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Energy cascade in the Garrett–Munk spectrum
of internal gravity waves
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We study the spectral energy transfer due to wave–triad interactions in the Garrett–Munk
spectrum of internal gravity waves based on a numerical evaluation of the collision
integral in the wave kinetic equation. Our numerical evaluation builds on the reduction
of the collision integral on the resonant manifold for a horizontally isotropic spectrum.
We evaluate directly the downscale energy flux available for ocean mixing, whose value
is in close agreement with the finescale parameterization. We further decompose the
energy transfer into contributions from different mechanisms, including local interactions
and three types of non-local interactions, namely parametric subharmonic instability,
elastic scattering (ES) and induced diffusion (ID). Through analysis on the role of each
mechanism, we resolve two long-standing paradoxes regarding the mechanism for forward
cascade in frequency and zero ID flux for the GM76 spectrum. In addition, our analysis
estimates the contribution of each mechanism to the energy transfer in each spectral
direction, and reveals new understanding of the importance of local interactions and ES in
the energy transfer.
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1. Introduction

Internal gravity waves (IGWs) are ubiquitous features of the ocean but are filtered out by
the quasi-geostrophic description of the system. Although generally they account for only
a small fraction of the kinetic energy of the overall ocean, their existence has profound
physical significance: they play an important role in transferring momentum, heat and
tracers across the ocean, and their breaking drives most of the turbulence that leads to the
inhomogeneity of ocean mixing, which in turn affects the large-scale circulation.
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In the IGW continuum, energy is supplied at large scales by atmospheric and tidal
forcings and is dissipated at small scales. Understanding the energy transfer across scales
driven by nonlinear processes is one topic of central importance in physical oceanography.
Such understanding will not only shed light on the physical interpretation of IGW spectral
forms, generally considered as the Garrett–Munk spectrum and its variations (Garrett &
Munk 1972, 1975; Cairns & Williams 1976), but also provide an estimate of the energy flux
towards small dissipation scales (downscale energy flux) that is available for ocean mixing.
The latter aspect, as one focus of our current work, is particularly important given the fact
that information at small dissipation scales is difficult to obtain from both measurements
and modelling.

While the downscale energy cascade of the IGW continuum can be excited by many
mechanisms, such as wave–eddy interactions (e.g. Watson 1985) and bottom scattering
(e.g. Kunze & Llewellyn Smith 2004), in many cases, nonlinear wave interactions are
considered as a major contributor to the cascade in abyssal oceans (e.g. Müller et al. 1986;
Polzin & Lvov 2011). In quantification of spectral energy transfer due to nonlinear wave
interactions, one critical tool is the wave kinetic equation (WKE) derived in the framework
of wave turbulence theory (Zakharov, Lvov & Falkovich 1992; Nazarenko 2011). For
systems with three-wave resonant interactions, the general form of the WKE reads

∂n
∂t

=
∫∫

4π |V(p, p1, p2)|2 fp12 δ(ω − ω1 − ω2) δ(p − p1 − p2) dp1 dp2

−
∫∫

8π |V(p1, p, p2)|2 f1p2 δ(ω − ω1 + ω2) δ(p − p1 + p2) dp1 dp2, (1.1)

where n(p, t) is the spectral action density (with p being the vector of the wavenumber
and t the time), V is the interaction coefficient, ω is the wave frequency, fp12 =
n1n2 − np(n1 + n2) and f1p2 = npn2 − n1(np + n2). The right-hand side of (1.1) is also
referred to as the collision integral, which describes wave action evolution due to triad
interactions. Other mechanisms, such as generation/dissipation of IGWs and coupling
with eddies/currents, are not included. The existence of eddies and currents potentially
may be important in nonlinear energy transfer (e.g. Kafiabad, Savva & Vanneste 2019;
Dong, Bühler & Smith 2020, 2023; Savva, Kafiabad & Vanneste 2021) but will not be
the focus of the current work. For IGWs, p = (kx, ky, m), ω2 = (N2k2 + f 2m2)/(k2 + m2)

is the dispersion relation, with k = (k2
x + k2

y)
1/2 being the magnitude of horizontal

wavenumbers, N the buoyancy frequency, and f the Coriolis frequency. The interaction
coefficient V has been derived using various approaches in the literature (e.g. Olbers
1974, 1976; Müller & Olbers 1975; McComas & Bretherton 1977; Lvov & Tabak 2001,
2004; Lvov et al. 2010), which yield formulations shown to be equivalent on the resonant
manifold (Lvov, Polzin & Yokoyama 2012).

The collision integral has non-zero values on the resonant manifold:

p = p1 ± p2 and ω = ω1 ± ω2. (1.2a,b)

Therefore, (1.1) provides the energy transfer rate through collections of triad interactions
in the spectral space. Such a WKE characterizes the spectral evolution in the kinetic (or
nonlinear) time scale τNL

p , and is valid only for weakly nonlinear waves whose linear
time scale τL

p (= 2π/ωp, i.e. the wave period) is (much) smaller than τNL
p , that is, the
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Figure 1. The wavenumber vectors and action balance for the three types of scale-separated interactions with
p0 = p1 + p2, where the action transfer direction is based on Garrett–Munk spectra: (a) PSI, (b) ES, (c) ID.
For PSI and ES, +1 denotes one unit of action received by the wave mode as a sink (red dot), and −1 denotes
one unit of action sent by a mode as a source (green dot). Induced diffusion can reverse direction with sinks
and sources (grey dots), which is determined by the spectral slopes to be discussed in § 3.2. For all three
mechanisms, the action transfer regarding the highest-frequency wave p0 is always opposite to those regarding
p1 and p2, with energy conservation guaranteed by ω0(∂n0/∂t) = ω1(∂n1/∂t) + ω2(∂n2/∂t).

normalized Boltzmann rate (Nazarenko 2011; Lvov et al. 2012)

|εp| = τL
p

τNL
p

=
∣∣∣∣2π(∂np/∂t)

ωpnp

∣∣∣∣ � 1. (1.3)

