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In this work, the stability of hypersonic flow over a curved compression ramp is
studied using several stability analysis tools and direct numerical simulations (DNS).
The free-stream Mach number and the unit Reynolds number are 7.7 and 4.2 × 106 m−1,
respectively. Corner rounding is considered to alter the separation bubble flow so as to
suppress the intrinsic instability of the compression-ramp flow. The variation of intrinsic
instability is confirmed by global stability analysis. Subsequently, resolvent analysis is
employed to examine the response of intrinsically stable flows to external disturbances.
It is shown that the considered flows strongly amplify low-frequency streamwise streaks
with a preferential spanwise wavelength. This result is verified using DNS by introducing
a random forcing upstream of the separation point. Furthermore, both resolvent analysis
and DNS demonstrate that the separation bubble contributes little to the selection of
the spanwise wavelength of streamwise streaks. The combined effects of convective and
intrinsic instabilities are also explored using DNS. A better agreement with experimental
data is achieved after introducing upstream disturbances in an inherently unstable flow.

Key words: boundary layer separation, shock waves, absolute/convective instability

1. Introduction

The stability and transition of a high-speed boundary layer have been of great
interest for more than half a century (Fedorov 2011). Depending on the amplitude
of environmental disturbances, there are multiple paths to turbulence in a boundary
layer, e.g. eigenmode growth, transient growth and bypass mechanisms (Reshotko 2008).
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However, in practical high-speed vehicles, the boundary layer on a surface frequently
encounters shock waves generated by an adjacent or opposite surface (Gaitonde 2015).
This shock-wave/boundary-layer interaction (SWBLI) can significantly alter the flow
behaviour, e.g. causing boundary-layer separation. More importantly, the stability and
transition mechanisms of the flow involving SWBLI can be essentially different to that
of boundary-layer flows.

It is known that a separated flow has the potential to support self-excited instabilities
(Theofilis 2011). Therefore, for a strong SWBLI that undergoes boundary-layer separation,
instabilities intrinsic to the separated flow may occur. The linear behaviour of the intrinsic
instability can be described using global stability analysis (GSA). A flow is said to be
globally unstable if a mode with positive temporal growth rate is found by the GSA. In
this view, intrinsic instability and global instability are used interchangeably in the present
paper to refer to the self-excited instability of a flow. As a canonical configuration involving
SWBLI, compression-ramp flow serves as a suitable candidate for the study of the intrinsic
instability of a separated flow.

Recently, Sidharth et al. (2017, 2018) demonstrated the occurrence of intrinsic instability
in supersonic flows over compression ramps by applying GSA. Beyond the stability
boundary, the two-dimensional (2-D) separated flow was shown to bifurcate to stationary
three-dimensional (3-D) perturbations taking the form of streamwise streaks (Sidharth
et al. 2018). Furthermore, when the instability is further enhanced by increasing the ramp
angle, oscillatory unstable modes emerge (Sidharth et al. 2018). By performing GSA for
a compression-ramp flow at Mach 7.7, Cao et al. (2021b) revealed the existence of both
stationary and oscillatory unstable modes in the separation bubble. They also conducted
direct numerical simulations (DNS) and uncovered a low-frequency unsteadiness in
the fully saturated flow. Furthermore, without introducing external disturbances in the
DNS, Cao et al. (2022) observed laminar–turbulent transition triggered by the intrinsic
instability of a compression-ramp flow. It was shown that the intrinsic instability induces
streamwise boundary-layer streaks and streamwise counter-rotating vortices downstream
of reattachment, which then break down to turbulence. It should be mentioned that the
self-excited instability has also been found in many separated flows associated with
SWBLI, e.g. double-cone flow (Hao et al. 2022), shock impingement on a flat plate
(Robinet 2007; Hildebrand et al. 2018) and flow over a hollow cylinder/flare (Brown et al.
2009; Lugrin et al. 2021a).

Essentially, no matter whether an SWBLI is inherently unstable or stable, convective
instabilities can play a role in destabilising the flow because external disturbances are
usually present in ground experiments or during high-speed flights. Hence the transition
paths applicable to boundary layers might be still valid in SWBLIs. For example, the
propagation of second-mode disturbances in an incipiently separated flow over a double
cone (Mach 6) was observed experimentally by Butler & Laurence (2021). Lugrin et al.
(2021b) investigated numerically a transitional flow at Mach 5 over a hollow cylinder/flare,
and found several possible transition paths, such as second mode, oblique mode and
non-modal growth. Oblique transition in a hypersonic double-wedge flow was revealed
by Dwivedi, Sidharth & Jovanović (2022).

A remarkable phenomenon observed in compression-ramp experiments is the formation
of streamwise heat-flux streaks on the ramp surface (Simeonides & Haase 1995;
Chuvakhov et al. 2017; Roghelia et al. 2017a,b; Chuvakhov & Radchenko 2020). In
addition to the intrinsic instability mentioned previously, convective mechanisms can also
lead to the appearance of streamwise streaks. For instance, Roghelia et al. (2017a) reported
two similar streak patterns obtained in the Aachen Shock Tunnel TH2 and the Ludwieg
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Wind Tunnel UT-1M under similar flow conditions. However, the compression-ramp
flow studied in TH2 was shown to be intrinsically unstable (Cao et al. 2021b), but
the flow considered in UT-1M is dominated by convective instability (Dwivedi et al.
2019). Therefore, one should pay attention to distinguishing the intrinsic and convective
instabilities when explaining the observed streamwise streaks in a compression-ramp flow
or other shock-induced separated flows.

