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Abstract Generalized Chow forms were introduced by Cayley for the case of 3-space; their zero set
on the Grassmannian G(1, 3) is either the set Z of lines touching a given space curve (the case of an
‘honest’ Cayley form), or the set of lines tangent to a surface. Cayley gave some equations for F to be
a generalized Cayley form, which should hold modulo the ideal generated by F and by the quadratic
equation Q for G(1, 3). Our main result is that F is a Cayley form if and only if Z = G(1, 3) ∩ {F = 0}
is equal to its dual variety. We also show that the variety of generalized Cayley forms is defined by
quadratic equations, since there is a unique representative F0 + QF1 of F , with F0, F1 harmonic, such
that the harmonic projection of the Cayley equation is identically 0. We also give new equations for
honest Cayley forms, but show, with some calculations, that the variety of honest Cayley forms does not
seem to be defined by quadratic and cubic equations.
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1. Introduction

Cayley forms, according to V. Arnold’s paradigm by which no mathematical discovery
bears the name of the mathematician who made it first, are nowadays called Chow forms.

A Chow form is a polynomial FX in the Plücker coordinates of a Grassmann manifold
G(m − n − 1, m) such that its zero set

Z = G(m − n − 1, m) ∩ {F = 0}

is the locus of projective subspaces that intersect a given projective variety Xn
d ⊂ P

m

(the classical notation Xn
d means that X has dimension n and degree d).

Cayley (see [3,4]) introduced this concept in the case where X is a curve in P
3.

His work was later generalized by Bertini, Chow and van der Waerden (see [1,2,8,9,15]
for partial accounts), and, nowadays, given a variety Xn

d ⊂ P
m as above, one defines its

Bertini form ΦX(H0, . . . , Hn) as the minimal polynomial, multihomogeneous of degree d

in each variable Hi ∈ (Pm)∨ such that

ΦX(H0, . . . , Hn) = 0 ⇐⇒ X ∩ H0 ∩ · · · ∩ Hn �= ∅.
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This polynomial is very important for applications to vision imaging, since it provides
the ‘photographic picture’ of X for each projection to P

n+1 (if the projection is given by
independent linear forms (H ′

0, . . . , H
′
n+1), the hypersurface image of X is defined by the

polynomial Ψ such that, if we take Hi =
∑

jaijH
′
j , Ψ(H0 ∧· · ·∧Hn) = ΦX(H0, . . . , Hn)).

Moreover, X is completely determined by ΦX , and there have been several characteri-
zations of Bertini forms; for instance, there is the characterization by Chow and van der
Waerden requiring that the following hold.

(1) There exists a polynomial F in the Plücker coordinates of the Grassmann man-
ifold G(m − n − 1, m) such that ΦX(H0, . . . , Hn) = F (H0 ∧ · · · ∧ Hn); any such
polynomial F is called a Chow form.

(2) ΦX(H0, . . . , Hn) splits as a product of forms that are linear in Hn in an algebraic
extension of C(H0, H1, . . . , Hn−1).

Another characterization was given later in [2, Theorem 1.14].
In our opinion the most exciting characterization was given by Green and Morrison

(see [9]), who extended the result of Cayley, showing that F is a Chow form if and
only if certain equations of degree 2 or 3 hold identically on the hypersurface Z =
G(m − n − 1, m) ∩ {F = 0}.

The first motivation for this paper was the attempt to see whether the Chow variety
was indeed definable by equations of degree 2 and 3. The impulse for this came from the
beautiful result of Cayley, which we now explain in more detail.

In this paper an honest Cayley form (respectively, a tangential Cayley form) is a
polynomial F in the Plücker coordinates of G(1, 3), whose zero set Z ⊂ G(1, 3) is the set
of the lines intersecting a given space curve C (respectively, the lines tangent to a given
surface S).

G(1, 3) is indeed Klein’s quadric in P := P
5, defined by

Q(p) := p01p23 − p02p13 + p03p12 = 0,

and this non-degenerate quadratic form identifies P with its dual space.
Cayley’s equation is

1
2
{F, F} :=

∂F

∂p01

∂F

∂p23
− ∂F

∂p02

∂F

∂p13
+

∂F

∂p03

∂F

∂p12
= 0,

and Cayley showed that the equation holds on the 3-fold Z = G(1, 3) ∩ {F = 0} if and
only if F is a Cayley form, i.e. either the honest Cayley form of a curve, or the tangential
Cayley form of a surface.

Our main result (see Theorem 3.3) is that this equation is equivalent, for a hypersurface
Z ⊂ G(1, 3), to the assertion that Z is self-dual, i.e. Z is equal to its dual variety Z∨.

Examples where a variety and its dual variety are not hypersurfaces have for a long
time been considered, at least according to our knowledge, as sporadic (see [11]), and
indeed if the variety X is smooth, then Ein (see [6,7]) has classified the finite number of
cases where dim(X) = dim(X∨).
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From Ein’s classification one can see that there are very few examples where X is
smooth and X and X∨ are projectively equivalent.

Our result states, on the other hand, that, once we drop the requirement that X be
smooth, there are countably many families of self-dual varieties, which are not hypersur-
faces. Other examples of self-dual varieties have been constructed by Popov and Tevelev,
using the geometry of semi-simple Lie algebras and symmetric spaces (see [13,14]).

Our second result expands on a remark made as a footnote to [9], that a Cayley form
(which is not unique) can be changed, by adding a multiple of Klein’s quadric Q, obtaining
another Cayley form for which the Cayley equation holds identically on Q = G(1, 3).

We show more precisely (see Theorem 4.2) that there exists a unique representative F2

of the Cayley form such that F2 = F0 + QF1 with F0 and F1 harmonic, and such that
the Cayley equation for F2 holds identically on the Klein quadric Q = G(1, 3) (i.e. the
harmonic projection of the Cayley equation is 0).

This result has as a corollary that the variety of Cayley forms is a projective variety
defined by quadratic equations.

