A LOCAL ERGODIC THEOREM FOR MULTIPARAMETER SUPERADDITIVE PROCESSES

ΒY

RYOTARO SATO

Dedicated to Professor Shigeru Tsurumi on his 60th birthday

ABSTRACT. In this paper a local ergodic theorem is proved for positive (multiparameter) superadditive processes with respect to (multiparameter) semiflows of nonsingular point transformations on a σ -finite measure space. The theorem obtained here generalizes Akcoglu-Krengel's [2] local ergodic theorem for superadditive processes with respect to semiflows of measure preserving transformations. The proof is a refinement of Akcoglu-Krengel's argument in [2]. Also, ideas of Feyel [3] and the author [4], [5] are used.

1. **Preliminaries and the Theorem.** Let k be a fixed positive integer and R_{+}^{k} denote the additive semigroup of all vectors $t = (t_1, \ldots, t_k)$ with $t_i > 0$. If $a = (a_i)$ and $b = (b_i)$ are two vectors with $0 \le a_i < b_i$, (a, b] denotes the set $\{t \in R_{+}^{k} : a_i < t_i \le b_i\}$, and \mathcal{I} denotes the class of sets of this form. If r is a positive real number, we write $J_r = (0, re]$, where 0 and e are the vectors with all coordinates equal to zero or one, respectively.

Let $\theta = \{\theta_t : t \in R_+^k\}$ be a k-parameter measurable semiflow of nonsingular point transformations on a σ -finite measure space (X, \mathcal{F}, μ) . Thus each θ_t is a measurable point transformation from X into itself such that $\mu(\theta_t^{-1}E) = 0$ whenever $\mu(E) = 0$; and the transformation $(t, x) \mapsto \theta_t x$ from $R_+^k \times X$ into X is measurable. In this paper we shall assume that θ satisfies:

(1)
$$\mu(E) > 0$$
 implies $\mu(\theta_t^{-1}E) > 0$ for some $t \in \mathbb{R}^k_+$,

(2)
$$f \in L^1_+(\mu) \text{ implies } \int_X f(\theta_t x) \, \mathrm{d} \, \mu(x) < \infty \text{ for all } t \in R^k_+,$$

(3)
$$f \in L^1_+(\mu) \text{ implies } \int_X \int_{J_1} f(\theta_t x) \, \mathrm{d}t \, \mathrm{d}\mu(x) < \infty.$$

By a process in $L^p(\mu)$, where $1 \le p \le \infty$, we mean a family $F = \{F_l\}_{l \in \mathcal{I}}$ of functions in $L^p(\mu)$. A process F is called *positive* if $F_l \in L^p_+(\mu)$ for all $l \in \mathcal{I}$, *linearly bounded* if there exists a positive real number r such that

Received by the editors January 30, 1984 and, in revised form, July 23, 1984.

AMS Subject Classification: 47A35.

[©] Canadian Mathematical Society 1984.

R. SATO

206

$$\sup_{I\subset J_r} \frac{1}{|I|} \|F_I\|_p < \infty$$

where |I| denotes the Lebesgue measure of $I \in \mathcal{F}$, and *superadditive* (with respect to θ) if

(4)
$$F_I \cdot \theta_t \le F_{t+1}$$
 for all $I \in \mathcal{I}$ and $t \in \mathbb{R}^k_+$,

(5)
$$\sum_{i=1}^{n} F_{I_i} \leq F_I \text{ whenever } I_1, \ldots, I_n$$

are disjoint sets in \mathcal{I} and

$$I = \bigcup_{i=1}^{n} I_i$$

is also in \mathcal{I} .

If both F and -F are superadditive, F is called *additive*.

DEFINITION. ([2]). Let $\{I_r\}$ be a family of sets in \mathcal{P} , where r ranges over the positive rational numbers. $\{I_r\}$ is called regular (with constant C) if there exists another family $\{I_r'\}$ of sets in \mathcal{P} such that $I_r \subset I_r'$ for all $r, I_r' \subset I_s'$ whenever r < s, and $|I_r'| \leq C|I_r|$ for all r. We shall write $\lim_{r\to 0} I_r = 0$ if for each $\alpha > 0$ there is an $r_0 > 0$ such that $I_r' \subset J_{\alpha}$ for all $r < r_0$.

We are in a position to state the theorem.