Although the importance of convective instability in the formation of streamwise
streaks has been confirmed, mechanisms responsible for the amplification of upstream
disturbances are still under debate. The streamwise streaks are referred to conventionally as
the footprint of Görtler-like vortices that are supported by the concave streamline curvature
in the reattaching flow regions (Ginoux 1971; de Luca et al. 1995; de la Chevalerie
et al. 1997; Navarro-Martinez & Tutty 2005). However, recent studies (Zapryagaev,
Kavun & Lipatov 2013; Dwivedi et al. 2019) pointed out the importance of baroclinic
effects. Dwivedi et al. (2019) examined the amplification of exogenous disturbances in a
compression-ramp flow using a global input–output (I/O) analysis (also called resolvent
analysis), and found that baroclinic effects arising from the interaction of upstream
pressure perturbations with base-flow density gradients are responsible for the production
of streamwise streaks.

Based on the above discussion, it is clear that in a compression-ramp experiment
where external disturbances are present, there are usually two scenarios regarding flow
instability. In the first circumstance, the compression-ramp flow is inherently stable
(e.g. in an attached or weakly separated flow), and the convective instability makes the
main contribution to destabilising the flow. Second, in an intrinsically unstable flow,
both convective and intrinsic instabilities contribute to destabilising the flow. In our
previous studies (Cao et al. 2021b, 2022), it was shown that the intrinsic instability can
lead independently to the formation of streamwise streaks and transition to turbulence.
However, the influence of upstream disturbances on intrinsically unstable flows remains
unknown. This is one of the motivations for the present study. In addition, the I/O analysis
of Dwivedi et al. (2019) identified a low-pass frequency response feature (i.e. the dominant
response is achieved for low-frequency inputs), although they studied mainly steady input
perturbations. In the present work, we perform DNS and demonstrate that low-frequency
streamwise streaks form on the ramp as a response to a white noise introduced upstream
of the interaction region.

In order to study both the intrinsic and convective instabilities under the same
flow conditions, it is convenient to modify the compression-ramp geometry. Instead
of varying the ramp angle that changes the shock-induced pressure gradient, we
propose to round the corner to alter directly the separation bubble flow while
leaving the overall pressure gradient unchanged. In this work, stability analysis
tools such as GSA, resolvent analysis and linear stability analysis are utilised to
describe the stability of the considered flows. DNS are employed to study the two
situations mentioned previously to gain a deeper understanding of the compression-ramp
experiments.

The paper is organised as follows. Effects of corner rounding on the compression-ramp
flow are presented in § 2. In § 3, GSA is conducted for the considered flows to identify
the global stability. Then resolvent analysis is employed to examine the amplification of
external disturbances for two selected cases in § 4. In § 5, DNS are performed to investigate
the effects of external disturbances on intrinsically stable and unstable flows. A conclusion
is provided in § 6.
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M∞ Re∞ (m−1) h0 (MJ kg−1) T∞ (K) p∞ (Pa) U∞ (m s−1) Tw (K)

7.7 4.2 × 106 1.7 125 760 1726 293

Table 1. Flow conditions for the shock tunnel TH2 at RWTH Aachen University (Roghelia et al. 2017b).

y

x

Lt

θ

L

Figure 1. Geometry of a curved compression ramp.

2. Hypersonic flow over a curved compression ramp

2.1. Flow conditions and compression-ramp configuration
The flow considered in the present paper is based on the experimental work carried out at
the Shock Wave Laboratory of RWTH Aachen University (Roghelia et al. 2017a,b), which
has been used widely in our previous studies (Cao et al. 2021a,b; Hao et al. 2021). As
shown in table 1, the free-stream Mach number (M∞) and unit Reynolds number (Re∞)
are 7.7 and 4.2 × 106 m−1, respectively. The total enthalpy h0 is relatively low, allowing
the use of the calorically perfect gas assumption. Owing to the short running time of the
shock tunnel, the surface of the compression ramp is assumed isothermal, and the wall
temperature (Tw) is given as 293 K, which corresponds to a wall-to-total temperature ratio
0.18.

As mentioned previously, the intrinsic instability of a compression-ramp flow originates
from the separation bubble. Hence it is viable to change the intrinsic instability by altering
the separated flow. In the present study, we propose to use a curved corner to control the
flow separation. Figure 1 demonstrates the geometry of a curved compression ramp. At
the corner, a circular arc is used to connect the flat plate to the ramp, and it is tangential
to both the flat plate and the ramp. With the turning angle of the compression ramp (θ )
kept constant, the length of the circular arc (or the surface curvature) is determined by the
tangent position. A reference case is introduced where the flat plate is connected to the
ramp directly (i.e. without the circular arc). For this case, the length of the flat plate is set
to L = 100 mm. For other cases, the distance from the leading edge of the flat plate to the
tangent point is set to Lt. Five cases are considered here, namely Lt/L = 1, 0.9, 0.8, 0.77
and 0.75. For convenience, they are labelled as T100, T90, T80, T77 and T75, respectively,
where T indicates the tangent point, and the number denotes the position of the tangent in
mm. Obviously, case T100 corresponds to the reference case. For all cases, θ = 15◦.

2.2. Direct numerical simulations
The influence of corner rounding on the flow is investigated using DNS. The in-house
DNS solver with shock-capturing ability features a finite-difference method of high-order
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accuracy in space and time. The Navier–Stokes equations for compressible flow are
employed in a conservative form

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= ∂F ν

∂x
+ ∂Gν

∂y
+ ∂Hν

∂z
, (2.1)

where F , G and H are the inviscid fluxes, and F ν , Gν and Hν denote the viscous fluxes.
Here, U = (ρ, ρu, ρv, ρw, ρe)T is the vector of conservative variables, ρ is the density,
u, v and w are the flow velocities, and e is the total energy per unit mass. The equation
system is closed by the perfect gas law relating pressure, density and temperature (for the
specific gas constant Rspecific = 287.1 J kg−1 K−1), as well as the following Sutherland’s
law for calculating the viscosity,

μ = μref

(
T

Tref

)3/2 Tref + S
T + S

, (2.2)

where μref = 1.716 × 10−5 kg m−1 s−1, Tref = 273.15 K, and S = 110.4 K. In addition,
the specific heat ratio γ and the Prandtl number Pr used in the simulations are 1.4 and
0.72, respectively.

