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Abstract

The existence and selection of steady-state travelling planar fronts in a set of typical
phase field equations for solidification are investigated by a combination of numerical and
analytical methods. Such solutions are conjectured to exist only for a unique velocity of
propagation and to be unique except for translation. This behaviour is in marked contrast to
the situation in conventional Stefan models in which travelling fronts exist for all velocities.
The value of the steady-state velocity depends upon the various material parameters which
enter the phase field equations. Numerical and, in certain tractable limits, analytical results
for the velocity are presented for a number of physical situations.

1. Introduction

Conventional approaches to modelling a solidification front usually involve the as-
sumption that the front is a sharp mathematical surface separating the solid and liquid
phases. If it is further assumed that this surface is the level set F of the temperature
field T(x, t) on which the temperature equals the melting temperature, TM, we obtain
a classical Stefan problem [36]. In this formulation T(x, t) satisfies the heat equation
in both phases, while conservation of energy implies that the normal velocity of the
front F is

.«„ = c-^-n • [(vr)sol id - (vr)l iqu id],

where (VT)soii(VuqUid are the limiting values of the gradient as the interface is approached
from the solid and liquid, respectively and n is the normal to T directed from the solid
to liquid phase. The parameters D, L, cs are material constants — respectively, the
diffusion constant, the latent heat and the specific heat. While the Stefan problem in
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326 Michael N. Barber and David Singleton [2]

this simplest form has received considerable attention and continues to do so, important
physics is neglected. The most significant physical omissions are the effects of surface
tension, interfacial thickness, metastability and kinetic effects.

Surface tension effects can be included by modifying the boundary condition ap-
plied at the (sharp) interface to include the Gibbs-Thompson correction. Mathemat-
ically, this modification replaces the simple specification of the front as a level set of
the temperature field by the condition that

rfronl = TM{\ - ^ ) , (1.2)

where a is the surface tension and K is the principal curvature of the front. Physically,
the derivation of the Gibbs-Thompson correction assumes local thermodynamic equi-
librium in the vicinity of the interface [25]. This modification of the classical Stefan
problem forms the basis of current theories of velocity and morphology selection in
dendritic growth. (For reviews, see [27, 22, 30].)

The question of metastability cannot be adressed quite so easily, since specifiying
the temperature T(x, t) at a particular point x does not identify the phase (usually,
equilibrium solid or metastable, supercooled liquid) existing at x. To do so, we need
to introduce a second field <f>(x, t), which takes different values in the two phases.
In statistical mechanical terms, <f> is essentially an order parameter. However, in this
context it is usually referred to as the phase field.

The existence of a spatially varying order parameter is also the essential ingredient
of statistical mechanical descriptions of equilibrium interfaces between coexisting
phases; see, for example [35, 21]. hi these theories, which have been extensively
developed and refined over the past twenty years or so, the interface is no longer a sharp
mathematical surface but an interfacial region in which the order parameter varies
rapidly. The success of these theories in understanding the behaviour of equilibrium
interfaces and related phenomena suggests that the incorporation of similar concepts
in dynamic situations, that are at least in quasi-equilibrium, could be advantageous.
Phase field models are a natural way to do this since they are built on an assumption
of local thermodynamic equilbrium.

In this paper we discuss and analyse in some detail one aspect of the behaviour
of phase field models of solidification, namely the existence and selection of planar
travelling waves. The paper is organized as follows. In the next section, we briefly
review the physical basis and derivation of phase field models focussing on those
aspects of particular relevance to our considerations. Section 3 similarity summarizes
the relevant features and results of the statistical mechanical theory of an equilbrium
interface. Section 4 specializes the phase field equations to the case of a steady-
state planar front. These steady-state equations form the basis of a series of detailed
numerical and analytical calculations that are reported in Sections 5 to 10. The paper
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closes with an overall summary in Section 11, where we also link our work more
closely to other related recent work. Some technical aspects are relegated to a series
of appendices.

2. Phase field models

Detailed derivations4 of phase field models have been given by Penrose and Fife [31]
and by Caginalp and Jones [8]. Such considerations are beyond the scope of this paper.
It suffices to recall the basic ideas.

The dynamical equations we require can be 'derived' from an appropriate local
thermodynamic free energy functional T = F[<j>, u,...] of the phase field and any
other relevant physical fields.5 For our purposes only the temperature is necessary,
which we introduce as the reduced field

u = (T - TM)TM = u(x, t), (2.1)

where TM is the bulk melting temperature. The essential and crucial thermodynamic
features are captured if we take T to be of the form

H4>, «,.••] = fdx U*(V0)2 + vi/(0) _ au(j) - ±puA , (2.2)

where W {<j>) is assumed to have two equal minima at <j> = ± 1. The parameters K, a, fi
can be expressed in terms of equilibrium material constants [26, 11]. For the simple
functional (2.2), such considerations give

a = L/2kBTM, 0 = cs/kB, (2.3)

where kB is Boltzmann's constant, while K can be related to the surface tension,
see (3.3) below.

Dynamically, the phase field is governed by a Landau-Ginzburg equation:

T<t>, = —SJ-/S(f>, (2.4)

where r is a relaxation time constant. The functional derivative is defined by the
condition that

d -• ' = IdxX(x)S-£-(x) (2.5)

4More heuristic or physically motivated derivations are given in [26, 11, 4], while Wheeler et. al. [38]
have constructed a precise phase field model to describe an isothermal phase transition in a binary alloy.
5We absorb a normalization factor of kaTM, where kB is Boltzmann's constant, into the definition of T.
The physical dimensional free energy is thus kB TM?-
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holds for all test functions x(*)- Explicitly evaluating the functional derivative for
the form (2.2) yields:

x<t>, = K \ 7 2 ^ ) - *'(</>) + au (2.6)

for the first of our basic equations.
The second equation is just energy conservation, which implies that

(2.7)

where s is the entropy density and qT is a thermal current. The entropy follows from
T\<t>, «] by the usual thermodynamic relation s/kB = —SF/Su, while we assume that
qT is given by Fourier's law

qT = DcsVT, (2.8)

with D the diffusion constant and cs the specific heat. With these assumptions (2.7)
reduces to

(1 + u) [a<t>, + 0ut] = kBDcsV
2u, (2.9)

which is the second basic equation.
The function *(0) has not until now been specified except for the condition that it

has two equal minima at <j> = ±1 . Most of our ensuing analysis will require only the
further condition that *"(0) > 0 for <p near ±1 . More precisely we will require the
following condition to hold. Consider the equation

*'(</>) + A = 0 , (2.10)

where A is a non-negative constant. Then we assume, for sufficiently small A,
that (2.10) possesses three roots

- 1 ~ 0 _ , < 6 , < 0 + I ~ + 1 , (2.11)

such that

*"(<£_!) > 0 and *"(0+i) > 0. (2.12)

For more specific calculations, including all our numerical work, we will use:

*(0) = (<? - l)2/8. (2.13)

We shall refer to this choice as "</>4 -theory" since the resulting free energy functional
T is then the familar functional of <£4-field theory.

Equation (2.9) is not quite as simple as that usually assumed in the literature. To
recover this equation it is necessary to assume that u is small and neglect the explicit u
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dependence on the left-hand side of (2.9). If we do this and, in addition, scale u -*• au
and x -*• Xy/f}kB/Dcs, (2.6) and (2.9) reduce to the system

r<p, = e2V2<p - *'(<£) + u, (2.14)

ut+\(t>, = V2u. (2.15)

The new parameters e and A. are given in terms of the original material constants by

X = a2/p, € = jKpkB/csD. (2.16)

Physically, e and r are both expected to be small.
The system (2.14) and (2.15), or simple variants, has been the basis of almost all

theoretical work on phase field models, notably the extensive work of Caginalp and
co-workers [4, 7, 9]. In particular, this work has addressed questions of existence,
uniqueness and regularity [4, 9] and explored the conditions under which various
sharp interface limits can be recovered [5, 9, 6]. These equations will similarly form
the basis of the detailed work reported here. We return to the question of whether
the approximations involved, particularly the simplification of (2.9), are qualitatively
significant in our concluding comments in Section 11.

3. Equilibrium interface

If we assume that u is everywhere zero and that <f> is independent of t, then (2.6)
and (2.9) reduce to the single equation

KV2<f> - vl>'(0) = 0, (3.1)

which is simply the Euler-Lagrange equation following from the requirement that
0(x) is an extremum of the free energy functional (2.2) with u = 0.

The trivial constant solutions <p = ±1 correspond to the two bulk homogeneous
phases. We shall refer to a phase with <f> « — 1 as 'solid' and one with 0 «* +1 as
'liquid'. Of more interest are solutions that asymptotically approach these bulk values
and thus can be identified with interfaces between coexisting phases. These solutions
form the basis of the mean-field theory of equilibrium interfacial phenomena; see, for
example, [35,21].