The evaluation of the IGW energy cascade for Garrett–Munk spectra based on (1.1)
was first undertaken by McComas et al. in a series of papers (McComas & Bretherton
1977; McComas & Müller 1981a,b). A major argument made in these works is that the
collision integral in (1.1) is dominated by three types of non-local (i.e. scale-separated
in either vertical wavenumber or frequency, or both) interactions, namely parametric
subharmonic instability (PSI), elastic scattering (ES) and induced diffusion (ID) (see
schematic illustrations in figure 1). McComas & Müller (1981a) argued further that the
Garrett–Munk spectrum is in equilibrium with respect to ES so that the downscale energy
flux can be calculated from PSI and ID contributions. This simplification allowed an
analytical formulation of the downscale energy flux, which laid the foundation of finescale
parameterization that estimates the turbulent dissipation rate due to internal wave breaking.
The Gregg–Henyey–Polzin finescale parameterization yields (Henyey, Wright & Flatté
1986; Gregg 1989; Polzin, Toole & Schmitt 1995; Polzin et al. 2014)

Pfinescale = C0
f N2 cosh−1(N/f )

f0N2
0 cosh−1(N0/f0)

Ê2 3(Rω + 1)

4Rω

√
2

Rω − 1
, (1.4)

where f0 = 7.8361 × 10−5 s−1 is the GM76-referenced Coriolis frequency corresponding
to 32.5◦ latitude, N0 = 3 cph = 5.2360 × 10−3 s−1 is the GM76-referenced buoyancy
frequency, Ê = 0.1 cpm/mc is the non-dimensional gradient spectral level with the
critical vertical wavenumber mc evaluated through the integrated shear spectrum∫ mc

0 2m2 Ek(m) dm = 2πN2/10, and Rω is the shear-to-strain ratio. Here, C0 = 8 ×
10−10 W kg−1 is a prefactor obtained by fitting microstructure measurements in the ocean.
For GM76, Ê = 1 and Rω = 3. While McComas & Müller (1981a) provide the correct
functional form of (1.4), their calculated value C = 1.8 × 10−9 W kg−1 has a factor of
2.25 difference from C0.
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While the calculation by McComas et al. provides an estimate of energy flux in the
same order of finescale parameterization, the interaction mechanisms involved in the
calculation suffer from physical inconsistencies that have never been resolved completely.
As summarized in Polzin & Lvov (2011), at least two confusing paradoxes exist:

(a) In frequency space, both dominant mechanisms of PSI and ID are believed to transfer
energy toward low frequencies (i.e. backward cascade). This is not realistic for a
balanced IGW continuum unless there is an energy injection at high frequency into
the ocean, which is not known. Thus there must exist a ‘missing’ mechanism that
moves energy to high frequencies to form a forward cascade.

(b) The GM76 wave action spectrum is independent of vertical wavenumber m in the
range of high m, which leads to a zero-flux state for ID (since diffusion requires
gradient in m at least at the leading order). This makes obscure the calculation by
McComas et al., where an artificial correction in ID has to be applied to enable
cascade in the high-m, high-ω range of the spectra, and raises questions on what the
actual mechanism is for such a cascade in this range.

The paradoxes (a) and (b) have been addressed partly by Dematteis & Lvov (2021)
and Dematteis, Polzin & Lvov (2022), mainly for a modified GM76 spectrum that
serves as a stationary solution to (1.1) (action spectrum n(k, m) ∼ k−3.69m0 instead of
the standard GM76 n(k, m) ∼ k−4m0). In these works, it was necessary to consider
the non-rotating condition f = 0 such that (1.1) becomes scale-invariant and yields a
power-law solution. For this modified power-law spectrum, it was identified that ID
provides a non-zero and frequency-forward flux by considering the complete diffusion
tensor (i.e. including the off-diagonal elements), and that local interactions (which had
been ignored by McComas et al.) play a major role in the downscale energy cascade. By
applying a combined analytical and numerical approach, the authors explicitly calculated
the downscale energy flux, which is within a factor of 2 compared to the prediction by
finescale parameterization (1.4).

In spite of the significant progress achieved in Dematteis & Lvov (2021) and Dematteis
et al. (2022), the paradoxes (a) and (b), along with a convincing evaluation of downscale
energy flux in quantitative consistency with (1.4) in the WKE framework, have never
been addressed for the original problem of the GM76 spectrum. This is an important
task considering that the GM76 spectrum, although not a stationary state of (1.1) as
understood now, is still largely considered a standard model for realistic IGW spectra
among most physical oceanographers. We undertake this task leveraging the fast rise
of computational power that has enabled a direct numerical evaluation of the complete
spectral energy transfer based on (1.1). Since our approach is purely numerical and we
do not seek a scale-invariant field, we are able to incorporate naturally a finite value of f
that was not treated in Dematteis & Lvov (2021) and Dematteis et al. (2022). Our results
show that the energy flux across the critical vertical scale of 10 m (generally considered
as the scale where dissipation starts to take over linear wave dynamics) is approximately
1.5 × 10−9 W kg−1, with a factor of 1.5 greater than the finescale formula (1.4). We further
decompose the cascade into different mechanisms, and show that the downscale flux is
provided mainly by PSI and local interactions, with ID contributing almost zero flux. This
is in sharp contrast to the calculation by McComas et al. (flux based on PSI plus ID), and
addresses the paradox (b). In addition, we find that there exists a clear frequency-forward
cascade, supplied mainly by local interactions and ES, which addresses paradox (a). The
role of ES, which was hypothesized previously to have no effect on energy cascade in
GM76, is now revealed because of the adoption of finite Coriolis frequency f .
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2. Numerical method

For numerical evaluation of spectral energy transfer, we use the WKE derived in Lvov &
Tabak (2001, 2004) with detailed formulation of the interaction coefficient V provided in
Lvov et al. (2010, 2012) and Pan et al. (2020). This WKE is derived from a Hamiltonian
formulation of the dynamical equation of IGWs, in which the isopycnal vertical coordinate
has to be used. The isopycnal vertical wavenumber mi is converted from its Eulerian
counterpart by mi = (g/ρN2) m. Hereafter, we use notation m throughout the paper for
convenience, which represents isopycnal mi in the formulation of the WKE (e.g. (2.1) and
the appendices), and Eulerian m in presenting the results in § 3.

