γ`, Z). Then,

by the lemma, the form has to be linear dependent to |δk|−1=〈·, ·〉 and

satisfies an equation of the form (14). Since by linear extension, the equation

holds for all t, t′ ∈WC, we may replace t by a purely imaginary multiple.

The resulting equation, equivalent to the first, is the following:

<H(t, t′)−Q · <〈t, t′〉= 0,

valid for all t, t′ ∈WC. Whence by linear combination of the two equations,

we find H(t, t′) =Q〈t, t′〉 for all t, t′ ∈WC. To determine the factor of

proportionality Q, we take the trace. We have Tr〈·, ·〉 |WC=−n, and get

Q=−(1/n)TrH.

§4. Local Heegner divisors and Borcherds products

Our main interest here is to study the contribution of Heegner divisors

to the local Picard group. For this purpose, we introduce local Borcherds

products and, with their help, calculate the Chern classes of local Heegner

divisors in H2(Γ`, Z). Then, we apply the cohomological results from

Section 3.

The local Picard group Pic(XΓ, `) is defined as the direct limit of the

Picard groups on the regular loci (in the Baily–Borel compactification

X∗Γ,BB) of the open neighborhoods Uε(`) of the cusp attached to `:

(16) Pic(XΓ, `) = lim−→ Pic(U reg
ε ).

Up to torsion, we can describe this local Picard group through the

direct system Pic(Γ`\Uε(`)), as Γ` has finite index in the stabilizer of the
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cusp, StabΓ(`). As the quotient StabΓ(`)/Γ` operates on the direct limit

lim−→ Pic(Γ`\Uε(`)), for the invariant part, one has

(17) Pic(XΓ, `)⊗Q = (lim−→ Pic(Γ`\Uε(`))⊗Q)StabΓ(`)/Γ` .

Thus, to describe the position of a local divisor up to torsion, it suffices

to work with the Picard group Pic(Γ`\Uε(`)) for a fixed (sufficiently small)

ε > 0.

Remark 4.1. Replacing the Baily–Borel compactification X∗Γ,BB with

the toroidal compactification X∗Γ,tor, the system of open neighborhoods Uε

is replaced by the system of open neighborhoods Ṽε(`) with the operation

of Γ`/Γ`,T , and one can look at the Picard groups Pic(Γ`/Γ`,T \Ṽε(`)). The

main difference here is, that now, the divisor of {q` = 0} is a nontrivial

element of the Picard group. A function with this divisor is q` = e(N−1
`,Γτ).

Note that the Chern class of {q` = 0} is precisely (N`,Γ|δk|)−1=〈t, t′〉.

4.1 Local Heegner divisors

First, we recall the usual definition of Heegner divisors on H (cf. [9,

Section 6]), and introduce local Heegner divisors in the neighborhoods Uε(`)

of the cusp [`].

Let λ ∈ L′ be a lattice vector of negative norm, that is 〈λ, λ〉< 0. The

(primitive) Heegner divisor H(λ) attached to λ is a divisor on H given by

H(λ) := {(τ, σ) ∈H; 〈λ, z(τ, σ)〉= 0},

with z(τ, σ) = `′ − τδk〈`, `′〉`+ σ (see Section 2.2). Clearly, the divisor H(λ)

intersects Uε(`) for every ε > 0, if and only if 〈λ, `〉= 0. In the following, we

denote by `⊥ the (orthogonal) complement of ` with respect to 〈·, ·〉.
Thus, let λ ∈ L′ ∩ `⊥. Then, λ= λ``+ λD with λD ∈Wk and H(λ) is

given by an equation of the form

λ`〈`, `′〉+ 〈λD, σ〉= 0.

Consider the orbit of λ under Γ`. Since Γ is a modular group, the Heisenberg

group Γ` operates trivially on the discriminant group L′/L and thus [h, t]λ≡
λ (mod L) for all [h, t] ∈ Γ`. Also, since λ ∈ `⊥, it remains fixed under [h, 0]

for all h ∈N`,ΓZ, and Γ`,T acts trivially.

For an Eichler element [0, t] with t ∈D`,Γ, we have

[0, t]λ= λ− 〈λD, t〉`= (λ` − 〈λD, t〉)`+ λD.
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Thus, the orbit of λ under Γ`/Γ`,T 'D`,Γ is given by λ− T`, where T

denotes the set

T = T(λ) := {〈λ, t〉; t ∈D`,Γ}.

Note that T⊆ d−1
k (as a fractional ideal), since D`,Γ ⊆D.

