ON DEGENERATIONS OF MODULES WITH NONDIRECTING INDECOMPOSABLE SUMMANDS

A. SKOWROŃSKI AND G. ZWARA

Abstract

Let A be a finite dimensional associative K-algebra with an identity over an algebraically closed field K, d a natural number, and $\bmod _{A}(d)$ the affine variety of d-dimensional A-modules. The general linear group $\mathrm{Gl}_{d}(K)$ acts on $\bmod _{A}(d)$ by conjugation, and the orbits correspond to the isomorphism classes of d-dimensional modules. For M and N in $\bmod _{A}(d), N$ is called a degeneration of M, if N belongs to the closure of the orbit of M. This defines a partial order $\leq_{\text {deg }}$ on $\bmod _{A}(d)$. There has been a work [1], [10], [11], [21] connecting $\leq_{\text {deg }}$ with other partial orders $\leq_{\text {ext }}$ and \leq on $\bmod _{A}(d)$ defined in terms of extensions and homomorphisms. In particular, it is known that these partial orders coincide in the case A is representation-finite and its Auslander-Reiten quiver is directed. We study degenerations of modules from the additive categories given by connected components of the Auslander-Reiten quiver of A having oriented cycles. We show that the partial orders $\leq_{\text {ext }}, \leq_{\text {deg }}$ and \leq coincide on modules from the additive categories of quasi-tubes [24], and describe minimal degenerations of such modules. Moreover, we show that $M \leq_{\operatorname{deg}} N$ does not imply $M \leq_{\text {ext }} N$ for some indecomposable modules M and N lying in coils in the sense of [4].

1. Introduction and main results. Throughout the paper K denotes a fixed algebraically closed field. By an algebra we mean an associative finite dimensional K-algebra with an identity, and by an A-module a finite dimensional (unital) right A-module. We shall denote by mod A the category of A-modules, by Γ_{A} the Auslander-Reiten quiver of A, and by τ_{A} the Auslander-Reiten translation in Γ_{A}.

In this article we are interested in geometric properties of modules with indecomposable summands in connected Auslander-Reiten components of a prescribed form. Let A be an algebra with a basis $a_{1}=1, a_{2}, \ldots, a_{n}$ and the associated structure constants $a_{i j k}$. For any natural number d we have the affine variety $\bmod _{A}(d)$ of d-dimensional A modules consisting in n-tuples $m=\left(m_{1}, \ldots, m_{n}\right)$ of $d \times d$ matrices with coefficients in K such that m_{1} is the identity matrix and $m_{i} m_{j}=\sum m_{k} a_{k j}$ for all indices i and j. The general linear group $\mathrm{Gl}_{d}(K)$ acts on $\bmod _{A}(d)$ by conjugation, and the orbits correspond to the isomorphism classes of d-dimensional A-modules (see [16]). We shall agree to identify a d-dimensional A-module M with its isomorphism class, and with the point of $\bmod _{A}(d)$ corresponding to it. Then one says that a module M in $\bmod _{A}(d)$ degenerates to a module N in $\bmod _{A}(d)$, and writes $M \leq_{\operatorname{deg}} N$, if the $\mathrm{Gl}_{d}(K)$-orbit $O(N)$ of N is contained in the closure $\overline{O(M)}$ of the $\mathrm{Gl}_{d}(K)$-orbit $O(M)$ of M in $\bmod _{A}(d)$. Thus $\leq_{\text {deg }}$ is a partial order on the set of isomorphism classes of d-dimensional A-modules. There has been an important

The research was partially supported by the Polish Scientific Grant KBN. No. 590/PO3/95/08
Received by the editors May 5, 1995.
AMS subject classification: 14L30, 16G10, 16G70.
(c) Canadian Mathematical Society 1996.
work by S. Abeasis and A. del Fra [1], K. Bongartz [10], [11] and Ch. Riedtmann [21] connecting $\leq_{\text {deg }}$ with other partial orders $\leq_{\text {ext }}, \leq_{\text {virt }}$ and \leq on the isomorphism classes in $\bmod _{A}(d)$ which are defined in terms of representation theory as follows:

- $M \leq \leq_{\text {ext }} N: \Longleftrightarrow$ there are modules M_{i}, U_{i}, V_{i} and short exact sequences $0 \rightarrow$ $U_{i} \rightarrow M_{i} \rightarrow V_{i} \rightarrow 0$ in $\bmod A$ such that $M=M_{1}, M_{i+1}=U_{i} \oplus V_{i}, 1 \leq i \leq s$, and $N=M_{s+1}$ for some natural number s.
- $M \leq_{\text {virt }} N: \Longleftrightarrow M \oplus X \leq_{\operatorname{deg}} N \oplus X$ for some A-module X.
- $M \leq N: \Longleftrightarrow[X, M] \leq[X, N]$ holds for all modules X.

Here and later on we abbreviate $\operatorname{dim}_{K} \operatorname{Hom}_{A}(X, Y)$ by $[X, Y]$. Then for modules M and N in $\bmod _{A}(d)$ the following implications hold:

$$
M \leq_{\mathrm{ext}} N \Rightarrow M \leq_{\operatorname{deg}} N \Rightarrow M \leq_{\mathrm{virt}} N \Rightarrow M \leq N
$$

(see [10], [21]). Unfortunately, the reverse implications are not true in general, and it is interesting to find out when they are. This is the case for all modules over representationfinite algebras A with Γ_{A} directed, and hence for representations of Dynkin quivers [10], [11]. Finally, for a module M in $\bmod A$, we shall denote by [M] the image of M in the Grothendieck group $K_{0}(A)$ of A. Thus $[M]=[N]$ if and only if M and N have the same simple composition factors including the multiplicities. Observe that, if M and N have the same dimension and $M \leq N$, then $[M]=[N]$.

We are interested in the following problem. Let \mathcal{C} be a family of connected components of an Auslander-Reiten quiver Γ_{A} and $\operatorname{add}(\mathcal{C})$ the additive category of \mathcal{C}. We may ask when $M \leq_{\operatorname{deg}} N$ for M and N in $\operatorname{add}(C)$ with $[M]=[N]$? For preprojective components this problem has been investigated in [10]. In particular, it was shown in [10] that, for \mathcal{C} preprojective, the partial orders $\leq_{\text {ext }}$ and \leq coincides on $\operatorname{add}(\mathcal{C})$. An important feature of preprojective components is that they consists of modules not lying on oriented cycles of nonzero nonisomorphisms between indecomposable modules (directing modules [22]), and hence such modules are uniquely determined (up to isomorphism) by their composition factors. Here, we are interested in degenerations of modules from $\operatorname{add}(\mathcal{C})$ for connected components \mathcal{C} of Γ_{A} containing oriented cycles. Our interest in such components is motivated by a result due to L. Peng - J. Xie [19] and the first named author [25] saying that the Auslander-Reiten quiver Γ_{A} of any algebra A has at most finitely many τ_{A}-orbits containing directing modules. A distinguished role in the representation theory is played by components consisting of τ_{A}-periodic modules, called stable tubes (see [13], [14], [15], [22], [26]), that is, components of the form $\mathbb{Z A}_{\infty} /\left(\tau^{r}\right), r \geq 1$. In [14] d'Este and Ringel investigated components, called (coherent) tubes, which can be obtained from stable tubes by ray and coray insertions. In recent investigations of tame simply connected algebras appeared a natural generalization of the notion of tube called coil, introduced by I. Assem and the first named author in [3], [4]. Roughly speaking a coil is a translation quiver whose underlying topological space, modulo projectiveinjective points, is homeomorphic to a crowned cylinder. Special types of coils are quasitubes [24] whose underlying topological space, modulo projective-injective vertices, is homeomorphic to a tube. It is shown in [4] that coils can be obtained from stable tubes
by a sequence of admissible operations. Moreover, it was shown in [29] (see also [28]) that a strongly simply connected algebra A is (tame) of polynomial growth if and only if every nondirecting indecomposable A-module lies in a standard coil of a multicoil of Γ_{A}. We note also that quasi-tubes frequently appear in the Auslander-Reiten quivers of selfinjective algebras (see [24]). Recall that a component \mathcal{C} of Γ_{A} is called standard if the full subcategory of $\bmod A$ formed by modules from C is equivalent to the mesh-category $K(\mathcal{C})$ of \mathcal{C} [12], [22].

Our first main result shows that the partial orders $\leq_{\text {ext }}, \leq_{\text {deg }}, \leq_{\text {virt }}$ and \leq coincide on the additive categories of quasi-tubes.

Theorem 1. Let A be an algebra, $\mathcal{C}=\left(\mathcal{C}_{i}\right)_{i \in I}$ be a family of pairwise orthogonal standard quasi-tubes in Γ_{A}, and M, N modules in $\operatorname{add}(C)$ with $[M]=[N]$. Then the following conditions are equivalent:
(i) $M \leq \leq_{\text {ext }} N$,
(ii) $M \leq N$,
(iii) $[X, M] \leq[X, N]$ for all modules X in \mathcal{C}.

Note that the condition (iii) is rather easy to check, so the above theorem gives a handy criterion to decide when N is a degeneration of M.

Our second theorem shows the convexity of the degenerations between modules from the additive categories of pairwise orthogonal standard quasi-tubes of Γ_{A} in the lattices of all degenerations between A-modules of a given dimension.

Theorem 2. Let A be an algebra and $\mathcal{C}=\left(\mathcal{C}_{i}\right)_{i \in I}$ a family of pairwise orthogonal standard quasi-tubes in Γ_{A}. Assume that M, N, V are A-modules such that $[M]=[V]=$ $[N], M \leq_{\operatorname{deg}} V \leq_{\operatorname{deg}} N$, and M and N belong to $\operatorname{add}(\mathcal{C})$. Then V belongs to $\operatorname{add}(\mathcal{C})$.

It is well known that if $O(M)$ is a $\mathrm{Gl}_{d}(K)$-orbit in $\bmod _{A}(d)$ then the set $\overline{O(M)} \backslash O(M)$ is a union of orbits of smaller dimension than $\operatorname{dim} O(M)$, and $\operatorname{dim} O(M)=\operatorname{dim} \mathrm{Gl}_{d}(K)-$ $\operatorname{dim} \operatorname{Stab}_{\mathrm{Gl}_{d}(K)}(M)=d^{2}-[M, M]$ (see [16]). Hence any chain of neighbours

$$
M=M_{0}<_{\operatorname{deg}} M_{1}<_{\operatorname{deg}} \cdots<_{\operatorname{deg}} M_{r}=N
$$

in $\bmod _{A}(d)$ has at most $[N, N]-[M, M]$ members (see also [10]). We shall now describe the minimal degenerations in the additive categories of quasi-tubes. With each coil Γ one associates in [5] two numerical invariants $(p(\Gamma), q(\Gamma))$ which measure respectively the number of rays and corays in Γ. For Γ a quasi-tube, we define in Section 4 canonical short exact sequences

$$
\Sigma(U, s, t): 0 \rightarrow U \rightarrow E(U, s, t) \rightarrow \varphi^{-s} \psi^{t} U \rightarrow 0
$$

with U and $\varphi^{-s} \psi^{t} U$ indecomposable modules in Γ, and s and t measuring the size of the rectangle

$$
\mathcal{R}(U, s, t)=\left\{\varphi^{-i} \psi^{j} U ; 0 \leq i<s, 0 \leq j<t\right\}
$$

determined by U and $\tau_{A} V=\varphi^{-s+1} \psi^{t-1} U$. Then our next main result is as follows.

THEOREM 3. Let A be an algebra, $\mathcal{C}=\left(\mathcal{C}_{i}\right)_{i \in I}$ a family of pairwise orthogonal standard quasi-tubes in Γ_{A}, and M, N modules in $\operatorname{add}(\mathcal{C})$ with $[M]=[N]$. Then N is a minimal degeneration of M if and only if $M=E \oplus U^{m-1} \oplus V^{r-1} \oplus X, N=U^{m} \oplus V^{r} \oplus X$, $m, r \geq 1$, and the following conditions are satisfied:
(i) $U \oplus V$ and $E \oplus X$ have no common nonzero direct summands.
(ii) U and V are indecomposable modules lying in one quasi-tube $\Gamma=\mathcal{C}_{i_{0}}$ of \mathcal{C}.
(iii) There exists a canonical exact sequence

$$
0 \rightarrow U \rightarrow E(U, s, t) \rightarrow \varphi^{-s} \psi^{t} U \rightarrow 0
$$

with $E \simeq E(U, s, t), V \simeq \varphi^{-s} \psi^{t} U$, and s, t satisfying one of the following conditions:
(a) $s<p(\Gamma)$.
(b) $t<q(\Gamma)$.
(c) $s=p(\Gamma)$ and $t=k q(\Gamma)$, for some $k \geq 1$.
(d) $s=k p(\Gamma)$ and $t=q(\Gamma)$, for some $k \geq 1$.
(iv) Any common indecomposable direct summand $W \not \approx \varphi^{-s} \psi^{t} U$ of M and N does not belong to the rectangle $\mathcal{R}\left(\tau_{A}^{-} U, s, t\right)$.
(v) Any common indecomposable direct summand $W \not \approx U$ of M and N does not belong to the rectangle $\mathcal{R}(U, s, t)$.

From the description of the exact sequences $\Sigma(U, s, t)$ given in Section 4 we then get the following fact (cf. [11, Lemma 5]).

Corollary 1. Let A be an algebra, $\mathcal{C}=\left(\mathcal{C}_{i}\right)_{i \in I}$ a family of pairwise orthogonal standard quasi-tubes in Γ_{A}, and M, N modules in $\operatorname{add}(\Gamma)$ with $[M]=[N]$ and without common nonzero direct summands. If there is a minimal degeneration $M<_{\operatorname{deg}} N$, then no indecomposable direct summand X occurs twice in M.

For coils which are not quasi-tubes we shall prove the following fact.
Theorem 4. Let A be an algebra and C a standard coil of Γ_{A} which is not a quasitube. Then there exist indecomposable modules M and N in C such that $[M]=[N]$ and $M<_{\text {deg }} N$.

As a direct consequence of Theorems 1 and 4 we get the following corollary.
Corollary 2. Let A be an algebra and C a standard coil in Γ_{A}. Then \mathcal{C} is a quasitube if and only if, for any M and N in $\operatorname{add}(\mathcal{C})$ with $[M]=[N], M \leq_{\operatorname{deg}} N$ implies $M \leq_{\text {ext }} N$.

The paper is organized as follows. In Section 2 we fix the notation, recall the relevant definitions and facts, and prove some preliminary results on modules which we apply in our investigations. Section 3 is devoted to coils and their construction from stable tubes by admissible operations. We prove also there that the additive category $\operatorname{add}(\Gamma)$ of a standard coil Γ of an Auslander-Reiten quiver Γ_{A} is closed under extensions. In Section 4 we prove several facts on additive functions determined by short exact sequences in the
additive categories of standard quasi-tubes. Sections 5, 6 and 7 are devoted to the proofs of Theorems 1 and 2, 3, and 4, respectively.

For a basic background on the topics considered here we refer to [11], [16], [22] and [26].