Regarding the numerical methods, time integration is performed by an explicit
third-order total variation diminishing Runge–Kutta scheme. A weighted essentially
non-oscillatory (WENO) scheme of fifth order is applied for the discretisation of the
inviscid fluxes, based on the work of Jiang & Shu (1996). A sixth-order central-difference
scheme is used to approximate the viscous fluxes. Details about the numerical schemes
may be found in Hermes, Klioutchnikov & Olivier (2012), Cao et al. (2021b) and Cao
(2021).

In 2-D simulations, the numbers of grid points in the streamwise (x) and vertical
(y) directions are 1080 and 240, respectively. As shown in our previous studies for the
same flow conditions (Cao 2021; Cao et al. 2021b), this mesh resolution is sufficient to
capture the 2-D flow features. In terms of boundary conditions, free-stream parameters are
prescribed at the inflow and upper boundaries. A zero-gradient extrapolation condition is
used for the outflow boundary. For the no-slip wall, an isothermal condition is specified,
with the temperature being 293 K.

Figure 2 shows the streamwise distribution of the skin friction coefficient (Cf ) for the
considered cases. It is apparent that the separation and reattachment points are almost
unchanged when the tangent point moves from x/L = 1 to x/L = 0.77. However, when the
tangent point is located at x/L = 0.75, flow separation disappears, i.e. the boundary layer
remains attached to the wall. The effects of surface curvature on the separation bubble
flow are visualised in figure 3, which presents the Mach number contour for cases T100,
T90, T77 and T75. Although the streamwise extent of the separation bubble is not affected
as the tangent point moves from x/L = 1 to x/L = 0.77, the wall-normal extent is reduced.
As a result, the recirculating flow in the separation bubble is altered.

According to Hao et al. (2021), global instability occurs prior to the appearance of
secondary separation near the corner. As seen in figure 2, secondary separation is inhibited
by the corner rounding. For example, secondary separation is present for case T100 but
absent for cases T80 and T77. Therefore, it is conjectured that the intrinsic instability
in the considered compression-ramp flow can be suppressed by using a properly curved
surface at the corner. To verify this hypothesis, a GSA is employed to examine the intrinsic
stability of the considered flows.

957 A8-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

56
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.56


S. Cao, J. Hao, P. Guo, C.-Y. Wen and I. Klioutchnikov

x/L

C
f (

×
1
0

–
3
)

0 0.5 1.0 1.5 2.0

0

2

4
T100
T90
T80
T77
T75

Figure 2. Streamwise distribution of the skin friction coefficient for different cases.
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Figure 3. Mach number contour for compression-ramp flow, for cases (a) T100, (b) T90, (c) T77, and
(d) T75.

3. Global stability analysis

The current GSA considers the temporal stability of a 2-D base flow with respect to 3-D
small-amplitude perturbations that are periodic in the spanwise direction. The linearised
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Navier–Stokes equations are given by

∂U ′

∂t
+ ∂F ′

∂x
+ ∂G′

∂y
+ ∂H ′

∂z
= ∂F ′

ν

∂x
+ ∂G′

ν

∂y
+ ∂H ′

ν

∂z
, (3.1)

where the prime represents perturbation variables. The governing equations can also be
written in the operator form

∂U ′

∂t
= AU ′, (3.2)

where A is the linearised Navier–Stokes operator. The perturbation U ′ is further assumed
to be in the modal form

U ′(x, y, z, t) = Û(x, y) exp
[

i
2π

λ
z − i(ωr + iωi)t

]
, (3.3)

where Û is the 2-D eigenfunction, λ is the spanwise wavelength, ωr is the angular
frequency, and ωi is the growth rate. Substituting (3.3) into (3.2) and discretising the result
with the finite-volume method leads to the eigenvalue problem

A(λ)Û = −i(ωr + iωi)Û, (3.4)

where A is the global Jacobian matrix, which is a function of λ. Note that the same symbol
is used to denote both the eigenfunctions of operator A and the eigenvectors of matrix A.

In the discretisation, the inviscid fluxes are calculated using the modified
Steger–Warming scheme (MacCormack 2014) near discontinuities detected by a modified
Ducros shock sensor (Hendrickson, Kartha & Candler 2018) to suppress numerical noise,
and using a central scheme in smooth regions to reduce numerical dissipation. The value of
the shock sensor varies from 1 near shock waves to 0 elsewhere, and is used to evaluate an
affine combination of the upwind and central fluxes. The viscous fluxes are computed with
the second-order central difference. Specifically, a local transformation from Cartesian
coordinates to the curvilinear coordinates is used to obtain the gradients of the velocity
and temperature perturbations at the faces of a grid cell (Blazek 2015). A linear map from
the primitive variables to the conservative variables is then applied. More computational
details of the GSA solver can be found in Hao et al. (2021).

The eigenvalue problem is solved using the implicitly restarted Arnoldi method
implemented in ARPACK (Sorensen et al. 1996–2008) for a given λ in the shift-invert
mode. The inverse of matrix A is obtained using the lower–upper decomposition
implemented in SuperLU (Li et al. 1999). The flow is globally unstable if an eigenvalue
with ωi > 0 can be found.