Hence, the group Γ` operates on the set λ+ d−1
k ` with only finitely many

orbits and thus, the divisor

(18) H∞(λ) :=
∑
α∈d−1

k

H(λ+ α`)

is invariant under Γ` and defines an element of Div (Γ`\Uε(`)).

Heegner divisors with index

Now, let β ∈ L′/L be an element of the discriminant group and m a

negative integer. Then, the Heegner divisor of index (β, m), defined as the

(locally finite) sum

(19) H(β, m) =
∑
λ∈L′
q(λ)=m
λ+L=β

H(λ),

is a Γ-invariant divisor on H. Under the canonical projection H(β, m) is the

inverse image of a divisor on XΓ. Also note that H(β, m) = H(−β, m).

Through the open immersion Γ`\Uε(`) ↪→ Γ\H=XΓ from Section 2.4,

the inclusion Uε(`)⊂H and the projection maps, we get a commutative

diagram

0

Div(XΓ) Div(Γ`\Uε(`))

Div(H) Div(Uε(`)).

0

We denote by H`(β, m) the image in Div(Γ`\Uε(`)) of the divisor H(β, m) ∈
Div(XΓ). The corresponding Γ`-invariant divisor in Div(Uε(`)) is also

denoted by H`(β, m).

For sufficiently small ε, the divisor H`(β, m) is given by the restriction to

Uε(`) of the sum on the right-hand side of (19). Then, only λ’s perpendicular

to ` contribute. In particular, if H`(β, m) is nonzero, then β is contained in

the subgroup

L := {γ ∈ L′/L; 2<〈γ, `〉 ≡ 0 mod M1

and |δk|=〈γ, `〉 ≡ 0 mod M2} ⊆ L′/L,
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where M1, M2 are the unique integers given by 2<〈L, `〉=M1Z and by

|δk|=〈L, `〉=M2Z.

With β ∈ L the local divisor H`(β, m) can be written in the form

(20) H`(β, m) =
∑
κ∈D

q(κ+β̇)=m

H∞(κ+ β̇).

Here, we adopt the notation of [4, Section 4], by which β̇ denotes a

representative of β with β̇ ∈ L′ ∩ `⊥, fixed once and for all for every β ∈ L.

Note that a surjective homomorphism is given by

π : L −→D′/D, β 7−→ β̇D,

where β̇D denotes the definite part of β̇.

4.2 Local Borcherds products

In this section, our aim is to use local Borcherds products to describe

the position of Heegner divisors in the cohomology. Given a lattice vector λ

of negative norm with λ ∈ L′ ∩ `⊥ we can realize the local Heegner divisor

attached to λ through an infinite product with factors of the form (1−
e(〈z, [0, t]λ〉)) with [0, t] ∈ Γ`,T .

If for the Heegner divisor H∞(λ) as in (18), we set∏
β∈d−1

k

[1− e(σ(β)〈z, λ− β`〉)], with σ(β) ∈ {±1},

we get an infinite product with (zero-)divisor H(∞). For σ(β)≡ 1 the

product would be Γ`-invariant. However, to assure absolute convergence, we

must define the sign σ(β) depending on =β. Then, the product is no longer

fully invariant. Instead, the operation of Eichler transformations gives rise

to a nontrivial automorphy factor, which we use to determine the position

of H∞(λ) in the local Picard group.

Assumption. From here on, we shall require that 〈`, `′〉= δ−1
k .

We remark that this is not a particularly serious restriction, as under the

assumptions concerning ` and `′ from Section 2.1, it is always possible to

choose `′ suitably.

Now, keeping in mind that dk = δ−1
k Ok and Ok =Ok =−Ok, we define

the local Borcherds products as follows:
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Definition 4.1. Let λ ∈ L′ be a negative-norm lattice vector in the

orthogonal complement of `. The local Borcherds product Ψλ(z) attached

to H∞(λ) is defined as

Ψλ(z) :=
∏
α∈Ok

[
1− e

(
σ(=α)

(
〈z, λ〉+

α

|Dk|

))]
,

with a sign σ(=α) defined as follows:

σ(=α) =

{
1 if =α> 0,

−1 otherwise.

Clearly, Ψλ(z) is an absolutely convergent infinite product with divisor

H∞(λ). With d−1
k = δ−1

k (Z + ζZ), where =ζ = 1
2δk and 2<ζ ≡Dk (mod 4),

we can write Ψλ(z) in the following form

Ψλ(z) =
∏

p mod |Dk|
q∈Z

[
1− e

(
σ(q)

(
〈z, λ〉+

1

|Dk|
(p+ ζq)

))]
,

with σ(q) = sign(q) if q 6= 0 and σ(0) = +1.

