A CONTRAST BETWEEN COMPLEX AND REAL-VALUED TAYLOR SERIES

ALEXANDER ABIAN
(Received 28 May 1973)

Communicated by E. Strzelecki

In this paper it is shown that if c is a point of the region of convergence of an analytic function $f(z)=\Sigma_{n}^{\infty} c_{n} z^{n}$ then in every neighborhood of c there exists a point e such that the value $f(c)$ of the function $f(z)$ is attained by some truncation $\sum_{n=0}^{k} c_{n} z^{n}$ of $f(z)$ at $z=e$, i.e., $\quad \sum_{n=0}^{k} c_{n} e^{n}=\sum_{n=0}^{\infty} c_{n} c^{n}$. Also it is shown that the above does not hold in the case of real-valued functions of a real variable.

Theorem. Let c be a complex number inside the circle of convergence of an analytic function $f(z)$ given by

$$
f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}
$$

Then in every neighborhood of c there exists a point e such that

$$
f(c)=\sum_{n=0}^{k} c_{n} e^{n} \quad \text { for some } k<\infty
$$

Proof. If $f(z)$ is a constant function then the conclusion of the Theorem follows trivially. Thus, in what follows, we let $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ be nonconstant. But then there exists a circumference E of positive radius with center at c such that $f(z) \neq f(c)$ on E. Clearly, $|f(z)-f(c)|$ is a continuous function on E and therefore it has a positive minimum p. Hence,

$$
\begin{equation*}
|f(z)-f(c)| \geqq p>0 \quad \text { for every } z \in E \tag{1}
\end{equation*}
$$

Since $\quad \sum_{n=0}^{\infty} c_{n} z^{n}$ has uniform convergence on E and since $p>0$, we see that

$$
\begin{equation*}
\left|\left(\sum_{n=0}^{k} c_{n} z^{n}\right)-f(z)\right|<p \text { for some } k<\infty \text { on } E \tag{2}
\end{equation*}
$$

Consequently, from (1) and (2) we have

$$
\begin{equation*}
|f(z)-f(c)|>\left|\left(\sum_{n=0}^{k} c_{n} z^{n}\right)-f(z)\right| \text { for every } z \in E \tag{3}
\end{equation*}
$$

But then from (3), by Rouche's theorem [1, p. 157] it follows that inside the circle E the function $g(z)$ given by

$$
g(z)=(f(z)-f(c))+\left(\left(\sum_{n=0}^{k} c_{n} z^{n}\right)-f(z)\right)=\left(\sum_{n=0}^{k} c_{n} z^{n}\right)-f(c)
$$

has as many zeros as the function $f(z)-f(c)$ has. But clearly, $f(z)-f(c)$ has at least one zero, namely, $z=c$, inside E. Hence, $\left(\sum_{n=0}^{k} c_{n} z^{2}\right)-f(c)$ must have also at least one zero, say, $z=e$ inside E implying the conclusion of the Theorem.

Remark. If in the hypothesis of the above Theorem it is also assumed that $c \neq 0$ and that $f(z)$ is not a polynomial (i.e., $f(z)$ is transcendental) then it can be shown that the conclusion of the Theorem holds for some $e \neq c$.

As mentioned earlier, the statement of the Theorem is not valid in the setup of real-valued functions of a real variable. In other words, in contrast with the above Theorem, we have:

Proposition. There exists a real-valued function $f(x)$ of a real variable x given by

$$
f(x)=\sum_{n=0}^{\infty} r_{n} x^{n}
$$

and there exists a real number r inside the interval of convergence of $f(x)$ and there exists a neighborhood N of r such that

$$
f(r) \neq \sum_{n=0}^{k} r_{n} x^{n} \quad \text { for every } k<\infty \text { and every } x \in N
$$

Proof. Let us consider the function $f(x)$ defined on the real open interval $(-1,1)$ by

$$
f(x)=1-10 x+24 x^{2}+\frac{1}{1-x}
$$

Thus,

$$
\begin{equation*}
f(x)=-11 x+23 x^{2}-x^{3}-x^{4}-x^{5}-\cdots(-1<x<1) \tag{4}
\end{equation*}
$$

It can be readily verified that $f^{\prime}(0)=-11$ and $f^{\prime}(.05)=10$. As a consequence, $f(x)$ has a unique minimum $f(r)$ for $x=r$ in the open interval $(0,0.5)$ Also, it can be readily verified that $f(x)$ has no maximum in $(0,0.5)$. But then since, after the second term, every term in (4) has a negative sign, it can be readily shown that there exists a neighborhood N of r such that $N \subseteq(0,0.5)$ and such that

$$
f(r) \neq-11 x+23 x^{2}-x^{3}-x^{4}-x^{5}-\cdots-x^{k}
$$

for every $k<\infty$ and every $x \in N$.

Acknowledgment

The author thanks William A. Szorc for his help in setting the above example.

Reference

[1] S. Saks and A. Zygmund, Analytic Functions, (Warsaw, 1952).

Iowa Stare University
Ames, Iowa, 50010
U.S A.