2. Preliminaries on modules.

2.1. Throughout the paper A denotes a fixed finite dimensional associative K-algebra with an identity over an algebraically closed field K. We denote by $\bmod A$ the category of finite dimensional right A-modules, by ind A the full subcategory of $\bmod A$ formed by indecomposable modules, by $\operatorname{rad}(\bmod A)$ the $\mathrm{Jacobson} \operatorname{radical} \operatorname{of} \bmod A$, and by $\operatorname{rad}^{\infty}(\bmod A)$ the intersection of all powers $\operatorname{rad}^{i}(\bmod A), i \geq 1, o f \operatorname{rad}(\bmod A)$. By an A-module is meant an object from $\bmod A$. Further, we denote by Γ_{A} the AuslanderReiten quiver of A and by $\tau=\tau_{A}$ and $\tau^{-}=\tau_{A}^{-}$the Auslander-Reiten translations $D \mathrm{Tr}$ and TrD , respectively. We shall agree to identify the vertices of Γ_{A} with the corresponding indecomposable modules. For M in $\bmod A$ we denote by $[M]$ the image of M in the Grothendieck group $K_{0}(A)$ of A. Further, for X, Y from $\bmod A$ we abbreviate $\operatorname{dim}_{K} \operatorname{Hom}_{A}(X, Y)$ by $[X, Y]$. Finally, for a family Γ of A-modules, we denote by add (Γ) the additive category given by Γ, that is, the full subcategory of $\bmod A$ formed by all modules isomorphic to the direct sums of modules from Γ.
2.2 Following [21], for M, N from $\bmod A$, we set $M \leq N$ if and only if $[X, M] \leq[X, N]$ for all A-modules X. The fact that \leq is a partial order on the isomorphism classes of A modules follows from a result by M. Auslander (see [6], [9]). M. Auslander and I. Reiten have shown in [7] that, if [M] $=[N]$ for A-modules M and N, then for all nonprojective indecomposable A-modules X and all noninjective indecomposable modules Y the following formulas hold:

$$
\begin{aligned}
{[X, M]-[M, \tau X] } & =[X, N]-[N, \tau X] \\
{[M, Y]-\left[\tau^{-} Y, M\right] } & =[N, Y]-\left[\tau^{-} Y, N\right] .
\end{aligned}
$$

Hence, if $[M]=[N]$, then $M \leq N$ if and only if $[M, X] \leq[N, X]$ for all A-modules X.
2.3. Let M and N be A-modules with $[M]=[N]$ and

$$
\Sigma: 0 \rightarrow D \rightarrow E \rightarrow F \rightarrow 0
$$

an exact sequence in $\bmod A$. Following [21] we define the additive functions $\delta_{M, N}, \delta_{M, N}^{\prime}$, δ_{Σ} and δ_{Σ}^{\prime} for an A-module X as follows:

$$
\begin{aligned}
\delta_{M, N}(X) & =[N, X]-[M, X] \\
\delta_{M, N}^{\prime}(X) & =[X, N]-[X, M] \\
\delta_{\Sigma}(X) & =\delta_{E, D \oplus F}(X)=[D \oplus F, X]-[E, X] \\
\delta_{\Sigma}^{\prime}(X) & =\delta_{E, D \oplus F}^{\prime}(X)=[X, D \oplus F]-[X, E]
\end{aligned}
$$

From the Auslander-Reiten formulas (2.2) we get the following very useful equalities

$$
\delta_{M, N}(X)=\delta_{M, N}^{\prime}\left(\tau^{-} X\right), \quad \delta_{M, N}(\tau X)=\delta_{M, N}^{\prime}(X)
$$

and

$$
\delta_{\Sigma}(X)=\delta_{\Sigma}^{\prime}\left(\tau^{-} X\right), \quad \delta_{\Sigma}(\tau X)=\delta_{\Sigma}^{\prime}(X)
$$

for all A-modules X. Observe also that $\delta_{M, N}(I)=0$ for any injective A-module I, and $\delta_{M, N}^{\prime}(P)=0$ for any projective A-module P. In particular, we get that the following conditions are equivalent:
(1) $M \leq N$.
(2) $\delta_{M, N}(X) \geq 0$ for all $X \in$ ind A.
(3) $\delta_{M, N}^{\prime}(X) \geq 0$ for all $X \in$ ind A.
2.4. For an A-module M and an indecomposable A-module Z, we denote by $\mu(M, Z)$ the multiplicity of Z as a direct summand of M. For a noninjective indecomposable A-module U we denote by $\Sigma(U)$ an Auslander-Reiten sequence

$$
\Sigma(U): 0 \rightarrow U \rightarrow E(U) \rightarrow \tau^{-} U \rightarrow 0,
$$

and define $\pi(U)$ to be the unique indecomposable projective-injective direct summand of $E(U)$, if such a summand exists, or 0 otherwise.

We shall need the following lemmas.
Lemma 2.5. Let G be an A-module and U an indecomposable A-module. Then
(i) If U is noninjective, then $\delta_{\Sigma(U)}(G)=\mu(G, U)$.
(ii) If U is nonprojective, then $\delta_{\Sigma(\tau U)}^{\prime}(G)=\mu(G, U)$.

Proof. (i) The Auslander-Reiten sequence $\Sigma(U)$ induces an exact sequence

$$
0 \rightarrow \operatorname{Hom}_{A}\left(\tau^{-} U, G\right) \rightarrow \operatorname{Hom}_{A}(E(U), G) \rightarrow \operatorname{rad}(U, G) \rightarrow 0
$$

and hence we get that

$$
\delta_{\Sigma(U)}(G)=\left[U \oplus \tau^{-} U, G\right]-[E(U), G]=[U, G]-\operatorname{dim}_{K} \operatorname{rad}(U, G)=\mu(G, U)
$$

(ii) The Auslander-Reiten sequence $\Sigma(\tau U)$ induces an exact sequence

$$
0 \rightarrow \operatorname{Hom}_{A}(G, \tau U) \rightarrow \operatorname{Hom}_{A}(G, E(\tau U)) \rightarrow \operatorname{rad}(G, U) \rightarrow 0
$$

and hence we get the equalities

$$
\delta_{\Sigma(\tau U)}^{\prime}(G)=[G, \tau U \oplus U]-[G, E(\tau U)]=[G, U]-\operatorname{dim}_{K} \operatorname{rad}(G, U)=\mu(G, U)
$$

Lemma 2.6. Let Γ be a standard component of Γ_{A} and assume that there exists in Γ a mesh-complete subquiver of the form

with all $U_{i}, V_{i}, i \geq 1$, pairwise nonisomorphic. Then for any $Z \in \operatorname{add}(\Gamma)$ the following equality holds

$$
\left[V_{1}, Z\right]-\left[U_{1}, Z\right]=\sum_{i \geq 1} \mu\left(Z, V_{i}\right)
$$

Proof. Since Γ is standard there exist irreducible maps $f_{i}: V_{i} \rightarrow V_{i+1}, g_{i}: U_{i} \rightarrow U_{i+1}$, $h_{i}: V_{i} \rightarrow U_{i}, i \geq 1$, such that $g_{i} h_{i}=h_{i+1} f_{i}$ for all $i \geq 1$. Moreover, by [18], for any indecomposable modules X and Y in $\Gamma, \operatorname{rad}^{\infty}(X, Y)=0$ (Γ is generalized standard in the sense of [27]), and hence any nonzero morphism in $\operatorname{rad}(X, Y)$ is a linear combination of the composites of irreducible morphisms between indecomposable modules in Γ. Clearly, in order to prove the lemma, we may consider an indecomposable module Z in Γ. First observe that the induced map $\operatorname{Hom}_{A}\left(h_{1}, Z\right): \operatorname{Hom}_{A}\left(U_{1}, Z\right) \rightarrow \operatorname{Hom}_{A}\left(V_{1}, Z\right)$ is a monomorphism. Indeed, take a nonzero map w in $\operatorname{Hom}_{A}\left(U_{1}, Z\right)$. Then by the above remarks there exists $r \geq 0$ such that $w \in \operatorname{rad}^{r}\left(U_{1}, Z\right) \backslash \operatorname{rad}^{r+1}\left(U_{1}, Z\right)$. Applying now the dual of Corollary 1.6 in [17], we get that $h_{1}: V_{1} \rightarrow U_{1}$ is of infinite right degree, and consequently $w h_{1} \in \operatorname{rad}^{r+1}\left(V_{1}, Z\right) \backslash \operatorname{rad}^{r+2}\left(V_{1}, Z\right)$. In particular, $w h_{1} \neq 0$ and we are done. Further, we know that any irreducible map $V_{i} \rightarrow W$ with W indecomposable is of the form $\alpha f_{i}+\varphi$, $\varphi \in \operatorname{rad}^{2}\left(V_{i}, V_{i+1}\right)$, or $\alpha h_{i}+\psi, \psi \in \operatorname{rad}^{2}\left(V_{i}, U_{i}\right)$, for some $\alpha \in K$. Hence, if $Z \not \nsim V_{i}$, for any $i \geq 1$, then using the equalities $g_{i} h_{i}=h_{i+1} f_{i}$ we get that the map $\operatorname{Hom}_{A}\left(h_{1}, Z\right)$ is an isomorphism. Then

$$
\left[V_{1}, Z\right]-\left[U_{1}, Z\right]=0=\sum_{i \geq 1} \mu\left(Z, V_{i}\right) .
$$

Assume $Z=V_{j}$ for some $j \geq 1$. Then we get

$$
\operatorname{Hom}_{A}\left(V_{1}, Z\right)=\operatorname{im~Hom}_{A}\left(h_{1}, Z\right)+K f_{j-1} \cdots f_{1}
$$

where, in case $j=1, f_{0}$ is the identity map $V_{1} \rightarrow V_{1}$. Moreover, by [8], $f_{j-1} \cdots f_{1}$ does not belong to im $\operatorname{Hom}_{A}\left(h_{1}, Z\right)$, because $\tau^{-} V_{i}=U_{i+1} \not \not ⿻ V_{i+2}$ for any $i \geq 1$. Therefore, we get

$$
\left[V_{1}, Z\right]-\left[U_{1}, Z\right]=1=\mu\left(Z, V_{j}\right)=\sum_{i \geq 1} \mu\left(Z, V_{i}\right)
$$

because the modules V_{1}, V_{2}, \ldots are pairwise nonisomorphic.
Lemma 2.7. Let $\Gamma_{A}=\Gamma^{\prime} \cup \Gamma^{\prime \prime}$ be a decomposition of Γ_{A} into a disjoint sum of connected components. Assume that M and N are A-modules such that $[M]=[N]$ and $\delta_{M, N}(X)=0$ for all $X \in \operatorname{add}\left(\Gamma^{\prime}\right)$. Then the following statements hold:
(i) If $M, N \in \operatorname{add}\left(\Gamma^{\prime}\right)$ then $M \simeq N$.
(ii) $M \in \operatorname{add}\left(\Gamma^{\prime \prime}\right)$ if and only if $N \in \operatorname{add}\left(\Gamma^{\prime \prime}\right)$.

Proof. Since each $X \in \bmod A$ has a decomposition $X=X^{\prime} \oplus X^{\prime \prime}$ with $X^{\prime} \in \operatorname{add}\left(\Gamma^{\prime}\right)$ and $X^{\prime \prime} \in \operatorname{add}\left(\Gamma^{\prime \prime}\right)$ it is sufficient to prove that $\mu(M, U)=\mu(N, U)$ for any indecomposable module U in Γ^{\prime}. Take an indecomposable module U in Γ^{\prime}. Assume first that U is not
projective. Then by our assumption and Lemma 2.5(ii) we get the equalities

$$
\begin{aligned}
\mu(N, U)-\mu(M, U) & =\delta_{\Sigma(\tau U)}^{\prime}(N)-\delta_{\Sigma(\tau U)}^{\prime}(M) \\
& =[N, \tau U \oplus U]-[N, E(\tau U)]-[M, \tau U \oplus U]+[M, E(\tau U)] \\
& =\delta_{M, N}(\tau U)+\delta_{M, N}(U)-\delta_{M, N}(E(\tau U))=0
\end{aligned}
$$

because $U, \tau U$, and $E(\tau U)$ belong to $\operatorname{add}\left(\Gamma^{\prime}\right)$. Assume now that U is projective. Then we get the equalities

$$
\mu(M, U)=[M, U]-[M, \operatorname{rad} U]=[N, U]-[N, \operatorname{rad} U]=\mu(N, U)
$$

because $\operatorname{rad} U \in \operatorname{add}\left(\Gamma^{\prime}\right)$ and $\delta_{M, N}(U)=0, \delta_{M, N}(\operatorname{rad} U)=0$. This finishes the proof.
2.8. Let Γ be a connected component of Γ_{A}. For modules M and N in add (Γ) we set

$$
M \leq_{\Gamma} N \Longleftrightarrow[X, M] \leq[X, N] \text { for all modules } X \text { in } \operatorname{add}(\Gamma)
$$

Clearly, $M \leq N$ implies $M \leq_{\Gamma} N$. The following direct consequence of the above lemma shows that \leq_{Γ} is a partial order on the isomorphism classes of modules in add (Γ) having the same composition factors.

Corollary. Let M and N be two modules in $\operatorname{add}(\Gamma)$ such that $[M]=[N]$. Then $M \simeq N$ if and only if $M \leq_{\Gamma} N$ and $N \leq_{\Gamma} M$.