Note that Ψλ is invariant under translations in Γ`,T , while the operation

of Eichler transformations, [0, t] with t ∈D`,Γ, gives rise to the (nontrivial)

automorphy factor

(21) Jλ([h, t], z) =
Ψλ([0, t]z)

Ψλ(z)
([h, t] ∈ Γ`).

Proposition 4.1. The automorphy factor Jλ attached to H∞(λ) takes

the form

Jλ([h, t], z) = e(−2|Dk|〈z, λ〉<〈t, λ〉 − 2(<〈t, λ〉)2ζ + <〈t, λ〉(ζ + 1)),

with ζ such that Ok = Z + ζZ. Note that Jλ is independent of the choice of

ζ.

Proof. Since 〈`′, `〉=−δk−1, by (3) we have 〈[0, t]z, λ〉= 〈z, λ〉 −
δk
−1〈t, λ〉. Since 〈t, λ〉= 〈t, λD〉 ∈ d−1

k we can write

〈[0, t]z, λ〉= 〈z, λ〉+
1

|Dk|
(r + ζs), with r, s ∈ Z.
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We note that s= 2<〈t, λ〉. Now, after permuting representatives modulo

|Dk| and a shift in the index q, the automorphy factor from (21) takes

the form

(22) Jλ([h, t], z) =
∏

p mod |Dk|

∏
q∈Z

1− e(σ(q − s)(〈z, λ〉+ |Dk|−1(p+ qζ)))

1− e(σ(q)(〈z, λ〉+ |Dk|−1(p+ qζ)))
.

Only factors with σ(q − s) 6= σ(q) contribute to the product. There are two

cases: either we have s > q > 0, or s6 q < 0. We examine the first case. By

applying the elementary identity

1− e(−z)
1− e(z)

=−e(−z).

we get

Jλ([h, t], z) =
∏

p mod |Dk|

∏
06q<s

−e
(
−〈z, λ〉 − 1

|Dk|
(p+ qζ)

)

=
∏

p mod |Dk|

(−1)se

(
−s〈z, λ〉 − s

|Dk|

(
p+

s− 1

2
ζ

))

= e

(
−s|Dk|〈z, λ〉 −

s(s− 1)

2
ζ − s(|Dk| − 1)

2
+
s|Dk|

2

)
= e

(
−s|Dk|〈z, λ〉 −

s2

2
ζ +

s

2
ζ +

s

2

)

Hence, recalling that s= 2<〈t, λ〉, we have

Jλ([h, t], z) = e (−2|Dk|〈z, λ〉<〈t, λ〉

− 2(<〈t, λ〉)2ζ + <〈t, λ〉ζ + <〈t, λ〉) .(23)

We remark that the last term is determined only up to sign, since 2<〈t, λ〉 ∈
Z. Finally, we note that as the second term in (23) is a quarter-integer while

2<ζ is only determined modulo 4, the automorphy factor is independent of

the choice for <ζ.
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The second case (s6 q < 0) can be treated similarly, yielding the same

result for the automorphy factor Jλ([h, t], z).

4.3 The Chern class of a Heegner divisor H∞(λ)

From the automorphy factor Jλ we now determine a two-cocycle repre-

senting the Chern class of the Heegner divisor H∞(λ).

Proposition 4.2. The Chern class δ(H∞(λ)) of the local Heegner

divisor H∞(λ) in H2(Γ`, Z) is determined by the cocycle

[cλ] : ([h, t][h′, t′]) 7−→ −2|δk|<〈t, λ〉=〈t′, λ〉= =(−|δk|Fλ(t, t′)),

where Fλ(t, t′) := 2<〈t, λ〉〈t′, λ〉.

Proof. To calculate the Chern class, we must realize the connecting

homomorphism δ : H1(Γ`,O∗ε )→H2(Γ`, Z). Thus, let A(g, z) be a holomor-

phic function satisfying Jλ(g, z) = e(A(g, z)) and set

(24) c(g, g′) =A(gg′, z)−A(g, g′z)−A(g′, z) for all g, g′ ∈ Γ`.

Then, the two-cocycle defined by the map (g, g) 7→ c(g, g′) is a representative

for the Chern class in H2(Γ`, Z). Note that while A(g, g′) is not uniquely

determined, c(g, g′) is independent of this choice; also, multiplying Jλ with

a trivial automorphy factor changes c(g, g′) only by a coboundary.