Figure 4 compares the non-dimensional growth rates of the leading unstable mode as
functions of λ for cases T100, T90, T80 and T77. The same grid resolution (700 × 300 in
the streamwise and wall-normal directions) is used for all the cases, which was verified
to be sufficient in Hao et al. (2021) for case T100. Note that the base flow of case T75
has no flow separation and thus supports no globally unstable mode. As reported in Hao
et al. (2021), the leading mode for case T100 has two peaks in growth rate that are
stationary, that is, with zero ωr. As the corner is rounded, the short-wavelength peak is
reduced significantly for case T90, and vanishes for cases T80 and T77. By contrast, the
long-wavelength mode is first destabilised and then stabilised by corner rounding. For case
T77, the maximum growth rate is close to that of the long-wavelength mode for case T100,
although the flow is unstable over a wider range of λ. Due to the low growth rate, case
T77 is believed to be more susceptible to convective instability than intrinsic instability, as
seen later.
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Figure 4. Growth rates of the leading unstable mode as functions of spanwise wavelength for cases T100,
T90, T80 and T77.

4. Resolvent analysis

The current resolvent analysis considers the response of a 2-D globally stable base flow to
external small-amplitude disturbances d′ that are periodic in time and in the spanwise
direction. The corresponding linearised Navier–Stokes equations in operator form are
given by

∂U ′

∂t
= AU ′ + Bd′, (4.1)

where operator B constrains the forcing to a localised position, which is specified at x/L =
0.2 in accordance with the following DNS (see § 5), and d′ is given by

d′(x, y, z, t) = d̂(x, y) exp
(

i
2π

λ
z − iωrt

)
. (4.2)

Note that all initial perturbations imposed on a globally stable base flow decay to zero
as time approaches infinity. In other words, the long-time solution of (4.1) takes the same
form as the forcing, which is given by

U ′(x, y, z, t) = Û(x, y) exp
(

i
2π

λ
z − iωrt

)
. (4.3)

Substituting (4.2) and (4.3) into (4.1), and discretising the result in the same way as in the
GSA, gives

Û = RBd̂, R = (−iωrI − A)−1, (4.4)

where R is the resolvent matrix, B is the constraint matrix, and I is the identity matrix.
The resolvent analysis seeks the forcing and response pair that maximises the energy

amplification defined by

σ 2(λ, ωr) = max
d̂

‖Û‖E

‖Bd̂‖E
, (4.5)

where σ is the optimal gain, and the energy norm is evaluated based on the Chu energy
(Chu 1965). Note that (4.5) holds only if the denominator is non-zero. According to Sipp &
Marquet (2013), Bugeat et al. (2019) and Dwivedi et al. (2019), the optimisation problem
(4.5) can be converted to an eigenvalue problem as

B∗M−1R∗−1MR−1Bd̂ = σ 2d̂, (4.6)

where the superscript ∗ denotes the complex conjugate, and M is the weight matrix to
calculate the Chu energy (Bugeat et al. 2019). Consistent with the GSA, the current
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Figure 5. Contours of optimal gain in the space of λ and ωr for cases (a) T77, and (b) T75.

resolvent analysis is formulated in terms of the conservative variables. One may refer to
Karban et al. (2020) for an ambiguity in the results depending on whether the analysis
is performed using the primitive or conservative variables, although they considered
turbulent flow. The eigenvalue problem is solved using ARPACK in the regular mode. The
largest eigenvalue and the corresponding eigenvector represent the square of the optimal
gain and the optimal forcing, respectively. The optimal response is then obtained using
(4.4).

Figure 5 compares the contours of the optimal gain in the space of λ and ωr for cases
T77 and T75. Here, λ/L ranges from 0.00628 to 0.1, and ωrL/U∞ ranges from 0.1 ( f
= 278 Hz) to 100 ( f = 278 kHz). As seen in figure 4, the base flows are globally stable
in the considered range of λ. For both cases, the maximum optimal gain is achieved
at λ/L ≈ 0.021 as the forcing frequency approaches zero. In fact, the optimal gain is
insensitive to the forcing frequency for ωrL/U∞ < 10 ( f < 27 kHz). Such a low-pass
feature was also observed in hypersonic compression-ramp flow (Dwivedi et al. 2019) and
shock impingement on a supersonic boundary layer (Bugeat et al. 2022). By comparing
cases T77 and T75, flow separation is found to increase slightly the maximum optimal gain
by a factor of 1.6, while the preferential spanwise wavelength is largely unchanged.

Figure 6 presents the most amplified optimal forcing and response pairs at λ/L = 0.021
and ωrL/U∞ = 0.1 for cases T77 and T75. For both cases, the forcing is in the form of
counter-rotating streamwise vortices (|u′| � |v′| and |u′| � |w′|), while the responses are
streamwise streaks (|u′| 	 |v′| and |u′| 	 |w′|). Note that only the contours of |u′| are
shown for the responses. Such a componentwise energy transfer, also known as the lift-up
mechanism (Landahl 1980), is responsible for the transient growth of the streamwise
streaks over the flat plate. Further downstream, the streamwise streaks experience strong
amplification in the shear layer above the separation bubble for case T77, and over the
circular arc for case T75. Figure 7 shows the distributions of the Chu energy density (i.e.
the Chu energy per unit volume) integrated in the wall-normal direction for cases T77
and T75. For case T75 with no flow separation, the spatial growth over the circular arc
is nearly exponential, which indicates the well-known Görtler instability (Spall & Malik
1989; Floryan 1991; Saric 1994) due to wall curvature. By contrast, the effective wall
shape of case T77 is altered by the separation bubble such that high streamline curvature
is associated with the separation and reattachment processes. Therefore, the continuous
growth over the circular arc as in case T75 is replaced by two separate stages. In short,
the resolvent analysis confirms that the dynamics of cases T77 and T75 with respect
to upstream disturbances are similar, and the separation bubble contributes little to the
amplification of the streamwise streaks in the interaction region.
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Figure 6. (a,b) Optimal forcings and (c,d) responses associated with the most amplified streamwise streaks
at λ/L = 0.021 and ωrL/U∞ = 0.1 for cases T77 and T75. Open circles indicate separation and reattachment
points, and tangent points; black dashed lines indicate the edge of the boundary layer at x/L = 0.2; black solid
lines indicate dividing streamlines and solid wall.
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Figure 7. Distributions of Chu energy density integrated in the wall-normal direction associated with the most
amplified streamwise streaks at λ/L = 0.021 and ωrL/U∞ = 0.1 for cases T77 and T75. Open circles indicate
separation and reattachment points, and points of tangency.