Moreover, if M and N belongs to $\operatorname{add}(\Gamma)$ and $[M]=[N]$ then the following conditions are equivalent (see (2.3)):
(1) $M \leq_{\Gamma} N$.
(2) $\delta_{M, N}(X) \geq 0$ for all modules X in Γ.
(3) $\delta_{M, N}^{\prime}(X) \geq 0$ for all modules X in Γ.
3. Coils. We shall recall some basic facts on coils introduced by I. Assem and the first named author in [3] (see also [4]) and prove that the additive categories of standard coils are closed under extensions.
3.1. A translation quiver Γ is called a tube [14], [22] if it contains a cyclical path and its underlying topological space is homeomorphic to $S^{1} \times \mathbb{R}^{+}$(where S^{1} is the unit circle, and \mathbb{R}^{+}the non-negative real half-line). Tubes containing neither projective vertices nor injective vertices are called stable. The rank of a stable tube Γ is the least positive integer such that $\tau^{r} X=X$ for all $X \in \Gamma$.
3.2 The one-point extension of an algebra B by a B-module X is the matrix algebra

$$
B[X]=\left[\begin{array}{ll}
K & X \\
0 & B
\end{array}\right]
$$

with the usual addition and multiplication of matrices. The $B[X]$-modules are usually identified with the triples (V, M, φ), where V is a K-vector space, M is a B-module and $\varphi: V \rightarrow \operatorname{Hom}_{A}(X, M)$ is a K-linear map. A $B[X]$-linear map $(V, M, \varphi) \rightarrow\left(V^{\prime}, M^{\prime}, \varphi^{\prime}\right)$ is
then identified with a pair (f, g), where $f: V \rightarrow V^{\prime}$ is K-linear, $g: M \rightarrow M^{\prime}$ is B-linear and $\varphi^{\prime} f=\operatorname{Hom}_{B}(X, g) \varphi$. One defines dually the one-point coextension $[X] B$ of B by X (see [22]).
3.3. A coil is a translation quiver constructed inductively from a stable tube by a sequence of operations called admissible. Our first task is to define the latter. Let B be an algebra and Γ be a standard component of Γ_{B}. Recall that Γ is called standard if the full subcategory of $\bmod B$ formed by modules from Γ is equivalent to the mesh-category $K(\Gamma)$ of Γ (see [22]). For an indecomposable module X in Γ, the support $S(X)$ of the functor $\left.\operatorname{Hom}_{B}(X,-)\right|_{\Gamma}$ is the factor category of $K(\Gamma)$ by the ideal I_{X} of $K(\Gamma)$ generated by all morphisms $f: M \rightarrow N$ such that $\operatorname{Hom}_{B}(X, f)=0$. For an indecomposable module X in Γ, called the pivot, one defines admissible operations $(\operatorname{ad} 1),(\operatorname{ad} 2),(\operatorname{ad} 3)$ and their duals (ad 1^{*}), (ad 2^{*}), (ad 3^{*}), modifying (Γ, τ) to a new translation quiver ($\Gamma^{\prime}, \tau^{\prime}$), depending on the shape of the support $S(X)$.
(ad 1) Assume that $S(X)$ is the K-linear category of an infinite sectional path starting at X :

$$
X=X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots
$$

In this case, we let $t \geq 1$ be a positive integer, D denote the full $t \times t$-lower triangular matrix algebra and Y_{1}, \ldots, Y_{t} denote the indecomposable injective D-modules with $Y=Y_{1}$ the unique indecomposable projective-injective module. We define the modified algebra B^{\prime} of B to be the one-point extension

$$
B^{\prime}=[B \times D][X \oplus Y]
$$

and the modified component Γ^{\prime} of Γ to be obtained by inserting in Γ a rectangle consisting of the modules $Z_{i j}=\left(K, X_{i} \oplus Y_{j},\binom{1}{1}\right)$ for $i \geq 0,1 \leq j \leq t$, and $X_{i}^{\prime}=\left(K, X_{i}, 1\right)$ for $i \geq 0$. The translation τ^{\prime} of Γ^{\prime} is defined as follows: $\tau^{\prime} Z_{i j}=Z_{i-1, j-1}$ if $i \geq 1, j \geq 2, \tau^{\prime} Z_{i 1}=X_{i-1}$ if $i \geq 1, \tau^{\prime} Z_{0 j}=Y_{j-1}$ if $j \geq 2, Z_{01}=P$ is projective, $\tau^{\prime} X_{0}^{\prime}=Y_{t}, \tau^{\prime} X_{i}^{\prime}=Z_{i-1, t}$ if $i \geq 1, \tau^{\prime}\left(\tau^{-} X_{i}\right)=X_{i}^{\prime}$ provided X_{i} is not an injective B-module, otherwise X_{i} is injective in Γ^{\prime}. For the remaining vertices of Γ (or Γ_{D}), the translation τ^{\prime} coincides with τ (or τ_{D}, respectively).

If now $t=0$, we define the modified algebra B^{\prime} to be the one-point extension $B^{\prime}=$ $B[X]$ and the modified component Γ^{\prime} to be the component obtained from Γ by inserting only the sectional path consisting of the $X_{i}^{\prime}, i \geq 0$.
(ad 2) Assume $S(X)$ is the K-linear category given by two sectional paths starting at X, the first infinite and the second finite with at least one arrow

$$
Y_{t} \leftarrow \cdots \leftarrow Y_{2} \leftarrow Y_{1} \leftarrow X=X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots
$$

where $t \geq 1$. In particular, X is necessarily injective. We define the modified algebra B^{\prime} of B to be the one-point extension $B^{\prime}=B[X]$ and the modified component Γ^{\prime} of Γ to be obtained by inserting in Γ a rectangle consisting of the modules $Z_{i j}=\left(K, X_{i} \oplus Y_{j},\binom{1}{1}\right)$ for $i \geq 1,1 \leq j \leq t$, and $X_{i}^{\prime}=\left(K, X_{i}, 1\right)$ for $i \geq 1$. The translation τ^{\prime} of Γ^{\prime} is defined as
follows: $P=X_{0}^{\prime}$ is projective-injective, $\tau^{\prime} Z_{i j}=Z_{i-1, j-1}$ if $i \geq 2, j \geq 2, \tau^{\prime} Z_{i 1}=X_{i-1}$ if $i \geq 1, \tau^{\prime} Z_{1 j}=Y_{j-1}$ if $j \geq 2, \tau^{\prime} X_{i}^{\prime}=Z_{i-1, t}$ if $i \geq 2, \tau^{\prime} X_{1}^{\prime}=Y_{t}, \tau^{\prime}\left(\tau^{-} X_{i}\right)=X_{i}^{\prime}$ if $i \geq 1$, provided X_{i} is not injective B-module, otherwise X_{i}^{\prime} is injective in Γ^{\prime}. For the remaining vertices of Γ^{\prime}, the translation τ^{\prime} coincides with the translation τ.
(ad 3) Assume $S(X)$ is the mesh-category of two parallel sectional paths

where $t \geq 2$. In particular, X_{t-1} is necessarily injective. We define the modified algebra B^{\prime} of B to be the one-point extension $B^{\prime}=B[X]$ and the modified component Γ^{\prime} to be obtained by inserting in Γ a rectangle consisting of the modules $Z_{i j}=\left(K, X_{i} \oplus Y_{j},\binom{1}{1}\right)$ for $i \geq 1,1 \leq j \leq i$, and $X_{i}^{\prime}=\left(K, X_{i}, 1\right)$ for $i \geq 1$. The translation τ^{\prime} of Γ^{\prime} is defined as follows: $P=X_{0}^{\prime}$ is projective, $\tau^{\prime} Z_{i j}=Z_{i-1, j-1}$ if $i \geq 2,2 \leq j \leq i, \tau^{\prime} Z_{i 1}=X_{i-1}$ if $i \geq 1$, $\tau^{\prime} X_{i}^{\prime}=Y_{i}$ if $1 \leq i \leq t, \tau^{\prime} X_{i}^{\prime}=Z_{i-1, t}$ if $i>t, \tau^{\prime} Y_{j}=X_{j-2}^{\prime}$ if $2 \leq j \leq t, \tau^{\prime}\left(\tau^{-} X_{i}\right)=X_{i}^{\prime}$ if $i \geq t$ provided X_{i} is not an injective B-module, otherwise X_{i}^{\prime} is injective in Γ^{\prime}. For the remaining vertices of Γ^{\prime}, the translation τ^{\prime} coincides with τ. We note that X_{t-1}^{\prime} is injective.

Finally, together with each of the admissible operations $(\operatorname{ad} 1),(\operatorname{ad} 2)$ and $(\operatorname{ad} 3)$, we must consider its dual, denoted by (ad $\left.1^{*}\right),\left(\operatorname{ad} 2^{*}\right)$ and (ad $\left.3^{*}\right)$, respectively.
3.4. A translation quiver Γ is called a coil if there exists a sequence of algebras B_{0}, B_{1}, $\ldots, B_{m}=\Lambda$ and components Γ_{i} of $\Gamma_{B_{i}} ; 0 \leq i \leq m$, such that $\Gamma=\Gamma_{m}, \Gamma_{0}$ is a standard stable tube, and for each $i(0 \leq i<m), B_{i+1}$ is the modified algebra B_{i} of B_{i} and Γ_{i+1} is the modified component of Γ_{i}, by one of the admissible operations (ad 1$),(\operatorname{ad} 2)$, $(\operatorname{ad} 3),\left(\operatorname{ad} 1^{*}\right),\left(\operatorname{ad} 2^{*}\right)$, or $\left(\operatorname{ad} 3^{*}\right)$. It is shown in [3] that such a coil Γ is a standard component of Γ_{Λ}. We refer to [4] for an axiomatic definition of a coil and examples. Hence any stable tube is trivially a coil. A (coherent) tube in the sense of [14] is a coil having the property that each admissible operation in the sequence defining it is of the form (ad 1$)$ or $\left(\operatorname{ad} 1^{*}\right)$. If we apply only operations of the type $(\operatorname{ad} 1)$ (respectively, of the type (ad $\left.1^{*}\right)$) then such a coil is called a ray tube (respectively, coray tube). Observe that a coil without injective (respectively, projective) vertices is a ray tube (respectively, coray tube). A quasi-tube (in the sense of [24]) is a coil having the property that each admissible operation in the sequence defining it is of the form $(\operatorname{ad} 1),\left(\operatorname{ad} 1^{*}\right),(a d 2)$ or (ad 2^{*}). The quasi-tubes occur frequently in the Auslander-Reiten quiver of selfinjective algebras (see [24]). Note that a coil Γ in the Auslander-Reiten quiver Γ_{A} of an arbitrary algebra A is not necessarily standard. But for any coil Γ there exists a triangular algebra Λ (and hence of finite global dimension) such that Γ is a standard component of Γ_{Λ}. We shall show now that the additive categories of standard coils are closed under extensions.

Proposition 3.5. Let B be an algebra, Γ a standard component of Γ_{B}, and assume that $\operatorname{add}(\Gamma)$ is closed under extensions. Let X be the pivot of an admissible operation,
B^{\prime} the modified algebra, and Γ^{\prime} the modified component. Then $\operatorname{add}\left(\Gamma^{\prime}\right)$ is closed under extensions.

Proof. We may assume, by duality, that the admissible operation leading from Γ to Γ^{\prime} is one of $(\operatorname{ad} 1),(\operatorname{ad} 2)$, or $(\operatorname{ad} 3)$. For a B-module M, we let M_{0} denote its restriction to $B \times D$, if the operation is of type (ad 1) with $t \geq 1$, or to B in the remaining cases. Denoting by ω the extension vertex of B^{\prime}, we represent a B^{\prime}-module M as a triple ($M_{\omega}, M_{0}, \gamma_{M}$), where M_{ω} is a finite dimensional K-vector space and γ_{M} is a K-linear map from M_{ω} to $\operatorname{Hom}_{B \times D}\left(X \oplus Y_{1}, M_{0}\right)$ or to $\operatorname{Hom}_{B}\left(X, M_{0}\right)$, respectively. Let now

$$
0 \rightarrow M \rightarrow E \rightarrow N \rightarrow 0
$$

be an exact sequence in $\bmod B^{\prime}$ with M and N in $\operatorname{add}\left(\Gamma^{\prime}\right)$. Clearly, we may assume that this sequence is not splittable. We get an exact sequence

$$
0 \rightarrow M_{0} \rightarrow E_{0} \rightarrow N_{0} \rightarrow 0
$$

in $\bmod B$ with M_{0} and N_{0} in $\operatorname{add}(\Gamma)$. Since $\operatorname{add}(\Gamma)$ is closed under extensions, we infer that $E_{0} \in \operatorname{add}(\Gamma)$. From the description of admissible operations in (3.3) we know that the vector space category $\operatorname{Hom}_{B \times D}\left(X \oplus Y_{1}\right.$, add $\left.(\Gamma)\right)$, if the admissible operation is of type (ad 1) and $t \geq 1$, and $\operatorname{Hom}_{B}(X, \operatorname{add}(\Gamma))$ in the remaining cases, is given by a partially ordered set of width at most 2 . Then, since $E_{0} \in \operatorname{add}(\Gamma)$, the indecomposable direct summands of E are of the form $(0, Z, 0)$ with Z an indecomposable B-module lying in Γ^{\prime} (and hence in Γ), ($K, X_{i} \oplus Y_{j},\binom{1}{1}$), $\left(K, X_{i}, 1\right)$ or ($\left.K, Y_{j}, 1\right)$ (see [23, (2.4)] for details). Therefore, we must show that E has no direct summand of the form ($K, Y_{j}, 1$). Suppose this is not the case. Then there is a nonzero map from a module ($K, Y_{j}, 1$) to an indecomposable direct summand, say V, of N. By our assumption, V belongs to Γ^{\prime}. Observe now that any indecomposable B-module U in Γ^{\prime} with $\operatorname{Hom}_{A}\left(Y_{j}, U\right) \neq 0$ is isomorphic to Y_{l} with $l \geq j$. Since the modules ($K, Y_{l}, 1$) do not belong to Γ^{\prime}, V is isomorphic to a module of the form $\left(0, Y_{l}, 0\right)$ or $\left(K, X_{i} \oplus Y_{l},\binom{1}{1}\right.$). But it is easy to check that any map in $\bmod B^{\prime}$ from $\left(K, Y_{j}, 1\right)$ to any of the modules $\left(0, Y_{l}, 0\right)$ or $\left(K, X_{i} \oplus Y_{l},\binom{1}{1}\right)$ is zero. Consequently, E belongs to $\operatorname{add}\left(\Gamma^{\prime}\right)$. This shows that $\operatorname{add}\left(\Gamma^{\prime}\right)$ is closed under extensions.

Theorem 3.6. Let A be an algebra and Γ a standard coil of Γ_{A}. Then $\operatorname{add}(\Gamma)$ is closed under extensions.

Proof. Let $I=\operatorname{ann}(\Gamma)$ be the annihilator of Γ in A, that is, the intersection of the annihilators ann X of the modules X in Γ, and $B=A / I$. Clearly, Γ is a standard coil in Γ_{B}. Moreover, if $0 \rightarrow M \rightarrow E \rightarrow N \rightarrow 0$ is an exact sequence in $\bmod A$ with M and N in $\operatorname{add}(\Gamma)$ then $M I=0, N I=0$, and so $E I=0$. Therefore, we may assume that $B=A$, that is, Γ is a faithful standard coil of Γ_{A}. Repeating now the arguments from [4, (5.4)] we infer that there exists a sequence of algebras $C=A_{0}, A_{1}, \ldots, A_{m}=A$ and a standard faithful stable tube \mathcal{T} in Γ_{C} such that, for each $0 \leq i<m, A_{i+1}$ is obtained from the algebra A_{i} by an admissible operation with pivot in the coil Γ_{i} of $\Gamma_{A_{i}}$, obtained from the stable tube \mathcal{T} by the sequence of admissible operations done so far, and Γ is the modified
coil $\Gamma_{m}=\Gamma_{m-1}^{\prime}$. Hence, by Proposition 3.5, it is sufficient to show that add (\mathcal{T}) is closed under extensions in $\bmod C$. Since \mathcal{T} is a faithful standard (hence generalized standard) stable tube of Γ_{C}, we infer that $\mathrm{pd}_{C} X \leq 1$ for any X in \mathcal{T} (see [27, (5.9)]). Let E_{1}, \ldots, E_{r} be a complete set of modules lying on the mouth of \mathcal{T}. Then the modules E_{1}, \ldots, E_{r} are pairwise orthogonal with endomorphism rings isomorphic to K (because \mathcal{T} is standard), and $\operatorname{Ext}_{C}^{2}\left(E_{i}, E_{j}\right)=0$ for all $1 \leq i, j \leq r$. Then by $[22,(3.1)]$, add (\mathcal{T}) is a serial abelian category consisting of all C-modules X having a filtration

$$
X=X_{0} \supset X_{1} \supset X_{2} \supset \cdots \supset X_{s}=0, \quad s \geq 1,
$$

with X_{i-1} / X_{i} being isomorphic to one of $E_{1}, \ldots E_{r}$, for any $1 \leq i \leq s$. But then $\operatorname{add}(\mathcal{T})$ is closed under extensions, and we are done.