In the same section we also dispose, via elementary examples of curves and surfaces of
degree 2 or 3, of too optimistic guesses, that F2 is just the unique harmonic representa-
tive, or that there exists some representative F such that the Cayley equation for F is
identically 0.

In the final section, we describe (see Theorem 5.2) some equations that detect honest
Cayley forms among Cayley forms. These equations appear to be rather simple; however,
these are again equations that express that three polynomials vanish identically on the
Cayley 3-fold Z. The same elementary examples show that one cannot alter the Cayley
form so that these vanish identically on Q, thus showing that the variety of honest Cayley
forms is not a projective variety defined by equations of degree 2 or 3.

The above result suggests the question of whether the space of generalized Chow
forms (honest and tangential Chow forms) is also defined by quadratic equations. It
also suggests the investigation of the geometric deformations of honest Chow forms to
tangential Chow forms. For the time being, before finding the solution to this and other
questions, we decided to write up this paper.

2. Notation and preliminaries

Let V be a four-dimensional vector space over the field C (or over an algebraically closed
field of characteristic 0), endowed with a volume element, i.e. the non-zero vector

Vol ∈ Λ4(V )∨.

The volume element defines a non-degenerate symmetric bilinear form

〈·, ·〉 : Λ2(V ) × Λ2(V ) → C,

〈ω, ψ〉 := Vol(ω ∧ ψ).

Remark 2.1. The same situation holds for Λm(V ) when dim(V ) = 2m, and 〈·, ·〉 is
symmetric if and only if m is even, skew symmetric if and only if m is odd.
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In the case where V = C
4, with canonical basis e0, e1, e2, e3, we have a canonical

volume such that Vol(e0 ∧e1 ∧e2 ∧e3) = 1, and we have, identifying p ∈ Λ2(V ) to a skew
symmetric 4 × 4-matrix (pij), that one half of the corresponding quadratic form is just
the Pfaffian Q(p) of the skew symmetric 4 × 4-matrix

Q(p) := 1
2 〈p, p〉 = Pf((pij)) = p01p23 − p02p13 + p03p12.

To the symmetric bilinear form 〈·, ·〉 there corresponds the polarity isomorphism

P : Λ2(V ) → Λ2(V )∨

whose inverse determines a quadratic form on Λ2(V )∨, which is still denoted by Q (this
is unambiguous in view of the polarity isomorphism).

When V = C
4, with canonical basis e0, e1, e2, e3, Λ2(V ) has canonical basis ∂/∂pij :=

ei ∧ ej , and the quadratic form on Λ2(V )∨ yields the Laplace operator

∆ :=
∂

∂p01

∂

∂p23
− ∂

∂p02

∂

∂p13
+

∂

∂p03

∂

∂p12
.

Throughout, we consider polynomial functions F (pij) on Λ2(V ), and using the polarity
isomorphism we can define the gradient as the column vector ∇F transpose of the row
vector

T∇F :=
(

∂F

∂p23
,− ∂F

∂p13
,

∂F

∂p12
,

∂F

∂p03
,− ∂F

∂p02
,

∂F

∂p01

)
,

corresponding to the differential dF , and define the Cayley bracket.

2.1. The Cayley bracket

Definition 2.2. Let F (pij), G(pij) be polynomial functions on Λ2(V ); their Cayley
bracket is then defined by the symmetric bilinear form

{F, G} := 〈∇F,∇G〉 = 〈dF, dG〉.

The Cayley equation for F is then the differential equation

1
2
{F, F} = Q(∇F ) =

∂F

∂p01

∂F

∂p23
− ∂F

∂p02

∂F

∂p13
+

∂F

∂p03

∂F

∂p12
= 0.

Turning now to geometry, to a homogeneous polynomial F (pij) on Λ2(V ) there corre-
sponds the hypersurface

F := {(pij) | F (pij) = 0} ⊂ P(Λ2(V )) = Proj(Λ2(V )∨) ∼= P
5,

which we denote by the same symbol F .
The hypersurface Q plays a particular role, since

{(pij) | Q(pij) = 0} ⊂ P(Λ2(V ))
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equals the Grassmann manifold

G(1, 3) = {p = (pij) | ∃v, v′ ∈ V, p = v ∧ v′}

parametrizing projective lines L in P(V ) ∼= P
3.

If p is then a point of the hypersurface F (i.e. F (p) = 0), then the tangent hyperplane
to F at p is the hyperplane

TFp :=
{

(ξij)
∣∣∣∣
∑
ij

∂F

∂pij
ξij = 0

}
= {ξ | (dF, ξ) = 0},

where (·, ·) denotes the standard duality.
As usual, the non-degenerate scalar product 〈·, ·〉 identifies TFp to the zero set of the

linear form dF , hence to the orthogonal to the gradient ∇F = P−1(dF ).
In particular, if p ∈ Q, then TQp is the orthogonal hyperplane p⊥ to p, since

dQ = P(p).
In particular, the next lemma follows immediately.

Lemma 2.3. Let Z be the 3-fold in P := P(Λ2(V )), which is the complete intersection
of the Grassmann manifold Q = G(1, 3) with the hypersurface F . The Zariski tangent
space to Z at p ∈ Z is then

TZp = p⊥ ∩ (∇F (p))⊥.

We now come to a key formula.

Lemma 2.4. Let F be a homogeneous polynomial of degree m on Λ2(V ). Then Euler’s
formula reads as

{F, Q} = 〈∇F,∇Q〉 =
∑
ij

∂F

∂pij
pij = mF.

Proof. We have that ∇Q(p) = p, since dQ = P(p); hence, {F, Q} = 〈∇F, p〉 =
(dF, p) = mF . �

An important consequence of this is that, for p on the hypersurface F , one has that
〈∇F, p〉 = 0.

2.2. Lines in the Grassmannian

In the following we denote P(V ) by P
3, and by P we denote the projective space

P(Λ2(V )) containing the Grassmann manifold Q = G(1, 3) parametrizing lines L ∈ P
3.