Clearly, it suffices to calculate c(g, g′) for Eichler transformations g = [0, t]

and g′ = [0, t′]. From (24) we see that the last two terms in (23), being linear

in t, cancel. We calculate

A([0, t+ t′], z)−A([0, t], [0, t′]z)−A([0, t′], z)

= 2|Dk|〈[0, t′]z − z, λ〉<〈t, λ〉 − 4<〈t, λ〉<〈t′, λ〉ζ

= 2δk<〈t, λ〉〈t′, λ〉 − 2<〈t, λ〉<〈t′, λ〉δk − 4<〈t, λ〉<〈t′, λ〉<ζ

=−2|δk|<〈t, λ〉=〈t′, λ〉 − 4<〈t, λ〉<〈t′, λ〉<ζ,

since =ζ = 1
2 |δk|. Now, consider the second term. We know Jλ does not

depend on the choice of <ζ, thus this term contributes at most a torsion

element in the cohomology or vanishes entirely. It can hence be ignored.

Note also that the remaining first term is an integer for all [0, t], [0, t′]

in Γ`,T .
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It is worth noting that the bilinear form Fλ(·, ·) introduced in Proposi-

tion 4.2 can be written in the form

Fλ(a, b) = <〈a, λ〉〈b, λ〉= 〈b, λ〉〈a, λ〉+ 〈b, λ〉〈λ, a〉 (a, b ∈Wk).

Clearly, the first term is a complex bilinear form, while the second term is

a Hermitian form, we denote them by Bλ(a, b) and Hλ(a, b), respectively.

Note that Hλ(a, b) is linear in its second argument. Further, we remark that

Fλ(a, b) = FλD(a, b) for all a, b ∈Wk.

4.4 Torsion criteria for Heegner divisors

Up to here, we have only worked on Heegner divisors attached to

individual lattice vectors, that is H∞(λ), for λ ∈ L′ with q(λ)< 0. Next,

we consider linear combinations of Heegner divisors. We will be mainly

interested in the Heegner divisors H`(β, m).

For general linear combinations of Heegner divisors, we have the following

lemma:

Lemma 4.1. Let H be a finite linear combination of Heegner divisors of

the form

H =
∑

λ∈L′∩`⊥
q(λ)<0

a(λ)H∞(λ), (a(λ) ∈ Z for every λ).

Then, the Chern class δ(H) of H is a torsion element in H2(Γ`, Z) if and

only if for all t, t′ ∈D`,Γ the following equation holds∑
λ∈L′∩`⊥
q(λ)<0

a(λ)

[
Fλ(t, t′)− 〈λ, λ〉

n
〈t′, t〉

]
= 0.

From the proof of this lemma we also get the following necessary condition

(where we use the same notation as in the lemma):

Corollary 4.1. If δ(H) is a torsion element, then for the bilinear form

Bλ(a, b) = 〈a, λ〉〈b, λ〉 we have

(25)
∑

λ∈L′∩`⊥
q(λ)<0

a(λ) TrBλ = 0,

where the trace is taken over a normal orthogonal basis with respect to 〈·, ·〉.
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Proof. The Chern class δ(H) is given by a linear combination of cocycles

[cλ] in H2(Γ`, Z). By Proposition 4.2, each [cλ] is represented by the two-

cocycle

(t, t′) 7→ −=[|δk|Fλ(t, t′)].

Through (8) and the exactness of the sequence in (7), the image of [cλ] in

H2(Γ`,Oε) vanishes. By the results of Section 3, δ(H) is a torsion element in

H2(Γ`, Z) if and only if there is a rational number Q such that the equation

∑
λ∈L′∩`⊥
q(λ)<0

a(λ)|δk| · =Fλ(t, t′) =Q
=〈t′, t〉
|δk|

holds for all t, t′ ∈D`,Γ. Since D`,Γ has full rank in Wk, by extension of

scalars, the equation holds for all pairs of vectors in Wk. Both sides of the

equation are linear in t′. Thus replacing t′ with a purely imaginary multiple

gives a second, equivalent equation:

∑
λ∈L′∩`⊥
q(λ)<0

a(λ)|δk| · <Fλ(t, t′) =Q
<〈t′, t〉
|δk|

.

By linear combination of the two equations, we get

(26)
∑

λ∈L′∩`⊥
q(λ)<0

a(λ)|δk|Fλ(t, t′) =Q
〈t′, t〉
|δk|

.