4. Exact sequences in quasi-tubes.

4.1. Throughout this section Γ denotes a standard quasi-tube in the Auslander-Reiten quiver Γ_{A} of an algebra A. We shall investigate short exact sequences in the additive category $\operatorname{add}(\Gamma)$ in $\bmod A$ given by Γ. Since Γ is standard, $\operatorname{add}(\Gamma)$ is equivalent to the additive category add $(K(\Gamma))$ of the mesh-category $K(\Gamma)$ of Γ. Hence we may assume that Γ is a sincere quasi-tube in Γ_{A}, A is obtained from an algebra C by a sequence of admissible operations of type (ad 1), (ad 1^{*}), (ad 2), (ad 2*), and Γ is obtained from a sincere standard stable tube \mathcal{T} of Γ_{C} by the same sequence of admissible operations. By $\bar{\Gamma}$ we denote the translation quiver obtained from Γ by removing all projective-injective vertices. Hence, $\bar{\Gamma}$ is a tube. A vertex X of $\bar{\Gamma}$ will be said to belong to the mouth of $\bar{\Gamma}$ if X is starting, or ending, vertex of a mesh in $\bar{\Gamma}$ with a unique middle term. The arrows of $\bar{\Gamma}$ may be subdivided into two classes: arrows pointing to the mouth and arrows pointing to infinity (from the mouth). Denote by $\bar{\Gamma}_{0}$ the set of vertices in $\bar{\Gamma}$. We define two functions

$$
\varphi, \psi: \bar{\Gamma}_{0} \cup\{0\} \rightarrow \bar{\Gamma}_{0} \cup\{0\}
$$

such that: $\varphi(0)=0, \psi(0)=0$, and for $X \in \bar{\Gamma}_{0}$:

- $\varphi(X)$ is the starting vertex of a (unique) arrow with end vertex X and pointing to the mouth, if such an arrow exists, and $\varphi(X)=0$ otherwise;
- $\psi(X)$ is the ending vertex of a (unique) arrow with starting vertex X and pointing to infinity, if such an arrow exists, and $\psi(X)=0$ otherwise.
In an obvious way we define also partial inverse functions

$$
\varphi^{-}, \psi^{-}: \bar{\Gamma}_{0} \cup\{0\} \rightarrow \bar{\Gamma}_{0} \cup\{0\}
$$

such that for $X \in \bar{\Gamma}_{0}$ we have:

- $\varphi^{-}(X)=Y$ if $\varphi(Y)=X$, and $\varphi^{-}(X)=0$ otherwise;
- $\psi^{-}(X)=Y$ if $\psi(Y)=X$, and $\psi^{-}(X)=0$ otherwise.

Recall also that an infinite sectional path in $\bar{\Gamma}$ starting from a module lying on the mouth of $\bar{\Gamma}$ and consisting of arrows pointing to infinity is called a ray. Dually, an infinite path in $\bar{\Gamma}$ with the ending module lying on the mouth of $\bar{\Gamma}$ and consisting of arrows
pointing to the mouth is called a coray (see [22]). Then one associates two numerical invariants $(p(\Gamma), q(\Gamma))$ such that $p(\Gamma)$ is the number of rays in $\bar{\Gamma}$ and $q(\Gamma)$ is the number of corays in $\bar{\Gamma}$. We shall use the abbreviation $p=p(\Gamma)$ and $q=q(\Gamma)$. Finally, observe that a module $X \in \bar{\Gamma}_{0}$ lies on a ray (respectively, coray) in $\bar{\Gamma}$ if and only if $\psi^{i}(X) \neq 0$ (respectively, $\varphi^{i}(X) \neq 0$) for all $i \geq 0$.
4.2 Following [20] by a short cycle in add(Γ) we mean a cycle $X \rightarrow Y \rightarrow X$ of nonzero nonisomorphisms between modules X and Y from Γ. We collect now the following properties of φ and ψ, needed in our proofs.

Lemma. Let X be an indecomposable module in $\bar{\Gamma}$. Then the following statements hold:
(i) X lies on a short cycle in $\operatorname{add}(\Gamma)$ if and only if X lies on a ray and on a coray in
$\bar{\Gamma}$. Moreover, if this is the case, then $\varphi^{p} X=\psi^{q} X$ and there is a cycle $X \rightarrow \psi X \rightarrow$ $\cdots \rightarrow \psi^{q} X=\varphi^{p} X \rightarrow \cdots \rightarrow \varphi X \rightarrow X$.
(ii) X lies on a short cycle in $\operatorname{add}(\Gamma)$ if and only if $\varphi^{p-1} X \neq 0$ and $\psi^{q-1} X \neq 0$.
(iii) If X lies on a short cycle in $\operatorname{add}(\Gamma)$ then, for any integers $i, j, k \geq 0, \varphi^{i} \psi^{j} X=$ $\psi^{j} \varphi^{i} X=\varphi^{i-k p} \psi^{j+k q} X$ lies on a short cycle.
(iv) If $\varphi^{i} \psi^{j} X=X$ or $\psi^{j} \varphi^{i} X=X$ then there is an integer k such that $i=k p$ and $j=(-k) q$.

Assume that U is a module in $\bar{\Gamma}$ and s, t are two positive integers such that the modules $\varphi^{-i} \psi^{j} U, 0 \leq i<s, 0 \leq j<t$, are nonzero. Then

$$
\mathcal{R}(U, s, t)=\left\{\varphi^{-i} \psi^{j} U ; 0 \leq i<s, 0 \leq j<t\right\}
$$

is called a rectangle of size (s, t) in $\bar{\Gamma}$ determined by U.
4.3. Let Γ_{0} be the set of vertices in Γ. For any noninjective vertex $U \in \Gamma_{0}$ we have in the notation of (2.4) an Auslander-Reiten sequence

$$
\Sigma(U): 0 \rightarrow U \rightarrow E(U) \rightarrow \tau^{-} U \rightarrow 0
$$

where $E(U)=\pi(U) \oplus \psi(U) \oplus \varphi^{-}(U)$, and $\psi(U) \neq 0$.
Lemma. Let $U \in \Gamma_{0}, s, t \geq 1$ be integers, and assume that there exists in Γa rectangle $\mathcal{R}=\mathcal{R}(U, s, t)$ consisting of nonzero and noninjective modules. Then
(i) There exists a nonsplittable exact sequence

$$
\Sigma(U, s, t): 0 \rightarrow U \rightarrow E(U, s, t) \rightarrow \varphi^{-s} \psi^{t} U \rightarrow 0
$$

where

$$
E(U, s, t)=\psi^{t} U \oplus \varphi^{-s} U \oplus\left(\underset{0 \leq i<s}{\bigoplus} \bigoplus_{0 \leq j<t} \pi\left(\varphi^{-i} \psi^{j} U\right)\right) .
$$

(ii) $\delta_{\Sigma(U, s, t)}=\sum_{0 \leq i<s} \sum_{0 \leq j<t} \delta_{\sum\left(\varphi^{-i} \psi \psi U\right)}$.
(iii) $\delta_{\Sigma(U, s, t)}(Z) \geq 1$ for any $Z \in \mathcal{R}$ and $\delta_{\Sigma(U, s, t)}(Z)=0$ for the remaining indecomposable A-modules Z. Moreover, if $s \leq p(\Gamma)=p$ or $t \leq q(\Gamma)=q$, then $\delta_{\Sigma(U, s, t)}(Z)=1$ for any $Z \in \mathcal{R}$.

Proof. (i) From our assumptions we have for any $0 \leq i<s$ and $0 \leq j<t$ Auslander-Reiten sequences

$$
0 \rightarrow \varphi^{-i} \psi^{j} U \rightarrow \varphi^{-i-1} \psi^{j} U \oplus \varphi^{-i} \psi^{j+1} U \oplus \pi\left(\varphi^{-i} \psi^{j} U\right) \rightarrow \varphi^{-i-1} \psi^{j+1} U \rightarrow 0
$$

Applying now [2, Corollary 2.2] we get the required short exact sequence

$$
\Sigma(U, s, t): 0 \rightarrow U \rightarrow E(U, s, t) \rightarrow \varphi^{-s} \psi^{t} U \rightarrow 0
$$

with

$$
E(U, s, t)=\psi^{t} U \oplus \varphi^{-s} U \oplus\left(\underset{0 \leq i<s}{\bigoplus} \bigoplus_{0 \leq j<t} \pi\left(\varphi^{-i} \psi^{j} U\right)\right)
$$

(ii) Let

$$
W=\left(\underset{0 \leq i \leq s}{\bigoplus} \bigoplus_{0<j<t} \varphi^{-i} \psi^{j} U\right) \oplus\left(\underset{0<i<s}{\bigoplus} \bigoplus_{0 \leq j \leq t} \varphi^{-i} \psi^{j} U\right) .
$$

Then

$$
\bigoplus_{0 \leq i<s} \bigoplus_{0 \leq j<t}\left(\varphi^{-i} \psi^{j} U \oplus \varphi^{-i-1} \psi^{j+1} U\right)=W \oplus U \oplus \varphi^{-s} \psi^{t} U
$$

and

$$
\bigoplus_{0 \leq i<s} \bigoplus_{0 \leq j<t} E\left(\varphi^{-i} \psi^{j} U\right)=W \oplus E(U, s, t)
$$

Hence, for each $X \in \bmod A$, we get

$$
\begin{gathered}
\sum_{0 \leq i<s} \sum_{0 \leq j i<t}\left(\left[\varphi^{-i} \psi^{j} U \oplus \varphi^{-i-1} \psi^{j+1} U, X\right]-\left[E\left(\varphi^{-i} \psi^{j} U\right), X\right]\right) \\
=\left[U \oplus \varphi^{-s} \psi^{t} U, X\right]-[E(U, s, t), X]
\end{gathered}
$$

Therefore, by Lemma 2.5(i), we get

$$
\delta_{\Sigma(U, s, t)}(X)=\sum_{0 \leq i<s} \sum_{0 \leq j<t} \delta_{\Sigma\left(\varphi^{-i} \psi i U\right)}(X)=\sum_{0 \leq i<s} \sum_{0 \leq j<t} \mu\left(X, \varphi^{-i} \psi^{j} U\right) .
$$

Since $\mathcal{R}=\left\{\varphi^{-i} \psi^{j} U ; 0 \leq i<s, 0 \leq j<t\right\}$ we conclude that $\delta_{\Sigma(U, s, t)}(Z) \geq 1$ for all $Z \in \mathcal{R}$ and $\delta_{\Sigma(U, s, t)}=0$ for the remaining indecomposable A-modules Z. Now, if $s \leq p=p(\Gamma)$ or $t \leq q=q(\Gamma)$ then any module $\varphi^{-i} \psi^{j} U \in \mathcal{R}$ is uniquely determined (up to isomorphism) by the pair $(i, j$), because Γ is obtained from a standard stable tube \mathcal{T} by a sequence of admissible operations. This shows that $\delta_{\Sigma(U, s, t)}(Z)=\sum_{X \in \mathcal{R}} \delta_{\Sigma(X)}(Z)$ has value 1 on any module $Z \in \mathcal{R}$. This finishes the proof.

LEmmA 4.4. Assume that there exists a short exact sequence $\Sigma(U, p, k q)$ for some $k \geq$ 1 and $U \in \bar{\Gamma}_{0}$. Then there exists a short exact sequence $\Sigma(W, k p, q)$ for $W=\varphi^{-p} \psi^{k q} U$. Moreover, $\delta_{\Sigma(U, p, k q)}=\delta_{\Sigma(W, k p, q)}$ and $E(U, p, k q) \simeq E(W, k p, q)$.

Proof. First observe that $\varphi^{-p+1} U$ has the property: $\varphi^{p-1}\left(\varphi^{-p+1} U\right)=U \neq 0$ and $\psi^{q-1}\left(\varphi^{-p+1} U\right)=\varphi^{-(p-1)} \psi^{q-1} U \neq 0$, because $\Sigma(U, p, k q)$ exists. Hence, by $4.2(i i)$, $\varphi^{-p+1} U$ lies on a short cycle in $\operatorname{add}(\Gamma)$. Then clearly the modules $\varphi^{-i} \psi^{j} U=\psi^{j} \varphi^{-i} U$ for $0 \leq i<p, 0 \leq j<k q$, also lie on short cycles in add(Γ), by 4.2 (iii).

Take now nonnegative integers i, c, d such that $i<p, c<k$, and $d<q$. Since $\varphi^{-i} \psi^{c q+d} U$ and $W=\varphi^{-p} \psi^{k q}$ lie on short cycles in $\operatorname{add}(\Gamma)$, we get, again by 4.2 (iii), that

$$
\begin{aligned}
\varphi^{-i} \psi^{c q+d} U & =\varphi^{-i-(k-c) p} \psi^{c q+d+(k-c) q} U \\
& =\varphi^{-i-(k-c) p} \psi^{d+k p} U \\
& =\varphi^{p-i-(k-c) p} \psi^{d} \varphi^{-p} \psi^{k q} U \\
& =\varphi^{-i-(k-c-1) p} \psi^{d} W .
\end{aligned}
$$

From the existence of $\Sigma(U, p, k q)$ we know that any module X in the rectangle

$$
\mathcal{R}=\mathcal{R}(U, p, k q)=\left\{\varphi^{-i} \psi^{j} U ; 0 \leq i<p, 0 \leq j<k q\right\}
$$

is nonzero and noninjective. Observe now that

$$
\begin{aligned}
\mathcal{R} & =\left\{\varphi^{-i} \psi^{c q+d} U ; 0 \leq i<p, 0 \leq c<k, 0 \leq d<q\right\} \\
& =\left\{\varphi^{-i-(k-c-1) p} \psi^{d} W ; 0 \leq i<p, 0 \leq c<k, 0 \leq d<q\right\}
\end{aligned}
$$

and so \mathcal{R} coincides with the rectangle

$$
\mathcal{R}^{\prime}=\mathcal{R}(W, k p, q)=\left\{\varphi^{-e} \psi^{d} W ; 0 \leq e<k p, 0 \leq d<q\right\} .
$$

Consequently, we infer, by Lemma 4.3, that there exists a short exact sequence

$$
\Sigma(W, k p, q): 0 \rightarrow W \rightarrow E(W, k p, q) \rightarrow \varphi^{-k p} \psi^{q} W \rightarrow 0
$$

and for any indecomposable A-module X the equalities

$$
\delta_{\Sigma(U, p, k q)}(X)=\sum_{Y \in \mathcal{R}} \delta_{\Sigma(Y)}(X)=\sum_{Y \in \mathcal{R}^{\prime}} \delta_{\Sigma(Y)}(X)=\delta_{\Sigma(W, k p, q)}(X) .
$$

hold. This gives the equality

$$
\left[U \oplus \varphi^{-p} \psi^{k q} U, X\right]-[E(U, p, k q), X]=\left[W \oplus \varphi^{-k p} \psi^{q} W, X\right]-[E(W, k p, q), X]
$$

for any $X \in \operatorname{ind} A$. Since $U=\varphi^{-k p} \psi^{q} W$ and $\varphi^{-p} \psi^{k q} U=W$, we then obtain that

$$
[E(U, p, k q), X]=[E(W, k p, q), X]
$$

for all $X \in \operatorname{ind} A$. Therefore, $E(U, p, k q) \simeq E(W, k p, q)$, by the theorem of Auslander [6].

