On a recurrence relation

By C. E. Walsh.

(Received 24th June, 1937, received in revised form 13th October, 1937.
Read 5th November, 1937.)
It is proposed here to consider the sequence u_{n} determined by the relation

$$
\begin{equation*}
u_{n}-a_{n} u_{n-1}=k_{n}\left(\theta_{n}-b_{n} \theta_{n-1}\right) \tag{a}
\end{equation*}
$$

where, in particular,

$$
k_{n}=\frac{1-a_{n}}{1-b_{n}},
$$

and initially $u_{1}=\theta_{1}$. The following is the main result to be proved.
Theorem I. Suppose that u_{n} satisfies (a), and that $\lim \theta_{n}=l$. Then lim $u_{n}=l$ if the following conditions be fulfilled,

$$
\begin{equation*}
\lim \prod_{r=2}^{n} a_{r}=0, \text { as } n \rightarrow \infty, \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
\left|a_{n} k_{n-1}-k_{n} b_{n}\right| \leqq a_{n}-a_{n-1}\left|a_{n}\right|, \tag{c}
\end{equation*}
$$

where α_{n}, k_{n} are bounded.
To prove this, by means of (a) express u_{n} in the form

$$
\begin{equation*}
u_{n}=A_{n}^{n} \cdot \theta_{n}+A_{n}^{n-1} \cdot \theta_{n-1}+\ldots+A_{n}^{1} \cdot \theta_{1} . \tag{1}
\end{equation*}
$$

Then

$$
\sum_{r=1}^{n} A_{n}^{r}=1,
$$

since the expression on the left-hand side of this equation is the value of u_{n} when all the θ 's are equal to unity. Furthermore

$$
\begin{aligned}
& A_{n}^{n}=k_{n}, \quad\left|A_{n}^{n-1}\right| \leqq a_{n}-a_{n-1}\left|a_{n}\right|, \\
& \left|A_{n}^{r-1}\right| \leqq\left|a_{n} a_{n-1} \ldots . a_{r+1}\right|\left(a_{r}^{*}-a_{r-1}\left|a_{r}\right|\right)
\end{aligned}
$$

where $r=2,3, \ldots n-1$. Hence, by addition

$$
\sum_{r=1}^{n}\left|A_{n}^{r}\right| \leqq\left|k_{n}\right|+a_{n}-\left|a_{n} a_{n-1} \ldots a_{2}\right| a_{1}
$$

which is bounded. Again, from (b),

$$
A_{n}^{\gamma} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

for a fixed r. Thus (1) fulfils Toeplitz's conditions ${ }^{1}$ for convergence, and so

$$
\lim u_{n}=\lim \theta_{n}=l
$$

the desired result.
When $l=0$, Theorem I is true for general k_{n}, i.e. without the restriction

$$
k_{n}=\frac{1-a_{n}}{1-b_{n}}
$$

provided (a), (b) and (c) are still satisfied. This is evident from (1), as the condition

$$
\sum_{r=1}^{n} A_{n}^{r}=1
$$

is here unnecessary when applying Toeplitz's theorem.
Some familiar theorems are obtainable at once as special cases of the above. The following ${ }^{2}$ is a case in point.

If $\Sigma p_{n}, \Sigma q_{n}$ are two divergent series of positive terms, then

$$
\lim \frac{p_{0} s_{0}+p_{1} s_{1}+\ldots+p_{n} s_{n}}{p_{0}+p_{1}+\ldots+p_{n}}=\lim \frac{q_{0} s_{0}+q_{1} s_{1}+\ldots+q_{n} s_{n}}{q_{0}+q_{1}+\ldots+q_{n}}
$$

provided that the second limit exists, and that either (d) p_{n} / q_{n} steadily decreases, or (e) p_{n} / q_{n} steadily increases, subject to the condition

$$
\frac{p_{n}}{p_{0}+p_{1}+\ldots+p_{n}}<\lambda \frac{q_{n}}{q_{0}+q_{1}+\ldots+q_{n}}, \lambda \text { being fixed }
$$

[^0]Make the following substitutions

$$
\begin{aligned}
& \sum_{r=0}^{n-1} p_{r}=a_{n} \sum_{r=0}^{n} p_{r} \\
& \sum_{r=0}^{n-1} q_{r}=b_{n} \sum_{r=0}^{n} q_{r} \\
& \sum_{r=0}^{n} p_{r} s_{r}=u_{n} \sum_{r=0}^{n} p_{r} \\
& \sum_{r=0}^{n} q_{r} s_{r}=\theta_{n} \sum_{r=0}^{n} q_{r} .
\end{aligned}
$$

Then θ_{n} converges by hypothesis, say to l, and $u_{0}=\theta_{0}$, while
also

$$
u_{n}-a_{n} u_{n-1}=k_{n}\left(\theta_{n}-b_{n} \theta_{n-1}\right)
$$

$$
\prod_{r=1}^{n} a_{r} \rightarrow 0, \text { as } n \rightarrow \infty
$$

and

$$
k_{n}=\frac{1-a_{n}}{1-b_{n}}
$$

Since

$$
k_{n}=\frac{p_{n}}{q_{n}} \frac{\sum_{0}^{n} q_{r}}{\sum_{0}^{n} p_{r}}
$$

we have either $0<k_{n}<1$ or $1<k_{n}<\lambda$ for all n according as (d) or (e) is satisfied. Furthermore

$$
a_{n} k_{n-1}-k_{n} b_{n}
$$

is positive or negative according as (d) or (e) is true.
Thus when (d) is satisfied, writing $a_{n}=1-k_{n}$

$$
\left|a_{n} k_{n-1}-k_{n} b_{n}\right|=a_{n}-a_{n-1} a_{n}=a_{n}-a_{n-1}\left|a_{n}\right|
$$

Again when (e) is satisfied, writing $a_{n}=k_{n}-1$, we have

$$
\left|a_{n} k_{n-1}-k_{n} b_{n}\right|=a_{n}-a_{n-1}\left|a_{n}\right|
$$

The conditions of Theorem I are now seen to be fulfilled; the required result $\lim u_{n}=l$ follows.

Now put $l=0$ in Theorem I, and let $b_{n}=0$. This yields at once a result previously obtained ${ }^{1}$ for a sequence u_{n} determined by

$$
u_{n}-a_{n} u_{n-1}=k_{n} \theta_{n}
$$

[^1]in which $\lim \theta_{n}=0$. This combines the theorems of Copson and Ferrar ${ }^{1}$, and of Stolz ${ }^{2}$.

By means of a lemma used in my previous note ${ }^{3}$ Theorem I may be extended to cover sequences defined by

$$
u_{n}-\sum_{r=1}^{m} a_{n}^{r} u_{n-r}=k_{n}\left(\theta_{n}-\sum_{r=1}^{m} b_{n}^{r} \theta_{n-r}\right)
$$

where m is any positive integer. These extensions are, however, clumsy in form, and for that reason need not be stated here.
${ }_{1}^{1}$ Copson and Ferrar, Journal London Math. Soc., 4 (1929), 258-264.
${ }^{2}$ Bromwich, ibid., 414.
${ }^{3}$ Proc. Edinburgh Math. Soc. (2), 3 (1932), 220-222.

34 Chelmsford Road, Ranelagh, Dublin.

[^0]: ${ }^{1}$ Knopp, " Theory and Application of Infinite Series" (1928), 72.
 ${ }^{2}$ Bromwich, "Infinite Series" (1926), 427.

[^1]: ${ }^{1}$ Proc. Edinburgh Math. Soc. (2), 3 (1932), 147-150.