Three consequences of this theory are of importance to our present discussion.
Firstly, as already noted, the interface is no longer a sharp mathematical surface but
an interfacial region characterized by a rapid variation of <f>. For a planar interface,
(3.1) reduces to the ordinary differential equation

* * ' « 0 = 0' (3.2)

https://doi.org/10.1017/S033427000001047X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000001047X


330 Michael N. Barber and David Singleton [6]

which is to be solved subject to the boundary conditions 0 -> ± 1 , 0 ' -*• Oas
x —*• ±oo. The excess free energy associated with this spatially varying extremum,
relative to that of a uniform homogeneous bulk phase, is related to the surface tension
a of the interface. Specifically, a is given by the Cahn-Hilliard relation [10, 35]

a/kBTM = K f [<t>Xx)?dx. (3.3)
J-oo

For 04-theory the relevant solution of (3.2) is the single kink solution

= tanh \(x - XQ)/2*/K] , (3.4)

where x0 is an arbitrary constant that reflects the translational invariance of the position
of the interface. Evaluating the integral in (3.3) for this solution gives

a/kBTM = 2SK/3, (3.5)

which reveals that the parameter K, and hence e in (2.14), is determined in terms
of the surface tension. Thirdly, and perhaps less well-known, the Gibbs-Thompson
effect is automatically included; the conventional result (1.2) following from a con-
sideration [26,4] of the effect of curvature on the planar kink solution.

4. Steady-state planar fronts

We now specialize the system defined by (2.14) and (2.15) to steady-state one-
dimensional planar fronts moving with constant velocity c. Such fronts are represented
by solutions of the form

, t) = fa - ct), u(x,t) = u(x-ct), (4.1)

where the functions 0 and u satisfy the coupled ordinary differential equations:

e20" + TC0' + / (0) + u = 0 (4.2)

u" + c{u' + X0') = 0, (4.3)

subject to appropriate boundary conditions. Primes denote differentiation with respect
to the single variable £ = x — ct and we have defined

/(0) = - * ' ( 0 ) . (4.4)

To specify the boundary conditions recall that we wish to model a planar soldific-
ation front moving into a supercooled metastable liquid phase. Far from the front in
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either phase the local temperature should thus approach a constant value that is below
the melting temperature. Consequently we assume that

«(f) -* - A ± <M H ±00, (4.5)

where A+ > A_ > 0. The requirement, that to the left of the front equibrium solid
exists while to the right of the front is metastable liquid, is met if

> tf>± as £ -+ ±00, (4.6)

where 4>+ and 4>- satisfy
f(cp±) = A± (4.7)

with (f>+ 1-1 and 0_ 1. Finally, we impose no flux boundary conditions at
infinity6, i.e. $' -> 0 and u' ->• 0 as | ->• ±00.

Integrating (4.3) and applying the boundary conditions as £ -*• —00 implies

«' = -c(u + A_ + k(<j> - </>_)). (4.8)

Alternatively applying the boundary conditions as f —» +00 yields

0+)). (4.9)

Hence if (j> and « are to be continuous functions with continuous derivatives for all
£ e (—00, 00) and u' —>• 0 as | —>• ±00, we require

A + - A_ = X ( 0 + - * - ) • (4-10)

This condition is the analogue of the familar condition [27] that the Stefan number
must equal unity for planar steady-state fronts to exist in the classical Stefan prob-
lem. Presumably if this condition is relaxed the phase field equations exhibit similar
problems of finite-time blow up, etc. [19], although we have not explored this aspect.
We shall henceforth assume that (4.10) is satisfied, which implies through the condi-
tions (4.7) that the boundary data 0± and u± are all determined in terms of one free
parameter which we take to be A_.

Within 04-theory, /(<£) = ±0(1 - (f>2) so that the equation

/(</>) = A (4.11)

with A a non-negative constant is a cubic with at most three real roots. For A <
l /3 \ /3 , the roots are all real and can be written

V * = - l ,0 ,+l , (4.12)

6For simplicity, we will henceforth usually omit explicit mention of this condition in the statement of the
boundary conditions applied to any particular differential equation.
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where
9(A) = i c o s - 1 ( - 3 V 3 A ) - y . (4.13)

Hence from (4.7) and (4.10) the required boundary data are explicitly defined in terms
of A_ by

-) = — c o s ( 0 ( A _ ) - — ) , (4.14)

(4.15)

and

A+ = -</»+(l - 0+). (4.16)

Note that <p- < 0 and <f>+ > 0 and that to ensure <p+ is real, X and <j>- must satisfy

X < - - -(f>2_. (4.17)

This condition can be interpreted as either a restriction on X or, rather more naturally,
as a restiction on A. . However, we do not believe that the restriction has much
physical significance and is an artifact of the simplistic structure of the usual phase
field equations.

5. The limit e = r = 0

Since e and r are physically both small, the obvious first step is to set both
parameters to zero. However, it is also obvious from the structure of (4.2) that this
is likely to significantly affect the solution since the limit e and r to zero is singular.
We will see that this is indeed the case: In particular, the solution is no longer
continuous. Nevertheless the resulting solution is important for two reasons. Firstly,
it is qualitatively the same as that obtained from a simple classical Stefan problem
and thus allows us to understand the effect of finite interface thickness on the Stefan
problem. Secondly, the limit is a necessary mathematical step towards the inclusion
of non-zero values of e and r in the analysis.

With € = x = 0, (4.2) reduces to the algebraic equation

/(</.) + « = 0, (5.1)

where henceforth we omit the carets on <j> and u. Integrating (4.3) as in the previous
section, we augment (5.1) with a first-order ordinary differential equation for u which
we write as

= f - c ( « + A_ + \{<f> - *_)) if £
\ -c(u + A + + k(4> - <f>+)) if |
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where f0 is arbitrary. For £ > £o> <t> ("(£)) is given by the solution of (5.1) that is
closest to 0 = +1 while for £ < £0, we take the solution which is closest to 0 = — 1.
However, unlike the situation with non-zero e, we can no longer maintain continuity
of 0 and u' across £ = £0 even with the condition (4.10) on the boundary data.

Consider £ > £0. Eliminating u gives a separable first-order differential equation
for0:

= cdl-. (5.3)

(5.4)

, (5-5)

Since 0+ satisfies /(0+) = A+, write

/ (0 ) — A+ =

Equation (5.3) can be integrated to yield

- &) = In ln

where
= lim (5.6)

and the final quadrature requires specification of g (</>).
As £ ->• +oo we require (j> —> <p+. Anticipating that

we find from (5.5) that

Since from (5.4)

(5.7)

(5.8)

(5.9)

which by assumption (2.12) is negative, K is positive and (5.5) defines an acceptable
solution.

Turning to £ < £0, formally the solution appears to be given by (5.5) with (f>+
replaced by <p_ and g now defined by f(<j>) — A_ = (0 — 0_)g(0). However, the
resulting solution behaves as <j> ~ 0_ + O(exp(—K'£)) as | —>• —oo with K' > 0,
which is unacceptable. Hence for £ < £0 we take 0 = 0_ and M = — A_. Our final
solution is then

if £ <
if £ >

if
if

-A_
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where <&()(£) is defined by inverting (5.5) for 0 as a function of £ = c(t- — ij0). The
unknown value 0O appearing in (5.5) can be determined if we maintain continuity of
u across §0. Hence 0O is the solution of

/(0o) = A_ (5.12)

with 0o near+1.
By construction u is continuous. However, 0(£) is clearly discontinuous. Direct

calculation establishes that «'(£) is also discontinuous with

where we have made use of (4.10).
If we specialize to A_ = 0, which corresponds to the 'solid' being at the melt-

ing temperature, and for which <p0 = - 0 _ = 1, (5.13) has a direct and familiar
interpretation. Returning to physical variables (5.13) reads

^D) ' ( 5 1 4 )

which is precisely (1.1) specialized to a planar interface. The recovery of the usual
Stefan boundary condition should not be surprising, since the conventional derivation
of (1.1) relies on the conservation of energy across the (sharp) front. In a phase field
model this conservation is automatically ensured by the thermodynamic foundation.

The velocity c is clearly not determined, solutions existing for all c > 0. In this
sense, the solution we have constructed is qualitatively identical to that found for a
steady-state planar front in the conventional Stefan problem (see, for example, [27]).
In that case, u' is discontinuous, as it has to be to satisfy (1.1), while u decays as e~c?

as £ —> oo with c indeterminate. How this indeterminancy is removed in a phase field
model with non-zero e is the subject of the next few sections.

Before turning to this analysis, we specialize for future reference (5.11) to 04-theory.
In this case, g(0) is a quadratic:

(5.15)

(5.16)

(5.17)

so that the final integral in (5.5) is elementary. If

denote the zeros of A. — g((j>) then the function 4>0(f) is given by solving

2k-
ln - I n

2k f 1

^ 4 - 3 0 2 - 8 1 I ( / i + - 0 + ) h l In
0o-M-
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for 4>0.