The WKE, in the form of (1.1), involves a collision integral over six dimensions in
p1 and p2. One can reduce the dimension of integration by integrating only on the
resonant manifold defined by the delta functions. Since the GM76 spectrum is horizontally
isotropic, it is convenient to first integrate out the horizontal angle dependence, then reduce
the integration by applying the delta functions. With detailed formulation provided in
Appendix A, this procedure leads to an integration over only two dimensions, namely
magnitudes of the horizontal wavenumbers k1 and k2:

∂n(k, m)

∂t
=

∫ +∞

0

∫ +∞

0

[
h+(m∗+

1 )

|g+′(m∗+
1 )| − 2

h−(m∗−
1 )

|g−′(m∗−
1 )|

]
dk1 dk2, (2.1)

where functions h+, h−, g+′, g−′ (which additionally depend on k, m, k1, k2) and the roots
m∗+ and m∗− are defined in Appendix A, k =

√
k2

x + k2
y ∈ R

+, and m ∈ R (taking both
positive and negative values). The numerical integration of (2.1) is rather straightforward,
but care has to be taken in terms of the root finding for m∗+ and m∗−, with details discussed
in Appendix B. Our numerical code, implemented in FORTRAN with message passing
interface for parallel computation, is made available on GitHub at https://github.com/yue-
cynthia-wu.

Our numerical approach, in principle, shares some level of similarity to ‘Method 3’
in Eden, Pollmann & Olbers (2019b) regarding the evaluation of the collision integral
(2.1) on the resonant manifold, but the latter is implemented for a different version of the
WKE. Additionally, our procedure (of using cylindrical coordinates and integrating out
the horizontal angle dependence) does enforce horizontal isotropy of the IGW spectrum.
This feature is beneficial for our planned subsequent work (beyond this paper) to integrate
the WKE in time while exactly maintaining the horizontal isotropy as was done in Olbers,
Pollmann & Eden (2020). In addition, Eden et al. (2019b) employed other methods using
broadened delta functions to compute the collision integral, but the results are more
noisy and do not show clear advantage. Indeed, as understood recently in both pure
mathematical derivation (e.g. Deng & Hani 2023) and numerical studies (e.g. Hrabski
& Pan 2020, 2022), the WKE should be considered as a result of maintaining sufficient
quasi-resonances from the dynamical equation, so using broadening in the delta function
is somewhat redundant. Such broadened delta functions, on the other hand, might be
physically meaningful if finite size effect is important, as in situations described in Pan
& Yue (2017).

Despite the observed variability in the spectral forms of the realistic IGW fields in
different seasons and at different geographical locations, we start with the GM76 model,
which is one of many realistic possible spectra

E(ω, m) = E0 A(m/m∗) B(ω), (2.2)
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Figure 2. The GM76 model of the (a) energy density spectra, and (b) action density spectra, with E(ω, m) ∼
ω−2m−2 and n(k, m) ∼ k−4m0 in the high-frequency, high-wavenumber regime. Curves in each plot represent
the spectrum with one variable taking fixed values. Red vertical lines denote the GM76-referenced vertical
wavenumber m∗ = 10−2 m−1.

where m∗ = 10−2 m−1 is a reference vertical wavenumber, and the functions

A(m/m∗) ∼ m∗−1[1 + (m/m∗)2]−1,

B(ω) ∼ ω−1(ω2 − f 2)−1/2,

}
(2.3)

are normalized to be integrated to unity (i.e.
∫ ∞

0 A(m/m∗) d(m/m∗) = 1 and∫ N
f B(ω) dω = 1, with f = 10−4 s−1 and N = 5 × 10−3 s−1) so that the total (integrated)

energy level of GM76 equals E0 = 3 × 10−3 m2 s−2. The action density spectra, which
are needed in evaluating (2.1), can be calculated by n(k, m) = E(k, m)/ω = E(ω, m)

(∂ω/∂k)/(2πωk) considering horizontal isotropy. In the high-ω, high-m regime of the
spectrum, we have E(ω, m) ∼ ω−2m−2 and n(k, m) ∼ k−4m0 (see figure 2).

In order to set our computation for a physical problem that reflects the size
of the real ocean, we consider a domain with horizontal circular radius 42.4 km
and vertical extent 2.1 km. To evaluate (2.1), we use 1080 × 1080 grids of uniform
spacing in both k and m, with the smallest resolved scales 40 m and 2 m in the two
directions, i.e. k ∈ [1.5 × 10−4, 1.6 × 10−1] m−1 and m ∈ [3.0 × 10−3, 3.2] m−1. We use
the non-hydrostatic dispersion relation ω2 = (N2k2 + f 2m2)/(k2 + m2), which bounds the
IGW frequency between f and N, while the hydrostatic version leads to (non-physical)
super-buoyancy IGWs in a large spectral area of the selected (k, m) domain where
k/m is large. (Since the interaction coefficients in the WKE used in this paper are
derived under hydrostatic approximation, the results at regions of large k/m should be
considered as an approximation. Olbers (1974, 1976) and Müller & Olbers (1975) provided
a non-hydrostatic version of the WKE for IGWs.) With the above setting, our numerical
calculations are performed on the Great Lakes clusters at University of Michigan with
two nodes of 72 CPUs, and the simulation takes 6–8 hours to calculate all O(1012) triad
interactions.
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Figure 3. Energy transfer log[(2πk)(mk) ∂E/∂t] for GM76 with (a) sinks (∂E/∂t > 0), and (b) sources
(∂E/∂t < 0). We plot only the range with positive m since the spectrum at negative m is completely symmetric.
The white solid, dashed, dash-dotted and dotted lines along the diagonal denote frequencies 2f , 3f , 4f and 35f
(= 0.7N), respectively.