Lemma 4.5. Let M and N be A-modules with $[M]=[N]$, and $W \in \bar{\Gamma}_{0}$. Then

$$
\mu(N, W)-\mu(M, W)=\delta_{M, N}(W)-\delta_{M, N}(\varphi W)-\delta_{M, N}\left(\psi^{-} W\right)+\delta_{M, N}\left(\psi^{-} \varphi W\right)
$$

Moreover, if W is noninjective and $\pi(W) \neq 0$ then

$$
\mu(N, \pi(W))-\mu(M, \pi(W))=-\delta_{M, N}(W)
$$

Proof. We split the proof of the first formula into two cases. Assume first that W is nonprojective. Then $\tau W=\psi^{-} \varphi W$ and $E(\tau W)=\varphi W \oplus \psi^{-} W \oplus \pi(\tau W)$. Applying 2.5(ii), we get the equalities

$$
\begin{aligned}
\mu(N, W)-\mu(M, W)= & \delta_{\Sigma(\tau W)}^{\prime}(N)-\delta_{\Sigma(\tau W)}^{\prime}(M) \\
= & \left(\left[N, \psi^{-} \varphi W \oplus W\right]-\left[N, \varphi W \oplus \psi^{-} W \oplus \pi(\tau W)\right]\right) \\
& \quad-\left(\left[M, \psi^{-} \varphi W \oplus W\right]-\left[M, \varphi W \oplus \psi^{-} W \oplus \pi(\tau W)\right]\right) \\
= & \delta_{M, N}(W)+\delta_{M, N}\left(\psi^{-} \varphi W\right)-\delta_{M, N}(\varphi W) \\
& \quad-\delta_{M, N}\left(\psi^{-} W\right)-\delta_{M, N}(\pi(\tau W)) .
\end{aligned}
$$

Since $\pi(\tau W)$ is either zero or injective and $[M]=[N]$ we have $\delta_{M, N}(\pi(\tau W))=0$. Hence the required formula is true. Assume now that W is projective. Observe that then W is noninjective, because $W \in \bar{\Gamma}_{0}$. Obviously, $\operatorname{rad} W=\varphi W \oplus \psi^{-} W$ and $\operatorname{Hom}_{A}(X, \operatorname{rad} W) \simeq$ $\operatorname{rad}(X, W)$ as K-vector spaces. We then get that

$$
\begin{aligned}
\mu(N, W)-\mu(M, W) & =([N, W]-[N, \operatorname{rad} W])-([M, W]-[M, \operatorname{rad} W]) \\
& =\delta_{M, N}(W)-\delta_{M, N}(\operatorname{rad} W) \\
& =\delta_{M, N}(W)-\delta_{M, N}(\varphi W)-\delta_{M, N}\left(\psi^{-} W\right) .
\end{aligned}
$$

Since either $\psi^{-} \varphi W=0$ or $\psi^{-} \varphi W$ is injective we have $\delta_{M, N}\left(\psi^{-} \varphi W\right)=0$, and so the required formula is true.

Finally, assume that W is noninjective and $\pi(W) \neq 0$. Then $W=\operatorname{rad} \pi(W)$, and we obtain that

$$
\begin{aligned}
\mu(N, \pi(W))-\mu(M, \pi(W)) & =([N, \pi(W)]-[N, W])-([M, \pi(W)]-[M, W]) \\
& =\delta_{M, N}(\pi(W))-\delta_{M, N}(W)=-\delta_{M, N}(W)
\end{aligned}
$$

because $\pi(W)$ is injective and $[M]=[N]$. This finishes the proof.
Lemma 4.6. Let M and N be A-modules with $[M]=[N]$, and $U \in \bar{\Gamma}_{0}$. Assume that a rectangle $\mathcal{R}(U, s, t)$ consists of nonzero and noninjective modules. Then

$$
\begin{aligned}
& \sum_{0 \leq i<s} \sum_{0 \leq j<t}\left(\mu\left(N, \varphi^{-i} \psi^{j} U\right)-\mu\left(M, \varphi^{-i} \psi^{j} U\right)\right)=\delta_{M, N}\left(\psi^{-} \varphi U\right) \\
& \quad-\delta_{M, N}\left(\psi^{-} \varphi^{-s+1} U\right)-\delta_{M, N}\left(\varphi \psi^{t-1} U\right)+\delta_{M, N}\left(\varphi^{-s+1} \psi^{t-1} U\right) .
\end{aligned}
$$

Proof. From Lemmas 2.5(i) and 4.3(ii) we get the equalities

$$
\begin{aligned}
\sum_{0 \leq i<s} & \sum_{0 \leq j<t}\left(\mu\left(N, \varphi^{-i} \psi^{j} U\right)-\mu\left(M, \varphi^{-i} \psi^{j} U\right)\right) \\
& =\sum_{0 \leq i<s} \sum_{0 \leq j<t}\left(\delta_{\sum\left(\varphi^{-i} \psi U\right)}(N)-\delta_{\sum\left(\varphi^{-i} \psi U\right)}(M)\right) \\
& =\delta_{\Sigma(U, s, t)}(N)-\delta_{\Sigma(U, s, t)}(M) \\
& =\left[U \oplus \varphi^{-s} \psi^{t} U, N\right]-[E(U, s, t), N]-\left[U \oplus \varphi^{-s} \psi^{t} U, M\right]+[E(U, s, t), M] \\
& =\delta_{M, N}^{\prime}\left(U \oplus \varphi^{-s} \psi^{t} U\right)-\delta_{M, N}^{\prime}(E(U, s, t)) \\
& =\delta_{M, N}\left(\tau U \oplus \tau \varphi^{-s} \psi^{t} U\right)-\delta_{M, N}(\tau E(U, s, t)) \\
& =\delta_{M, N}\left(\tau U \oplus \varphi^{-s+1} \psi^{t-1} U\right)-\delta_{M, N}\left(\tau \varphi^{-s} U \oplus \tau \psi^{t} U\right) \\
& =\delta_{M, N}\left(\psi^{-} \varphi U\right)+\delta_{M, N}\left(\varphi^{-s+1} \psi^{t-1} U\right)-\delta_{M, N}\left(\psi^{-} \varphi^{-s+1} U\right)-\delta_{M, N}\left(\varphi \psi^{t-1} U\right)
\end{aligned}
$$

which is the required formula.
5. Proofs of Theorems 1 and 2. We shall divide our proof of Theorem 1 into several steps. We use the notations introduced in Sections 3 and 4.
5.1. Let \mathcal{T} be a standard stable tube in Γ_{A}, and E_{1}, \ldots, E_{r} a complete set of modules lying on the mouth of \mathcal{T}. Then \mathcal{T} consists of the modules $\psi^{i} E_{j}, i \geq 0,1 \leq j \leq r$. For each $k, 1 \leq k \leq r$, we denote by $l_{k}: \operatorname{add}(\Gamma) \rightarrow \mathbb{N}$ the additive function defined on modules $\psi^{i} E_{j}$ by

$$
l_{k}\left(\psi^{i} E_{j}\right)=\#\{t \in\{j, j+1, \ldots, j+i\} ; r \text { divides } t-k\}
$$

Then it is easy to see that

$$
\left[\psi^{i} E_{j}\right]=l_{1}\left(\psi^{i} E_{j}\right)\left[E_{1}\right]+\cdots+l_{r}\left(\psi^{i} E_{j}\right)\left[E_{r}\right]
$$

for $i \geq 0,1 \leq j \leq r$, and hence

$$
[W]=l_{1}(W)\left[E_{1}\right]+\cdots+l_{r}(W)\left[E_{r}\right]
$$

for any module W in $\operatorname{add}(\Gamma)$. Moreover, we have also the following lemma.
Lemma. For $i \geq m \geq 0$ and $1 \leq j, t \leq r$, the following equality holds:

$$
\left[\psi^{m} E_{t}, \psi^{i} E_{j}\right]=l_{j}\left(\psi^{m} E_{t}\right)
$$

Proof. Straightforward because \mathcal{T} is a standard stable tube.

Lemma 5.2. Let Γ be a standard quasi-tube in Γ_{A}, and assume that M and N are two modules in $\operatorname{add}(\Gamma)$ with $[M]=[N]$ and $M \leq_{\Gamma} N$. Then $\delta_{M, N}(X)=0$ and $\delta_{M, N}^{\prime}(X)=0$ for all but finitely many modules X in Γ.

Proof. Assume first that Γ is a stable tube, say of rank r. Take $s \geq 0$ such that for any $i \geq s$ and $1 \leq j \leq r$, the module $\psi^{i}\left(E_{j}\right)$ is not a direct summand of $M \oplus N$. Then applying Lemma 5.1 we get that $\left[M, \psi^{i} E_{j}\right]=l_{j}(M)$ and $\left[N, \psi^{i} E_{j}\right]=l_{j}(N)$, which implies $l_{j}(N)-l_{j}(M)=\delta_{M, N}\left(\psi^{i} E_{j}\right) \geq 0$, because $M \leq_{\Gamma} N$. Hence, for $i \geq s$, we have

$$
\begin{aligned}
\sum_{1 \leq j \leq r} \delta_{M, N}\left(\psi^{i} E_{j}\right)\left[E_{j}\right] & =\sum_{1 \leq j \leq r}\left(l_{j}(N)-l_{j}(M)\right)\left[E_{j}\right] \\
& =\left(\sum_{1 \leq j \leq r} l_{j}(N)\left[E_{j}\right]\right)-\left(\sum_{1 \leq j \leq r} l_{j}(M)\left[E_{j}\right]\right) \\
& =[N]-[M]=0
\end{aligned}
$$

Therefore, $\delta_{M, N}\left(\psi^{i} E_{j}\right)=0$ for any $i \geq s$ and $1 \leq j \leq r$, and so $\delta_{M, N}(X)$ for all but finitely many module X in Γ. Since $\delta_{M, N}^{\prime}(Y)=\delta_{M, N}(\tau Y)$ for all nonprojective modules $Y \in \operatorname{add}(\Gamma)$, we get that $\delta_{M, N}^{\prime}(X)=0$ for all but finitely many ann modules X in Γ.

Assume now that Γ is not a stable tube. Since Γ is a standard tube in $\Gamma_{A / \text { ann(} \Gamma)}$, where $\operatorname{ann}(\Gamma)$ is the annihilator of Γ in A, we may assume that $\operatorname{ann}(\Gamma)=0$. Then there exists (see [4, (5.4)]) a sequence of algebras $C=A_{0}, A_{1}, \ldots, A_{m-1}, A_{m}=A$ and a standard faithful stable tube \mathcal{T} in Γ_{C} such that, for each $0 \leq i<m, A_{i+1}$ is obtained from the algebra A_{i} by an admissible operation with pivot in the quasi-tube Γ_{i} of $\Gamma_{A_{i}}$, obtained from \mathcal{T} by the sequence of admissible operations (of types (ad 1), (ad $\left.\left.1^{*}\right),(\operatorname{ad} 2),\left(a d 2^{*}\right)\right)$ done so far, and $\Gamma=\Gamma_{m}$. Therefore, we may proceed by induction on m. The case $m=0$ is discussed above. By duality, we may assume that A is obtained from $B=A_{m-1}$ by an admissible operation of type (ad 1) or (ad 2). Clearly $B=e A e$ for some idempotent e of A. Further, Γ is the modified component \mathcal{C}^{\prime} of the standard quasi-tube $\mathcal{C}=\Gamma_{m-1}$ in Γ_{B}. From the description of \mathcal{C}^{\prime} given in Section 3, we infer that the B-modules $M e$ and $N e$ belong to $\operatorname{add}(\mathcal{C})$. Moreover, $[M]=[N]$ implies that $[M e]=[N e]$ in $K_{0}(B)$. Then, for any $X \in \mathcal{C}$, we get

$$
\operatorname{dim}_{K} \operatorname{Hom}_{B}(X, M e)=[X, M] \leq[X, N]=\operatorname{dim}_{K} \operatorname{Hom}_{B}(X, N e) .
$$

Thus $M e \leq_{C} N e$, and by induction we may assume that $\delta_{M e, N e}(X)=0$ and $\delta_{M e, N e}^{\prime}(X)=0$ for all but finitely many modules X in \mathcal{C}. Therefore, $\delta_{M, N}^{\prime}=0$ for all but finitely many indecomposable B-modules lying in Γ. From the shape of the modified component $\Gamma=$ \mathcal{C}^{\prime} (see Section 3) we deduce that there exists $s \geq 1$ such that the modules $X_{i}, Z_{i j}, X_{i}^{\prime}$, $i \geq s, 1 \leq j \leq t$, are not direct summands of $M \oplus N$, and there are Auslander-Reiten sequences in $\bmod A$

$$
\begin{aligned}
& 0 \rightarrow X_{i} \rightarrow Z_{i 1} \oplus X_{i+1} \rightarrow Z_{i+1,1} \rightarrow 0 \\
& 0 \rightarrow Z_{i j} \rightarrow Z_{i,+1} \oplus Z_{i+1, j} \rightarrow Z_{i+1, j+1} \rightarrow 0 \\
& 0 \rightarrow Z_{i t} \rightarrow X_{i}^{\prime} \oplus Z_{i+1, t} \rightarrow X_{i+1}^{\prime} \rightarrow 0
\end{aligned}
$$

for $s \leq i, 1 \leq j<t$. Observe also that all but finitely many modules L in Γ with $L(1-e) \neq 0$ are of the above form $Z_{i j}, X_{i}^{\prime}$. Applying now Lemma 2.6, we get, for $i \geq s$, $1 \leq j<t$, the equalities

$$
\begin{aligned}
{\left[X_{i}, M\right]-\left[Z_{i 1}, M\right] } & =\sum_{k \geq i} \mu\left(M, X_{k}\right)=0, \\
{\left[Z_{i j}, M\right]-\left[Z_{i, j+1}, M\right] } & =\sum_{k \geq i} \mu\left(M, Z_{k j}\right)=0, \\
{\left[Z_{i t}, M\right]-\left[X_{i}^{\prime}, M\right] } & =\sum_{k \geq i} \mu\left(M, Z_{k t}\right)=0,
\end{aligned}
$$

and similar ones if we replace M by N. Hence $\delta_{M, N}^{\prime}\left(Z_{i j}\right)=\delta_{M, N}^{\prime}\left(X_{i}\right)=\delta_{M, N}^{\prime}\left(X_{i}^{\prime}\right)$ for $i \geq s$ and $1 \leq j \leq t$. But the modules X_{i} belong to $\bmod B$, and so, by the above considerations, $\delta_{M, N}^{\prime}\left(X_{i}\right)=0$ for all but finitely many i. Therefore, $\delta_{M, N}^{\prime}(X)=0$, and hence also $\delta_{M, N}(X)=$ 0 , for all but finitely many modules X in Γ. This finishes the proof.