5. DNS of compression-ramp flows subject to external disturbances

As revealed by the resolvent analysis, for cases T77 and T75, the flow strongly amplifies
low-frequency upstream disturbances and produces streamwise streaks on the ramp.
Towards this end, 3-D simulations are first performed for cases T77 and T75 to demonstrate
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the presence of streamwise streaks and verify the predicted frequencies and wavelengths.
Subsequently, upstream disturbances are introduced for the intrinsically unstable flow
(case T100) to examine the combined effects of convective and intrinsic instabilities.

The initial 3-D flow field is generated by extending the 2-D solution in § 2 in the
spanwise direction (z). 120 grid points are equispaced in spanwise length 20 mm for
cases T77 and T75, and 19.8 mm for case T100. Note that the resulting mesh resolution
(1080 × 240 × 120) is slightly higher than that used in our previous study for case T100
(Cao et al. 2021b). Nevertheless, a grid-independence study for case T77 is carried out
(see Appendix A). Periodic boundary conditions are applied at the spanwise boundaries.

Instead of imposing a ‘controlled’ mode with specific frequency and wavelength,
a random forcing is introduced here to excite broadband upstream disturbances. As
demonstrated by Hader & Fasel (2018), this enables us to study the ‘natural’ transition
process observed in wind tunnel experiments when detailed information regarding
free-stream disturbances is not available. This idea is also considered by Lugrin et al.
(2021b) to study the transition scenario in an axisymmetrical compression-ramp flow. In
the present study, the random forcing is introduced upstream of flow separation taking the
form

w′
j,k/U∞ = Anoise(2r − 1), (5.1)

where the indices j and k refer to the grid point indices in the y and z directions,
respectively, Anoise is the amplitude of perturbations, and r represents a pseudo-random
number (ranging from 0 to 1) generated by the rand() function in C. Specifically, random
spanwise velocity perturbations with noise level Anoise = 0.1 are imposed on the y–z plane
at x/L = 0.2 (i.e. for 1 � j � 240 and 1 � k � 120). This noise level was chosen for
two reasons. First, the induced disturbances decay rapidly downstream on the flat plate,
as shown later. Second, the chosen noise level makes the magnitude of the heat-flux
streaks induced by convective instability comparable to that of the heat flux measured in
experiments (see § 5.3). It should be noted that the resulting magnitude of the surface heat
flux is highly dependent on the noise level. To ensure a sufficient time for the convection
of disturbances through grid points, the perturbation is updated every 50 time steps, not
at each time step. This yields a time interval 1.74 × 10−7 s (or Δt U∞/L = 0.003) for
updating the spanwise velocity. Accordingly, the DNS data are sampled using the same
time interval, leading to sampling frequency fs = 5.75 MHz (or fsL/U∞ = 333).

In the following, spectral analysis is performed for the random forcing and the excited
disturbances. Note that the forcing and the induced disturbances are statistically the same
for all three cases. A time period 1 ms (tU∞/L = 18) is monitored. It should be mentioned
that the data were recorded after the initial transient flow has been convected out of
the computational domain. Figure 8(a) shows the temporal history of w′/U∞ at a grid
point ( j = 60, k = 60) inside the boundary layer at x/L = 0.2. As expected, random
values ranging from −0.1 to 0.1 are introduced at this point. Figure 8(b) provides the
frequency spectrum for this signal. Welch’s method (Welch 1967) is employed for the
spectral estimation with three segments and 50 % overlap. A Hamming window is used
for weighting the data on each segment prior to fast Fourier transform (FFT) processing.
The resulting spectrum exhibits a broadband feature as intended. Figures 8(c) and 8(d)
present the induced pressure disturbance (p′/p∞) at x/L = 0.2 ( j = 1, k = 60) and the
frequency spectrum of this wall pressure signal, respectively. Similar to the spanwise
velocity, the induced pressure disturbances also have a broadband spectrum. Analogously,
it is easy to prove that the forcing and the induced disturbances have a wide range of
spanwise wavelengths. Therefore, while using the random forcing, we do not choose a
mode with specific frequency and wavelength, but let the flow select the preferred mode
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Figure 8. (a) Temporal history of spanwise velocity at x/L = 0.2 ( j = 60, k = 60). (b) Power spectral density
(PSD) of the signal in (a). (c) Temporal history of pressure perturbation at x/L = 0.2 ( j = 1, k = 60). (d) PSD
of the signal in (c).

from the disturbances. This is a suitable way to verify the resolvent analysis results, and
represents a situation that is likely to happen in wind tunnel experiments.