6. Matched asymptotic expansions: € -> 0, x = O(e)

We now investigate the effect of small but finite e and r on the steady-state solutions
derived in the preceding section. Presumably in this case the discontinuities in (p and
u' are smoothed. We might also expect that the non-uniqueness of the velocity is
removed with a specific value being selected. A mathematical complication arises
from the fact that two small parameters exist, hi this section we resolve this difficulty
by assuming that

T = T,6. (6.1)

The basic steady-state phase field equations now read:

« = O, (6.2)
u" + c(u' + X(f>') = 0 (6.3)

and can be analysed for small e by application of matched asymptotic expansions.
The method is standard [23].

We assume that <f> and u possess outer expansions:

; O = 0o°(f) + e#( f ) + • • •, (6.4)

; O = «SG) + €«?($) + " ' • • (6-5)

Substituting these expansions in (6.2) and (6.3) and equating successive powers of e
yields

f(4>°o) + "o = 0- (6-6)
<' + c « + X<) = 0, (6.7)

+ tf/'Wg) + «? = 0, (6.8)

ii?" + c « + A.0?') = 0, (6.9)

etc. The velocity c = c(e) should also be expanded as

c = co + c , e + - - (6.10)

to consistently derive the outer equations. However, since c will not be constrained
by the outer solutions it is convenient to omit this step at this stage. We shall assume
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that c = 0(1) as e —>• 0 and that the boundary data is indepedent of €. If the boundary
conditions are satisfied at zeroth order, that is,

<%^<t>±, u°^-A± as £-»±oo, (6.11)

then the higher order functions satisfy

<t>°k - • 0, u°k-* 0 as £ -» ±oo. (6.12)

Finally, the no flux boundary conditions at infinity imply that

<t>°k' - > 0 and u°k' -+ 0 as £ - > ± o o (6.13)

for all * > 0.
The zeroth order equations are precisely the problem treated in the preceding

section. Hence 4>% and «g are determined by (5.10) and (5.11) with c (strictly c0 =
lim€_).oc(e)) undetermined.

The first-order corrections follow from (6.8) and (6.9). For £ < §o> since $} = <t>-,
we have

0? = -«?//'(0_) (6.14)

so that (6.9) reduces to

which is to be solved subject to the boundary conditions u° —*• 0, u°' -> 0 as
% —> —oo. The only acceptable solution is

< = 0, (6.16)

which implies, via (6.14), that
# = 0. (6.17)

For £ > £o, the analysis is slightly more complicated since $J now depends on £.
From (6.8) we have

Integrating (6.9) and applying the boundary condition as £ —>• oo yields

u°' + c(u°l+X<f>°) = 0, (6.19)

which, on substituting (6.18) for <f>°, reduces to

https://doi.org/10.1017/S033427000001047X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000001047X


[13] Travelling waves in phase field models of solidification 337

where

( ) < 6 2 I >

Equation (6.20) is to be solved subject to the condition

«?«b) = 0. (6.22)

We also require that u\ -*• 0 as £ -*• oo. However, since K(£) -» (1 — A.//(<£+)) > 0
as | —> oo, this is automatic. Integrating (6.20) yields

f l *'• (6-23)
The integral over K can be evaluated in closed form by changing the variable of

integration to w = <I>Q(S). Hence from (6.21) and (5.3) we obtain

f J?2*,'tn exP [-c f
f̂e / Wow ) ) L •/?'

c j ic(s)ds = hi
- A+ -

(6.24)

Substituting this result in (6.23) we find that the resulting expression for u° simplifies
if we regard M° (for £ > 0) as a function of 4% (£). Explicitly, write

«?(?) = c^ r .W^d) ) , (6.25)

where, from (6.23),

with </>o = 4>Q (fo)- For 04-theory, this final quadrature is also tractable; the integrand
being a rational function. We shall make use of these analytical results in Section 8.

The outer expansions are now to be augmented by appropriately matched inner
expansions obtained by introducing the stretched variable

• (6-27)

In terms of z the basic phase field equations read

w = O, (6.28)

u" + c€(u' + k<t>') = 0, (6.29)

where' now denotes differentiation with respect to z.
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Substituting the inner expansions

<P = tfw(z; <0 = #,(z) + e0J(z)H , (6.30)

U = Winner̂ ; O = u'0(z) + €U\ (z) + • • • , (6.31)

for <(> and u, together with the expansion (6.10) for c, in (6.28) and (6.29) yield, on
equating successive powers of e,

«{," = 0, (6.32)

,) + u'o = 0, (6.33)

Wo')=O, (6.34)

i ^ + «', = 0, (6.35)

etc.
The necessary data to ensure unique solutions to these equations follow by appro-

priately matching to the outer solution [23, 37]. Hence from (6.32) we find that

u'o = -A_ , (6.36)

while (j>'0 satisfies

<#," + cor, t i + f (0i) - A_ = 0 (6.37)
subject to the boundary conditions

(Po^xpi as z^> ±oo, (6.38)

where 4>°± are roots of /(</>) = A_ with 0° = 0_ near —1 and <j>°+ near +1 .
Equations of the form of (6.37) have been discussed by Hagan [16, 17]. While

existence for arbitrary / does not appear to have been established, Hagan [17] did
prove that if a solution existed for a particular value, say c*(A), of the 'eigenvalue'
c0T\ then this value was unique and the solution was also unique up to translation. For
04-theory, the solution can be constructed explicitly. Direct substitution shows that

\l \l (6.39)

is a solution of (6.37) provided

<*o = \(K -</>_) = ~\ sin0(A_) (6.40)

and
cor, = c*(A) = - ^ ° + 0 ° ) = V^cos0(A_), (6.41)
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where 0(A_) is given by (4.13). By Hagan's theorem [17, Theorem 5] this solution
is unique apart from translations. For small A_:

oo = (1 - 3A2_ + O(A3_))/2, (6.42)

COT, = 3 A _ + 0 ( A i ) . (6.43)

With the zeroth-order functions <$, and u'o evaluated and c0 known, the first-order
corrections follow in principle from (6.34) and (6.35). Even within #4-theory the
necessary calculations cannot be carried out analytically. However, it is possible to
evaluate C\.

Integrating (6.34) once gives

«i' = - c 0 X ^ + A. (6.44)

The constant A can be determined by matching this result in the limit z -> — oo
with the outer expansion in the limit f -*• i-0—. Since to O(c), «outer = 0 this
gives A = c0A.</>_. Hence integrating (6.44) and similarily matching to determine the
constant of integration, we obtain

/•Z

[0o(z') — 0- ] dz'. (6.45)

Turning now to the calculation of (j>[ we write (6.34) as

C(j>\ = — u\ — cxTi<pQ = r { z ) , (6.46)

where

£ = —, + cot, 4- + /'O&OO)- (6-47)
dz2- dz

The following facts pertaining to C are easily established.
(i) With respect to the usual L2 inner product, the adjoint of C is

^ = TT " co'i 4- + /'W6(z». (6-48>
dz dz

(ii) Differentiating (6.37) with respect to z implies that C<f>'0' = 0.
(iii) By direct calculation

£ jeCori20J'J = eCaZtZ£4^ = 0. (6.49)

(iv) Hence
w(z) = eCoIlZ#,'(z) (6.50)

is a null vector of £ f .
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Consequently, a necessary condition for (p[ to exist is that w is orthogonal to the
inhomogeneous term in (6.46), that is

,r)=
J-

(w,r)= w(z)r(z)dz = 0. (6.51)
J-oo

Since all functions are known this condition determines cx, namely

f°°uUz)w(.z)dz
TlCl = ~ r ° Jv \ \ w ' (6-52)

J-oo 4>o (z)w(z)dz
where u\ is given by (6.45).

Specializing to 04 -theory we have

u\ = —2c0k (aoz + In2cosha0z). (6.53)

which yields c,T| =c0*.a-2K0(c0Tl/2ao)/J(c0Tl/2ao), (6.54)

where
/•CX3

K0(p)= (s+ \n2coshs)e2ps sech2sds (6.55)
J—oo

and
/•OO

J(p)= e2ps sech4sds. (6.56)

The substitution v = 1/(1 + e ^ ) transforms both integrals to standard integrals that
can be evaluated [15, page 294, #3.251 and page 538, #4.253] in terms of gamma
functions. Hence

J(p) = ^r(2 - p)V(2 + p) = jnp(l - p2) cosecnp, (6.57)

K0(p) = 2r(l - p)T(l +p)[l-CE- tO- ~ P)]

= lizp [1 - CE - VK1 - p)] cosecnp, (6.58)

where CE = 0.577216... is Euler's constant and \jr(z) = d(lnF(z))/dz is the
logarithmic derivative of the gamma function. Combining these results gives

^ X (6.59)

for the first-order correction for the velocity. As z -*• 1,

*{z) = -CE - (*2/6)(l - z) + 0 ((1 - z)2), (6.60)

which together with the expansions (6.42) and (6.43) for ot0 and c0, implies that

d(A_) = 18Ar-2A_ + O(Ai) as A_ -> 0. (6.61)
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7. Arbitrary e and r—interpretation as a dynamical system

In the preceding section we were able to demonstrate the existence and selection
of a unique steady-state planar front for the phase field equations in the limit e -> 0
with r = O(e). While physically we expect e and x to be small, we know of no
compelling argument that suggests that they should be proportional. Indeed, in most
of the existing literature on phase field models, it is usually assumed that x = O(e2),
again without any compelling argument. In this section we reinterpret7 the basic
steady-state phase field equations as a first-order dynamical system with the aim of
exploring the extent to which we can establish the existence of steady-state fronts
without an assumption of an explicit relation between e and x.