We use the notation x, y for points in P
3, and π, π′ for planes in P

3.
Given x ∈ P

3, P
2
x ⊂ Q is defined as the projective plane in P,

P
2
x := {L | x ∈ L} ∼= P

2,

and given a plane π ⊂ P
3, P

2
π := {LL ⊂ π} ∼= P

2.
Given x, π, one has P

2
π ∩ P

2
x = ∅ unless x ∈ π, and in this case one obtains a Schubert

line in P:
Γ (x, π) := P

2
π ∩ P

2
x = {L | x ∈ L ⊂ π} (∼= P

1 for x ∈ π).
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Observe that any line Γ ⊂ Q is of this form, and one can find x, π as follows.
Let L, L′ be two points of Γ , so the corresponding lines L, L′ ⊂ P

3 are not skew (else,
〈L, L′〉 �= 0); hence, x is the intersection point of the corresponding two lines, and π ⊂ P

3

is the plane spanned by L, L′.
We recover the planes P

2
x and P

2
π starting from Γ in the following way. Intersect Q

with the orthogonal Γ⊥, and observe that Γ ⊂ Γ⊥ is then the vertex of the quadric
Q′ := Q ∩ Γ⊥ ⊂ Γ⊥ ∼= P

3.
Hence, Q′ splits as the union of two planes meeting along Γ , which, therefore, are of

the form P
2
x for x ∈ P

3 as above, respectively, P
2
π for the above plane π ⊂ P

3.

2.3. Harmonic polynomials

Consider the coordinate ring of P, namely, the symmetric algebra of Λ2(V )∨:

A =
⊕
m�0

Am :=
⊕
m�0

Sm(Λ2(V )∨).

Inside Am there is the linear subspace of harmonic polynomials

Hm := {F ∈ Am | ∆(F ) = 0},

where ∆ is, as above, the Laplace operator

∆ :=
∂

∂p01

∂

∂p23
− ∂

∂p02

∂

∂p13
+

∂

∂p03

∂

∂p12
.

We recall some basic formulae, which are easy to establish, for homogeneous polyno-
mials A, B (indeed, (3) was proved in Lemma 2.4):

(1) ∆(AB) = ∆(A)B + A∆(B) + 〈∇A,∇B〉,

(2) ∆(Q) = 3,

(3) 〈∇A,∇Q〉 = deg(A) · A;

hence, finally,

(1∗) ∆(GQ) = (deg(G) + 3) · G + Q∆(G),

which is the main tool to prove the following.

Lemma 2.5. There is an isomorphism Hm
∼= H0(OQ(m)) := Wm, and, moreover,

one has the direct sum decomposition

Am =
⊕
i�0

QiHm−2i.

Proof. One shows the assertion by induction on m, using that Am
∼= Wm ⊕ QAm−2.

Assume that G is harmonic and let deg(G) = m−2i; then, by induction on i, we easily
get that

∆(GQi) = i(m + 2 − i) · G · Qi−1.
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This formula, and the induction assumption, shows that the subspaces QiHm−2i build a
direct sum inside Am, since no harmonic polynomial can belong to the subspace QAm−2.

Hence, there is an injective linear map Hm → Wm, and to conclude that it is an
isomorphism it suffices (either to show that both spaces have the same dimension, or)
to use that both spaces are representations of GL(V ), and that Wm is irreducible (being
the space of sections of a linearized line bundle on an homogeneous variety). �

3. Cayley forms and self-dual 3-folds

Definition 3.1. We say that F ∈ H0(OP(m)) is a Cayley form if the 3-fold Z :=
Q ∩ F = G(1, 3) ∩ F is such that each of its irreducible components W is either

(i) an honest Cayley 3-fold, consisting of the lines L that intersect an irreducible curve
C ⊂ P

3 (W =
⋃

x∈CP
2
x) or

(ii) a tangential Cayley 3-fold, consisting of the closure of the set of lines L that are
tangent to an irreducible non-degenerate surface S ⊂ P

3 (i.e. S is not a plane) at
a smooth point x ∈ S (W =

⋃
x∈S\Sing(S) Γ (x, TSx)).

Remark 3.2. In the case where F is an honest Cayley form, m = deg(F ) = deg(C)
(we identify here the polynomial F with the hypersurface {F = 0} it defines).

If F is a tangential Cayley form associated to a surface S ⊂ P
3, then m = deg(F ) is

the intersection number of Z := Q∩F = G(1, 3)∩F with a line Γ contained in Q, which
is then of the form Γ (x, π).

If one denotes by C ′ the intersection of S with a general plane π, one sees, therefore,
that m is the class of the plane curve C ′. Thus, we have that

m = n(n − 1) −
∑

y∈Sing(C′)

c(y),

where n = deg(S), and c(y) is the Plücker defect of the singular point y ∈ C ′.

The following is our first result.

Theorem 3.3. Let F ∈ H0(OP(m)), and assume that Z := Q ∩ F is reduced.
The following conditions are then equivalent:

(1) F is a Cayley form,

(2) F satisfies the weak Cayley equation {F, F} ≡ 0 (mod(Q, F )),

(3) the 3-fold Z := Q ∩ F = G(1, 3) ∩ F is self-dual, i.e. Z = Z∨.

The structure of the proof runs as follows: first we show that we can restrict to the
case where Z is irreducible, and we prove that (1) ⇒ (2); then we show (2) ⇐⇒ (3),
and finally (3) ⇒ (1).
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Proof of Theorem 3.3, part I.
Assume that the hypersurface Z is reducible; we can then write Z = Z1 ∪ Z2. Hence,

since Pic(Q) ∼= Z, changing F modulo Q, we may assume that F = F1F2, with F1, F2

relatively prime.
Then,

{F, F} = 〈dF, dF 〉
= 〈F1 dF2 + F2 dF1, F1 dF2 + F2 dF1〉
= F 2

1 {F2, F2} + 2F1F2{F1, F2} + F 2
2 {F1, F1}.

Hence, F1 and F2 satisfy (2) if and only if F does. Therefore, we may restrict ourselves
to showing the theorem in the case where Z is irreducible.