As the disturbances are convected downstream, they decay rapidly. Figure 9 shows the
temporal history of the spanwise velocity and pressure perturbations at x/L = 0.3. It is
apparent that the amplitude of both disturbances drops dramatically. For instance, the
root-mean-square value of the spanwise velocity signal reduces from 0.058 at x/L = 0.2
(figure 8a) to 0.002 at x/L = 0.3 (figure9a). Furthermore, in the spanwise velocity signal,
the low-frequency component is more energetic than the high-frequency component,
which is common in flat plate boundary layer flows (Ran et al. 2019). Interestingly, the
PSD of pressure signal peaks at f ≈ 400 kHz (see figure 9d). This frequency compares
well with the dominant frequency of the second-mode instability for the boundary-layer
profile at x/L = 0.3, as demonstrated in Appendix B by using linear stability theory (LST).

5.1. Effects of external disturbances on an attached flow
Next, the emergence of streamwise streaks for case T75 is examined. As shown in § 2,
flow separation is absent for this case. However, streamwise heat-flux streaks are captured
by DNS while adopting the above random forcing. Figure 10 shows instantaneous wall
Stanton number distributions at tU∞/L = 12 and 18. The wall Stanton number is defined
as

St = qw

ρ∞U∞cp(Taw − Tw)
, (5.2)

where qw denotes the surface heat flux, cp is the specific heat capacity, and Taw is the
adiabatic wall temperature. Streamwise heat-flux streaks can be observed on the ramp
surface. However, their spatial distributions are not identical at the two instants, indicating
an unsteady streak pattern over the ramp.

To further examine the unsteadiness of the streamwise streaks, the St signal at
(x/L, z/L) = (1.5, 0.1) together with its frequency spectrum are provided in figure 11.
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Figure 9. (a) Temporal history of spanwise velocity at x/L = 0.3 ( j = 60, k = 60). (b) PSD of the signal
in (a). (c) Temporal history of pressure perturbation at x/L = 0.3 ( j = 1, k = 60). (d) PSD of the signal in (c).
The dashed line in (d) represents the dominant frequency of the second-mode instability for the local boundary
layer, which is obtained using linear stability theory (LST).
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Figure 10. Instantaneous distributions of wall Stanton number for case T75 at (a) tU∞/L = 12, and
(b) tU∞/L = 18.
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Figure 11. (a) Temporal history of wall Stanton number at (x/L, z/L) = (1.5, 0.1) for case T75. (b) PSD of
the signal in (a).

While a local peak corresponding to the second-mode instability exists at f ≈ 800 kHz
(see Appendix B), low-frequency components dominate the signal. The above facts
confirm the previous resolvent analysis results that the optimal response takes the form
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Figure 12. PSD of the spanwise variation of St at x/L = 1.3 for case T75.

of low-frequency streamwise streaks, and the optimal gain is nearly the same for forcing
frequencies less than 27 kHz.

In terms of the spanwise wavelength of the streaks, figure 12 presents the PSD of
the spanwise distribution of St at x/L = 1.3 for case T75. Note that the plot is obtained
by averaging the FFT results at all time instants. The preferential wavelength of the
heat-flux streaks is in the range λ/L = 0.02–0.03, which covers the wavelength for the
most amplified streamwise streaks predicted by the resolvent analysis.

5.2. Effects of external disturbances on a separated flow
Subsequently, the influence of external disturbances on case T77 is discussed. As revealed
by the GSA, case T77 does not support the short-wavelength unstable mode (see figure 4).
Although there exists a long-wavelength unstable mode, its temporal growth rate is
extremely low, indicating a long simulation time and huge computational cost. Preliminary
simulation showed that for a time period tU∞/L = 30, the initial flow field remains 2-D
in the absence of external disturbances. Owing to the short width of the physical domain
(20 mm) and the short simulation time, case T77 can be viewed as a globally stable flow. In
other words, the long-wavelength global mode is not considered in the present numerical
simulation. This allows us to study the individual role of convective instability.

By introducing the random forcing at x/L = 0.2, and after the initial transient is
convected out, the DNS capture streamwise streaks downstream of reattachment. Figure 13
shows the distribution of wall Stanton number at two time instants for case T77. Like
case T75, unsteady heat-flux streaks can be observed on the ramp surface. Note that the
meandering reattachment line is caused by the distorted reattaching shear layer (Cao,
Klioutchnikov & Olivier 2019).

Figure 14(a) presents the wall Stanton number signal at (x/L, z/L) = (1.5, 0.1). The
corresponding frequency spectrum is given in figure 14(b). Consistent with previous
resolvent analysis, the surface heat flux is characterised by a low-frequency unsteadiness,
and the dominant amplitude is found for f < 27 kHz. Additionally, a local peak can
be found at approximately 800 kHz, which is close to the dominant frequency of the
second-mode instability at this position (see Appendix B for more details).

The spanwise wavelength of the heat-flux streaks is then examined by performing
an FFT for the spanwise distribution of St near reattachment (at x/L = 1.3). Figure 15
presents the time-averaged PSD as a function of spanwise wavelength. Similar to case
T75, the heat-flux streaks have a dominant spanwise wavelength for λ/L = 0.02–0.03.
Therefore, it seems that the presence of a separation bubble does not alter the selected
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Figure 13. Instantaneous distributions of wall Stanton number for case T77 at (a) tU∞/L = 12, and
(b) tU∞/L = 18. Black solid lines denote iso-lines of Cf = 0.
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Figure 14. (a) Temporal history of wall Stanton number at (x/L, z/L) = (1.5, 0.1) for case T77. (b) PSD of
the signal in (a).
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Figure 15. PSD of the spanwise variation of St at x/L = 1.3 for case T77.

spanwise wavelength, which is consistent with the previous resolvent analysis and in
contrast to the result of Dwivedi et al. (2019).