3. Results

3.1. Energy transfer in spectral space
The energy transfer in spectral space ∂E(k, m)/∂t is calculated by multiplying
∂n(k, m)/∂t with ω, where ∂n(k, m)/∂t is obtained by numerically evaluating the
WKE (2.1). In figure 3, we plot (2πk)(mk) ∂E(k, m)/∂t, with the factor 2πk
accounting for horizontal azimuth integration, and mk accounting for the plot in
the log-log axis. More precisely, with these prefactors, the total ∂E/∂t can be
computed conveniently by integrating the values over the area in figure 3, i.e.
∂E/∂t = ∫∫

(2πk)(mk) (∂E(k, m)/∂t) d[log(m)] d[log(k)]. (We will show later, in figure 5,
that our simulation conserves the total energy so that ∂E/∂t = 0.) This plotting technique
is also used in Eden, Chouksey & Olbers (2019a) and Eden et al. (2019b), which facilitates
an unbiased visualization of energy transfer. Figure 3(a) shows the source regions (with
∂E(k, m)/∂t < 0, providing energy), and figure 3(a) shows the sink (with ∂E(k, m)/∂t >

0, receiving energy) regions. Here, the terminologies ‘sink’ and ‘source’ are inherited
from Eden et al. (2019b) and are used to indicate the direction of energy cascade. If
a stationary spectrum is assumed, then they can be related physically to the generation
and dissipation mechanism that has to balance the spectral energy transfer. We see that
energy is transferred from waves in the frequency band [2f , 4f ] to both lower and higher
frequencies. The component of forward frequency cascade is also seen in the results of
Eden et al. (2019b). We will further investigate the mechanisms leading to this cascade in
§ 3.2, addressing paradox (a) in the theory of McComas et al.

It is important to verify that the WKE under the above setting stays in the weakly
nonlinear regime and provides a valid approximation of the dynamics. In particular,
one may be concerned about the rapid modal evolution in the high-wavenumber,
high-frequency regime, as first pointed out in Holloway (1978), which may violate
condition (1.3) regarding the normalized Boltzmann rate εp. For this purpose, we check
the values of εp in the selected scale limits. As shown in figure 4, there indeed exist
large spectral regions where m > 0.1 m−1 and/or ω > 0.9N with |εp| ∼ O(1), indicating
the failure of the WKE in the regime of high wavenumbers and/or high frequencies.
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Figure 4. Normalized Boltzmann rate εp = 2π(∂np/∂t)/(ωpnp) for GM76 in the (k, m) domain. The white
solid, dashed, dash-dotted and dotted lines along the diagonal denote frequencies 2f , 3f , 4f and 45f (= 0.9N),
respectively. Regions where m > 0.1 m−1 and/or ω > 0.9N indicate violation of the weak nonlinearity
assumption in wave turbulent theory, including regions of εp > 1 (white) and εp < −1 (grey) with obvious
violation.

These regions with |εp| not much less than 1 will be treated with caution in the subsequent
discussion of energy fluxes.

We further define the energy fluxes across k0, m0 and ω0, respectively, based on energy
conservation in the finite domain:

Pk(k0) = −
∫ mmax

0

∫ k0

0
4πk

∂E(k, m)

∂t
dk dm, (3.1)

Pm(m0) = −
∫ m0

0

∫ kmax

0
4πk

∂E(k, m)

∂t
dk dm, (3.2)

Pω(ω0) = −
∫ mmax

0

∫ kmax

0
4πk

∂E(k, m)

∂t
1ω≤ω0 dk dm, (3.3)

where kmax = 0.016 m−1, mmax = 0.32 m−1, and 1 is an indicator function. Equations
(3.1)–(3.3) are energy fluxes only due to nonlinear wave–triad interactions within the
selected scale limits, which do not include fluxes entering the IGW field from the
large-scale end by generation nor draining from the small-scale end by dissipation. The
evaluations here are based on the conservation of total energy ∂E/∂t by the WKE. In the
prefactors 4πk, 2πk comes from the integration over horizontal azimuth, and 2 accounts
for the vertical symmetry over ±m. The energy fluxes in all three directions are plotted in
figure 5 (black curves). We see that Pα(αmax) ≈ 0 with α = k, m and ω, indicating energy
conservation. We remark here that energy conservation is achieved only approximately by
our numerical algorithm since the roots m∗+ and m∗− in (2.1) found by the root-finding
algorithm (Appendix B) do not lie exactly on the discrete m-grid points, which breaks
the symmetry when looping over three wavenumber vectors in a triad. This affects mainly
the high-frequency regime of the spectrum (figure 3 with strong sink and source where
ω > 0.7N). (The region where ω ∼ N is problematic for two reasons: (1) if m is not much
greater than k, then the hydrostatic approximation in the WKE breaks down, making the
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Figure 5. Energy fluxes due to nonlinear wave–wave interactions within the selected scale limits across (a)
horizontal wavenumber, (b) vertical wavenumber, and (c) frequency for GM76. In (b), dashed and dash-dotted
lines denote mcutoff = 0.2 m−1 (corresponding to the smallest scale for 90 % of the waves with |εp| < 0.2;
figure 4) and the critical vertical wavenumber mc = 0.6 m−1, respectively. In (c), solid, dashed and dash-dotted
lines denote ω = 2f , 3f and 4f , respectively. Coloured curves denote PSI, ES, ID and local interactions (LT)
using selection criteria defined in § 3.2.

evaluation of ∂n/∂t (and ∂E/∂t) untrustworthy; (2) if m ∈ R
+ is small, then the root

finding for the reduction interactions (m∗
1,right ∈ (0, m)) deviates from its true value due

to limited resolution between 0 and m; see Appendix B and figure 8.) Since the hydrostatic
approximation is also violated in this regime, we discard the contribution of triads with
frequencies greater than the cutoff frequency ωcutoff = 0.7N in the calculation of energy
fluxes.

The fluxes defined in (3.1)–(3.3) are energy transfer only due to nonlinear wave–wave
interactions within the selected scale limits, and the values have to be zero at the
boundaries (e.g. kmin and kmax, etc.) due to energy conservation. It is clear from figure 5
that the GM76 spectrum, as expected, does not yield a constant energy flux in any spectral
direction. While the flux across frequency is bi-directional (figures 3 and 5c), the fluxes
across horizontal and vertical wavenumbers are mainly in the forward direction (toward
small scales).
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To evaluate the downscale energy flux Pd that provides energy for small-scale
dissipation and mixing (i.e. to evaluate the finescale parameterization), we may follow
two approaches. The first approach is to consider Pd = Pm(mc) with the critical vertical
wavenumber mc evaluated through

∫ mc
0 2m2 Ek(m) dm = 2πN2/10 (Polzin et al. 2014).