We assume, for non-zero e and r, that any acceptable solution must be at least C2,
if not, as one might anticipate physically, C°°. Hence we may replace (4.3) by the
first-order equation (4.8). Changing the independent variable to

s = $/e, (7.1)

we can write the basic equations as

u = O, (7.2)
S(u + A_ + k(d> - 0_)) = 0, (7.3)

where
f = x/e2 (7.4)

and
S = ce. (7.5)

These equations are subject to the usual boundary conditions, namely

u -*• — A±, 0 —y <f>± as s —>• ±oo (7.6)

with, in particular,
A + - A_ = k(4>+ - it,.). (7.7)

Equations (7.2) and (7.3) can be intrepreted in a number of different ways. If, as
in the preceding section, we assume that r and e are related but now as x = re2,
then (7.2) and (7.3) constitute the inner equations replacing (6.28) and (6.29). The
problem is that e no longer appears in the equations and an inner expansion is not
possible. Alternatively, we can simply regard f as a material parameter. In either case
the question of the existence of steady-state fronts and the selection of their velocity,
if they exist, reduces to the question of the existence of solutions to the boundary
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+1

w,= -A .-A.(wr(|))

FIGURE 1. Schematic representation of the fixed point structure in the w2 = 0 plane of the system
(7.9). Travelling wave solutions correspond to orbits joining the fixed points V- and V+.

value problem defined by (7.2) and (7.3) and the boundary conditions (7.6) with the
velocity entering through the eigenvalue S.

It is convenient to rewrite (7.2) and (7.3) as a third-order dynamical system by
defining phase-space variables

In terms of the io,'s (7.2) and (7.3) become

W[ = W2,

(7.8)

w'2 = —Wi —

w'2 = -8(w3 + A_

— 8TW2, (7.9)

By inspection this system exhibits fixed points at values of w\, w2 and 103 that satisfy

w2 = 0, w3 = -f(wi) = - A _ -k(wi -</>_). (7.10)

If the function / has the usual properties, this fixed point condition can be intrepreted
graphically as in Figure 1. In the physically relevant regime of parameters, three fixed
points exist, which we denote

= wa = (w°, 0, O = (4>a, 0, -ACT), o = ±, 0. (7.11)

'Similar ideas have been discussed recently by Wilder [39] for the special case of <f>4-theory.
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As the notation suggests, the points V± correspond to the boundary conditions satisfied
by the required front solutions. Hence the existence of a steady-state planar front
corresponds [39] to the existence of a heteroclinic orbit joining V- and V+. We have
not been able to establish this existence in general. However, as we report in detail in
the next section, numerical results for <f>A-theory suggest that such an orbit exists only
for a unique value of 8. This conclusion is supported by the behaviour of the solution
in the vicinity of the fixed points.

This behaviour follows in the standard way by linearizing (7.9) about the appropriate
fixed point. Write

w = wa+co, (7.12)

then to first order in ca, (7.9) reduces to

co' = Aato, (7.13)

where
/ 0 1 0 \

Aa = Ya -Si - 1 , (7.14)
\ -8k 0 -8 )

With Ya = —f'i&e)-

If the eigenvalues of Aa are denoted q°, i = 1, 2, 3, we observe that

(7.15)

det Aa = I \qf = 8(Ya + A.). (7.16)
By assumption (2.12) y± > 0. Hence detA± is positive and, at the fixed points V±,
two possibilities exist:

(i) All qf are real with qf > 0 > qf >qf.
(ii) qf is real while qf and qf are complex conjugate pairs with Re qf = Reqf <

0.

Hence as s -> —oo,

q; I , (7.17)
+ 8) )

where the second term arises from the right eigenvector associated with the eigenvalue
<7j~ and C_ is a constant. Since the system is autonomous C_ can be set to, say, unity.
The question now is: Does this solution, that is completely specified as s -*• —oo,
approach (</>+, 0 — A+)fas5 -> +oo? Since the attractive subspace of the fixed point
V+ is only two-dimensional this seems unlikely unless the only free parameter 8 is
appropriately tuned. This heuristic argument suggests that a hetroclinic orbit joining
V- and V+ exists only at most for particular values of 8. Our numerical results for
04-theory suggest that there is at most one allowable value of 8.
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8. Numerical results: 04-theory

We now specialize to 04-theory and explore the existence of steady-state solutions
to the phase field equations numerically. Specifically we seek solutions to (4.2)
and (4.3), which now read

€24>" + TC4>'+ </>(l -<p2)/2 + u=0, (8.1)

u" + C(M' -I- k((>') = 0, (8.2)

subject to
u -*• —A±, (f> —>• 0± as £ —> ±oo, (8.3)

where the boundary data A+ and <t>± are given in terms of A_ by (4.14)-(4.16). (Note
that we have returned to £ as the independent variable.)

From the analysis of the previous section, expressed in £ and c, we know that if a
solution exists then

and
I A ^ c * -* / (c + «-), as | - -oo,

-«*V(c-*+), as?->+oo. ^

Here K_ = <?,~/e, where q^ is the positive eigenvalue of A_ and K+ = —qf/e, where
<7,+ is the negative eigenvalue of A+ of smallest magnitude.8 The constant C_ may be
chosen arbitrarily by appropriate choice of the translational degree of freedom.

As posed, (8.1) and (8.2) constitute a relatively straightforward boundary value
problem. The only computational difficulties arise from the infinite interval and the
stiffness of (8.1) for small e. The interval of integration can be replaced by a finite
interval (—L, L) with effective boundary conditions at £ = ±L defined from (8.4)
and (8.5). The resulting boundary value problem has two parameters c and the constant
C+ in (8.4) and (8.5) that can be adjusted to find a solution. This adjustment was
achieved by imposing continuity of <f>' at £ = ±L and using Newton iteration on the
discretised system. The free constant C_ was chosen to ensure that <p'(—L) was not
neglible. The Newton iteration tended to become unstable as e ->• 0. While this
instablity could be overcome to some extent with a continuation method, the singular
nature of the system ultimately halted convergence for e less than about 3 x 10~2.

Figure 2 shows the numerical solution found by this method for e = 0.034 and
the indicated values of the material parameters, where we have set r = t\€ to allow
comparison with the results of Section 6. The corresponding velocity is c = 0.7583.
8For the parameter regimes of relevance A+ has two real negative eigenvalues.
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FIGURE 2. Graphs of the numerical solutions of the steady-state solutions to the phase field equations
for A_ = 0.01, k = 0.05, r = T,e, r, = 0.05, e = 0.034. The velocity is c = 0.7583. Note that values
of u have been multiplied by a factor of 10.

1.2 -

1.0-

0.8.-

0.00 0.02 0.04 0.06 0.08 0.10

FIGURE 3. Variation of steady-state velocity, c, as a function of e for A_ = 0.01, X = 0.05, x
= 0.05. The straight line is the asymptotic result, c(e) = c0 + cte, derived in Section 6.
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FIGURE 4. Comparison of the numerical calculation of 4>(t-) (solid circles) with the outer 'Stefan-like'
solution given by (8.6) ( ) and the uniform expansion (8.11) and (8.13) ( ). Material parameters
have the same values as in Figure 2.

The variation of the velocity c with e is illustrated in Figure 3, where we also show
the asymptotic result, c(e) = c0 + c{e, that follows from (6.41) and (6.59). For the
indicated parameter values, c0 = 0.600240... and Ci = 3.787822.... While the
numerical results are not in the strict asymptotic region, convergence to the predicted
behaviour is clear.

Figures 4 and 5 present a more detailed comparison of the numerical results for
<f> and u with the analytical results of Sections 5 and 6. In particular, we compare
with the "Stefan-like" (or zeroth-order outer) solution of Section 5 and a uniform
asymptotic approximation constructed from the inner and outer expansions derived in
Section 6. The former is denned by

- 1 for | < 0 ,
for % > 0,

(8.6)

and

for £ < 0,
f o r $ > 0 ,

(8.7)

where <l>0 is determined9 by (5.17) and c is replaced by c0 + cye. The discontinuities
in <p and u' are evident.