THEOREM. Assume that θ satisfies conditions (1), (2) and (3). If F is a positive superadditive process in $L^{p}(\mu)$, where $1 \le p \le \infty$, and if $\{I_r\}$ is a regular family of sets in \mathcal{P} with $\lim_{r\to 0} I_r = 0$, then $q-\lim_{r\to 0} (1/|I_r|) F_{I_r}$ exists and is finite a.e. on X, where $q-\lim_{r\to 0}$ means that the limit is taken along the positive rational numbers.

2. **Proof of the Theorem**. Since the proof is rather long, we shall divide it into several steps.

(I) First, by conditions (2) and (3), if we define, for a measurable function f on X,

$$K_t f(x) = f(\theta_t x) \qquad (t \in R_+^k, x \in X),$$

then $\{K_t\}$ may be regarded as a k-parameter semigroup of bounded linear operators on $L^1(\mu)$, strongly integrable with respect to the Lebesgue measure over ever finite interval $I \in \mathcal{P}$. This together with condition (1), implies (cf. the proof of Theorem 2 in [5]) that there exists a vector $a = (a_i) \in R_+^k$ and a function $u \in L^{\infty}(\mu)$, with u > 0 a.e. on X, such that $||K_t||_{L^1(ud\mu)} \le \exp(\Sigma a_i t_i)$ for all $t = (t_i) \in R_+^k$, and strong-lim $_{t\to 0}$ $K_t = I$ (the identity operator) on $L^1(u \ d\mu)$. Therefore, considering the measure $u \ d\mu$ instead of μ , there is no loss of generality in assuming that $||K_t||_1 \le \exp(\Sigma a_i t_i)$ for all $t \in R_+^k$ and strong-lim $_{t\to 0} K_t = I$ on $L^1(\mu)$.

(II) By step (I), if we let

$$T_t = \exp\left(-\sum a_i t_i\right) K_t \qquad (t = (t_i) \in R_+^k),$$

then $T = \{T_t\}$ is a k-parameter semigroup of positive contractions on $L^1(\mu)$.

[June

Let us now fix an $h \in L^{1}(\mu)$, with h > 0 a.e. on X, such that

$$q-\lim_{r\to 0} \frac{1}{|I_r|} \int_{I_r} T_i h \, \mathrm{d}t = h \text{ a.e. on } X.$$

Write

$$F_I^h = \min \{F_I, \int_I T_I h \, \mathrm{d}t\} \qquad (I \in \mathcal{I}).$$

Clearly, $F^h = \{F_I^h\}$ is a linearly bounded superadditive process in $L^1(\mu)$ with respect to T, i.e., $T_t F_I^h \le F_{t+1}^h$ for all $I \in \mathcal{I}$ and $t \in R_+^k$. Thus by a standard argument (cf. e.g. the proof of Lemma 4.7 in [2]), there is a positive additive process G in $L^1(\mu)$, with $G \le F^h$, such that if we set $H = F^h - G$ then

(6)
$$\lim_{n} \int \sum_{i_{1},\ldots,i_{k}=1}^{2^{n}} T_{(i_{1}2^{-n},\ldots,i_{k}2^{-n})} H_{J_{2^{-n}}} d\mu = 0.$$

(III) In this step we shall prove a *local maximal lemma* which is essential in the proof of the theorem. Although the proof is similar to that of Akcoglu-Krengel's maximal inequality [2], we prefer to give the complete proof.

LEMMA. Let $W = \{W_I\}$ be a positive superadditive process in $L^1(\mu)$ with respect to T and $\{I_r\}$ a regular family of sets in \mathcal{P} with $\lim_{r\to 0} I_r = 0$. Let $\alpha > 0$ and $E \in \mathcal{F}$ with $\mu(E) < \infty$. Suppose

$$q-\limsup_{r\to 0} \frac{1}{|I_r|} W_{I_r} > \alpha \text{ on } E$$

Given a set $D \in \mathcal{F}$ define

$$\delta(D) = q - \liminf_{r \to 0} \frac{1}{|J_r|} \int_D W_{J_r} \, \mathrm{d}\mu.$$

Then we have

$$\delta(D) \geq \frac{\alpha}{6^k} C^{-1} \exp\left(-\sum_{i=1}^k a_i\right) \mu(E \cap D).$$