(1) ⇒ (2).
Case (i) where F is a honest Cayley form of an irreducible curve C.
Let L ∈ Z; there is then x ∈ C such that L ∈ P

2
x ⊂ Z. Hence, F vanishes on P

2
x. Now

take coordinates on P
3 such that x = e0; hence, P

2
x = {p | p12 = p13 = p23 = 0}, whence

∇F (L) has components that satisfy

∂F

∂p0i
(L) = 0, i = 1, 2, 3 ⇒ {F, F}(L) = 0.

Thus, {F, F} vanishes on Z; equivalently, the weak Cayley equation (2) holds.

Case (ii) where F is a tangential Cayley form.
Let L ∈ Z be general; there is then x ∈ S that is a smooth point and is such that L is

tangent to S at x. Now take coordinates on P
3 such that x = e0, L = e0 ∧ e1, and the

tangent space TSx is the plane {x | x3 = 0}.
There exists a local parametrization of S with

x = (1, u, v, φ(u, v)),

where φ has order at least 2 at the origin u = v = 0.
A local parametrization for the variety of tangent lines is then given by the wedge

product of the two (row) vectors

(1, u, v, φ(u, v)),

(0, 1, λ, φu(u, v) + λφv(u, v));

hence, the lines are parametrized by (u, v, λ), L corresponds to the origin in this system
of coordinates, and we have that

p01 = 1, p02 = λ, p03 = φu(u, v) + λφv(u, v), p12 = uλ − v,

p13 = u(φu(u, v) + λφv(u, v)) − φ(u, v).

Note that, since p01 = 1, p23 = p02p13 − p03p12 on Q, and looking at the Taylor
development of the function

F (p(u, v, λ)) =
∂F

∂p02
(L)λ +

∂F

∂p03
(L)φu(u, v) − ∂F

∂p12
(L)v + terms of order � 2,
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which is identically 0, we obtain that, at the point L, ∂F/∂p02 vanishes, and ∂F/∂p03

vanishes too unless

φuu(0, 0) :=
∂2φ

∂u2 (0, 0) = 0.

Moreover, (∂F/∂p01)(L) vanishes by Euler’s formula.
The conclusion is that {F, F}(L) = 0 unless the tangent line L is a zero of the second

fundamental form of S (a so-called asymptotic direction). But since the surface is non-
degenerate, for general L we have that L is not a zero of the second fundamental form
of S.

Hence, {F, F} vanishes on Z; equivalently, the weak Cayley equation (2) holds. �

The above calculation in local coordinates shows that, if L is a smooth point of Z, the
tangent space TZL is the subspace {p | p13 = p23 = 0}, which contains the P

2
x of lines

passing through x.
It also shows the following.

Proposition 3.4. If the line L is not an asymptotic direction at x ∈ S, then the
second derivative of F does not identically vanish on P

2
x.

Proof. P
2
x is the subspace {p | p12 = p13 = p23 = 0}, and we are claiming that the

second fundamental form of Z does not vanish on it.
Intersecting Z with this subspace we obtain the subvariety defined by

v = λu, u(φu(u, v) + λφv(u, v)) = φ(u, v)

⇐⇒ v = λu, uφu(u, λu) + λuφv(u, λu) − φ(u, λu) = 0.

All we have to show is that at the origin the function

uφu(u, λu) + λuφv(u, λu) − φ(u, λu)

has a quadratic term that is not identically 0.
But this quadratic term equals the quadratic term of

uφu(u, λu) − φ(u, λu).

Letting φ(u, v) = au2 + buv + cv2 (mod(u, v)3), we obtain that

u(2au) − au2 = au2 ≡ 0;

hence, 0 = 2a = φuu(0, 0), contradicting our assumption. �

Proof of Theorem 3.3, part II.
(2) ⇐⇒ (3).
Condition (2) just says that, for L ∈ Z, Q(∇F (L)) = 0; this means that ∇F (L) is a

point in Q.
However, since

〈∇F (L),∇F (L)〉 = 0, 〈L, L〉 = 0, 〈∇F (L), L〉 = 0,
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where the last equality is nothing other than the Euler formula (see Lemma 2.4), we see
that (2) is equivalent to saying that the line ΓL := L ∗ ∇F (L) joining L and ∇F (L) is
fully contained in the Grassmannian Q.

Observe now that, identifying P with its dual space via the polarity P, the line
ΓL := L ∗ ∇F (L) is dual to the pencil of tangent hyperplanes to Z at L, since
TZL = L⊥ ∩ ∇F (L)⊥.

We have, therefore, shown the following.

Claim: (2) holds if and only if we have the inclusion of the dual variety of
Z in Q:

Z∨ ⊂ Q.

We conclude the proof of this step via part (2) of the following lemma.

Lemma 3.5. Assume that Z ⊂ Q. Then,

(1) Z ⊂ Z∨,

(2) Z∨ ⊂ Q ⇐⇒ Z = Z∨.

Proof of Lemma 3.5. (1) Assume that L ∈ Z is a smooth point; then, TZL ⊂
TQL = L⊥. Hence, L ∈ Z∨.

(2) Z∨ ⊂ Q implies, by (1), that Z∨ ⊂ (Z∨)∨ = Z, where the last equality is the
biduality theorem. Again by (1), Z ⊂ Z∨; hence, Z∨ ⊂ Q implies that Z = Z∨, while
the converse is obvious. �

�

The following proposition explains the geometrical background for the last step of
proof of Theorem 3.3. It involves the concept of the Segre dual curve, which we need to
recall (see [12]; however, for the reader’s benefit, we give an elementary proof).

Definition 3.6. Let C be a non-degenerate curve in P
n, which means that, if γ(t) is

a parametrization of C, for general t the n vectors γ(t), γ′(t), . . . , γ(n−1)(t) are linearly
independent.

The Segre dual curve C∗ ⊂ (Pn)∨ is then the curve of osculating (n − 1)-dimensional
spaces, so C∗ is parametrized by

γ∗(t) := γ(t) ∧ γ′(t) ∧ · · · ∧ γ(n−1)(t).