These discontinuities are smoothed in the uniform approximation. This was con-
structed in the standard way (see, for example, [37]) by adding the outer and inner

9We have set the arbitrary constant £o to zero.
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FIGURE 5. Comparison of the numerical calculation of «(|) (solid circles) with the outer 'Stefan-like'
solution given by (8.7) ( ) and the uniform expansion (8.10) and (8.12) ( ). Material parameters
have the same values as in Figure 2.

solutions and subtracting the part that they have in common. In our case this prescrip-
tion leads to the approximation

«„„*(£) = «S«) + u'ott/e) + e [«?(£) + K',«/O] - ««»(£). (8-8)

where wCOm(£) can be obtained by expanding uimer(%/€) to O(e) at fixed §. Similarly

« # ( * ) " </>com(£), (8.9)

where </>com(f) is obtained by expanding (^Wr^AO t o O 0 ) m e a t fixed £• Note that,
in light of the available results from Section 6, we have included only the zeroth-order
term in the inner expansion of <f>.

Specializing to </>4-theory we have, for £ < 0,

(8.10)

(8.11)
L Z '

-and for £ > 0,

«unif(£) = - A _ - 2c0X [aof + e In(2cosh(a0£/e))],

<Amif(£) = T (0+ "r"<^1-) "r" ̂ W*+ "" •/*-) t3Tlh(tto?/e)!

-

2c0k [ao£ - € (8.12)

(8.13)
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In these expressions 4>0 is given by (5.17), U by integratinq (6.26) and we again replace
c by c0 + C\€. Inspection of Figures 4 and 5 reveals that these approximants are in
excellent agreement with the numerical results. The deviation evident in Figure 5 can
be accounted for by the small discrepancy («s 4%) between c0 + cxe and the true value
of c.

We now turn to the case of arbitrary r and e and consider the solution of (7.2)
and (7.3). Obviously, these can be solved in a similar way as a boundary value
problem. However, it is more instructive to approach the solution by an alternative
method10 which exploits the formulation as a dynamical system directly.

We firstly extend the result (7.17) to a complete asymptotic series valid as s -*• —oo.
Integrating (7.3) formally gives

/•OO

u(s) = - A _ - kS / e-*(<p(s - t ) - <j>J)dt, (8.14)
Jo

which allows (7.2) and (7.3) to be combined into a single integro-differential equation:

1 f°°
<t>" + 8i4>' + - 0 ( 1 - <p2) = A_+kS / e-s'((j>(s - t) - 4>.)dt. (8.15)

2 Jo

Defining
v(s) = (P(s) - 4>-, (8.16)

we write (8.15) as
K-v = v2Q4>- + v)/2, (8.17)

where /C_ is a linear operator defined by

K-v = ^ 4 + Sr— - y-v - kS f e~Slv(s - 0 dt, (8.18)
ds2 ds Jo

with
Y- = -/'(<£-) = - (1 - 30i)/2. (8.19)

We observe that
K.-eps = W-(p)eps, (8.20)

where

(8.21)Y
p + o

This expression can be written as W..(p) = det (A_ — pl)/(p + 8), where /t_ is the
matrix defined in (7.14). Since this matrix has, by the arguments in Section 7, only
10A similar method that was suggested some time ago by Ablowitz and Zeppetella [1].
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one positive eigenvalue we immediately conclude that W_(p) has only one positive
zero which we denote po-

To leading order as s -*• — oo, the quadratic terms in (8.17) can be neglected and
we recover the asymptotic behaviour

v(s) ~ C\ew, as s -+ -oo. (8.22)

We now extend this result by assuming that the solution can be represented as a
Liapunov-Poincare' expansion [28] of the form

mem™. (8.23)

Substituting this expansion in (8.15) we find that the coefficients Cm can be determined
by the recurrence relations:

2W_(2po)

and

1 f m—1 m—\ n — \ 1

_yCnCm_,, + y^Vc*Cn_tCm_,,|, m>3. (8.25)
n=\ n=2 k=\ J

We observe that C\ is arbitrary and can be removed by defining Cm = C™Cm, where
the Cm's satisfy (8.24) and (8.25) with Ci = 1. This scaling simply reflects the
translational invariance of the system.

Hence as s —> —oo, we have the representations:

Cmempos, (8.26)
m = l

mCmcmw, (8.27)
m = l

n(s) = -A_ - U Y_ s
 Cm e""^, (8.28)

where the last expression for u follows from (8.14). Similar representations can be
derived in the limit s —>• oo. However, these are more complicated because of the
two roots of the characteristic equation that contribute to the asymptotic behaviour.

Instead we use the representations (8.26), (8.27) and (8.28) with a finite number of
terms (we used a maximum of 50) to evaluate 0, <j>' and u up to some maximum value
of s, say s = s0, for a specified value of S. At s0 these values are then used as initial
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FIGURE 6. Typical behaviour as a function of S of the solutions to the initial value problem described
in the text. Shown are plots of (a) <f> and (b) u. The solid line is the solution to the corresponding
boundary value problem in which the correct boundary conditions are imposed at both limits. The
material parameters are k = 0.05, f = 0.4 and A_ = 0.01.

values to integrate the dynamical system defined in (7.9) numerically by a standard
intitial value solver.11 Depending on <5 the ensuing trajectory in phase space either
diverges to large </> (and </>') or apparently approaches a finite limit that is indepenedent
of 8 (but dependent on parameters such as A_, X, etc.). Typical results for (j> and u
are shown in Figures 6 and 7; the latter being a blow-up of the corresponding region
of Figure 6a. The switch between the two types of behaviour appears to occur at a
unique value Sc = <5C(A_) of 8: orbits with S < 8C diverging while those with 8 > 8C

tending to the finite limit.
This limit is not, however, the fixed point V+. Instead the orbit is attracted to the

third fixed point Vo identified in Section 7, which for the relevant parameter values
is an attractive node with two complex eigenvalues whose imaginary parts match

"We used the NAG routine D02EBF which is a variable-order, variable-step implementation of the
backward differentaition formulae [18].
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FIGURE 7. Blow-up of the corresponding region of Figure 6a.
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FIGURE 8. Variation of the selected value of S as a function of A. for the indicated values of A_.
(The material parameter f = 0.4.) The solid lines represent exact asymptotic results (to O(X)) derived in
Section 9. The broken line through the data points for A_ = 0 is drawn only as a guide.
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precisely the observed oscillations.
Thus for neither S > Sc nor S < Sc do orbits apparently approach the fixed point

V+ and hence define acceptable solutions to the boundary value problem (8.15).
Such a solution does appear to arise for S = Sc as indicated in Figure 6, where we
superimposed the solution obtained by solving the boundary value problem directly.
This comparison leads us to conjecture: Steady-state travelling planar fronts of the
phase field equations exist only for the unique velocity c(e) = 8c/e. This front is
morever unique except for translation. While we are unable to rigorously prove
this conjecture for arbitrary values of the physical parameters, it can be confirmed
analytically in the limit of small A as we show in the next section. We also observe
from (8.1) that if u < 0 and </> > 1 then 0' + 8i<p is a monotone increasing function
of s. Hence any trajectory that enters the region {io3 < 0 and W\ > 1} of phase space
must diverge.

The critical value Sc depends on the material parameters. The dependence on A. is
shown in Figure 8 for several values of A_. The striking feature is the behaviour of
Sc for A_ = 0, for which a critical value Ac of A appears to exist such that

A--*O [ <5C(O) > 0 if A > Ac.

Numerically, Ac = f/6, a value that we will confirm analytically in Section 10.

9. Expansion in A

The numerical results presented in the preceding section, together with the heuristic
argument devloped in Section 7, constitute clear evidence for the existence of a unique
steady-state velocity for travelling planar fronts in phase field models. In this section
we confirm this conclusion analytically to O(A) in an expansion about the limit A = 0.

A convenient starting point for the derivation of the required expansion is the
integro-differential equation (8.15) which, on integrating by parts and generalizing to
an arbitrary function /(</»), can be rewritten as

4>" + Sx<p' + f(4>) = A_ + A f [1 - e-^-"] 4>\t)dt, (9.1)
J— 00

where
<P(s) - • <t>± as s ->• ±oo; (9.2)

the boundary data being subject to the usual conditions. In terms of <p,

u{s) = - A_ - A f [1 - e-S(s-0] (f>\t)dt. (9.3)
J—oo
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We now assume that

<t>(s;\) = 4>o(s) + Wi(s) + 0(k2), (9.4)

and
8(\) = 80 + \8l+O(k2), (9.5)

with (So 7̂  0. Substituting these expansions in (9.1) and equating successive powers
of X yields:

<% + 80x4>'0 + /(0o) - A_ = 0, (9.6)

tf + 80r4>[ + f'(4>o(s))<t>i = Sir<t>'0 + f [ l - «-*<-'>] <j>'0(t)dt, (9.7)
J — oo

etc.
Similarily expanding the boundary data gives

A+ = A_ + M0+ - 4>-) + O(X2) (9.8)

and

l l + , (9.9)
where, as before,

= A_ (9.10)

with <j>°_ ~ — 1 and 0° ~ +1. Thus we require

° as s -*• ± o o > C9-11)
asj ^ -oo, _.