Lemma 5.3. Let Γ be a standard quasi-tube in Γ_{A}, and M, N be modules in $\operatorname{add}(\Gamma)$ such that $[M]=[N]$ and $M \leq_{\Gamma} N$. Assume that $\delta_{M, N}(Z) \neq 0$ for some module Z in Γ. Then there exists a nonsplittable exact sequence

$$
\Sigma(U, s, t): 0 \rightarrow U \rightarrow E(U, s, t) \rightarrow \varphi^{-s} \psi^{t} U \rightarrow 0
$$

for some $U \in \bar{\Gamma}_{0}$, with $1 \leq s \leq p(\Gamma)$ or $1 \leq t \leq q(\Gamma)$, such that $E(U, s, t)$ is a direct summand of M and $\delta_{M, N}(X) \geq \delta_{\Sigma(U, s, t)}(X)$ for all modules X in Γ.

Proof. Take a module $W \in \bar{\Gamma}_{0}$ for which $\delta_{M, N}(W)>0$. We may assume that $\delta_{M, N}\left(\varphi^{-} W\right)=0, \delta_{M, N}\left(\psi^{-} W\right)=0$ and $\delta_{M, N}\left(\varphi^{-} \psi^{-} W\right)=0$. Since $\delta_{M, N}(W) \neq 0$ and $[M]=[N]$, we infer that W is not injective. We put $\delta=\delta_{M, N}$. Observe first that $\varphi^{-} W$ is a direct summand of M. It is clear if $\varphi^{-} W=0$. Assume $\varphi^{-} W \neq 0$. Then by Lemma 4.5 we get that

$$
\begin{aligned}
\mu\left(N, \varphi^{-} W\right)-\mu\left(M, \varphi^{-} W\right)= & \delta\left(\varphi^{-} W\right)-\delta\left(\psi^{-}\left(\varphi^{-} W\right)\right)-\delta\left(\varphi\left(\varphi^{-} W\right)\right) \\
& +\delta\left(\psi^{-} \varphi\left(\varphi^{-} W\right)\right) \\
= & \delta\left(\varphi^{-} W\right)-\delta\left(\psi^{-} \varphi^{-} W\right)-\delta(W)+\delta\left(\psi^{-} W\right) \\
= & -\delta(W)<0
\end{aligned}
$$

by our assumption on W. Hence $\mu\left(M, \varphi^{-} W\right) \neq 0$, and so $\varphi^{-} W$ is a direct summand of M.

Take now $a>0$ minimal such that $\delta\left(\varphi^{a} W\right)=0$. Observe that such a exists because $\delta(X)=0$ for all but finitely many $X \in \Gamma$, by the above lemma. Further, take a pair (b, c) with $0 \leq c<a$ and $b>0$ minimal such that $\delta\left(\psi^{b} \varphi^{c} W\right)=0$. Then $\delta\left(\psi^{i} \varphi^{j} W\right)>0$ for $0 \leq i<b, 0 \leq j<a$. Hence, for $Z=\psi \varphi^{a-1} W$, we get that $\varphi^{-(a-1-j)} \psi^{i-1} Z=\psi^{i} \varphi^{j} W \neq$ 0 , for $0 \leq j<a, 0 \leq i<b$, and is noninjective, because $[M]=[N]$. Applying now

Lemma 4.6 we get

$$
\begin{aligned}
\sum_{1 \leq i \leq b} & \sum_{c \leq j<a}\left(\mu\left(N, \psi^{i} \varphi^{j} W\right)-\mu\left(M, \psi^{i} \varphi^{j} W\right)\right) \\
& =\sum_{0 \leq i<b} \sum_{0 \leq j<a-c}\left(\mu\left(N, \varphi^{-j} \psi^{i} Z\right)-\mu\left(M, \varphi^{-j} \psi^{i} Z\right)\right) \\
& =\delta\left(\psi^{-} \varphi Z\right)-\delta\left(\psi^{-} \varphi^{-(a-c-1)} Z\right)-\delta\left(\varphi \psi^{b-1} Z\right)+\delta\left(\varphi^{-(a-c-1)} \psi^{b-1} Z\right) \\
& =\delta\left(\psi^{-} \varphi Z\right)-\delta\left(\varphi^{c} W\right)-\delta\left(\psi^{b} \varphi^{a} W\right)+\delta\left(\psi^{b} \varphi^{c} W\right)
\end{aligned}
$$

Observe that $\delta\left(\psi^{-} \varphi Z\right)=0$. Indeed, if Z is projective then either $\psi^{-} \varphi Z=0$ or $\psi^{-} \varphi Z$ is injective, and hence in the both cases $\delta\left(\psi^{-} \varphi Z\right)=0$. Assume Z is not projective. Then $\psi^{-} \varphi Z=\varphi \psi^{-} Z=\varphi \psi^{-} \psi \varphi^{a-1} W=\varphi^{a} W$, and so $\delta\left(\psi^{-} \varphi Z\right)=\delta\left(\varphi^{a} W\right)=0$ by our choice of a. Since $\delta\left(\psi^{-} \varphi Z\right)=0, \delta\left(\psi^{b} \varphi^{c} W\right)=0$ and $\delta\left(\varphi^{c} W\right)>0$, we obtain that

$$
\sum_{1 \leq i \leq b \leq j<a} \sum_{c \leq a}\left(\mu\left(N, \psi^{i} \varphi^{j} W\right)-\mu\left(M, \psi^{i} \varphi^{j} W\right)\right)<0
$$

Thus there is a pair (s, t) such that $c \leq s-1<a, 1 \leq t \leq b$ and $\psi^{t} \varphi^{s-1} W$ is a direct summand of M. We set $U=\varphi^{s-1} W$. From Lemma 4.3 we infer that there exists a nonsplittable exact sequence

$$
\Sigma(U, s, t): 0 \rightarrow U \rightarrow E(U, s, t) \rightarrow \varphi^{-s} \psi^{t} U \rightarrow 0
$$

Moreover, $\varphi^{-s} U \oplus \psi^{t} U=\varphi^{-} W \oplus \psi^{t} \varphi^{s-1} W$ is a direct summand of M.
Suppose now that $s>p(\Gamma)=p$ and $t>q(\Gamma)=q$. Then $\varphi^{p-1} W \neq 0, \psi^{q-1} W \neq 0$, and so W lies on a short cycle in $\operatorname{add}(\Gamma)$, by Lemma 4.2. Then $\varphi^{a-p} W$ lies on a short cycle, and $\psi^{q}\left(\varphi^{a-p} W\right)=\varphi^{p}\left(\varphi^{a-p} W\right)=\varphi^{a} W$. But then $\delta\left(\psi^{q} \varphi^{a-p} W\right)=\delta\left(\varphi^{a} W\right)=0$, which contradicts the minimality of b, since $0 \leq s-p \leq a-p<a$ and $0<q<t \leq b$. Consequently, $1 \leq s \leq p(\Gamma)$ or $1 \leq t \leq q(\Gamma)$. Consider now the rectangle

$$
\mathcal{R}=\mathcal{R}(U, s, t)=\left\{\varphi^{-j} \psi^{i} U ; 0 \leq j<s, 0 \leq i<t\right\} .
$$

By Lemma 4.3(iii) we have that $\delta_{\Sigma(U, s, t)}(Z)=1$ for $Z \in \mathcal{R}$ and $\delta_{\Sigma(U, s, t)}(Z)=0$ for the remaining indecomposable A-modules Z. Our choice of b and the inequalities $s \leq a$, $t \leq b$, imply that $\delta(X)>0$ for all $X \in \mathcal{R}$. Hence $\delta=\delta_{M, N}(X) \geq \delta_{\Sigma(U, s, t)}(X)$ for all modules X in Γ. Further, by Lemma 4.5, if $\pi(X) \neq 0$ for some $X \in \mathcal{R}$, then

$$
\mu(N, \pi(X))-\mu(M, \pi(X))=-\delta_{M, N}(X)<0
$$

and so $\pi(X)$ is a direct summand of M. Finally, since $s \leq p(\Gamma)$ or $t \leq q(\Gamma)$, then

$$
E(U, s, t)=\varphi^{-s} U \oplus \psi^{t} U \oplus\left(\bigoplus_{X \in \mathcal{R}} \pi(X)\right)
$$

is a direct summand of M. This finishes the proof.

Proposition 5.4. Let Γ be a standard quasi-tube in Γ_{A} and M, N two modules in $\operatorname{add}(\Gamma)$ with $[M]=[N]$. If $M \leq_{\Gamma} N$ then $M \leq_{\text {ext }} N$.

Proof. We shall proceed by induction on $\sum_{X \in \Gamma_{0}} \delta_{M, N}(X) \geq 0$. Observe that, by Lemma 5.2, this sum is finite. If $\sum_{X \in \Gamma_{0}} \delta_{M, N}(X)=0$ then $\delta_{M, N}(X)=0$ for all $X \in \Gamma_{0}$, and so also $N \leq_{\Gamma} M$. Hence, $M \simeq N$ by Corollary 2.8 , and this implies $M \leq_{\text {ext }} N$.

Assume that $\sum_{X \in \Gamma_{0}} \delta_{M, N}(X)>0$. Applying Lemma 5.3 we infer that there exists a nonsplittable exact sequence

$$
\Sigma: 0 \rightarrow D \rightarrow E \rightarrow F \rightarrow 0
$$

and $M^{\prime} \in \operatorname{add}(\Gamma)$ such that $M=E \oplus M^{\prime}$ and $\delta_{M, N}(X) \geq \delta_{\Sigma}(X)$ for all $X \in \Gamma_{0}$. Then, for any $X \in \Gamma_{0}$, we get that

$$
\begin{aligned}
\delta_{M^{\prime} \oplus D \oplus F, N}(X) & =[N, X]-\left[M^{\prime} \oplus D \oplus F, X\right] \\
& =\left([N, X]-\left[M^{\prime} \oplus E, X\right]\right)-([D \oplus F, X]-[E, X]) \\
& =\delta_{M^{\prime} \oplus E, N}(X)-\delta_{E, D \oplus F}(X)=\delta_{M, N}(X)-\delta_{\Sigma}(X) \geq 0 .
\end{aligned}
$$

Thus $M^{\prime} \oplus D \oplus F \leq_{\Gamma} N$, because $\left[M^{\prime} \oplus D \oplus F\right]=\left[M^{\prime} \oplus E\right]=[M]=[N]$. Observe that $E<_{\text {ext }} D \oplus F$ implies $E<_{\Gamma} D \oplus F$, and hence $\delta_{\Sigma}(X) \geq 0$ for all $X \in \Gamma_{0}$ and $\delta_{\Sigma}(D)>0$, because Σ is not splittable. Hence we get

$$
\sum_{X \in \Gamma_{0}} \delta_{M^{\prime} \oplus D \oplus F, N}(X)=\sum_{X \in \Gamma_{0}}\left(\delta_{M, N}(X)-\delta_{\Sigma}(X)\right)<\sum_{X \in \Gamma_{0}} \delta_{M, N}(X) .
$$

Therefore, $M^{\prime} \oplus D \oplus F \leq_{\text {ext }} N$ by our inductive assumption. Since $M=M^{\prime} \oplus E$ and $M^{\prime} \oplus E \leq_{\text {ext }} M^{\prime} \oplus D \oplus F$, we have $M \leq_{\text {ext }} N$. This finishes the proof.

Lemma 5.5. Let $\mathcal{C}=\left(\mathcal{C}_{i}\right)_{i \in I}$ be a family of pairwise orthogonal standard quasitubes in Γ_{A} and M, N modules in $\operatorname{add}(\mathcal{C})$ such that $[M]=[N]$ and $[X, M] \leq[X, N]$ for all modules X in C. Moreover, let $M=\oplus_{i \in I} M_{i}$ and $N=\oplus_{i \in I} N_{i}$, for $M_{i}, N_{i} \in \operatorname{add}\left(\mathcal{C}_{i}\right)$. Then $\left[M_{i}\right]=\left[N_{i}\right]$ and $M_{i} \leq_{C_{i}} N_{i}$ for all $i \in I$.

Proof. Assume first that \mathcal{C}_{i} is a stable tube, say of rank r. From the orthogonality of quasi-tubes in $\mathcal{C}=\left(\mathcal{C}_{i}\right)$, we deduce that $[M, X]=\left[M_{i}, X\right]$ and $[N, X]=\left[N_{i}, X\right]$ for all $X \in \mathcal{C}_{i}$, and hence $\left[N_{i}, X\right] \geq\left[M_{i}, X\right]$ for all $X \in \operatorname{add}\left(\mathcal{C}_{i}\right)$. Let E_{1}, \ldots, E_{r} be a complete set of modules lying on the mouth of \mathcal{C}_{i}. Take now $n \geq 0$ such that if $\psi^{s} E_{k}$ is a direct summand of $M_{i} \oplus N_{i}$, for some $1 \leq k \leq r$, then $s \leq n$. Applying Lemma 5.1 we obtain that

$$
\left[M_{i}, \psi^{n} E_{k}\right]=l_{k}\left(M_{i}\right) \text { and }\left[N_{i}, \psi^{n} E_{k}\right]=l_{k}\left(N_{i}\right),
$$

and so $l_{k}\left(M_{i}\right) \leq l_{k}\left(N_{i}\right)$, for any $1 \leq k \leq r$. Since

$$
\left[M_{i}\right]=\sum_{1 \leq k \leq r} l_{k}\left(M_{i}\right)\left[E_{k}\right] \text { and }\left[N_{i}\right]=\sum_{1 \leq k \leq r} l_{k}\left(N_{i}\right)\left[E_{k}\right]
$$

we infer that $\left[M_{i}\right] \leq\left[N_{i}\right]$.