To determine Q, we take the trace of both sides of (26), using an orthogonal

basis of WC with respect to 〈·, ·〉, say {el}l=1,...,n with 〈el, em〉=−δl,m. Now,

Tr〈·, ·〉=−n and the trace of Hλ is −〈λ, λ〉, hence

(27) Q(−n) =
∑

λ∈L′∩`⊥
q(λ)<0

a(λ)|Dk|(−〈λ, λ〉+ Tr{el} Bλ).

It turns out the trace of Bλ does not contribute to Q. Indeed, if we take

the trace of (26) over an orthogonal basis of WC obtained from {el} by

rescaling with the complex unit i, that is {iel}l=1,...,n, the traces of the

Hermitian forms 〈·, ·〉 and Hλ remain unchanged while that of Bλ switches
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sign. Comparing this result with (27), we obtain

Q=
∑

λ∈L′∩`⊥
q(λ)<0

a(λ) ·Qλ with Qλ := |Dk|
〈λ, λ〉
n

.

Together with (26) the statement follows. Further, since the contribution of

Bλ to the trace vanishes, we get the necessary condition∑
λ∈L′∩`⊥
q(λ)<0

a(λ) TrBλ = 0.

This proves the corollary, as well.

4.5 The main result

We can now turn to the object of our main interest, Heegner divisors of the

form H`(β, m). We want to describe their position in the local Picard group.

Recall that by (20) the divisors H`(β, m) can be written using divisors of

the type H∞(λ). Thus, any finite linear combination H of Heegner divisors

H`(β, m), can be written as a locally finite sum of Heegner divisors H∞(λ).

Also, note that for a divisor of this type, the Chern class δ(H∞(λ)) depends

only on the projection λD. With this notation, we formulate the following

theorem.

Theorem 4.1. Consider a finite linear combination of local Heegner

divisors of the form

(28) H =
1

2

∑
β∈L

∑
m∈Z+q(β)

m<0

c(β, m)H`(β, m),

with integral coefficients c(β, m), satisfying c(β, m) = c(−β, m).

Then, H is torsion element in the Picard group Pic(Γ`\Uε(`)) if and only

if for all t, t′ ∈D`,Γ the following equation holds

(29)
∑
β∈L

∑
m∈Z+q(β)

m<0

c(β, m)
∑
λ∈D′

λ+D≡π(β)
q(λ)=m

[
Fλ(t, t′)− 〈λ, λ〉

n
〈t′, t〉

]
= 0.
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Further, a necessary conditions for this to be the case is that the following

identity holds, with Bλ(x, y) = 〈x, λ〉〈y, λ〉:

(30)
∑
β∈L

∑
m∈Z+q(β)

m<0

c(β, m)
∑
λ∈D′

λ+D≡π(β)
q(λ)=m

TrBλ = 0.

Here, the trace is taken over an orthogonal basis with respect to 〈·, ·〉.

We note that by (17) a linear combination of Heegner divisors H is a

torsion element in Pic(Γ`\Uε(`)) if and only if it is a torsion element in the

local Picard group Pic(XΓ, `).

Proof. If H is a torsion element, the equation (29) follows from

Lemma 4.1. Also, from the proof of that lemma and Corollary 4.1, it is

clear that in this case, the identity (30) holds.

For the converse, assume that (29) holds for all t, t′ ∈D`,Γ. We show that

H is a torsion element in the Picard group. By extension of scalars, the

equation remains valid for all t, t′ ∈WC. Using (23), an automorphy factor

describing H in Pic(Γ`\Uε(`)) is given by the following (finite) product (for

g = [h, t] ∈ Γ`, z ∈ Uε = Uε(`)):

JH(g, z) =
∏
β∈L

m∈Z+q(β)
m<0

∏
κ∈D

q(κ+β̇)=m

Jκ+β̇(g, z)c(β,m)/2

=
∏
β,m

∏
κ

e (−2|Dk|〈z, κ+ β̇〉<〈t, κ+ β̇D〉

− 2ζ(<〈t, κ+ β̇D〉)2 + <〈t, κ+ β̇D〉(ζ + 1))c(β,m)/2.(31)

Since c(β, m) = c(−β, m), terms which are linear in the κ+ β̇D cancel. The

remaining factors are of the form

e(−2|Dk|〈z, κ+ β̇〉<〈t, κ+ β̇D〉 − 2ζ(<〈t, κ+ β̇D〉)2)c(β,m)/2.

Now, we write 〈z, κ+ β̇〉= 〈z, κ+ β̇D〉+ 〈z, β̇ − β̇D〉. Since 〈β̇, `〉= 0, the

second part depends only on the constant `′-component of z. We get[
e
(
−2δkβ̇`<〈t, λD〉

)
· e
(
−2|Dk|〈σ, κ+ β̇D〉<〈t, κ+ β̇D〉 − 2ζ(<〈t, κ+ β̇D〉)2

)]c(β,m)/2
.
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We ignore the first factor for the time being and examine the second factor.