) as.-.+oo, ( 9 - 1 2 )

with corresponding boundary conditions on the higher order functions that can be
derived by extending the expansions in (9.8) and (9.9).

The equation for 0O is identical to (6.37) that arose in the inner expansion discussed
in Section 6. Thus the conclusions reached there are immediately applicable: (po(s)
exists if an only if 80i takes the unique value c*. In particular, transcribing the results
of Section 6, we have within 04-theory:

where

and

= \(4>°+ + <t>°J + \^°+- *-) tanner , (9.13)

a0 = i ( 0 ° - <p°_) = -\ sin0(A_) (9.14)

80z = -1(4>°+ + 4>l) = V3cos^(A_), (9.15)
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with 0(A) defined in (4.13), namely

9(A) = -cos'1 (-3^3A)-^-. (9.16)

Likewise the first-order correction <f>\ (s) satisfies an inhomogeneous linear equation

£0, = R(s), (9.17)

where R(s) denotes the right-hand side of (9.7). The linear operator £ is the same linear
operator (recall (6.47)) that arose in the inner expansion of Section 6. Consequently,
for <f>\ to exist we require R (s) to be orthogonal to the null vector of £ f . As in Section 6,
the only unknown free parameter in this condition is Si. Hence we conclude that

f,, = / - I *"*&) /-co [1 - e-So(s-°] ft(0 dt ds
f Z * [ ' ( ) ] 2 d

For 04-theory, this expression is conveniently rewritten as

So K(S0r/2a0, S0/2a0)
T ' ] J(Si/2a) ' ( • }

where the functions K and / are defined by

K{p, q)= f e2pl sech2r dt f e'^-^il + tanhr') dt' (9.20)

and

/ (p) = / e2"'sech4^?, (9.21)
•/—oo

which is the same integral evaluated in Section 6, recall (6.56).
Except for the case p = q, it does not appear possible to express the function

K(p, q) as simply. The substitutions u' = e24', M = e2' transform (9.20) to a form
that can be integrated [15, page 284, #3.194] in terms of generalized hypergeometric
functions. Explicitly we find

(1 + u)
2

iTq Jo (1 + w)2

1 + p Tip
1 + q sin up

(9.22)

where MFU denotes a generalized hypergeometric function with %FX the standard func-
tion. Hence

-j . 35O 3^2(1. 1.2 + f<70; 2 + <?o. 3; 1) So , n . . .
r 5 i = -r-7 r: w, .—: . <7o = z—• (9.23)
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FIGURE 9. Comparison of the asymptotic result (9.25) for f = 1 as a function of A_. The points
are exact numerical values of S while the lines are plots of (9.25) truncated at O(A.) and evaluated for
X = 0.01 (solid line) and X = 0.05 (dashed line), respectively.

For the special case p = q, corresponding to f = 1, 3F2 reduces to an ordinary
hypergeometric function of unit argument, which yields

K(p, p) = 2npcosec7tp.

Hence for f = 1, we have

8(X, A_) =

(9.24)

(9.25)

where 9 = 0(A_) is given by (9.16). Figure 9 compares this asymptotic result,
truncated at O(A.), with some exact numerical values of S. The agreement is excellent
for even relatively large values of X; recall that X is bounded for fixed A_, see (4.17).

For other values of f, it is necessary to evaluate 3F2 and hence Si numerically.
However, this is relatively easy if the series definition of 3 F2 is appropriately accel-
erated, see Appendix A. The results are the straight lines shown on Figure 8 of the
previous section. Agreement with the numerical values of 8 for sufficiently small X is
excellent.

There is obviously a close similarity between the results found in this section
through expansions in X and those of Section 6 derived by matched asymptotics in e
with T = Tie. We can, in fact, recover the latter from (9.15) and (9.19) if we set

f = r /e2 = xxj€, = C€ (9.26)
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and consider the limit e -*• 0 with Si = cxx = O(l). Making these substitutions
in (9.15) and (9.19) we obtain

xxc(e) = \ /3cos0+ — A(-V3cot6»;e) + O(A.2), (9.27)

where a0 = — \ sin#, with 9 still determined in terms of A_ by (9.16), and

Expanding (9.20) for small q gives

(9.29)

where K0(p) is defined in (6.55). Thus writing

rxc(€) = cot\ + C\XX€ + 0(e2), (9.30)

we obtain
coxx = x/3cos<9 + O(k2) (9.31)

and

(9.32)
2a2, 7(c0Ti/2a0)

These results are precisely the results of Section 6, namely (6.41) and (6.54), with
apparently the terms of order A.2 identically zero.

10. The limit k -+ 0, f = O(X), A_ = O(k)

The results of the preceding section confirm the numerical results shown in Figure 7
of Section 8 for small k. However, the nature of the expansions developed in Section 9
preclude investigation of the appearance of steady-state solutions for A_ = 0 and A.
sufficiently large. This aspect can be explored if we consider the limit k —> 0 with

x = xxk and A_ = dxk. (10.1)

Proceeding as in the previous section, we assume that a solution to the integro-
differential equation (9.7) exists of the form

4>(s) = <po(s) + A.0, (s) + O(k2), (10.2)

with
S = So + kS{ + O(A.2), <S0 # 0. (10.3)
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Substituting in (9.7) yields the sequence of equations:

4>'o + /Wb) = 0, (10.4)

/ " [ ^ " ] (10.5)

etc. Expanding the boundary data on </> implies that these equations are to be solved
subject to the boundary conditions

4>0(s) - • ±1 , <p'0(s) -+ 0, as s -> ±oo (10.6)

and
4>i(s)^4>f, 0',Cs)->O as j - » . ± o o , (10.7)

where 0f = d , / / ' ( - l ) and 0+ = (2 + d,) / / ' (+l) .
The argument is now familar. The existence of a unique solution, modulo transla-

tion, to (10.4) satisfing the boundary conditions (10.6) is well-known, see for example,
[14]. Moreover, <p0 is such that

ltf>o =F II < Ce-"u\ | ^ | < C'e-"M as s -+ ±oo, (10.8)

where C, C" and K are positive constants [14]. In our case, since
with *(0) > *(±1) = 0 for (f> ^ ±1 , we can assert that <%(.y) > 0 and

- s o = I
Jo /2V(<t>)

(10.9)

where s0 is an arbitrary constant such that <j>o{so) = 0. For 04-theory this integral
reproduces the kink solution

Ms) = tanh(*/2), (10.10)

where, without loss of generality, we have set s0 = 0.
With 0o determined, 0[ again satisfies a linear inhomogenous equation

(10.11)

where £(s) denotes the right-hand side of (10.5) and

Co = ^-2 + /'(*,(*)) (10.12)

is a self-adjoint operator with null vector 4>'o(s)- Hence a necessary condition for <t>\
to exist is that SQ satisfies the solvability criterion

f
J-c

R(s)(j>0(s)ds=0, (10.13)
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SW!(0>

[34]

FIGURE 10. Qualitative behaviour of the function W(8) denned by (10.16). The solid lines depict
the three cases discussed in the text, namely (a) d\ > 0; (b) dx = 0, a2rr < W'(0 and (c) dx = 0,

which on substituting from (10.5) can be written as

80r,a2-dxax = W(S0),

where

(10.14)

and

f*OO /»OO

ff,= / 4>'0(s)ds, 0 2 = / ((j>'0(s))2 ds (10.15)
J—OO J—OO

(10.16)

the existence of the various integrals being ensured by (10.8).
Despite the apparent complexity of this function, it is easy to establish, see Appendix

B, that:
W(0) = 0 < W(8) < 2 for all 8 > 0,

and

W(8) -+2 as 8 -> oo,

W\8) > 0 for all 8 > 0,

W(8) < 8W'(0) for all 8 > 0.

(10.17)

(10.18)

(10.19)

(10.20)

Consequently, W (8) behaves as depicted in Figure 10.
The required value(s) of 80 are given from (10.14) by the intersection(s) of this

curve with the straight line Soi^ — dxax. Two cases need to be distinguished:

(i) dx > 0, in which case, since cr, > 0, a unique root always exists.
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FIGURE 11. Comparison of the asymptotic result (10.24) for A_ = 0 and the indicated values of k.
(£, a f/X)

(ii) dx = 0, for which a physically relevant non-zero root exists if and only if
<r2f, < W"(0).