Assume now that \mathcal{C}_{i} is not a stable tube. As in (5.2) we may assume that there exists an algebra B and a standard quasi-tube Γ_{i} in Γ_{B} such that A is obtained from B by one of the admissible operations of type $(\operatorname{ad} 1),\left(\operatorname{ad} 1^{*}\right),(\operatorname{ad} 2)$ or $\left(\operatorname{ad} 2^{*}\right)$ with pivot in Γ_{i}, and \mathcal{C}_{i} is the modified component Γ_{i}^{\prime} of Γ_{i}. By duality we may assume that A is obtained from B by one of the admissible operations (ad 1) or $\operatorname{ad} 2$). Let e be an indempotent of A such that $B=e A e$. Observe that $[X e, Y]=\operatorname{dim}_{K} \operatorname{Hom}_{B}(X e, Y e)$. Moreover, from the description of $\mathcal{C}_{i}=\Gamma_{i}^{\prime}$ we know that $M_{i} e, N_{i} e \in \operatorname{add}\left(\Gamma_{i}\right)$. Since Γ_{i} has less projective modules than \mathcal{C}_{i}, by induction, we get that $\left[M_{i} e\right] \leq\left[N_{i} e\right]$. Further, we have $M_{i}(1-e)=M(1-e)=$ $N(1-e)=N_{i}(1-e)$, and hence $\left[M_{i}\right]=\left[M_{i} e\right]+\left[M_{i}(1-e)\right] \leq\left[N_{i} e\right]+\left[N_{i}(1-e)\right]=\left[N_{i}\right]$. From the equality $\sum_{i \in I}\left[M_{i}\right]=[M]=[N]=\sum_{i \in I}\left[N_{i}\right]$ we then conclude that $\left[M_{i}\right]=\left[N_{i}\right]$ for all $i \in I$. Moreover, $M_{i} \leq_{\mathcal{C}_{i}} N_{i}$ for any $i \in I$, because the quasi-tubes in $\mathcal{C}=\left(\mathcal{C}_{i}\right)_{i \in I}$ are pairwise orthogonal. This proves our lemma.
5.6 Proof of Theorem 1. Let $\mathcal{C}=\left(\mathcal{C}_{i}\right)_{i \in I}$ be a family of pairwise orthogonal standard quasi-tubes in Γ_{A} and M, N modules in $\operatorname{add}(\mathcal{C})$ with $[M]=[N]$. Clearly, $M \leq_{\text {ext }} N \Rightarrow$ $M \leq N \Rightarrow M \leq_{C} N$. Assume that $[X, M] \leq[X, N]$ for all modules X in C. Then, by (2.8), we get that $[M, X] \leq[N, X]$ for all $X \in \operatorname{add}(C)$. Consider decompositions $M=\oplus_{i \in I} M_{i}$ and $N=\oplus_{i \in I} N_{i}$, with $M_{i}, N_{i} \in \operatorname{add}\left(\mathcal{C}_{i}\right)$, for $i \in I$. It follows from Lemma 5.5 that, for any $i \in I,\left[M_{i}\right]=\left[N_{i}\right]$ and $M_{i} \leq_{C_{i}} N_{i}$. Then, by Proposition 5.4, we get $M_{i} \leq_{\text {ext }} N_{i}$ for any $i \in I$, which clearly implies that $M \leq \leq_{\text {ext }} N$.
5.7 Proof of Theorem 2. Let $\mathcal{C}=\left(\mathcal{C}_{i}\right)_{i \in I}$ be a family of pairwise orthogonal standard quasi-tubes in Γ_{A}. Assume that, for $M, N \in \operatorname{add}(C)$ and $V \in \bmod A$, we have $[M]=$ $[V]=[N]$ and $M \leq_{\operatorname{deg}} V \leq_{\operatorname{deg}} N$. Clearly, then $M \leq N$. We first show that $\delta_{M, N}(X)=0$ for all indecomposable A-modules X which are not in C. Let $M=\oplus_{i \in I} M_{i}$ and $N=$ $\oplus_{i \in I} N_{i}$, with $M_{i}, N_{i} \in \operatorname{add}\left(\mathcal{C}_{i}\right)$ for any $i \in I$. Then, by Lemma 5.5 , we get $\left[M_{i}\right]=\left[N_{i}\right]$ and $M_{i} \leq \mathcal{C}_{i} N_{i}$ for any $i \in I$. Observe that

$$
\delta_{M, N}(X)=[N, X]-[M, X]=\sum_{i \in I}\left(\left[N_{i}, X\right]-\left[M_{i}, X\right]\right)=\sum_{i \in I} \delta_{M_{i}, N_{i}}(X) .
$$

Therefore we may assume that M and N belong to the additive category of a quasi-tube $\Gamma=\mathcal{C}_{i_{0}}$. Applying now (5.3) and (5.4), we infer that there exists an exact sequence

$$
\Sigma(U, s, t): 0 \rightarrow U \rightarrow E(U, s, t) \rightarrow \varphi^{-s} \psi^{t} U \rightarrow 0
$$

such that $M=E(U, s, t) \oplus M^{\prime}$ and $\delta_{M, N}(X) \geq \delta_{\Sigma(U, s, t)}(X)$ for all X in Γ. Moreover,

$$
\begin{aligned}
\delta_{\Sigma(U, s, t)}(X) & =\left[U \oplus \varphi^{-s} \psi^{t} U, X\right]-[E(U, s, t), X] \\
& =\left[U \oplus \varphi^{-s} \psi^{t} U \oplus M^{\prime}, X\right]-\left[E(U, s, t) \oplus M^{\prime}, X\right]=\delta_{Z_{0}, Z_{1}}(X)
\end{aligned}
$$

for any $X \in \bmod A$ and $Z_{0}=M=E(U, s, t) \oplus M^{\prime}$ and $Z_{1}=U \oplus \varphi^{-s} \psi^{t} U \oplus M^{\prime}$. In particular, $\delta_{M, N}(X) \geq \delta_{Z_{0}, Z_{1}}(X)$ for all $X \in \Gamma$, which gives $Z_{1} \leq_{\Gamma} N$. By Theorem 1 we then get $Z_{1} \leq N$. Repeating these arguments we obtain a sequence $M=Z_{0} \leq Z_{1} \leq$ $Z_{2} \leq \cdots \leq Z_{k}=N$ such that, for each $0 \leq i \leq k-1, \delta_{Z_{i}, Z_{i+1}}=\delta_{\Sigma\left(U_{i}, s_{i}, t_{i}\right)}$ for the corresponding exact sequence $\Sigma\left(U_{i}, s_{i}, t_{i}\right)$. Observe also that $\delta_{M, N}=\sum_{0 \leq j \leq k-1} \delta_{Z_{i}, Z_{j+1}}$.

Hence, in order to prove our claim, we may assume that $\delta_{M, N}=\delta_{\Sigma(U, s, t)}$ for a short exact sequence and some $s, t \geq 1$. Applying now Lemma 4.3(iii), we get that $\delta_{\Sigma(U s, t)}(X)=0$ for any indecomposable module X which is not in Γ. Consequently, $\delta_{M, N}(X)=0$ for all indecomposable modules X which are not in Γ. Let now $\Gamma^{\prime \prime}=\mathcal{C}=\left(\mathcal{C}_{i}\right)_{i \in I}$ and Γ^{\prime} be the union of the remaining connected components of Γ_{A}. Since $M \leq V \leq N$ we have $\delta_{M, N}=\delta_{M, V}+\delta_{V, N}$ and $\delta_{M, V}(X) \geq 0, \delta_{V, N}(X) \geq 0$ for all A-modules X. From the first part of our proof we know that $\delta_{M, N}(X)=0$ for all X in Γ^{\prime}. Clearly, then $\delta_{M, V}(X)=0$ for all X in Γ^{\prime}. Applying now Lemma 2.7(ii), we conclude that $V \in \operatorname{add}\left(\Gamma^{\prime \prime}\right)=\operatorname{add}(\mathcal{C})$. This finishes the proof.

6. Proof of Theorem 3.

6.1. Let $\mathcal{C}=\left(\mathcal{C}_{i}\right)_{i \in I}$ be a family of pairwise orthogonal standard quasi-tubes in Γ_{A}, and M, N two modules in $\operatorname{add}(\mathcal{C})$ with $[M]=[N]$. From Theorem 3.6 we know that $\operatorname{add}(\mathcal{C})$ is closed under isomorphism classes, extensions and direct summands. Moreover, by Theorem 1, the partial orders $\leq_{\text {ext }}$ and \leq coincide on isomorphism classes of modules in $\operatorname{add}(\mathcal{C})$ with the same composition factors. Therefore, by [11, Theorem 4], N is a minimal degeneration of M if and only if there exist an exact sequence $0 \rightarrow U \rightarrow E \rightarrow V \rightarrow 0$ and integers $m, r \geq 1$ with the following properties:
(α) U and V are indecomposable such that $M=E \oplus U^{m-1} \oplus V^{r-1} \oplus X$ and $N=$ $U^{m} \oplus V^{r} \oplus X$, and $U \oplus V$ and $E \oplus X$ have no common nonzero direct summands.
(β) $U \oplus V$ is a minimal degeneration of E.
(γ) Any common indecomposable direct summand $W \not \nsim V$ of M and N satisfies $[W, N]=[W, M]$.
(δ) Any common indecomposable direct summand $W \not \nsim U$ of M and N satisfies $[N, W]=[M, W]$.
Hence, in order to prove our theorem, it remains to show that the minimal degenerations $U \oplus V<_{\operatorname{deg}} E$ given by the exact sequences $0 \rightarrow U \rightarrow E \rightarrow V \rightarrow 0$, with U, V indecomposable modules from \mathcal{C}, coincide with those described in (iii) of Theorem 3, and $(\gamma),(\delta)$ are equivalent to (iv) and (v), respectively. Clearly, in our case, U and V must belong to the same quasi-tube in \mathcal{C}.

From now on let Γ be a standard quasi-tube in Γ_{A}. We use the notations introduced in Section 4.

Lemma 6.2. Let M and N be two modules in $\operatorname{add}(\Gamma)$ with $[M]=[N]$, and assume $M<_{\operatorname{deg}} N$. Then there exists a nonsplittable exact sequence

$$
\Sigma(U, s, t): 0 \rightarrow U \rightarrow E(U, s, t) \rightarrow \varphi^{-s} \psi^{t} U \rightarrow 0
$$

in $\operatorname{add}(\Gamma)$ such that $N=U \oplus \varphi^{-s} \psi^{t} U \oplus N^{\prime}$ and $M \leq_{\operatorname{deg}} N^{\prime} \oplus E(U, s, t)<_{\operatorname{deg}} N$.
Proof. Since any chain of neighbours $M=M_{0}<M_{1}<\cdots<M_{r}=N$ has at most $[N, N]-[M, M]$ members $($ see $[10,(2.1)])$ there exists a module $W \in \operatorname{add}(\Gamma)$ such that
$[M]=[W]=[N], M \leq_{\operatorname{deg}} W<_{\operatorname{deg}} N$ and $W<_{\operatorname{deg}} N$ is minimal. Applying Lemma 5.3, we infer that there exists an exact sequence

$$
\Sigma(U, s, t): 0 \rightarrow U \rightarrow E(U, s, t) \rightarrow \varphi^{-s} \psi^{t} U \rightarrow 0
$$

in add (Γ) such that $W=E(U, s, t) \oplus N^{\prime}$ and $\delta_{\Sigma\left(U_{s, t)}\right.}(X)=\delta_{W, N}(X)$ for all modules X in Γ, because $W<_{\text {deg }} N$ is minimal, and $<_{\text {deg }}$ and $<_{\Gamma}$ coincide on add (Γ), by Theorem 1 . Hence, for X in $\operatorname{add}(\Gamma)$, we get the equality

$$
\left[U \oplus \varphi^{-s} \psi^{t} U, X\right]-[E(U, s, t), X]=[N, X]-\left[E(U, s, t) \oplus N^{\prime}, X\right] .
$$

This gives that

$$
\left[U \oplus \varphi^{-s} \psi^{t} U \oplus N^{\prime}, X\right]=[N, X]
$$

for all $X \in \operatorname{add}(\Gamma)$, and finally $N=U \oplus \varphi^{-s} \psi^{t} U \oplus N^{\prime}$ by Corollary 2.8. This finishes the proof.

Proposition 6.3. Let $\Sigma(U, s, t)$ be an exact sequence

$$
0 \rightarrow U \rightarrow E(U, s, t) \rightarrow \varphi^{-s} \psi^{t} U \rightarrow 0
$$

with U in the quasi-tube Γ and $s, t \geq 1$. Then the degeneration $E(U, s, t)<_{\operatorname{deg}} U \oplus \varphi^{-s} \psi^{t} U$ induced by $\Sigma(U, s, t)$ is minimal if and only if the pair (s, t) satisfies one of the conditions:
(a) $s<p(\Gamma)$.
(b) $t<q(\Gamma)$.
(c) $s=p(\Gamma)$ and $t=k q(\Gamma)$ for some $k \geq 1$.
(d) $s=k p(\Gamma)$ and $t=q(\Gamma)$ for some $k \geq 1$.

Proof. We set $p=p(\Gamma)$ and $q=q(\Gamma)$. Assume first that one of the above conditions (a)-(d) is satisfied. Suppose that there is a chain of degenerations $E(U, s, t)<_{\operatorname{deg}} E^{\prime}<_{\operatorname{deg}}$ $U \oplus \varphi^{-s} \psi^{t} U$ for some E^{\prime} in $\bmod A$ with $\left[E^{\prime}\right]=[E(U, s, t)]$. Since $E(U, s, t)$ and $U \oplus$ $\varphi^{-s} \psi^{t} U$ belong to $\operatorname{add}(\Gamma)$ we infer by Theorem 2 that $E^{\prime} \in \operatorname{add}(\Gamma)$. Then by Lemma 6.2, applied to $E^{\prime}<_{\text {deg }} U \oplus \varphi^{-s} \psi^{t} U$, we conclude that there exists an exact sequence

$$
\Sigma(X, m, r): 0 \rightarrow X \rightarrow E(X, m, r) \rightarrow \varphi^{-m} \psi^{r} X \rightarrow 0
$$

such that $U \oplus \varphi^{-s} \psi^{t} U \simeq X \oplus \varphi^{-m} \psi^{r} X$ and $E^{\prime} \leq_{\operatorname{deg}} E(X, m, r)$. Hence we get $E(U, s, t)<_{\operatorname{deg}}$ $E(X, m, r), \delta_{\Sigma(U, s, t)} \geq \delta_{\Sigma(X, m, r)}$ but $\delta_{\Sigma(U, s, t)} \neq \delta_{\Sigma(X, m, r)}$. We have two cases to consider:
1° Assume $U \simeq X$ and $\varphi^{-s} \psi^{t} U \simeq \varphi^{-m} \psi^{r} X$. Then p divides $m-s$, and q divides $r-t$. Since $s \leq p$ and $t \leq q$, we get $s \leq m$ and $t \leq r$. Hence, by Lemma 4.3, we have

$$
\delta_{\Sigma(X, m, r)}=\sum_{0 \leq i<r} \sum_{0 \leq j<m} \delta_{\Sigma\left(\varphi^{-j} \psi^{j} X\right)} \geq \sum_{0 \leq i<1} \sum_{0 \leq j<s} \delta_{\Sigma\left(\varphi^{-i} \psi^{j} U\right)}=\delta_{\Sigma(U s, t)},
$$

and consequently $\delta_{\Sigma(X, m, r)}=\delta_{\Sigma(U, s, t)}$, a contradiction.
2° Assume $U \simeq \varphi^{-m} \psi^{r} X$ and $X \simeq \varphi^{-s} \psi^{t} U$. Then $U \simeq \varphi^{-m} \psi^{r} \varphi^{-s} \psi^{t} U=$ $\varphi^{-(m+s)} \psi^{r+l} U$ and there exists $l \geq 1$ such that $m+s=l p$ and $r+t=l q$. If $s<p$ or $t<q$ then, by Lemma 4.3(iii), we get $\delta_{\Sigma(U, s, t)}(X)=\delta_{\Sigma(U, s, t)}\left(\varphi^{-s} \psi^{t} U\right)=0$ while
$\delta_{\Sigma(X, m, r)}(X) \geq 1$. But this gives a contradiction because $\delta_{\Sigma(X, m, r)} \leq \delta_{\Sigma(U, s, t)}$. Assume that $s=p$ and $t=k q$ for some $k \geq 1$. Then $l>k, m \geq k p, r \geq q$, and applying Lemma 4.3(ii) we have

$$
\delta_{\Sigma(X, m, r)}=\sum_{0 \leq i<r} \sum_{0 \leq j<m} \delta_{\Sigma\left(\varphi^{-j} \psi^{i} X\right)} \geq \sum_{0 \leq i<q} \sum_{0 \leq j<k p} \delta_{\Sigma\left(\varphi^{-j} \psi^{i} X\right)}=\delta_{\Sigma(X, k p, q)} .
$$

But by Lemma $4.4 \delta_{\Sigma(U, p, k q)}=\delta_{\Sigma(X, k p, q)}$. This implies $\delta_{\Sigma(X, m, r)}=\delta_{\Sigma(U, s, t)}$, a contradiction. We get a similar contradiction in case $s=k p$ and $t=q$ for some $k \geq 1$. Therefore, the degeneration $E(U, s, t)<_{\operatorname{deg}} U \oplus \varphi^{-s} \psi^{t} U$ induced by $\Sigma(U, s, t)$ is minimal.