This approximation encapsulates the energy escaping the internal-wave field at the critical
wavenumber mc ≈ 0.6 m−1 past which internal waves become unstable to shear instability.
The first approach gives Pd = Pm(mc) = 1.5 × 10−9 W kg−1, with a factor 1.5 greater
than Pfinescale = 1.0 × 10−9 W kg−1 from (1.4) (equation rescaled for our values of f and
N). However, as seen in figure 4, the Boltzmann rate close to mc contains large regions
of values that are not much less than 1, making the validity of the WKE questionable.
The second approach is to instead define a cutoff vertical wavenumber mcutoff ≈ 0.2 m−1,
below which only 10 % of the computed waves violate the weak nonlinearity assumption
with |εp| > 0.2. The second approach gives Pd = Pm(mcutoff ) = 1.6 × 10−9 W kg−1.
This approximation yields an upper bound of energy available for dissipation while
(almost) free of uncertainties associated with the first approach. We should acknowledge
that there exists a gap between the (vertical) length scales where the WKE breaks down
and the scale of 10 m in the vertical. Fortunately, the energy-flux curve between the two
scales (corresponding to mc ≈ 0.6 m−1 and mcutoff ≈ 0.2 m−1) is relatively insensitive to
the vertical wavenumber (figure 5b), making our estimate quite robust.

3.2. Contributions of PSI, ES and ID triads
In this subsection, we discuss the decomposition of energy transfer into contributions
from different mechanisms, namely non-local interactions of PSI, ES and ID, and
local interactions. The non-local interactions exhibit scale separation in frequency or
wavenumber, or both, based on which our classification method is designed. For a resonant
triad, we rank the frequencies from high to low as (ωH, ωM, ωL), and the magnitudes of
vertical wavenumbers as (|mH|, |mM|, |mL|). We can then classify non-local interactions
naturally according to some threshold values of the two metrics, as follows.

(i) PSI: |mM|/|mL| > η, 1/2 ≤ ωM/ωH < 1/2 + ε/2.
(ii) ES: ωM/ωL > ξ , 1/2 ≤ |mM|/|mH| < 1/2 + α/2.

(iii) ID: ωM/ωL > ξ , |mM|/|mL| > η.

The above criterion characterizes PSI as scale-separated in m and halving in ω, ES as
scale-separated in ω and halving in m, and ID as scale-separated in both m and ω. In
practice, we use ξ = η = 2 and ε = α = 0.1 for results below, but we note that the major
conclusions hold for a reasonable range of parameters selected. We also remark that the
above choices of ξ and η are ‘conservative’ for local interactions, in the sense that some
interactions with moderate ξ and η (say slightly greater than 2) are classified as non-local,
instead of local, interactions. This is not a drawback for this paper, as we will show that
even for this ‘conservative’ choice of local interactions, their role in energy cascade is
significant, in sharp contrast to the early conjecture of McComas et al. In the following
subsubsections, we discuss the roles of each mechanism in spectral energy transfer.

3.2.1. The PSI mechanism
Parametric subharmonic instability represents the decay of a low-wavenumber parent wave
into two nearly identical high-wavenumber child waves with half frequencies. One unit of
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Figure 6. As figure 3 but for different mechanisms: (a) PSI, (b) ES, (c) ID, (d) LT.

action of the parent wave p0 is transferred into two units of action of the child waves p1
and p2 (see figure 1a).

Using the criterion defined above, we compute the spectral energy transfer due to PSI,
with results shown in figure 6(a). In terms of energy cascade in frequency, we see that
PSI contributes predominantly to the backward cascade, namely moving energy from
frequency band [2f , 4f ] (source) to [ f , 2f ] (sink). This frequency cascade is accompanied
by a strong forward cascade in vertical wavenumbers, which is also clear from the figure.
The physical picture of PSI revealed here is consistent with the existing understanding that
PSI is effective in tidal damping (i.e. extracting energy above 2f ) and that PSI contributes
significantly to downscale energy cascade in the IGW continuum (McComas & Bretherton
1977).

3.2.2. The ES mechanism
The energy transfer due to ES is plotted in figure 6(b), which shows a clear forward cascade
in frequency. This was not understood by previous theory of McComas et al., which
instead postulated that ES can be neglected for energy transfer in any vertically symmetric
IGW spectrum. In fact, the previous postulation to neglect the ES contribution is a little
surprising given that the dynamics of ES is similar to a diffusion process that can be
understood in analogy to ID. (The previous researchers do have a better understanding of
ID, as will be discussed later in the paper.) Consider an ES triad p0 = p1 + p2 (figure 1b),
where p2 is the near-inertial mode, and p0 and p1 are the high-frequency modes with
ω0 ≈ ω1 + f . Given the fact that the action spectra are red with respect to ω, i.e. most
action contained in low frequencies, it is reasonable to set n2 � n0, n1 and n0 < n1.
According to the WKE, we then have

∂n0/∂t = Cf012 = C(n1n2 − n0n1 − n0n2) ≈ Cn2(n1 − n0) > 0,

∂n1/∂t = −Cf012 = −C(n1n2 − n0n1 − n0n2) ≈ −Cn2(n1 − n0) < 0,

∂n2/∂t = −Cf021 = −C(n1n2 − n0n1 − n0n2) ≈ −Cn2(n1 − n0) < 0,

⎫⎪⎬
⎪⎭ (3.4)

where C = 4π |V(p0, p1, p2)|2 is a constant for this triad. The sign of ∂n/∂t indicates that
p0 is a sink, while p1 and p2 are sources. Consumption of one unit of action of p2 combined
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with one unit of action of p1 results in generation of one unit of action of p0. This process
can be described equivalently as diffusion from p1 to p0 (i.e. towards higher frequency),
which in the meanwhile extracts energy from p2.

It is clear from the above analysis that a finite value of f is critical to enable the forward
cascade in frequency, which we indeed incorporate in our calculation. The assumption
f = 0 used in previous research (either for convenience or for obtaining a scale-invariant
WKE, as in Dematteis & Lvov 2021; Dematteis et al. 2022) is perhaps one reason leading
to the neglect of ES in energy transfer. With the above analysis, we can conclude that the
forward frequency cascade by ES shown in figure 6(b) should essentially be expected, and
we reach consistency in theory and numerical results.