There, the first term in the exponential is −2|Dk|Fκ+β̇D
(t, σ) while the

second term is equal to −2ζ<Fκ+β̇D
(t, t). We apply (29) to both terms, and

can rewrite this factor in the form

e

(
2Dk
〈κ+ β̇D, κ+ β̇D〉

n

[
〈σ, t〉 − ζ

Dk
〈t, t〉

])
= e

(
2Dk

q(κ+ β̇D)

n

[
〈σ, t〉 − 1

2δk
q(t)

])
e

(
−2<ζ · q(λ)

n
q(t)

)
.(32)

Clearly, the last factor in (32) has finite order and is a torsion element

in Pic(Γ`\Uε). Now, we claim that the first factor is actually a trivial

automorphy factor. To see this, consider the invertible function f(z) = e(cτ)

with c ∈Q×; under the operation of Γ`,T , it gives rise to the following trivial

automorphy factor

j1([0, t], z) =
f([h, t]z)

f(z)
= e

(
c

(
−〈σ, t〉+

1

2δk
〈t, t〉

))
.

Hence the first factor in (32) is indeed trivial. Now, we return to the

previously excluded factor

(33) e(−2δkβ̇`<〈t, κ+ β̇D〉) = e(−(|δk|=β̇` + δk<β̇`)2<〈t, κ+ β̇D〉).

Since |δk|=β̇` is rational (actually, half-integer), this term contributes only a

torsion element in the Picard group. Consider the invertible function g(z) =

e(〈σ, µ〉) with µ ∈Wk from which we get the trivial automorphy factor

j2(z, [0, t]) = e(δ−1
k 〈t, µ〉).

Setting µ= κ+ β̇D, we multiply (33) with a suitable power of j2 to kill the

term in <〈t, κ+ β̇D〉. Then, only torsion elements remain, as |δk|=〈t, κ+

β̇D〉 and <β̇` are rational numbers.

Thus, we find that each of the finitely may factors of JH from (31) can

be expressed through suitable powers of trivial automorphy factors of the

types j1 and j2 and factors of finite order. Hence, it follows that H is a

torsion element in Pic(Γ`\Uε).

Remark 4.2. As in Remark 4.1, if one looks at the neighborhoods Ṽε(`)

from Section 2.4 rather than Uε(`), in the proof, the function f is no longer

invertible and the automorphy factor j1 becomes nontrivial, since f vanishes
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on the disk center {q` = 0}. As mentioned before, the Chern class is given

by (t, t′) 7→ (N`,Γ|δk|)−1=〈t, t′〉.
Thus, in the theorem one would have to replace “torsion element in

Pic(Γ`\Uε(`))” by “equivalent (up to torsion) to the divisor of {q` = 0} in

Pic(Γ`/Γ`,T \Ṽε(`)
)
”. This kind of statement also carries over to the direct

limit and describes the position (up to torsion) of H in lim−→ Pic(Ṽε(`)), which

in analogy to (16) may be considered as a local Picard group for the cusp

[`] on X∗Γ,tor.

Remark 4.3. Recall how the rational space VQ underlying Vk has the

structure of a quadratic space of signature (2, 2n+ 2). Let O(V ) be the

orthogonal group of VQ and O(V )(R) its set of real points. In [4], Bruinier

and Freitag study local Heegner divisors at generic boundary components

of the symmetric domain for such indefinite orthogonal groups. The local

Heegner divisors we consider here can be described as the restriction of their

local Heegner divisors.

For λ ∈D′, H∞(λ) is the restriction of a local Heegner divisor attached

to λ and, similarly, H`(β, m) is the restriction of a composite local Heegner

divisor, in the local Picard group for a generic boundary component of the

symmetric domain, defined by k` as a two-dimensional isotropic subspace

over Q. This follows from the embedding theory developed by the author

in [8, 9].

The relationship between Theorem 4.1 and the results in [4] is the

following: By taking the real part of both sides of (29), one gets precisely

the torsion condition from [4, Theorem 4.5]. It follows that, under these

assumptions, if a local Heegner divisor H as in Theorem 4.1 is a torsion

element in Pic(Γ`\Uε(`)), there is a pre-image under restriction which

satisfies the torsion criterion in [4] and hence is a torsion element in the

local Picard group for a generic boundary component of the orthogonal

modular variety. Conversely, for every local Heegner divisor there which

restricts to H, the criterion of [4] implies that (29) holds for H.