In short, the above DNS results corroborate that in an intrinsically stable
compression-ramp flow, the amplification of the disturbances generated by a random
forcing leads to low-frequency streamwise streaks with a specific spanwise wavelength.
On the other hand, in some compression-ramp experiments, both intrinsic and convective
instabilities may play a role in the formation of streamwise streaks owing to the presence of
environmental noise (e.g. free-stream turbulence). Towards this end, the effects of external
disturbances on an intrinsically unstable flow are investigated in the following.
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Figure 16. Instantaneous (tU∞/L = 75) distributions of wall Stanton number for case T100 in (a) the
absence and (b) the presence of external disturbances.

5.3. Effects of external disturbances on an intrinsically unstable flow
According to § 3 and Cao et al. (2021b), case T100 is characterised by the intrinsic
instability that triggers low-frequency streamwise streaks downstream of reattachment. To
examine the influence of external disturbances on the streamwise streaks triggered by the
intrinsic instability, the same random forcing as used for cases T75 and T77 is introduced
for case T100. The numerical simulation process is as follows.

In the 3-D simulation for case T100, the spanwise length of the physical domain is set
to 19.8 mm, which is three times the wavelength of the most unstable global mode. Owing
to the intrinsic instability, the initial flow bifurcates to three-dimensionality and then
saturates to a quasi-steady state. Hence the first step is to run a simulation up to tU∞/L =
60 to obtain a saturated flow in the absence of external disturbances. Based on our previous
results (Cao et al. 2021b), this intrinsically unstable flow can reach a quasi-steady state
prior to tU∞/L = 60. Then two simulations are performed simultaneously. In the first case,
the simulation without external disturbances is continued. The obtained flow is used for
comparison. In the second simulation, the random forcing is imposed at x/L = 0.2. After
some flow-through time, a fully developed flow subject to both intrinsic and convective
instabilities is obtained. It should be mentioned that the timing of introducing external
disturbances has no significant influence on the behaviour of heat-flux streaks in the fully
saturated flow because both convective and intrinsic instabilities induce low-frequency
streamwise streaks downstream of reattachment.

The unsteadiness of these two flows is compared below. Figure 16 shows the
instantaneous wall Stanton number distributions (at tU∞/L = 75) in the absence and
presence of external disturbances. It seems that the spanwise wavelength of the heat-flux
streaks is reduced after introducing upstream disturbances. In addition to the large-scale
streaks, small-scale heat-flux variation in the streamwise direction can be observed in
figure 16(b), which resembles the heat-flux distribution for case T77 (figure 13).

Figure 17(a) presents the wall Stanton number signal (at tU∞/L = 66 ∼ 84) for the
flows with and without external disturbances. The corresponding frequency spectra are
shown in figure 17(b). Although both flows are unsteady, the surface heat flux exhibits a
broader frequency spectrum after introducing upstream disturbances. Specifically, in the
flow without forcing, the dominant frequency is in the range 0–8 kHz. However, in the
presence of external disturbances, the dominant amplitude can be found for f < 30 kHz. It
is noted that although resolvent analysis is not applicable for case T100, the flow structure
upstream and downstream of the separation bubble is nearly the same in the base flow for
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Figure 17. (a) Temporal history of wall Stanton number at (x/L, z/L) = (1.5, 0.1) for case T100. (b) PSD
of the signal in (a). Solid and dashed lines correspond to the flow with and without external disturbances,
respectively.

PS
D

0 0.02 0.04 0.06 0.08 0.10
10–10

10–9

10–8

10–7

λ/L
Figure 18. PSD of the spanwise variation of St at x/L = 1.3 for case T100. Solid and dashed lines correspond

to the flow with and without external disturbances, respectively.

cases T77 and T100. As a result, when external disturbances are introduced, the frequency
spectrum of St for case T100 resembles that for case T77 (see figures 14b and 17b).

The spanwise wavelength of heat-flux streaks is then compared for the two flows
in figure 18. In the absence of external disturbances, the dominant wavelengths are
concentrated around λ/L = 0.045. However, the dominant wavelengths extend to a lower
range when external disturbances are introduced. Although resolvent analysis is not
applicable for case T100, the preferential wavelength selected by the convective instability
is expected to be close to that of case T77, namely, λ/L ≈ 0.021. Therefore, a combination
of intrinsic and convective instabilities tends to make a wider wavelength range for the
streamwise streaks.

Next, the evolution of surface heat flux induced by the instabilities is discussed.
Figure 19 plots the streamwise distributions of St for case T100 obtained from both 2-D
and 3-D simulations. Also shown are the experimental data from Roghelia et al. (2017b).
Note that the uncertainty of heat-flux measurement in the shock tunnel experiment is
10 % (Roghelia et al. 2017b). When external disturbances are absent, i.e. only intrinsic
instability takes effect, the heat flux on the ramp surface is larger than the 2-D result
owing to the occurrence of streamwise streaks, but it is smaller than the experimental
result. After introducing upstream disturbances, the surface heat flux is elevated further.
For instance, the heat transfer rises by approximately 34 % at x/L = 1.5 compared to the
flow without forcing. More importantly, a better comparison to the experimental result is
achieved in the presence of upstream disturbances. Hence the DNS results indicate that
both convective and intrinsic instabilities play a role in destabilising the experimentally
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Figure 19. Streamwise distributions of St for case T100 in comparison with experimental result (Roghelia
et al. 2017b). The black and red lines correspond to the spanwise-averaged value at tU∞/L = 75.

studied compression-ramp flow. This is reasonable because environmental noise usually
exists in experiments conducted in supersonic wind tunnels (Laufer 1961).

In summary, the above numerical simulations represent two typical scenarios that could
be encountered in experiments: (1) a compression-ramp flow dominated by convective
instability (cases T75 and T77); (2) a compression-ramp flow affected by both convective
and intrinsic instabilities (case T100). In both scenarios, the flows are characterised by
low-frequency streamwise streaks. On the one hand, the similar flow pattern may bring
difficulties in explaining experimental results, as discussed in the Introduction. On the
other hand, although the streamwise streaks in the two scenarios resemble each other,
their magnitude, frequency and spanwise wavelength are dependent on the associated
instabilities, which complicates the transition process.