More generally, the k-th associated curve C[k] is the curve of osculating (k)-dimensional
spaces, a curve in the Grassmann manifold G(k, n), parametrized by

γ[k](t) := γ(t) ∧ γ′(t) ∧ · · · ∧ γ(k)(t).

Lemma 3.7. If C is a non-degenerate curve in P
n, then

(a) (C∗)∗ = C;

(b) for each value of the parameter t, γ∗[n−1−k](t) is the annullator subspace of γ[k](t);

(c) C∨ is the tangential developable hypersurface of C∗.
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Proof. Observe that (a) is the special case of the more general statement (b), obtained
by taking k = 0.

In order to prove (b), we use the method of moving frames. Namely, we let A(t) be
the matrix with columns the n + 1 vectors

γ(t), γ′(t), . . . , γ(n−1)(t), γ(n)(t).

A(t) determines a flag in C
n+1, and we may also take a unitary matrix U(t) determining

the same flag.
Then the ‘dual flag’, given by the annullators of these subspaces in the dual space

C
n+1, corresponds to the matrices B(t), V (t) where one takes the respective dual bases

in the opposite order.
One considers, as usual, the Cartan matrix C(t), the skew symmetric matrix defined

by

U ·(t) :=
dU(t)

dt
= C(t)U(t).

We have that TV (t)U(t) ≡ J , where J is the anti-identity matrix; whence, taking the
derivative of both sides,

TV (t)U ·(t) + TV ·(t)U(t) = 0 ⇒ TV (t)C(t) + TV ·(t) = 0

⇒ V ·(t) = C(t)V (t).

This formula shows that the dual flag is the osculating flag of the curve γ∗(t).
One can also avoid the use of the complex numbers, and work with the moving

frame A(t), defining the companion matrix M(t) such that A·(t) = M(t)A(t), and the
proof follows similarly.

To prove the last statement, observe that

C∨ = {H | ∃x ∈ C, TCx ⊂ H}
= {H | H ∈ Ann γ[1](x)}
= {H | H ∈ γ∗[n − 2](x)}
= {H | ∃x ∈ C, H ∈ Linear span(γ∗(x), . . . , γ∗(n−2)(x))}.

�

Proposition 3.8. Consider the (involutory) polarity isomorphism identifying P with
its dual space, which geometrically corresponds to the mapping associating to a line
L ⊂ P

3 the pencil of planes containing it (a line in (P3)∨).
It sends the tangential Cayley 3-fold of a surface S to the tangential Cayley 3-fold of

the dual variety S∨ when the latter is a surface S, else to the honest Cayley 3-fold of the
dual variety S∨ when the latter is a curve.

It sends the honest Cayley 3-fold of a curve C to the tangential Cayley 3-fold of the
dual variety C∨, which is the tangential developable surface of the Segre dual curve C∗.
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Proof. We use the standard notation, by which the projectively dual subspace of a
projective subspace L ⊂ P

n, i.e. the projective subspace corresponding to the annullator,
is denoted by L∗.

Now, if L is a tangent line to the surface S at a point x, then x ∈ L ⊂ TSx; hence,
defining H := TSx, we have H∗ ∈ L∗ ⊂ x∗. Thus, L∗ is tangent to S∨, which settles the
proof in the case where S∨ is a surface (in view of biduality).

Again by biduality, it suffices to consider the honest Cayley 3-fold of a curve C ⊂ P
3.

It consists of the lines L intersecting the curve C in a point x; the dual subspace L∗ then
satisfies H∗ ∈ L∗ ⊂ x∗, whenever the plane H contains L. We choose H to also contain
TCx, so H∗ ∈ C∨, and L∗ is tangent to C∨ at H∗.

Conversely, if L∗ is tangent to C∨ at H∗, then there exists x such that H∗ ∈ L∗ ⊂ x∗,
and x ∈ L. �

Proof of Theorem 3.3, part III.
(3) ⇒ (1).
For each smooth point L ∈ Z, the line ΓL := (L ∗ ∇F (L)) corresponds to the pencil

of tangent hyperplanes to Z in L; hence, it is contained in Z∨ = Z.
Being a line in the Grassmannian, it determines a point x ∈ P

3 and a plane π ⊂ P
3

such that ΓL = (L ∗ ∇F (L)) = Γ (x, π).
Hence, we get a rational map of Z onto a correspondence

Σ ⊂ P
3 × (P3)∨ := {(x, π) | ∃L ∈ Z \ Sing(Z), s.t. ΓL = Γ (x, π)}.

Lemma 3.9. Σ has dimension 2 and is a duality correspondence with respect to the
two projections.

Proof. For each point L ∈ Z, we have the line ΓL := (L∗∇F (L)) = Γ (x, π), which is
contained in Z. Assume that there is another line Γ ′ passing through L, contained in Z

and different from ΓL. Then Γ ′ is contained in TZL = Γ⊥
L . Hence, the plane Π spanned

by ΓL and by Γ ′ is contained in TZL, and we then have Π ⊂ Q, since Γ ′ ⊂ TZL = Γ⊥
L .

Since Γ (x, π) = ΓL ⊂ Π ⊂ Q, it follows that either

[1] Π = P
2
x or

[2] Π = P
2
π.

We separate our analysis according to different cases:

(i) for general L ∈ Z, there are only a finite number of lines passing through L and
contained in Z;

(ii) for general L ∈ Z, there are an infinite number of lines contained in Z and passing
through L.

Condition (ii) implies, by the above consideration, that one of the following holds:

[1] for general L ∈ Z, L ∈ P
2
x ⊂ Z;

[2] for general L ∈ Z, L ∈ P
2
π ⊂ Z.
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Therefore, if (ii) holds true, then necessarily Z is a honest Cayley 3-fold, or a dual honest
Cayley 3-fold.