§5. Application to modular forms

In this section as an application of Theorem 4.1 we derive a statement

describing obstructions to local Borcherds products through certain vector-

valued cusp forms. Our results are closely related to those obtained by

Bruinier and Freitag in the context of orthogonal groups (see [4, Section 5]).

Let us briefly recall some standard facts about the Weil representation

and definition of vector-valued modular forms. The rational space WQ
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underlying Wk, equipped with the quadratic form q(·), is negative-definite

with dimension 2n, and the definite lattice D it contains has even Z-rank 2n.

Hence, the Weil representation of the metaplectic group Mp2(Z), defined as

the pre-image of SL2(Z) under the double covering map Mp2(R)� SL2(R),

factors over SL2(Z).

Thus, there is a unitary representation of SL2(Z) on the group algebra

C[D′/D], denoted ρD. The dual representation to ρD is denoted by ρ∗D.

The Weil representation ρD is defined through the action of the generators

of SL2(Z), T =
(

1 1
0 1

)
and S =

(
1 1
0 1

)
. Note that ρ∗D can be obtained from ρD

by complex conjugation of the matrix coefficients. Thus, we have (cf. [11]):

ρ∗D(T )eγ = e(−q(γ))eγ ,

ρ∗D(S)eγ =

√
i
−2n√
|D′/D|

∑
δ∈D′/D

e((γ, δ))eδ,

where (eγ)γ∈D′/D is the standard basis for the group algebra C[D′/D], and

(·, ·) is the bilinear form on VQ given by (·, ·) := Trk/Q〈·, ·〉.

Definition 5.1. For k ∈ Z, a function f : H→ C[D′/D] is called a

vector-valued modular form of weight k with respect to ρ∗D if

(1) f(Aτ) = (cτ + d)kρ∗D(A)f(τ) for all A=
(
a b
c d

)
∈ SL2(Z);

(2) f is holomorphic on H;

(3) f is holomorphic at the cusp i∞.

Here SL2(Z) acts on H as usual. Thus, the first condition implies the

existence of a Fourier expansion:

f(τ) =
∑

γ∈D′/D

∑
m∈Z−q(γ)

a(γ, m)e(mτ)eγ .

The second condition means that all coefficients with m< 0 vanish. If

a(γ, m) = 0 for all m6 0, then f is called a cusp form. We denote the space

of cusp forms of weight k transforming under ρ∗D by Sk(ρ∗D).

In the following, set k = n+ 2. We define certain C[D′/D]-valued cusp

forms in Sk(ρ∗D) using theta series with harmonic polynomials as coeffi-

cients:

(34) Θp(τ, v) =
∑
λ∈D′

p(λ, v)e(−q(λ)τ)eλ,
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for fixed v ∈WC. If p(λ, v) is harmonic in λ and homogeneous of degree

two, the theta series is a cusp form in Sk(ρ∗D). This is a well-known result in

theory of theta functions which can be proved through Poisson summation

(see for example [1, Theorem 4.1]).

The polynomials in question are obtained from the torsion condition in

our main result, Theorem 4.1. This will allow us to identify a space of cusp

forms as the set of obstructions against the local Heegner H being torsion.

We rewrite (29) using polynomials p1(u, v, w), p2(u, v, w) ∈ R[u, v, w]

defined as follows:

(35)
∑
β∈L

∑
m∈Z+q(β)

m<0

c(β, m)
∑
λ∈D′

λ+D≡π(β)
q(λ)=m

[p1(λ, t, t′) + ip2(λ, t, t′)] = 0,

with p1(u, v, w) := <Fu(v, w)− q(u)

n
<〈v, w〉,

p2(u, v, w) := =Fu(v, w)− q(u)

n
=〈v, w〉.

We note that for the real part of (29) to hold, by linearity, it suffices to

verify for t= t′. Consequently, we set

P (u, v) := p1(u, v, v) = 2(<〈u, v〉)2 − q(u)

n
q(v).

It is easily seen that both p1 and p2 can be obtained from P using the

polarization identity, for example

p2(u, v, w) = 1
2(P (u, v) + P (u,−iw)− P (u, v − iw)).

We also note that these polynomials are all harmonic and homogeneous in u.

In fact, P is harmonic in both indeterminates u and v and also homogeneous

of the correct degree. Thus, in particular, for every v ∈WC, the theta series

ΘP (τ, v) is a cusp form transforming under ρ∗D with the desired weight k.