PROOF. For an $\epsilon > 0$, choose 0 < r < 1 so that

(7)
$$\frac{1}{|J_r|} \int_D W_{J_r} \, \mathrm{d}\mu < \delta(D) + \epsilon,$$

and also so that

$$\mu((E \cap D)\Delta\theta_t^{-1}(E \cap D)) < \epsilon \text{ whenever } t \in J_r,$$

where the sign Δ stands for the symmetric difference. Further, choose $0 < r_1 < \ldots < r_M$, with $I_{r_n} \subset J_{r/2}$ for all $1 \le n \le M$, so that if we put

207

1985]

R. SATO

$$E' = E \cap D \cap \left\{ \max_{1 \le n \le M} \frac{1}{|I_{r_n}|} W_{I_{r_n}} > \alpha \right\}$$

then $\mu((E \cap D) \setminus E') < \epsilon$ and $\mu(E' \Delta \theta_t^{-1} E') < 3\epsilon$ for all $t \in J_r$. Since $E' \subset E \cap D$, it follows that

$$\mu(D \cap \theta_t^{-1} a E') > \mu(E') - 3\epsilon > \mu(E \cap D) - 4\epsilon$$

for all $t \in J_r$. Define $A(x) = \{t \in J_{r/2} : \theta_t x \in E'\}$. By Fubini's theorem we then have

$$\int_{D} |A(x)| d\mu(x) = \int_{J_{r/2}} \mu(D \cap \theta_{t}^{-1}E') dt > |J_{r/2}| (\mu(E \cap D) - 4\epsilon).$$

On the other hand, to each $t \in A(x)$ there corresponds an $n(t) \in \{r_1, \ldots, r_M\}$ such that

$$\alpha |I_{n(t)}| < W_{I_{n(t)}}(\theta_t x) \leq \exp \left(\Sigma \ a_i t_i\right) W_{t+I_{n(t)}}(x),$$

and since $\{I_r\}$ is regular, there exists a nested family $I'_{r_1} \subset \ldots I'_{r_M} \subset J_{r/2}$ in \mathscr{I} such that $I_{r_i} \subset I'_{r_i}$ and $|I'_{r_i}| \leq C|I_{r_i}|$. Fix an $a \in I'_{r_1}$, and put $U_t = (t - a) + I'_{n(t)}$ for $t \in A(x)$. Since $t \in U_t$ for all $t \in A(x)$, Lemma 4.1 in [2] may be applied to infer that there are finitely many vectors t^1, \ldots, t^m in A(x) such that the sets $t^j + I'_{n(t^j)}$ are disjoint and

$$|A(x)| \leq 3^{k} \sum_{j=1}^{m} |I'_{n(t^{j})}| \leq 3^{k} C \sum_{j=1}^{m} |I_{n(t^{j})}|.$$

Therefore

$$\begin{aligned} \frac{\alpha}{3^k} C^{-1} |A(x)| &\leq \alpha \sum_{j=1}^m |I_{n(t^j)}| \\ &< \sum_{j=1}^m \exp\left(\sum_{i=1}^k a_i t_i^j\right) W_{t^j + I_{n(t^j)}}(x) \\ &< \exp\left(\sum_{i=1}^k a_i\right) \sum_{j=1}^m W_{t^j + I_{n(t^j)}}(x) \\ &\leq \exp\left(\sum_{i=1}^k a_i\right) W_{J_r}(x), \end{aligned}$$

and thus

$$\int_{D} W_{J_{r}} d\mu \geq \frac{\alpha}{3^{k}} C^{-1} \exp\left(-\Sigma a_{i}\right) \int_{D} |A(x)| d\mu(x)$$
$$\geq \frac{\alpha}{3^{k}} C^{-1} \exp\left(-\Sigma a_{i}\right) |J_{r/2}| (\mu(E \cap D) - 4\epsilon).$$

By (7) we obtain

$$\delta(D) + \epsilon > \frac{\alpha}{6^k} C^{-1} \exp(-\Sigma a_i)(\mu(E \cap D) - 4\epsilon),$$

https://doi.org/10.4153/CMB-1985-023-8 Published online by Cambridge University Press

[June

208

and letting $\epsilon \rightarrow 0$, the desired inequality follows.