Consider now the tangential correspondence W for Z ′ := Z \ Sing(Z):

W := {(L1, L2) ∈ Z ′ × Z ′ | TZL1 ⊂ L⊥
2 } = {(L1, L2) ∈ Z × Z | L2 ∈ ΓL1}.

Since dim(W ) = 4, and Z has dimension 3, the general fibre Y := WL2 of the second
projection is irreducible of dimension 1. And, for each L1 ∈ Y , L2 ∈ ΓL1 . Since (i) holds
and Y is irreducible, it follows that all the lines ΓL1 are equal, and the fibre Y equals ΓL1 .
In particular, the tangent space to Z is constant along ΓL1 . We also obtain that the map
onto Σ is constant over ΓL1 ; hence, Σ is a surface.

Moreover, since (ii) does not hold, the two projections of Σ yield two surfaces, S ⊂ P
3,

S′ ⊂ (P3)∨.
There remains to show that S and S′ are dual to each other. Now, for each general

point x ∈ S, x is the image of a line Γ (x, π) ⊂ Z. If we show that the lines L ∈ Γ are
tangent to S, then this proves that π =

⋃
L∈Γ L is tangent to S in x; hence, S′ is dual

to S.
This assertion is proven in the forthcoming lemma. �

Lemma 3.10. Let f : Z \ Sing(Z) → S be the above morphism, such that f(L) = x,
where x is the intersection point of the lines L,∇ ⊂ P

3, ∇ := ∇F (L).
Then, P

2
x ⊂ TZL, and if Df is of maximal rank at L, then Df(P2

x) = L.

Proof. Letting Γ , as usual, be the line joining L with ∇, we know that TZL = Γ⊥,
that Γ ⊂ Γ⊥, Γ ⊂ Z ⊂ Q.

Then, TZL ∩ Q = P
2
x ∪ P

2
π, where π is the plane spanned by the lines L,∇ ⊂ P

3.
Now view L and ∇ as 4×4 skew-symmetric matrices, so x is the solution of the system

Lx = 0, ∇x = 0.

Consider a tangent vector to L with direction L′ ⊂ P
2
x; then, if we work as usual with

the ring C[ε]/(ε2), we obtain the equations

(L + εL′)(x + εx′) = 0, (∇ + ε∇′)(x + εx′) = 0

for the first-order variation of f along the tangent direction L′.
Hence, we obtain

L′x + Lx′ = 0, ∇′x + ∇x′ = 0 ⇒ Lx′ = 0,

since L′x = 0.
The conclusion is that x′ = Df(L′) lies in the line L. On the other hand, Df has

maximal rank (equal to 2), and Γ lies in the kernel; hence, Df satisfies Df(P2
x) = L. �

�
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Remark 3.11. The Cayley 3-folds Z, considered above, are all singular. In fact Ein
(see [7]) classified the smooth projective varieties X such that dim(X) = dim(X∨) (he
actually forgot to explicitly mention the assumption of smoothness, but this is clearly
used; see [7, Corollary 1.4]).

Remark 3.12. Igor Dolgachev pointed out another characterization of Cayley forms
in terms of singular loci of line complexes (see [10, p. 308], [5, p. 534]).

Since it is related to the previous discussion, we give a brief account in our terminology.
A line complex is a subvariety Z ⊂ Q = G(1, 3).

We denote by Λ = P(U) the projectivization of the tautological subbundle on the
Grassmannian G(1, 3). Hence,

Λ = {(x, L) | x ∈ L} ⊂ P
3 × G(1, 3).

Denote by
ΛZ := {(x, L) | x ∈ L ∈ Z} ⊂ P

3 × Z

the restriction of the bundle to Z, and denote by f the projection on P
3.

While Λ is the fibre bundle P(TP3), with fibre over x ∈ P
3 equal to P

2
x, the same does

not occur for ΛZ .
The singular locus of the line complex is defined to be the critical set C of f : ΛZ → P

3,
while the focal locus is by definition F := f(C), the set of critical values of f .

Therefore, the singular locus equals the closure of the set of pairs (x, L), L being a
smooth point of Z, where the fibre of f is not smooth of the right codimension; i.e. such
that P

2
x ∩ Z is not a transversal intersection at L.

In the case where dim(Z) = 3, this means that

P
2
x ⊂ TZL = L⊥ ∩ ∇⊥ ⇐⇒ L,∇ ∈ P

2
x ⇒ ∇ ∈ Q.

In particular, C ⊂ ΛZ∩{{F,F}=0}. Conversely, proceeding as in the first two lines of the
proof of Lemma 3.10, one sees that if ∇ ∈ Q, then TZL ∩ Q = P

2
x ∪ P

2
π; thus, C projects

birationally onto Z ∩ {{F, F} = 0}.
The interpretation pointed out by Dolgachev is, therefore, that Z is a Cayley 3-fold if

and only if it equals the projection of its singular locus.

4. Quadratic equations for the variety of Cayley forms

A Cayley 3-fold is the divisor Z on the Grassmann manifold Q = G(1, 3) of a section
ζ ∈ H0(Q,OQ(m)).

A Cayley form F is a homogeneous polynomial of degree m, F ∈ H0(P,OP(m)) such
that the restriction of F to the quadric Q is precisely ζ. Hence, we may change a given
Cayley form F by adding a multiple of Q to it, trying to see whether one could obtain a
Cayley form satisfying the strong Cayley equation {F, F} ≡ 0. We show that this cannot
be achieved, but at least (as stated in [9]) one can obtain that {F, F} ≡ 0 (mod Q).

Indeed, we show a more precise result, which has as a consequence that Cayley 3-folds
are parametrized by a projective variety that is the intersection of quadrics.
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Proposition 4.1. Assume that F is homogeneous of degree m and satisfies the weak
Cayley equation

{F, F} ≡ 0 (mod(F, Q)).

There then exists another Cayley form F2, defining the same Cayley 3-fold Z as F , such
that

{F2, F2} ≡ 0 (mod Q).

Moreover, F2 is unique (mod(Q2)).