3.2.3. The ID mechanism
The energy flux due to ID is plotted in figure 6(c), which shows a very weak transfer
compared to those from other interaction mechanisms. One could further expect that ID
contributes insignificantly to the downscale energy cascade for the GM76 spectrum. This
is in strong disagreement with results in McComas & Müller (1981a,b) that ID contributes
nearly 30 % of the total downscale energy cascade. The result from McComas et al.
originates from the hypothesis that the GM76 spectrum yields a constant downscale energy
flux that relies on a logarithmic correction to the ID flux. It is clear from our analysis
(figure 5) that the constant flux hypothesis is incorrect, thus the logarithmic correction has
no meaningful ground.

The ID mechanism for GM76 or more general IGW spectra can be understood
conveniently from a diffusion equation in the high-m, high-ω regime: ∂n/∂t =
(∂/∂pi)(Dij ∂n/∂pj), with pi = (kx, ky, m) for i = 1, 2, 3, and Dij as the diffusion
coefficient matrix. This equation, including the detailed formulation of Dij, can be derived
by taking dominant terms in the WKE or from a Wentzel–Kramers–Brillouin (WKB)
approximation of the dynamic equation, which was first done in McComas & Müller
(1981b) and re-derived by Lvov & Polzin (2022) for IGWs (see also derivations in
other physical contexts, such as magnetohydrodynamic (MHD) turbulence (Nazarenko,
Newell & Galtier 2001), Rossby waves (Connaughton, Nazarenko & Quinn 2015) and
surface gravity waves (Korotkevich et al. 2023)). With D33 being the dominant element
in Dij for IGWs, the leading-order effect of the diffusion takes place in the vertical
wavenumber direction and can be approximated by a one-dimensional diffusion equation
∂n/∂t = (∂/∂m)(D33 ∂n/∂m). Along with this approximation, one can see that in the
high-m, high-ω regime, the direction of diffusion is determined fully by the dependence
of the wave action spectrum on m, i.e. action diffuses down gradient in the vertical
wavenumber direction, according to n(k0, m) at a given k0.

Alternatively, the physical picture of ID revealed above through the diffusion equation
can be explained directly via the WKE using an argument similar to our previous one
for ES. Take an ID triad p0 = p1 + p2 (figure 1c), with p1 the low-m, low-ω mode, and
consider n1 � n0, n2. Then we obtain from WKE that

∂n0/∂t = Cf012 = C(n1n2 − n0n1 − n0n2) ≈ Cn1(n2 − n0),

∂n1/∂t = −Cf012 = −C(n1n2 + n0n1 + n0n2) ≈ −Cn1(n2 − n0),

∂n2/∂t = −Cf021 = −C(n1n2 + n0n1 + n0n2) ≈ −Cn1(n2 − n0).

⎫⎪⎬
⎪⎭ (3.5)

We see that the exchange of action between the two high-m, high-ω modes, p2 and p0,
depends on the relative magnitudes between n2 and n0. The one that is greater between n2
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and n0 serves as the source of the diffusion, and the other as the sink. If we further assume
that p0 and p2 have the same horizontal wavenumber k0, i.e. p1 is (almost) vertical, then
the diffusion direction is again determined by the dependence of n(k0, m) on m.

Now let us consider a general power-law spectrum in the high-m, high-ω regime:
E(ω, m) ∼ ω−2−pm−2−p−q, equivalent to n(k, m) ∼ k−4−pm−q. Based on the above
analysis (from either the diffusion equation or the WKE), the leading-order diffusion
direction is controlled only by the parameter q. For the GM76 spectrum with p = q = 0,
it is expected that the leading-order diffusion vanishes, i.e. the GM76 spectrum is indeed
approximately a zero-flux state for ID. The energy transfer in figure 6(c), in fact, comes
mainly from the (off-diagonal) sub-elements in Dij (other than D33). The effects of the
sub-diffusion is analysed analytically in Dematteis et al. (2022) for the scale-invariant
case. For our case with finite f (which breaks the scale invariance), an analytical treatment
is generally much difficult. Nevertheless, our direct numerical calculation shows that the
transfer generated by the sub-diffusion is weak compared to other interaction mechanisms.

We can further deduce the ID dynamics under conditions q > 0 and q < 0. For q > 0
and q < 0, respectively, the action diffuses towards higher and lower m (with the same
k), indicating a backward and a forward cascade in frequency. We can leverage our
numerical tools to verify these inferences. For the former with q > 0, we consider a GM75
spectrum with p = 0 and q = 0.5. The energy transfer due to ID is computed as shown
in figure 7(a), where we do see a dominating backward cascade in frequency. For the
latter, we consider a realistic spectrum E(ω, m) ∼ ω−2m−1.8 with p = 0 and q = −0.2
taken from field measurements in the Southeast Subtropical North Pacific (Polzin & Lvov
2011) reporting E(ω, m) ∼ ω−2m−1.9 to E(ω, m) ∼ ω−2m−1.75. The ID energy transfer,
as shown in figure 7(b), indeed exhibits a dominating forward cascade. In summary,
the ID mechanism can lead to different directions of energy cascade depending on the
spectral slopes of the IGW continuum and should be understood with respect to the specific
spectrum of interest.

3.2.4. The local interactions
The energy transfer by local interactions is shown in figure 6(d). We see a clear
bi-directional cascade in frequency extracting energy out of the frequency band [2f , 4f ].
The transfer is not only non-negligible but stronger than any other interaction mechanisms.
The McComas et al. early assumption about the dominance of scale-separated triad
interactions in energy transfer is clearly incorrect for the GM76 (and perhaps general)
spectrum. While it is difficult to trace exactly the ground based on which McComas
et al. made this assumption, it is likely related to some simple calculation regarding
the interaction coefficient V and red IGW action spectra. However, a comprehensive
understanding of the problem also relies on other factors, such as the number of triads
participating in energy transfer and the specific form of the GM76 action spectrum. Our
direct calculation of (1.1) encapsulating all factors clearly demonstrates the paramount
importance of local interactions for the GM76 spectrum. The result here also echoes those
in Dematteis & Lvov (2021) and Dematteis et al. (2022) for a modified GM76 spectrum in
the scale-invariant case.