We rewrite (34) slightly to obtain the Fourier expansion of ΘP (τ, v):

ΘP (τ, v) =
∑

γ∈D′/D

∑
m∈Z−q(γ)

m<0

( ∑
λ∈D′
λ+D≡γ
q(λ)=m

P (λ, v)

)
· e(−mτ)eγ .

Now, the Fourier coefficients are precisely the real part of the inner sums in

(35), restricted to the diagonal with t= t′ = v.
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As v varies over WC, these theta series ΘP (τ, v) span a subspace of Sk(ρ∗D)

which we denote as SΘ
k (ρ∗D). We remark that the polynomials p1(λ, v, w)

and p2(λ; v, w) also define theta series, but these are already contained in

SΘ
k (ρ∗D).

With these considerations, Theorem 4.1 can be restated using modular

forms.

Theorem 5.1. A finite linear combination of Heegner divisors

H =
1

2

∑
β∈L

∑
m∈Z+q(β)

m<0

c(β, m)H`(β, m),

with integer coefficients c(β, m) satisfying c(β, m) = c(β,−m) is a torsion

element in the Picard group Pic(Γ`\Uε(`)) if and only if∑
β∈L

∑
m∈Z+q(β)

m<0

c(β, m)a(π(β),−m) = 0

for every cusp form f =
∑

γ∈D′/D
∑

m∈Z−q(γ) a(γ, m)e(−mτ)eγ ∈ SΘ
k (ρ∗D).

5.1 Relationship to global obstruction theory and the work of

Bruinier and Freitag

Since the statement of Theorem 5.1 holds for all sufficiently small ε,

passing to the direct limit we get the statement for the local Picard group

at the cusp `. Now Theorem 5.1 formally resembles a global obstruction

statement for unitary groups from [9] in the style of Borcherds [2]. It can

be stated as follows, from [9, Lemma 5, Theorem 4].

Theorem 5.2. A Heegner divisor of the form

H =
1

2

∑
β∈L′/L

∑
m∈Z+q(β)

m<0

c(β, m)H(β, m)

is the divisor of a Borcherds product if and only if∑
β∈L′/L

∑
m∈Z+q(β)

m<0

c(β, m)b(β,−m) = 0,

for every cusp form g ∈ Sk(ρ∗L) with Fourier coefficients b(β,−m).
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Since by results of Bruinier [3], the local obstruction space

H` :=
1

2

∑
β∈L

∑
m∈Z+q(β)

m<0

c(β, m)H`(β, m)

is a torsion element in the local Picard group. In fact, the same argument

applies for every cusp.

The results of Bruinier and Freitag [4, Theorem 5.1], in the setting of

orthogonal groups are very similar to Theorem 5.1 above. The definition of

their theta series is (essentially) the same. Indeed, if we look at the rational

quadratic space VQ underlying Vk and the lattices L and D as quadratic

modules in VQ, the obstruction spaces are the same.

In this case, through the embedding theory from [8, 9] we can pull

back Heegner divisors on the modular variety of the orthogonal group to

Heegner divisors for the modular variety of the unitary group. As sketched

in Remark 4.3 above, this also works locally. Thus if H is the Heegner

divisor of a Borcherds product for the orthogonal group, then it is trivial

at generic boundary components in the sense of [4, Definition 5.3], that

is, locally torsion, and hence restricts to a torsion element in the local

Picard group for every cusp I of the unitary modular variety. Similarly,

by pulling back the Borcherds product itself, one gets a Borcherds product

for the unitary group with the pullback of H as its divisor, and through

Theorem 5.2, again, the corresponding local Heegner divisors are torsion

elements.

We also remark that the obstruction space in Theorem 5.2 is the same

as that from Borcherds’s [2] in the orthogonal situation. Hence, if H is the

Heegner divisor of a Borcherds product for the unitary group, one can find

a Heegner divisor on the orthogonal side which restricts to H and is the

divisor of a Borcherds product.

Remark 5.1. In [4, Theorem 5.4], they were able to show that for

a unimodular lattice L, the triviality of a Heegner divisor at generic

boundary components, conversely, implies the global obstruction equation

of Borcherds from [2] and hence the existence of a Borcherds product for

a Heegner divisor that kills all local obstructions. Their argument depends

on two results: the uniqueness of isomorphism classes of unimodular lattice,

and a result of Waldspurger [12] on the generation of the space Sk(ρ∗L) by

theta series for definite lattices. Unfortunately, there is no obvious way to
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transfer this argument to Hermitian lattices, since given a quadratic module

over Z a complex structure need neither exist, nor need it be unique.
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