6. Conclusion

In this work, the stability of hypersonic flow over a curved compression ramp was
investigated using several stability analysis tools as well as DNS. The free-stream Mach
number and the Reynolds number based on the flat plate length are 7.7 and 4.2 × 105,
respectively. A circular arc that is tangent to both the flat plate and the ramp was used to
alter the intrinsic stability of the compression-ramp flow.

GSA was first performed to identify the stability intrinsic to the considered flows. As
the tangent point moves upstream, the size of the separation bubble reduces, and the flow
tends to be more stable. At a critical corner curvature, the separation bubble disappears.
Consequently, the intrinsic instability is inhibited by the corner rounding.

Subsequently, resolvent analysis was employed to examine the response of intrinsically
stable flows to external disturbances. It was shown that for cases T77 and T75, the
flow strongly amplifies low-frequency streamwise streaks with a preferential spanwise
wavelength. Moreover, the streamwise streaks arise from the transient growth over the flat
plate, and experience significant amplification in regions with large streamline curvature.

The resolvent analysis results were then verified using DNS. While imposing a random
forcing (white noise) at x/L = 0.2 for cases T77 and T75, unsteady streamwise heat-flux
streaks were observed on the ramp surface. Consistent with the resolvent analysis results,
the streamwise streaks exhibit a low-frequency feature and have a specific spanwise
wavelength. In addition, both the resolvent analysis and DNS confirmed that the separation
bubble contributes little to the selection of the spanwise wavelength of the streaks.

The influence of external disturbances on an intrinsically unstable flow was also studied
using DNS. Introducing the random forcing for case T100 results in a broader frequency
spectrum and a wider wavelength range for the streamwise streaks. However, a better

957 A8-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

56
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.56


Stability of hypersonic flow over a curved compression ramp

comparison to the experimental data regarding the surface heat flux downstream of
reattachment is achieved in the presence of external disturbances, which indicates that both
convective and intrinsic instabilities may play a role in destabilising the compression-ramp
flow in the experiment.

As environmental noise is usually present in experiments conducted in wind tunnels,
convective instability can be dominant in an intrinsically stable flow. On the other hand,
an intrinsically unstable flow can also be subject to convective instability. Their combined
effects may enhance the transition process. Therefore, the present study contributes
to understanding these two scenarios that can promote transition to turbulence in a
hypersonic compression-ramp flow. It should be noted that the forcing amplitudes are
chosen arbitrarily in this work. A thorough and precise comparison between numerical
simulation and experiment requires accurate information of the wind tunnel noise.
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Appendix A. Grid-independence study for case T77

A grid-independence study is conducted for case T77. Two mesh resolutions, 1080 ×
240 × 120 and 1890 × 320 × 200, are considered. A random forcing in the form of
(5.1) is introduced at x/L = 0.2 to excite upstream disturbances. As a consequence,
streamwise heat-flux streaks form on the ramp surface downstream of reattachment.
Figure 20(a) shows the streamwise distribution of spanwise-averaged St at a time instant.
The spanwise distribution of St at x/L = 1.5 is given in figure 20(b). It is obvious that
the length of the separation bubble and the heat-flux level both inside and downstream
of the separation bubble are nearly the same for the two mesh resolutions. Moreover,
the spanwise wavelength of the heat-flux streaks is approximately 2 mm for both mesh
resolutions. Therefore, the mesh resolution 1080 × 240 × 120 is shown to be sufficient to
capture the streamwise streaks triggered by the convective instability.

Appendix B. LST analysis

The present linear stability analysis considers the convective instability problem in a
compressible boundary layer induced by a small-amplitude disturbance. The form of
disturbance is assumed as

φ′(x, y, z, t) = ϕ( y) ei(αx+βz−ωt) + c.c., (B1)

where ϕ = (ρ̂, û, v̂, ŵ, T̂)T is the eigenfunction, and α = αr + iαi, with αr the streamwise
wavenumber, and −αi the spatial growth rate. The symbols β and ω denote the
spanwise wavenumber and the angular frequency, respectively, and c.c. refers to the
complex conjugate. With the introduction of the parallel-flow assumption, the linearised
Navier–Stokes equations are transformed into an LST eigenvalue problem. This is
subsequently solved by a Chebyshev pseudo-spectral method to obtain the global
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Figure 20. (a) Streamwise distribution of spanwise-averaged St, and (b) spanwise distribution of St at
x/L = 1.5, for case T77 with two mesh resolutions: 1080 × 240 × 120 (black) and 1890 × 320 × 200 (red).
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Figure 21. Variation of the spatial growth rate with the frequency for the most unstable second mode.

eigenvalue spectrum and an iterative compact fourth-order difference scheme to improve
the accuracy of the eigenvalue and eigenfunction (Malik 1990). The present LST code
has been validated by calculating a series of benchmark cases (Guo et al. 2020, 2021).
The base flow is provided by the present DNS solver, and the wall-normal pressure
gradient of the base flow is included in the LST analysis. For the calculation of the most
unstable second mode, the spanwise wavenumber is set to zero. Figure 21 shows the spatial
growth rate varying with the frequency at three different positions. The corresponding
most pronounced frequencies are used for the comparisons with the DNS energy spectra
(see figures 9d, 11b and 14b). In addition to the analysis for the second Mack mode
(β = 0), LST analysis with non-zero spanwise wavenumber is also performed for the
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boundary-layer profiles at x/L = 0.3 and 0.5. It is found that the Mach 7.7 cold-wall
boundary layer does not support the first Mack mode.
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