3.3. Constituents of energy flux
The energy fluxes in directions k, m and ω due to each mechanism are plotted in figure 5.
For forward cascade in k, we see that majority of the cascade is provided by local
interactions, with ES contributing a relatively small fraction. For forward cascade in m,
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Figure 7. As figure 3 but for the ID mechanism: (a,b) GM75 spectrum with E(ω, m) ∼ ω−2m−2.5, and (c,d) a
modified GM76 spectrum with E(ω, m) ∼ ω−2m−1.8, for (a,c) sinks, and (b,d) sources.

local interactions and PSI each contribute approximately half to the total flux. The energy
transfer in frequency exhibits a bi-directional flux. The backward flux, moving energy from
[2f , 4f ] to lower frequencies, is supplied by both PSI and local interactions with similar
magnitudes. The forward cascade results from local interactions, ES and ID (mainly from
the sub-diffusion process) with descending contributions. Among all directional cascades,
local interactions are the only mechanism participating significantly in all of them, which
was neglected in the early works of McComas et al.

We are finally in a good position to state our new understanding regarding paradoxes
(a) and (b). For (a), we now understand that the frequency cascade is bi-directional, with
the forward flux provided by local interactions, ES and ID, all elements ignored in the
works of McComas et al. For (b), the ID mechanism in GM76 is indeed approximately
a zero-flux state, except that it forms a weak forward cascade in frequency through the
sub-diffusion process. The McComas et al. argument about ID providing a significant
portion of the downscale flux should be replaced by local interactions.

4. Conclusions and discussions

Through direct evaluation of the collision integral in the WKE of IGWs, we study the
spectral energy transfer for the GM76 spectrum. Our calculation of the downscale energy
flux, through its maximum value over all vertical wavenumbers, provides an estimate in
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close agreement with the finescale parameterization. We also analyse different interaction
mechanisms, resolving some long-standing paradoxes in the field. Our new understanding
includes the following.

(1) Local interactions are important for energy cascade in all spectral directions, which
were completely neglected in early works by McComas et al.

(2) The downscale energy flux (towards high vertical wavenumbers) is supplied by PSI
and local interactions, rather than PSI and ID as understood by McComas et al.

(3) The ID mechanism can provide cascade towards different directions depending
on spectral slopes of the IGW continuum. For GM76, the leading-order flux by
ID vanishes, with the sub-diffusion process providing a weak forward frequency
cascade.

(4) The ES mechanism provides a forward frequency cascade (but no cascade in
wavenumbers) in vertically symmetric IGW fields, which was not investigated in
previous works.

Our capability of numerical evaluation of the WKE opens a new door to an advanced
understanding of oceanic IGW cascade and mixing. Among all possible directions of
future study, an immediately fruitful one is to evaluate the flux properties and magnitudes
for various IGW spectral forms. As revealed in field measurements (e.g. Polzin & Lvov
2011) and wave turbulence theory (e.g. Lvov et al. (2010) in terms of stationary solutions
to the WKE), the oceanic IGW spectrum exhibits large variability, deviating from the
GM76 model. Under this circumstance, it is not clear whether the current finescale formula
(1.4), developed mainly with reference to the GM76 spectrum, is sufficiently robust for all
IGW spectral forms. Our numerical method provides a direct approach through which
this problem can be studied. In addition, combining our WKE predictions with recent
high-resolution regional ocean simulations (e.g. Nelson et al. 2020; Thakur et al. 2022;
Skitka et al. 2023) may bring new insights to the field.

We would also like to mention that there is an active debate on the relative importance
between the nonlinear wave–wave interactions and wave–eddy interactions in IGW energy
cascade, and our current paper clearly does not consider the latter. In order to consider
both processes, it may be beneficial, as a first-order approximation, to include an additional
eddy-diffusion term (Kafiabad et al. 2019; Dong et al. 2020) in the WKE and study the full
equation (note that this eddy diffusion is linear assuming a stationary eddy field). While
these are future directions we plan to consider, the current work perhaps already has shed
some light on the problem in terms of understanding the importance of local interactions
that is only part of the wave–wave interactions.

Supplementary material. The data that support the findings of this study are openly available on GitHub at
https://github.com/yue-cynthia-wu.
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Appendix A. Reduction of the kinetic equation on a resonant manifold

For a horizontally isotropic IGW spectrum, it is convenient to convert the collision integral
to cylindrical coordinates and integrate out the dependence on the horizontal azimuth. For
example, the term of summation interactions can be transformed to

I+ =
+∞∫∫∫∫∫∫
−∞

J+ dk1x dk1y dk2x dk2y dm1 dm2

=
∫ +∞

−∞

∫ +∞

−∞

∫ 2π

0

∫ 2π

0

∫ +∞

0

∫ +∞

0
k1k2J+ dk1 dk2 dθ1 dθ2 dm1 dm2, (A1)

where J+ = 4π |Vp
p1,p2 |2 fp12 δ(ω − ω1 − ω2) δ(k − k1 − k2) δ(m − m1 − m2), p =

(k, m) = (kx, ky, m) is the three-dimensional wavenumber vector, k = (kx, ky) is the
horizontal wavenumber vector, and k = |k| is the horizontal wavenumber magnitude.

We define

Q+ = 4π |Vp
p1,p2

|2 fp12 δ(ω − ω1 − ω2) δ(m − m1 − m2) k1k2. (A2)

Thus

I+ =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

∫ +∞

0

∫ 2π

0

∫ 2π

0
Q+ δ(k − k1 − k2) dθ1 dθ2 dk1 dk2 dm1 dm2

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

∫ +∞

0

∫ 2π

0

∫ 2π

0
Q+ δ(k − k1 cos θ1 − k2 cos θ2)

× δ(k1 sin θ1 + k2 sin θ2) dθ1 dθ2 dk1 dk2 dm1 dm2

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

∫ +∞

0
(2Q+

�+/|J|) dk1 dk2 dm1 dm2

=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

∫ +∞

0
(Q+

�+/S�) dk1 dk2 dm1 dm2, (A3)

where J is the Jacobian, and S� is the area of the triangle formed by k, k1 and k2. The
subscript �+ of Q+ denotes the projection on the manifold of k = k1 + k2 for given k, k1
and k2. The angle integration involved in the above equation can be found in many wave
turbulence literatures, e.g. Zakharov et al. (1992), Lvov et al. (2012) and Pan (2017).

