On a recurrence relation

By C. E. WALSH.

(Received 24th June, 1937, received in revised form 13th October, 1937. Read 5th November, 1937.)

It is proposed here to consider the sequence u_n determined by the relation

(a)
$$u_n - a_n \ u_{n-1} = k_n (\theta_n - b_n \theta_{n-1})$$

where, in particular,

$$k_n=\frac{1-a_n}{1-b_n},$$

and initially $u_1 = \theta_1$. The following is the main result to be proved.

Theorem I. Suppose that u_n satisfies (a), and that $\lim \theta_n = l$. Then $\lim u_n = l$ if the following conditions be fulfilled,

(b)
$$\lim \prod_{r=2}^{n} a_r = 0, \text{ as } n \to \infty,$$

(c)
$$|a_n k_{n-1} - k_n b_n| \leq a_n - |a_n|$$

where a_n , k_n are bounded.

To prove this, by means of (a) express u_n in the form

(1)
$$u_n = A_n^n \cdot \theta_n + A_n^{n-1} \cdot \theta_{n-1} + \ldots + A_n^1 \cdot \theta_1.$$

Then $\sum_{r=1}^{n} A_n^r = 1$,

since the expression on the left-hand side of this equation is the value of u_n when all the θ 's are equal to unity. Furthermore

$$A_n^n = k_n, \quad |A_n^{n-1}| \le a_n - a_{n-1} |a_n|, |A_n^{r-1}| \le |a_n a_{n-1} \dots a_{r+1}| (a_r - a_{r-1} |a_r|)$$

C. E. WALSH

where $r = 2, 3, \ldots, n-1$. Hence, by addition

$$\sum_{r=1}^{n} |A_{n}^{r}| \leq |k_{n}| + a_{n} - |a_{n}a_{n-1} \dots a_{2}| a_{1}$$

which is bounded. Again, from (b),

 $A_n^r \to 0$ as $n \to \infty$

for a fixed r. Thus (1) fulfils Toeplitz's conditions¹ for convergence, and so $\lim u_n = \lim \theta_n = l$,

the desired result.

When l = 0, Theorem I is true for general k_n , *i.e.* without the restriction

$$k_n = \frac{1 - a_n}{1 - b_n}$$

provided (a), (b) and (c) are still satisfied. This is evident from (1), as the condition

$$\sum_{r=1}^{n} A_n^r = 1$$

is here unnecessary when applying Toeplitz's theorem.

Some familiar theorems are obtainable at once as special cases of the above. The following² is a case in point.

If Σp_n , Σq_n are two divergent series of positive terms, then

$$\lim \frac{p_0 s_0 + p_1 s_1 + \ldots + p_n s_n}{p_0 + p_1 + \ldots + p_n} = \lim \frac{q_0 s_0 + q_1 s_1 + \ldots + q_n s_n}{q_0 + q_1 + \ldots + q_n}$$

provided that the second limit exists, and that either (d) p_n/q_n steadily decreases, or (e) p_n/q_n steadily increases, subject to the condition

$$\frac{p_n}{p_0+p_1+\ldots+p_n} < \lambda \frac{q_n}{q_0+q_1+\ldots+q_n}, \ \lambda \ being \ fixed.$$

¹ Knopp, "Theory and Application of Infinite Series" (1928), 72.

² Bromwich, "Infinite Series" (1926), 427.

https://doi.org/10.1017/S0013091500008415 Published online by Cambridge University Press

152

Make the following substitutions

$$\sum_{r=0}^{n-1} p_r = a_n \sum_{r=0}^n p_r$$

$$\sum_{r=0}^{n-1} q_r = b_n \sum_{r=0}^n q_r$$

$$\sum_{r=0}^n p_r s_r = u_n \sum_{r=0}^n p_r$$

$$\sum_{r=0}^n q_r s_r = \theta_n \sum_{r=0}^n q_r.$$

Then θ_n converges by hypothesis, say to l, and $u_0 = \theta_0$, while $u_n - a_n u_{n-1} = k_n (\theta_n - b_n \theta_{n-1});$

also

$$\prod_{r=1}^{n} a_r \to 0, \text{ as } n \to \infty,$$

and

$$k_n = \frac{1-a_n}{1-b_n} \, .$$

Since

we have either $0 < k_n < 1$ or $1 < k_n < \lambda$ for all *n* according as (d) or (e) is satisfied. Furthermore

 $a_n k_{n-1} - k_n b_n$

is positive or negative according as (d) or (e) is true.

Thus when (d) is satisfied, writing $a_n = 1 - k_n$

$$|a_n k_{n-1} - k_n b_n| = a_n - a_{n-1} a_n = a_n - a_{n-1} |a_n|.$$

Again when (e) is satisfied, writing $a_n = k_n - 1$, we have

$$|a_n k_{n-1} - k_n b_n| = a_n - a_{n-1} |a_n|.$$

The conditions of Theorem I are now seen to be fulfilled; the required result $\lim u_n = l$ follows.

Now put l = 0 in Theorem I, and let $b_n = 0$. This yields at once a result previously obtained¹ for a sequence u_n determined by

$$u_n - a_n u_{n-1} = k_n \theta_n$$

¹ Proc. Edinburgh Math. Soc. (2), 3 (1932), 147-150.

in which $\lim \theta_n = 0$. This combines the theorems of Copson and Ferrar¹, and of Stolz².

By means of a lemma used in my previous note³ Theorem I may be extended to cover sequences defined by

$$u_{n} - \sum_{r=1}^{m} a_{n}^{r} u_{n-r} = k_{n} \left(\theta_{n} - \sum_{r=1}^{m} b_{n}^{r} \theta_{n-r} \right)$$

where m is any positive integer. These extensions are, however, clumsy in form, and for that reason need not be stated here.

34 CHELMSFORD ROAD, RANELAGH, DUBLIN.

154

¹ Copson and Ferrar, Journal London Math. Soc., 4 (1929), 258-264.

² Bromwich, *ibid.*, 414.

³ Proc. Edinburgh Math. Soc. (2), 3 (1932), 220-222.