(IV) In this step, using the lemma, we shall prove that $q-\lim_{r\to 0} (1/|I_r|) H_{I_r} = 0$ a.e. on X. To do this, let $\alpha > 0$ and $E \in \mathcal{F}$ with $\mu(E) < \infty$. Suppose

$$q-\limsup_{r\to 0} \frac{1}{|I_r|} H_{I_r} > \alpha \text{ on } E.$$

Since $||T_t||_1 \le 1$ and strong-lim_{t→0} $T_t = I$, it follows that q-lim_{r→0} $T_{r_e}^* 1 = 1$ a.e. on X, where $T_{r_e}^*$ denotes the adjoint operator of T_{r_e} . Therefore the limit function

$$\nu = \lim_{n} |J_{2^{-n}}| \sum_{i_1,\ldots,i_k=1}^{2^n} T^*_{(i_12^{-n},\ldots,i_k2^{-n})} 1$$

(the a.e. existence of the limit is easily checked) satisfies $0 < v \le 1$ a.e. on X. This together with (6) proves that given an $\epsilon > 0$ there exists a set $D \in \mathcal{F}$, with $\mu(E \setminus D) < \epsilon$, such that

$$\lim_{n} \frac{1}{|J_{2^{-n}}|} \int_{D} H_{J_{2^{-n}}} \, \mathrm{d}\mu = 0.$$

Since H is a positive superadditive process in $L^{1}(\mu)$ with respect to T, the lemma implies that

$$0 \geq \frac{\alpha}{6^k} C^{-1} \exp\left(-\sum a_i\right)(\mu(E) - \epsilon).$$

Letting $\epsilon \to 0$, we have that $\mu(E) = 0$, and the desired result follows.

(V) We shall next consider the process G. By [1], G can be written as G = G' + G'', where G' and G'' are positive additive processes in $L^1(\mu)$ (with respect to T) such that (i) G' is singular and (ii) G'' is absolutely continuous. Since G' has the localization property ([1]), i.e., given an $\epsilon > 0$ and a set $E \in \mathcal{F}$, wth $\mu(E) < \infty$, there is an r > 0 and a set $D \in \mathcal{F}$, with $\mu(E \setminus D) < \epsilon$, such that $\int_D G'_I d\mu \le \epsilon |I|$ for all $I \in \mathcal{F}$ satisfying $I \subset J_r$, it may be seen, as in step (IV), that $q-\lim_{r\to 0} (1/|I_r|) G'_{I_r} = 0$ a.e. on X. The details are omitted.

For the process G'', there is an $f \in L^1_+(\mu)$ such that $G''_I = \int_I T_i f \, dt$ for all $I \in \mathcal{I}$. On the other hand, it is well known and easily checked that the class

$$\left\{g \in L^{1}(\mu): q\text{-lim}_{r \to 0} \; \frac{1}{|I_{r}|} \int_{I_{r}} T_{t}g \; \mathrm{d}t = g \; \mathrm{a.e.} \; \mathrm{on} \; X\right\}$$

is dense in $L^{1}(\mu)$. Further, using the lemma, it follows easily that

$$q \sup_{r < 1} \frac{1}{|I_r|} \int_{I_r} T_t g \, \mathrm{d}t < \infty \text{ a.e. on } X$$

for all $g \in L^1_+(\mu)$. Thus Banach's convergence theorem proves that

https://doi.org/10.4153/CMB-1985-023-8 Published online by Cambridge University Press

1985]

R. SATO

$$q-\lim_{r\to 0} \frac{1}{|I_r|} G_{I_r}'' = q-\lim_{r\to 0} \frac{1}{|I_r|} \int_{I_r} T_r f \, \mathrm{d}t$$

exists a.e. on X.