Proof. We seek for F2 = F + QG and calculate (using the formula {F, Q} = mF )

{F2, F2} = {F + QG, F + QG}
= {F, F} + 2Q{F, G} + 2mGF + 2(m − 2)QG2 + Q2{G, G} + 2G2Q.

Hence, if
{F, F} = AQ + BF,

it suffices to take G = − 1
2mB, and the solution G is unique modulo Q; hence, F2 is

unique modulo Q2. �

As an important consequence, we then reach the following.

Theorem 4.2. The variety Cm of Cayley 3-folds Z ∈ P(H0(OQ(m))) is isomorphic to
the subvariety C′

m ⊂ P(Hm ⊕ QHm−2) defined by quadratic equations:

C′
m := {Z = Q ∩ F | F ∈ (Hm ⊕ QHm−2), h2m−2({F, F}) = 0},

(here hm : Am → Hm is the harmonic projector).

Remark 4.3. Let F = F0 + QF1 ∈ Hm ⊕ QHm−2; the equation h2m−2({F, F}) = 0
can then be rewritten as

h2m−2({F0, F0} + 2mF0F1) = 0.

4.1. The easiest examples

Let F be a Cayley form, so there are polynomials A, B such that {F, F} = AQ + BF .
Then take F2 = F + QG as above, where G = − 1

2mB + CQ is as above.
In the special case where deg(F ) � 3, we then have the unicity of F2, since G = − 1

2mB

by degree considerations (deg(C) < 0).
Moreover, A, B are both unique.
We then have

{F2, F2} = AQ − 1
m

Q{F, B} +
m − 1
2m2 QB2 +

1
22m2 Q2{B, B}.

Let us start by considering the case deg(F ) = 2.
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Corollary 4.4. In the case of a smooth quadric surface S2 ⊂ P
3 there is no tangential

Cayley form F satisfying the strong Cayley equation

{F, F} ≡ 0.

The unique Cayley form F2 such that {F2, F2} ≡ 0 (mod Q) is harmonic.
Even worse occurs for the honest Cayley forms of two skew lines, or of the twisted

cubic curve: there is no tangential Cayley form F satisfying the strong Cayley equation

{F, F} ≡ 0;

moreover, the unique Cayley form F2 such that {F2, F2} ≡ 0 (mod Q) is not harmonic.
In the case of a smooth plane conic curve, instead, the harmonic representative satisfies

the strong Cayley equation.

Proof. Take the tangential Cayley form of the quadric surface

S = {x | x0x1 − x2x3 = 0}.

A direct calculation shows that a Cayley form is given by

F := (p01 + p23)2 + 4p03p12,

and that
{F, F} = 8F.

We obtain (since then A = 0, G = −2) that

{F2, F2} = 8Q.

Hence, F2 = F − 2Q, and ∆(F2) = ∆(F − 2Q) = 6 − 6 = 0.
Actually, as pointed out by Dolgachev, if we are starting from a quadric surface that

is diagonal with equation
∑

iaix
2
i = 0, the corresponding form is F =

∑
ijaiajp

2
ij , which

is directly seen to be harmonic.
In the case of the honest Cayley form of a conic, a Cayley form is easily calculated as

F := p2
02 + 4p01p12,

which is easily seen to be harmonic and to satisfy the strong Cayley equation.
If we instead take two skew lines, then a Cayley form is

F := p01p23,

satisfying ∆F = 1, {F, F} = 2F . Hence, its harmonic representative is F − 1
3Q, while

F2 = F − 1
2Q, which satisfies {F2, F2} = 1

2Q.
In the case of the twisted cubic curve, a Cayley form F is obtained as the determinant

of the following symmetric matrix:⎛
⎜⎝

p01 p02 p03

p02 p12 + p03 p13

p03 p13 p23

⎞
⎟⎠ .

https://doi.org/10.1017/S0013091513000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000928


Cayley forms and self-dual varieties 105

An easy calculation shows that

∆(F ) = p12 + p03.

Hence, if F = F0 + QF1 is the harmonic decomposition of F , then 4F1 = ∆(F ) =
p12 + p03.

We skip the rest of the explicit calculations, using a limiting argument: the twisted
cubic admits as a limit a chain of three lines, with Cayley form

F := p01p02p23,

we get that
{F, F} = 2Fp02 ⇒ F2 = F − 1

3p02Q,

and, hence,
{F2, F2} = − 2

3Q{F, p02} + 4
9Qp2

02 = 0 + 4
9Qp2

02.

Finally, observing that (since F has degree 3) F2 is here unique,

∆(F2) = ∆(F − 1
3p02Q) = p12 + p03 − 4

3p02.

�

5. Equations for honest Cayley forms

In the previous sections we have shown that the space of Cayley forms is a projective
variety defined by quadratic equations.

Our geometrical explanation shows also that in this variety there are three sets:

(1) the closed set of honest Cayley forms (the Cayley forms of some curve C in P
3);

(2) the closed set of dual honest Cayley forms (the Cayley forms of the developable
surface S dual to some curve C ′ in (P3)∨);

(3) the open set of tangential and dual tangential Cayley forms (here S, S∨ are both
surfaces).

We are, therefore, looking for equations that define the smaller closed sets, in particular
the first one.

A simple way to obtain such equations is to observe that, while for honest Cayley
forms the Cayley 3-fold Z contains the P

2
x determined by L, for a tangential Cayley

3-fold this space is contained in TZL (indeed, TZL ∩ Q = P
2
x ∪ P

2
π), but, according to

Proposition 3.4, the second derivative of F does not vanish on P
2
x for general L ∈ Z.

Therefore, we want that, for L ∈ Z = {L | Q(L) = F (L) = 0}, the quadratic form
D2F (L)(p, p) associated to the Hessian matrix of F vanishes identically on

P
2
x = {p | p ∧ x(L) = 0}.

To have explicit equations use the following elementary lemma.
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Lemma 5.1. Let L, L′ ∈ Q be two coplanar lines in P
3 such that the plane π spanned

by them does not contain the point e0. Then, letting x be the intersection point of the
two lines, the plane P

2
x has as basis L, L′ and L′′ = eo ∧ x.