Repeating this procedure for reduction interactions, we obtain

Q− = 4π |Vp1
p,p2 |2 f1p2 δ(ω − ω1 + ω2) δ(m − m1 + m2) k1k2, (A4)

I− =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0

∫ +∞

0
(Q−

�−/S�) dk1 dk2 dm1 dm2, (A5)

where the subscript �− of Q− denotes the projection on the manifold of k1 = k + k2 for
given k, k1 and k2.

975 A11-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

86
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.862


Energy cascade in the Garrett–Munk spectrum

We further integrate out the delta function in vertical wavenumbers in (A3) and (A5),
which gives

CL = I+ + 2I− =
+∞∫∫
0

{∫ +∞

−∞
h+(k, k1, k2, m, m1) δ[g+(k, k1, k2, m, m1)]dm1

− 2
∫ +∞

−∞
h−(k, k1, k2, m, m1) δ[g−(k, k1, k2, m, m1)]dm1

}
dk1 dk2.

(A6)

In the inside integral, for given k, m, k1 and k2,

h+(m1) = 4π |Vp
p1,p2

|2�+,m+ fp12,�+,m+ k1k2/S�,

h−(m1) = 4π |Vp1
p,p2 |2�−,m− f1p2,�−,m− k1k2/S�,

g+(m1) = ω − ω1(m1) − ω2(m − m1),

g−(m1) = ω − ω1(m1) + ω2(m1 − m),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A7)

where the subscript m+ (m−) of the interaction coefficient V and quadratic function fp12
( f1p2) denotes projection on m = m1 + m2 (m1 = m + m2).

Finally, CL is reduced to an integration over two dimensions k1 and k2 by integrating
out the delta function in frequency:

CL =
+∞∫∫
0

[
h+(m∗+

1 )

|g+′(m∗+
1 )| − 2

h−(m∗−
1 )

|g−′(m∗−
1 )|

]
dk1 dk2, (A8)

where m∗+
1 is the root of g+(m1) = 0 for summation interactions, and m∗−

1 is the root of
g−(m1) = 0 for reduction interactions. The denominators g+′

(m1) and g−′
(m1) are the

m1-derivatives of functions g+(m1) and g−(m1), respectively (see also (8) of Eden et al.
2019b):

g+′
(m1) = g−′

(m1) = m1

ω1

ω2
1 − f 2

k2
1 + m2

1
− m2

ω2

ω2
2 − f 2

k2
2 + m2

2
. (A9)

We note that (A3) and (A5) involve a singularity (first-order pole) when p, p1 and
p2 lie on the same vertical plane, i.e. k = k1 + k2 or k1 = k + k2, leading to S� = 0
and corresponding to the collinear triad interactions described in Dematteis & Lvov
(2021). However, this is an integrable singularity since it is not involved in (A1) before
the coordinate transform and angle integration. Therefore, given sufficiently fine grid
resolution of k1 and k2, the singularity point can be neglected in the integration of (A8).
For finite grid resolution, we can retrieve approximately the contribution from the nearby
region of the singularity point using (A1) (and its counterpart for reduction interactions).
Specifically, for given k and m, contributions from the vicinity of all singularities in the
integral of (A8) can be accounted for by treating (A1) with the following procedures:
set (due to isotropy) k = (k, 0); integrate out the delta function in k with respect to the
integration over k2x and k2y; consider k1 in the same direction as k by setting k1y = 0, and
convert the integration along k1y into the integral multiplying by the grid size Δk; change
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N

f

ω

Given k, m, k1 and k2:

ω1(m1) is symmetric about m1 = 0.

ω2(m1) is symmetric about m1 = m because

|m2| = |m – m1|.

•

•

Summation interaction
ω  = ω1 + ω2.

m1
∗ (left) ∈ (–∞, 0] and m1

∗ (right) ∈ [m, ∞).

•

•

Reduction interaction
ω  = ω1 – ω2.•

When N – ω2(k2, m) < ω , no roots.•

When N – ω2(k2, m) ≥ ω ,

m1
∗ (left) ∈ (–∞, 0] and m1

∗ (right) ∈ [0, m).

•

ω2(m1)

m10

ω1(m1)

m

2N

2f

ω

ω

m1
0

ω1(m1) + ω2(m1)

m m1
∗ (right)m1

∗ (left)

N
ω

ω

m10

ω1(m1) – ω2(m1)

m

m 1
∗  (r

igh
t)m1

∗ (left)

(a)

(b)

(c)

Figure 8. Graphical interpretation of the root finding for m∗
1+ and m∗

1− in an example case, given k, k1, k2
and m.

the dummy variable k1x into k1; integrate out the ω and m delta functions with respect to
the integration over m1 and m2. These procedures lead to

CL0 = Δk
∫ +∞

0

[
h+

0 (m∗+
1 )

|g+′(m∗+
1 )| − 2

h−
0 (m∗−

1 )

|g−′(m∗−
1 )|

]
dk1,

h+
0 (m1) = 4π |Vp

p1,p2
|2‖+,m+ fp12,‖+,m+,

h−
0 (m1) = 4π |Vp1

p,p2 |2‖−,m− f1p2,‖−,m−,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A10)

where the subscript ‖+ denotes projection on k = (k, 0), k1 = (k1, 0) and k2 = (k −
k1, 0), and ‖− projection regarding the reduction interactions.

Appendix B. Root finding for m∗+
1 and m∗−

1

For given k, k1, k2 and m, we search for the roots m∗+
1 and m∗−

1 of g+(m1) = g−(m1) =
0 for summation and reduction interactions, respectively. Figure 8 shows a graphical
interpretation of the root finding for an example case. In this example, it is shown that two
roots of m∗+

1 exist for summation interactions, and two roots of m∗−
1 exist for reduction

interactions. We note that this example of geometric interpretation cannot rule out the
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situation where different numbers of roots exist for either type of interaction, especially for
a finite range of m as in the simulation. In order to cover all possible roots in our numerical
root-finding procedure, we set two initial guesses m1 = (0, m) and start searching for the
roots towards the left and right of both initial guesses along the m1-axis using Brent’s
algorithm (Brent 1971) until we have covered the full range of the numerical spectral
domain.
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