(VI) We shall conclude the proof as follows. We have proved that $q-\lim_{r\to 0} (1/|I_r|)$ $F_{I_r}^h$ exists a.e. on X. Here, replacing h by Nh, with $N \ge 1$, and noticing that $\lim_{N\to\infty} Nh = \infty$ a.e. on X, we observe immediately that $q-\lim_{r\to 0} 1/(|I_r|)$ $F_{I_r} = f$ exists a.e. on X. To see that $f < \infty$ a.e. on X, we first notice that $f = q-\lim_{r\to 0} (1/|J_r|)$ F_{J_r} a.e. on X. Next, fix a function $g \in L^1(\mu) \cap L^{\infty}(\mu)$ with g > 0 a.e. on X Since F is superadditive with respect to T, it follows that for $n \ge 1$,

$$\int F_{J_2}g \, \mathrm{d}\mu \geq \int \left(\sum_{i_1,\ldots,i_k=1}^{2^n} T_{(i_12^{-n},\ldots,i_k2^{-n})}F_{J_{2^{-n}}}\right)g \, \mathrm{d}\mu$$
$$= \int F_{J_{2^{-n}}}\left(\sum_{i_1,\ldots,i_k=1}^{2^n} T_{(i_12^{-n},\ldots,i_k2^{-n})}^*g\right) \, \mathrm{d}\mu$$
$$= \int \frac{1}{|J_{2^{-n}}|}F_{J_{2^{-n}}}\left(\frac{1}{2^{k_n}}\sum_{i_1,\ldots,i_k=1}^{2^n} T_{(i_12^{-n},\ldots,i_k2^{-n})}^*g\right) \, \mathrm{d}\mu$$

where $\lim_{n \to \infty} 1/(|J_{2^{-n}}|) F_{J_{2^{-n}}} = f$ a.e. on X and where

$$L^{1}(\mu)-\lim_{n} \frac{1}{2^{k_{n}}} \sum_{i_{1},\ldots,i_{k}=1}^{2^{n}} T^{*}_{(i_{1}2^{-n},\ldots,i_{k}2^{-})} g = g'$$

exists and g' satisfies g' > 0 a.e. on X, because T_i^* as an operator of $L^1(\mu)$, converges strongly to the identity operator when $t = (t_1, \ldots, t_k)$ tends to 0 (cf. Theorem 1 in [5]). Using Fatou's lemma, $\int fg' d\mu \leq \int F_{J_2}g d\mu < \infty$, and this in turn implies that $f < \infty$ a.e. on X. The proof is completed.

3. A concluding remark. We assumed in the Theorem that the process F in $L^{p}(\mu)$ is positive; but this assumption may be replaced by the following *weak* boundedness assumption:

$$\sup_{I\subset J_r} \frac{1}{|I|} \|F_I^-\|_p = K < \infty$$

for some positive number r, where F_1^- denotes the negative part of the function F_1 .

To see this, let $F^- = \{F_I^-\}_{I \in \mathcal{I}}$. Clearly, $-F^-$ is a linearly bounded superadditive process. Since $||K_t||_{\infty} = 1$ and $||K_t||_{L^1(ud\mu)} \le \exp(\Sigma a_i t_i)$ for all $t = (t_i) \in R^k_+$ by step (I), it follows from the Riesz convexity theorem that $\sup_{t \in I} ||K_t||_{L^p(ud\mu)} < \infty$ for all $I \in \mathcal{I}$. Thus, modifying an argument in the proof of Lemma 4.7 in [2], we can construct a positive additive process G in $L^p(u d\mu)$ such that $F^- \le G$ and such that G is linearly bounded. (In case $p = \infty$, we put $G_I(x) = K|I|$ for $x \in X$ and $I \in \mathcal{I}$. Then $G = \{G_I\}$ is a positive additive process in $L^{\infty}(u d\mu)$ satisfying $F^- \le G$.) Since F = (F + G) - G, where F + G is a positive superadditive process in $L^p(u d\mu)$, the Theorem ends the proof of our assertion.

210

[June

A LOCAL ERGODIC THEOREM

REFERENCES

1. M. A. Akcoglu and A. del Junco, Differentiation of n-dimensional additive processes, Canad. J. Math. 33 (1981), pp. 749-768.

2. M. A. Akcoglu and U. Krengel, *Ergodic theorems for superadditive processes*, J. Reine Angew. Math. **323** (1981), pp. 53-67.

3. D. Feyel, Convergence locale des processus sur-abéliens et sur-additifs, C. R. Acad. Sci. Paris, Sér. I, 295 (1982), pp. 301-303.

4. R. Sato, On local ergodic theorems for positive semigroups, Studia Math. 63 (1978), pp. 45-55.

5. R. Sato, On local properties of k-parameter semiflows of nonsingular point transformations, Acta Math. Hung. (to appear).

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE OKAYAMA UNIVERSITY OKAYAMA, 700 JAPAN