Writing L′′ =
∑3

i=1yie0 ∧ ei = e0 ∧ y, we obtain that the Plücker coordinates yi of L′′

are bilinear functions of L, L′.

Proof. eo ∧x is not contained in π, hence does not belong to the line Γ = L ∗L′, and
the first assertion is proven.

Write L′′ =
∑3

i=1yie0 ∧ ei = e0 ∧ y; then, L′′ = eo ∧ x if and only if it contains x, or,
equivalently, if and only if L′′ is coplanar with L and with L′, i.e. we have that

y1L23 − y2L13 + y3L12 = 0,

y1L
′
23 − y2L

′
13 + y3L

′
12 = 0.

The second assertion then follows from Cramer’s rule,

y1 = L13L
′
12 − L′

13L12, y2 = L23L
′
12 − L′

23L12,

y3 = L13L
′
12 − L′

13L12.

�

We can now apply the lemma for the lines L ∈ Z, L′ := ∇F (L), obtain a third line L′′,
which together with L, L′ yields a basis of P

2
x, under the assumption that F satisfies the

weak Cayley equation, i.e. is a Cayley form.
Then, since the line Γ = L ∗ L′ is contained in Z, we automatically obtain that

D2F (L)(L, L) = D2F (L)(L, L′) = D2F (L)(L′, L′) = 0.

Hence, the next theorem follows immediately.

Theorem 5.2. Let F be a Cayley form. Then, F is a honest Cayley form if, moreover,
for each L ∈ Z, the following equation holds:

D2F (L)(L′′, L) = D2F (L)(L′′, L′) = D2F (L)(L′′, L′′) = 0.

I.e. if and only if the above three polynomials, whose coefficients have degree 2 or 3 in
the coefficients of F , belong to the ideal (Q, F ) of Z.

Proof. The entries of the matrix D2F (L) are linear in the coefficients of F , as well
as the coordinates of L′, while the coordinates of L are homogeneous of degree 0 in the
coefficients of F . Since the Plücker coordinates yi of L′′ are bilinear functions of L, L′,
they are linear in the coefficients of F .

Hence, the three equations are homogeneous in the coefficients of F , of respective
degrees 2, 3, 3. �
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The next natural question is whether we can obtain from the above theorem equations
which hold mod(Q): we show that the answer is negative already in the example of a
chain of three lines.

In this case, as we observed, a Cayley form is

F := p01p02p23,

and F2 is here unique, equal to

F2 = F − 1
3p02Q.

We set L := p; hence, L′ = ∇F − 1
3p02∇Q − 1

3Q∇p02, and the equations determining
L′′ are

〈L′′, L〉 = 0, 0 = 〈L′′,∇F − 1
3Q∇p02〉 = y1p02p23 + y2p01p23 − 1

3Qy2.

These yield (modulo Q) that

y1p02 + y2p01 = 0, y3p12 + (p01p23 + p02p13) = 0;

hence, as solution (modulo Q),

y1 = p01p12, y2 = −p02p12, y3 = −(p01p23 + p02p13).

Observe now that, denoting by Q(q, q′) the bilinear form associated to Q, namely,
Q(q, q′) := 〈q, q′〉, we have Q(L′′, L′′) ≡ 0 and also Q(L, L′′) ≡ Q(L′, L′′) ≡ 0 (mod Q).
Furthermore, Q(L, L′) ≡ 0 on Q (and also Q(L′, L′) ≡ 0, since we use F2 for defining L′),
while Q(L, L) ≡ 0 holds tautologically on Q.

Since we are considering a point L = p ∈ Q, when we look at the equation
D2F2(L)(L′′, L) = D2F2(L)(L′′, L′) = D2F2(L)(L′′, L′′) = 0, we may replace it by the
simpler equation D2F (L)(L′′, L) = D2F (L)(L′′, L′) = D2F (L)(L′′, L′′) = 0. Because

D2(p02Q)(q, q′) = 2p02Q(q, q′) + q02Q(p, q′) + q′
02Q(p, q).

Now, whereas

1
2D2F (L)(L′′, L) = p01[y2p23] + p02[y1p23] + p23[y2p01 + y1p02] ≡ 0,

1
2D2F (L)(L′′, L′′) = p23[y1y2] = −p2

12p23p01p02 = −p2
12F,

which is not identically 0 modulo Q. We have therefore shown the following.

Proposition 5.3. Consider the equation in Theorem 5.2 for a honest Cayley form:

D2F (L)(L′′, L) = D2F (L)(L′′, L′) = D2F (L)(L′′, L′′) = 0.

If we take a chain C of three lines in P
3, then the representative F2 is unique, and for

any choice of a Cayley form for C these equations belong to the ideal (Q, F ) of Z, but
not to the ideal of Q.

https://doi.org/10.1017/S0013091513000928 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000928


108 F. Catanese

Acknowledgements. I would like to thank Mark Green for stimulating email cor-
respondence at the beginning of this research.

The research project was begun during a visit of Hubert Flenner to Pisa, supported
by an EEC research contract, and continued at the Max Planck Institut, Bonn, in July
1998, during a special activity dedicated to the memory of Boris Moishezon.

I would like to thank Hubert for all the efforts he devoted to the enterprise of deciding
whether Chow varieties are defined by equations of degree 2 and 3; at a certain point he,
however, decided that this project was too difficult to be pursued in its greatest generality
and stepped out.

I would also like to thank Michel Brion for interesting discussions on representation
theoretic aspects of the higher-dimensional case, and Igor Dolgachev for useful comments
and for spotting a computational mistake in Corollary 4.4.

The present work was finished in the realm of the DFG Forschergruppe 790 ‘Classi-
fication of algebraic surfaces and compact complex manifolds’. The first results of this
article were announced at the 1998 Conference in Gargnano, and later at the 2001 Erice
Conference.

References

1. A. Andreotti and F. Norguet, La convexité holomorphe dans l’espace analytique des
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