For 04-theory, substituting for <f>'0(s) from (10.10), gives

or, = 2 , CT2 = 2 / 3 (10.21)

and, see Appendix B,
W'(0) = 4. (10.22)

Hence if dx = 0 a physically relevant solution can only exist if ri < 6 or in terms of
the original parameters x/k < 6. While this condition has been derived in the limit
k —> 0, it accords exactly with the numerical results.

The behaviour of 80 in the vicinity of this critical value of ii follows if we expand
W(8) to O(S2). We restrict attention to 04-theory, for which, see Appendix B,

(10.23)

Hence, for A_ = 0 and fi -> 6—,

80 = (6 - f,)/7r2 + O ((6 - f,)2) . (10.24)

This prediction is compared with exact numerical values of 8 for several values of k
in Figure 11. Agreement is again excellent even for rather large values of A..

Since the operator

(10.25)
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has been exstensively studied in various contexts (see [40,32,21]) we can take the <p4-
theory calculations a step further and obtain (f>\ explicitly. We need the eigenspectrum
of £.(,. This consists [40] of two square integrable functions,

1/3" . ,1

m = X-S sech ]-s tanh )-s, (10.27)

with eigenvalues e0 = 0 and fj = -3 /4 , respectively, and a continuum of states,

fjk = J\fk~
xeiks'2 ( 1 +k2 + 3iktanh-s - 3 tanh2-5) , -00 < k < 00, (10.28)

with eigenvalues
ek = -\-k2/4. (10.29)

If the normalization factors TV* are taken to be

Nk = 2y/jr(k2 + 4)(k2 + l), (10.30)

these states satisfy

(fit, m) = r nUs)rjk(.s)ds = s(k' - k), (10.31)

where S(k) is the Dirac delta function and * denotes complex conjugation.
Since this set of eigenstates is complete we can use them as a basis to expand the

function R(s) appearing in (10.11). Some care with convergence is necessary since

J , M S"~°°' (10.32)
di + 2 as s -*• +oo.

However, these problems can be circumvented, see Appendix C, with the result that

/.OO

/
J—oo

r(k)fjk(s)dk, (10.33)

where, in view of the solvability criterion, we have omited the term involving r)0 a (j>'Q,
the coefficient rx is given by (C.I 3) of Appendix C,

r(k) l— +O(1) as k -*• 0, (10.34)
k/
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and, in the integral over k, we require Im k = 0~ for convergence. Assuming a similar
expansion for 4>\ allows the required expansion coefficients to be written down by
inspection. It is convenient to write the resulting expansion as

1 f°° k2r(k)
4>i(s) = Coriois) - R(s) --rirn(.s) + —Lirik(s)dk, (10.35)

3 J-oo 4 + k2

where Co is an arbitrary constant that can be incorporated (since rj0 a <f>'0) as a shift
of the arbitrary position of the interface. In view of (10.34) the integral vanishes as
s -> ±oo so that, recalling (10.32), we have

—d\ — 2

in accord with (10.7).

11. Summary and concluding comments

In the preceding sections of this paper the existence and selection of steady-state
of travelling planar fronts in a set of typical phase field equations of solidification
have been investigated numerically and analytically in certain tractable limits. These
investigations give considerable support to the conjecture first enunciated in Section 8,
namely that solutions to the phase field equations corresponding to steady-state planar
fronts exist only for a unique velocity c; such a solution is moreover unique except
for translation. This behaviour is in marked contrast to the situation in conventional
Stefan-type models in which travelling fronts exist for all velocities.12

The precise value of the steady-state velocity depends upon the various material
parameters which enter the phase field equations. If r is order e, then matched
asymptotic expansions in e yield c(e) = c0 + c\€ + O(e2); recall Section 7. If r
and e are both arbitrary parameters, then c(e, r) = 5c/e, where the behaviour of the
parameter Sc is illustrated in Figure 8 of Section 8. A particularly striking feature is
the behaviour for A_ = 0 in which case a critical value of the material parameter k,
related to the latent heat, appears to exist. Only if k exceeds this critical value do
travelling waves appear to exist.

We have been able to substantiate much of the behaviour illustrated in Figure 8 by
considering the phase field equations in the limit A. —> 0. In particular, the behaviour
for A_ = 0 can be analytically demonstrated in an expansion in which both f = r/e2

and A_ are taken to be O(X) as A. tends to zero; recall Section 10.
l2In both the phase field equations and the Stefan model, steady-state front solutions exist only for a
specific combination of boundary data. In the Stefan problem this is the so called "Stefan number unity
condition", while in the phase field equations the analogous condition is that of (4.10).
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The analysis of Section 10 is important for a further reason. A common feature of
both the e-expansions of Section 7 and the A.-expansions of Sections 9 and 10 is the
existence of a solvability criterion for the first order corrections. Satisfaction of this
criterion is the fundamental mathematical origin of velocity selection. However, the
solvability criterion is only a necessary condition and need not be sufficient. Only
for the special limit analysed in Section 10 are we able to explicitly construct, by a
spectral method, the first-order corrections and confirm that they satisfy the relevant
boundary conditions.

Indeed, it is possible to exhibit a case in which the solvability criterion implies
a solution, but no solution, in fact, exists. This example arises if, as suggested by
Figure 8, we try to analyse (9.1) with A_ = 0 by expanding in S. Assuming that we
can expand

2 , (11.1)

we find that <p0 satisfies

<Ao" + /(0o) = 0. (11.2)

The natural boundary conditions are (f>0 -> ± 1 as s -*• ±oo. Hence within 04-theory
we again recover the familiar kink solution. Proceeding to first order in S leads again
to the solvability criterion

r f (<t>'0(l;))
2d$ = \. (11.3)

J -~ 00

For 04-theory this condition reduces to the relation i/X = 6, which accords precisely
with the numerical estimate of the critical value of X. There is, however, a problem.
From the boundary conditions applied to the full function <p and those applied to
0o we find that fa cannot remain bounded. Hence, no acceptable solution exists.
This cautionary tale suggests that a rigorous confirmation of our conjecture would be
desirable. We have not been able to construct such a proof and leave it as an open
question.

Throughout this paper we have referred at times to related work, notably the work of
Wilder [39] who anticipated for the special case of <f>4-theory many of the conclusions
of Section 7. The other particularly relevant recent work is that by Caginalp and
Nishiura [9] in which they were able to establish the existence of travelling wave
solutions in the form that we have conjectured but in a different distinguished limit to
any considered here.

This limit, in our notation, can be obtained by returning to the basic free energy
functional(2.2) and introducing an additional (and arbitrary) parameter a"1 multiplying
the function ^(.<f>). The effect of a can be seen if we repeat the equilibrium calculation
of Section 3 for the surface tension; the key result—specialising to $4-theory—(3.5)
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becoming

<T/kBTu = lj£<xe/y/Z. (11.4)

All the cases analysed in this paper, corresponding to a = 1, are characterised by a
surface tension that vanishes as e -> 0, a limit in which essentially a standard Stefan
problem is recovered. Caginalp and Nishiura [9] assume instead that a = O(e2) so
that a -> (T0 as e —>• 0, where a0 is taken to be the physical surface tension. Caginalp
and Nishiura were then able to prove that in this limit travelling wave solutions to the
phase field equations exist and that they converge to the corresponding solutions of a
modified Stefan problem incorporating as boundary conditions on the free surface the
Gibbs-Thomson correction and an additional kinetic correction. The one-dimensional
version of this model has been discussed by Dewynne etal. [12] and is known to exhibit
a unique velocity determined by the undercooling. While the Caginalp/Nishiura result
is mathematically pleasing it actually begs the more interesting physical question of
how the degeneracy present in the absence of surface tension, that is, in a simple
Stefan problem, is removed by the inclusion of surface tension.

This question has been the focus of much attention in higher dimensions, par-
ticularly with regard to selection of the primary morphology and velocity of dend-
rites [27, 22, 30]. In this context the key question has been: Does the inclusion
of surface tension remove the degeneracy present in the so-called Ivantsov [20, 25]
families of parabolic (in two dimensions) or paraboloidal (in three dimensions) needle
crystals? Our one-dimensional results have little bearing on this question except as
an example of how the introduction of a finite thickness to the interfacial region and
a qualitatively correct thermodynamic description can resolve degeneracies that arise
in simpler and physically less complete models. While one can easily show that
for e = x = 0 the phase-field equations in two dimensions possess one parameter
Ivantsov-like solutions, the matched asymptotic analysis to include the effects of finite
e and r is technically difficult and will be discussed elsewhere. [34]

Numerical results by one of us (Singleton) and independent work by Kobayashi [24]
suggest that the phase field equations in two or three dimensions do exhibit structures
reminiscent of dendrites. In particular, the numerical simulations reveal solutions for
which the level sets of the phase field exhibit a parabolic tip moving at a uniform
velocity behind which trail side branch-like structures. This has been most spectacu-
larly demonstrated in recent work by Kobayashi [24] on a modified system of phase
field equations. While it appears difficult to tune the material parameters to realistic
values, this could be simply an artifact of the simplicity of underlying thermodynamic
formulations that have been used to date. We intend to return to this question in a
subsequent paper.

With regard to the one-dimensional results that we have discussed in this paper,
we believe that they are typical of the behaviour that would occur in more realistic
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systems, which are either based on more realistic thermodynamic descriptions or allow
for the approximations made in the derivation of the phase field equations presented
in Section 2. While the reduction to a third-order system that underpins the analysis
of Section 7 is probably special, those considerations appear to rely on fundamental
aspects of the stability of the two relevant fixed points. It is difficult to see how these
features could be significantly modified without at the same time having unphysical
effects on the thermodynamics of the bulk phases. Nevertheless, this question should
be explicitly checked and the numerical method developed in Section 7 is capable of
handling more complex situations.

A number of other questions suggest themselves. The stability of a planar interface
moving in higher dimensions is one. As is well-known [25] sharp interface models
exhibit a morphological instability—the Mullins/Sekerka instability [29]—which is
ultimately controlled by the effect of surface tension. It would also be interesting
to know if violation of the special condition (4.10) on the boundary data gives rise
to similarity solutions or how the similarity solutions of the Stefan problem [19] are
modified by the presence of a finite interface. Some work [33] is possible on these
questions and will be reported elsewhere.
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Appendix A. Numerical evaluation of K(p, q)

The hypergeometric function 3F2 appearing in (9.22) for K(p, q) is defined by [13]

r(a,)r(a2)r(fl3) ^

Provided Re ( £ 6 , — J^a,) > 0 this series is convergent for \z\ < 1. In the case
of (9.22) this condition corresponds to the condition p — q < 1 or (f — l)<50 < 2or0,
which does not appear to be limiting for physically relevant values of the parameters.
Hence we can represent K(p, q) by the convergent series:

, (A.2)
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where
= 2r(2 + q)r(l +p + m)

m ( + \)r(2 + )r(l+ + Y
Note that

(l p + m)tm

Hence the sequence

M

m=\

converges as

TM = TOO + O (Ar1~0?~p)) as M - • oo. (A.7)

with
1 -i. n Trrt

(A.8)1 + q sin up
Accurate estimates of T&, can be obtained by the use of a number of standard

acceleration algorithms. We chose the ^-algorithm [3]:

0 fl

with 6~l = 0 and the alternating e-algorithm [2]:

/A^\ (A.11)

C (A.12)

where e<-'> = 0, e f = T^ and a t = [(-1)* - l]/2. In (A.9) to (A.13), 7;(0) = Kn

and Axn = xn+i - xn.
Both these algorithms are known [3,2] to accelerate sequences of the form of (A.7)

in the sense that if

then the accelerated sequence T^ converges as

T =

Typical results for f = 0.4, and A_ = 0.05 (and hence So = 0.378867...,
p = 0.152130... and q = 0.380326...) are shown in Table 1. These results lead to
the confident estimate that for these parameter values St = 4.348856
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TABLE 1. Typical acceleration of the sequence 7^.

[42]

M

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

TM

1.0000000

1.3013776

1.4418938

1.5218114

1.5728301

1.6079686

1.6335077

1.6528305

1.6679128

1.6799815

1.6898371

1.6980227

1.7049193

1.7108015

1.7158721

Accelerations

alt. e-algorithm

1.7778506

1.7776618

1.7775765

1.7775328

1.7775083

1.7774936

1.7774843

1.7774781

1.7774738

1.7774708

1.7774686

1.7774599

1.7774601

1.7774602

1.7774602

1.7774602

1.7774602

1.7774602

6 -algorithm

1.7732855

1.7759578

1.7767682

1.7770898

1.7772407

1.7773203

1.7773659

1.7773939

1.7774119

1.7774240

1.7774325

1.7774385

1.7780120

1.7774535

1.7774580

1.7774593

1.7774598

1.7774600

1.7774601

1.7774601

1.7774602

Appendix B. The function W(8)

In this appendix we establish a number of results, cited in the text, concerning the
function

W(S) = [°° cp'o(s)ds / [1 - e-*-*] 4>'0(t) dt, (B.I)
J— OO «/—00

which was originally defined in (10.16). The function <po(s) satisfies (10.4).
Since <p'0(s) is positive, recall the discussion in the main text between (10.8)

and (10.9), clearly W(0) > 0. In addition, since 1 > 1 - e-
i('~s) > 0 for t > s

and limi_±0O </>0 (s) = ± 1 .

0 < W(8) < f <t>'0(s)ds f <p'0(t)dt = 2. (B.2)
J— OO J—OO

The right-hand side of this inequality is also lim^oo W(8).
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If the upper bound on 1 — e~S(-'~s) is sharpened to

\-e-
S('-s) <8(t-s), t>s, (B.3)

we obtain
W(8) < 8W'(P), (B.4)

where

W\S) = I" 4>'0{s) ds f (s - r)e-4(-'>^(0 dt (B.5)
J — CO J—OO

is positive for all 8 > 0 by the positivity of <j>'0.
For 04-theory, 4>'o = \ sech2 ^s, and hence

W(8)= I sech2sds [l - e"2*^'] sech2f dt. (B.6)
7—CO J—CO

Setting sech 2f = d(l + tanh O/dr and integrating by parts in the inner integral yields

W(8) = 2s[ sech2sds f e-m"\l + tanh?)dt = 28K(0, 8), (B.7)
J—CO J—CO

where K(p, q) is defined in (9.20). Hence from (9.22),

W(8) =-^-3F2(l, I , 2 ; 2 + 8 , 3 ; I), (B.8)

which, on introducing the series representation of 3F2, recall (A.I), gives

( R 9 )

Since this series is absolutely convergent, we can rearrange the summand by writing

1 ' 'm{m + 1) m m + 1

to obtain
00

W(8) = 48 - 4<52r(l + <5)52

(B..0,

x, , \ x, • (B.H)

^ 8) m(m+8)
The result W'(0) = 4 quoted in the text follows immediately, while expanding the
sum to leading order in 8 gives

CO 1

82 VW(8) = 48 - 482 V — + O(^3) (B.12)

hi™2
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Appendix C. Expansion of R(s)

In this appendix we summarize the expansion of the function R(s) that appears on
the right hand side of (10.5), in terms of the eigenfunctions, (10.26) to (10.28), of the
operator Co. It is convenient to write

, (C.I)

where

H(s)= [i - e-w*-2"] Sech2tdt. (C.2)
J—oo

Expanding the integrand appropriately leads to the convergent series representations:

(C.3)

for s < 0 and

His) = 2 - - ^ - e - * * + 250 ̂  ^ - ^ - (C.4)

for s > 0.
Since the parameter So is determined by the solvability condition, (R, t)0) = 0,

and <t>'0 ex r)0, we can omit the term involving r?0 in the required expansion. The
convergence problem alluded to in the main text arises because R(s) has non-zero
limits as s -* ±oo. From (C.3) and (C.4),

di + OV) as * - + - o o
dx + 2 + O (r'™»A») as s - • +oo.

Hence we write
R(s) = -2diy/nru>(s) + 2®(s) + R^s), (C.6)

where @(s) is the Heaviside step function,

and

?jo(i) = —-p= ( 1 - 3tanh2 - s ) - • -= as 5 -»• ±oo, (C.8)
4y/n \ 2 ) 2*Jn

is the eigenfunction of Co with eigenvalue — 1. The function /?i (s) now tends expo-
nentially fast to zero as s —*• ±oo. Consequently, the coefficients

ak=\ rH(s)Rds)ds (C.9)
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exist and are finite for all k. For our purposes it suffices to note that, given the
exponential decay of R\(s), ak = O(l) as k -*• 0. Similarity, it suffices to observe
that

l(s)@(s) ds = —!= [ e~iks [l - 3 tanh2s + O(Jfc)] ds
2y/n Jo

+O(1) as k^O, (CIO)

rjl

1

where to ensure convergence we assume Im/fc = 0~. Combining these observations
yields the assertion (10.34) for the coeficients r(k).

It remains to compute the coefficient rx of the term involving t)\. From (C.6)

(C.11)
Jo

where
f°°

r{ = I rjl(s)Rl(s)ds. (C.12)
J — oo

Hence on combining (C.I), (C.3), (C.4) and (C.6) we obtain

y j sui JI oo

where

B(y) = f°°m(s)e-rsds. (C.14)
Jo

Substituting (10.27) for r\x allows this final integral to expressed [15, page 256, #3.54]
in terms the logarithmic derivative of the gamma function. Explicitly,

[ Y 3 Y 1

2 4 2 4'
Since B(y) = O(l/y) as y -*• oo, the series in (C.13) converges absolutely.
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