Assume now that the pair (s, t) does not satisfy any of the conditions (a)-(d). We shall show that there exists an A-module E^{\prime} with the properties $[E(U, s, t)]=\left[E^{\prime}\right]$ and $E(U, s, t)<_{\operatorname{deg}} E^{\prime}<_{\operatorname{deg}} U \oplus \varphi^{-s} \psi^{t} U$. By our assumption we know that $s \geq p$ and $t \geq q$, and hence applying Lemma 4.2, we infer that $\varphi^{-(s-1)} U$ lies on a short cycle in add (Γ), and $\varphi^{-i} \psi^{j} U$, for any $0 \leq i<s, 0 \leq j<t$, also lies on a short cycle in add (Γ). We have three cases to consider:
1° Assume $s>p$ and $t>q$. Then by Lemma 4.3 there exists a nonsplittable short exact sequence $\Sigma(U, s-p, t-q)$ and

$$
\delta_{\Sigma(U, s-p, t-q)}=\sum_{0 \leq i<s-p} \sum_{0 \leq j<t-q} \delta_{\Sigma\left(\varphi^{-i} \psi U\right)} \leq \sum_{0 \leq i<s} \sum_{0 \leq j<t} \delta_{\Sigma\left(\psi^{-i} \psi U\right)}=\delta_{\Sigma(U, s, t)} .
$$

Since $\varphi^{-s} \psi^{t-q} U$ lies on a short cycle, we have $\varphi^{p}\left(\varphi^{-s} \psi^{t-q} U\right)=\psi^{q}\left(\varphi^{-s} \psi^{t-q} U\right)$, and hence, by (4.2), $\varphi^{-(s-p)} \psi^{t-q} U=\varphi^{-s} \psi^{t} U$. Then $\delta_{\Sigma(U, s-p, t-q)} \leq \delta_{\Sigma(U, s, t)}$ and $\delta_{\Sigma(U, s-p, t-q)} \neq$ $\delta_{\Sigma(U, s, t)}$ imply that $E(U, s, t)<E(U, s-p, t-q)$, and so $E(U, s, t)<\operatorname{deg} E(U, s-p, t-q)$. Moreover, $E(U, s-p, t-q)<_{\operatorname{deg}} U \oplus \varphi^{-(s-p)} \psi^{t-q} U=U \oplus \varphi^{-s} \psi^{t} U$. Hence, in this case we may take $E^{\prime}=E(U, s-p, t-q)$.
2° Assume $s=p$ and $t=k q+m$ for some $m, 1 \leq m<q$. We set $V=\varphi^{-s} \psi^{t} U$. Then

$$
\varphi^{-k p} \psi^{q-m} V=\varphi^{-k p} \psi^{q-m} \varphi^{-s} \psi^{t} U=\varphi^{-(k+1) p} \psi^{(k+1) q} U=U
$$

Applying Lemma 4.3(ii), we get

$$
\begin{aligned}
\delta_{\Sigma(U, s, t)} & =\sum_{0 \leq i<p} \sum_{0 \leq j<k q+m} \delta_{\Sigma\left(\varphi^{-i} \psi^{j} U\right)} \\
& \geq \sum_{0 \leq i<p} \sum_{0 \leq j<k q} \delta_{\Sigma\left(\psi^{-i} \psi^{j}\left(\psi^{m} U\right)\right)}=\delta_{\Sigma\left(\psi^{m} U, p, k q\right)} .
\end{aligned}
$$

Further, by Lemma 4.4, we have

$$
\begin{aligned}
\delta_{\Sigma\left(\psi^{m} U, p, k q\right)} & =\delta_{\Sigma\left(\varphi^{-p} \psi^{k q}\left(\psi^{m} U\right), k p, q\right)}=\delta_{\Sigma(V, k p, q)} \\
& \geq \sum_{0 \leq i<k p} \sum_{0 \leq j<q-m} \delta_{\Sigma\left(\varphi^{-i} \psi^{j} V\right)}=\delta_{\Sigma(V, k p, q-m)} .
\end{aligned}
$$

Hence, $\delta_{\Sigma(U, s, t)} \geq \delta_{\Sigma(V, k p, q-m)} \neq 0$, and $\delta_{\Sigma(U, s, t)} \neq \delta_{\Sigma(V, k p, q-m)}$. Observe that $U \oplus \varphi^{-s} \psi^{t} U=$ $V \oplus \varphi^{-k p} \psi^{q-m} V$. Consequently, $E(U, s, t)<E(V, k p, q-m)$ and so $E(U, s, t)<_{\text {deg }}$ $E(V, k p, q-m)<_{\operatorname{deg}} U \oplus \varphi^{-s} \psi^{t} U$. Thus we may take $E^{\prime}=E(V, k p, q-m)$.
3° In case $s=k p+r$, for $1 \leq r<p$, and $t=q$, the proof of the existence of the required E^{\prime} is similar.

Lemma 6.4. Let $\Sigma: 0 \rightarrow U \rightarrow E \rightarrow V \rightarrow 0$ be a nonsplittable exact sequence in $\operatorname{add}(\mathcal{C})$ with U and V indecomposable. Assume that the induced degeneration $E<_{\operatorname{deg}}$ $U \oplus V$ is minimal. Then there exists an exact sequence

$$
\Sigma(U, s, t): 0 \rightarrow U \rightarrow E(U, s, t) \rightarrow \varphi^{-s} \psi^{t} U \rightarrow 0
$$

with $s, t \geq 1$ such that $V=\varphi^{-s} \psi^{t} U$ and $E=E(U, s, t)$.
Proof. Since the quasi-tubes in C are standard and pairwise orthogonal and the sequence is not splittable, we infer that U and V belong to one coil $\Gamma=\mathcal{C}_{i_{0}}$ of \mathcal{C}. Applying now Lemma 6.2 for $M=E, N=U \oplus V$, we get a nonsplittable exact sequence

$$
\Sigma(W, s, t): 0 \rightarrow W \rightarrow E(W, s, t) \rightarrow \varphi^{-s} \psi^{t} W \rightarrow 0
$$

in add (Γ), with W indecomposable, such that $U \oplus V=W \oplus \varphi^{-s} \psi^{t} W \oplus N^{\prime}$ and $E \leq_{\operatorname{deg}}$ $N^{\prime} \oplus E(W, s, t)<_{\text {deg }} U \oplus V$. Hence $N^{\prime}=0$ and $U \oplus V \simeq W \oplus \varphi^{-s} \psi^{t} W$. Moreover, since $E<_{\operatorname{deg}} U \oplus V$ is minimal, we have $E=E(W, s, t)$ and $\delta_{\Sigma}=\delta_{\Sigma(W, s, t)}$. If $U=W$ and $V=\varphi^{-s} \psi^{t} W$ then $\Sigma(U, s, t)$ is the required sequence. Assume that $U=\varphi^{-s} \psi^{t} W$ and $V=W$. Then the exact sequence Σ induces an exact sequence

$$
0 \longrightarrow \operatorname{Hom}_{A}(V, U) \longrightarrow \operatorname{Hom}_{A}(E, U) \xrightarrow{g} \operatorname{Hom}_{A}(U, U)
$$

Since Σ is not splittable, we infer that g is not epimorphism, and so we get

$$
\delta_{\Sigma(W, s, t)}\left(\varphi^{-s} \psi^{t} W\right)=\delta_{\Sigma(W, s, t)}(U)=\delta_{\Sigma}(U)=[U \oplus V, U]-[E, U]>0 .
$$

Applying now Lemma 4.3(ii) we obtain the inequality

$$
\sum_{0 \leq i<s} \sum_{0 \leq j<t} \delta_{\Sigma\left(\varphi^{-i} \psi^{j} W\right)}\left(\varphi^{-s} \psi^{t} W\right)>0 .
$$

Hence there exist i and j such that $0 \leq i<s, 0 \leq j<t$, and $\delta_{\Sigma\left(\varphi^{-i} \psi^{j}\right)^{\prime}}\left(\varphi^{-s} \psi^{t} W\right)>0$. Then $\varphi^{-s} \psi^{t} W=\varphi^{-i} \psi^{j} W$, by Lemma 2.5(i). But then, by Lemma $4.2(\mathrm{iv})$, there exists a positive integer l such that $s-i=l p$ and $t-j=l q$. Clearly then $s \geq p$ and $t \geq q$. The sequence $\Sigma(W, s, t)$ induces the same degeneration as the sequence Σ, and hence the pair (s, t) satisfies one of the conditions (c) or (d) of Proposition 6.3. By duality, we may assume that $s=p$ and $t=k q$ for some $k \geq 1$. Now, applying Lemma 4.4, we infer that there exists an exact sequence $\Sigma(Y, k p, q)$ such that $Y=\varphi^{-s} \psi^{t} W=U$, $\varphi^{-k p} \psi^{q} Y=W=V, E(Y, k p, q)=E(U, p, k q)=E$. We see that $\Sigma(U, k p, q)$ is the required exact sequence. This finishes our proof.
6.5. The required fact that the degenerations $U \oplus V<_{\text {deg }} E$ induced by the exact sequences $0 \rightarrow U \rightarrow E \rightarrow V \rightarrow 0$, with U and V indecomposable from \mathcal{C}, coincide with those described in (iii) of Theorem 3 is a direct consequence of Lemmas 6.3 and 6.4. Further, since $E=E(U, s, t)$ and $V=\varphi^{-s} \psi^{t} U$, we have that, for each indecomposable A-module $W,[N, W]=[M, W]$ if and only if $\delta_{M, N}(W)=\delta_{\Sigma(U, s, t)}(W)=0$. But $\delta_{\Sigma(U, s, t)}(W)=0$ if and only if $W \notin \mathcal{R}(U, s, t)$, by Lemma 4.3(iii). This shows that (δ) is equivalent to (v). Dually, for each indecomposable A-module W, we have that
$[W, N]=[W, M]$ if and only if $\delta_{M, N}^{\prime}(W)=\delta_{M, N}(\tau W)=0$. Clearly, $W \in \mathcal{R}\left(\tau^{-} U, s, t\right)$ if and only if $\tau W \in \mathcal{R}(U, s, t)$. Therefore, the conditions (γ) and (iv) are also equivalent. This finishes the proof of Theorem 3.

7. Proof of Theorem 4.

7.1. Let C be a standard coil in Γ_{A} which is not a quasi-tube. Then in any sequence of admissible operations leading from a stable tube \mathcal{T} to \mathcal{C}, we need at last one of the admissible operations (ad 3) or (ad 3^{*}). But then \mathcal{C} admits a full translation subquiver of the form

where $M \not \nsim N$. Moreover, if U is a module lying on the sectional path $Z \rightarrow N \rightarrow \cdots \rightarrow$ τY and different from τY, then the middle term of the Auslander-Reiten sequence with left term U is a direct sum of two indecomposable modules. Dually, if V is a module lying on the sectional path $\tau^{-} Y \rightarrow \cdots \rightarrow N \rightarrow \tau^{-} Z$ and different from $\tau^{-} Y$, then the middle term of the Auslander-Reiten sequence with right term V is a direct sum of two indecomposable modules.

Applying now [2, Corollary 2.2] we get exact sequences

$$
\Sigma_{1}: 0 \rightarrow Z \rightarrow X_{1} \oplus X_{2} \oplus M \rightarrow Y \rightarrow 0
$$

and

$$
\Sigma_{2}: 0 \rightarrow Y \rightarrow \tau^{-} X_{1} \oplus \tau^{-} X_{2} \oplus Z \rightarrow N \rightarrow 0
$$

Clearly, we have also exact sequences

$$
\Sigma_{3}: 0 \rightarrow X_{1} \rightarrow Y \rightarrow \tau^{-} X_{1} \rightarrow 0
$$

and

$$
\Sigma_{4}: 0 \rightarrow X_{2} \rightarrow Y \rightarrow \tau^{-} X_{2} \rightarrow 0 .
$$

Applying now Lemma $(3+3+2)$ in $[2,(2.1)]$ to the exact sequences Σ_{1} and Σ_{3} we get an exact sequence

$$
0 \rightarrow Z \rightarrow X_{2} \oplus M \rightarrow \tau^{-} X_{1} \rightarrow 0
$$

Similarly, from the exact sequences Σ_{4} and Σ_{2} we get an exact sequence

$$
0 \rightarrow X_{2} \rightarrow \tau^{-} X_{1} \oplus Z \longrightarrow N \longrightarrow 0
$$

Further, applying again $[2,(2.1)]$ to the above two sequences we obtain an exact sequence

$$
0 \rightarrow Z \rightarrow Z \oplus M \rightarrow N \rightarrow 0
$$

Observe that $[M]=[N]$. Finally, by [21, Proposition 3.4], we infer that $M \leq_{\mathrm{deg}} N$. Then $M<_{\text {deg }} N$, since $M \nsim N$. This finishes the proof.
7.2 We end the paper with an example illustrating the situation described above. Let A be the bound quiver algebra $K Q / I$ given by the quiver

and the ideal I in the path algebra $K Q$ of Q generated by $\lambda \alpha, \alpha \gamma, \lambda \beta \gamma-\delta \mu$ (see [4, (2.5)]). Consider the algebraic family $M_{t}, t \in K$, of indecomposable A-modules of dimension 9 defined by

Let $M=M_{1}$ and $N=M_{0}$. It is easy to see that $M_{t} \simeq M$ for any $t \in K \backslash\{0\}$ and $M \nsim N$. Clearly, $M<_{\text {deg }} N$. Moreover, by [4, (2.5)], M and N lie in a standard coil in Γ_{A} of the form

where one identifies along the vertical dotted lines. Hence, $M<_{\text {deg }} N$ follows also from (7.1).

References

1. S. Abeasis and A. del Fra, Degenerations for the representations of a quiver of type \mathbb{A}_{m}, J. Algebra 93(1985), 376-412.
2. I. Assem and A. Skowroński, Minimal representation-infinite coil algebras, Manuscripta Math. 67(1990), 305-331.
3. ___ Indecomposable modules over multicoil algebras, Math. Scand. 71(1992), 31-61.
4. __, Multicoil algebras, Representations of Algebras, CMS Conference Proceedings 14(1993), 29-68.
5. I. Assem, A. Skowroński and B. Tomé, Coil enlargements of algebras, Tsukuba J. Math. 19(1995), 453479.
6. M. Auslander, Representation theory of finite dimensional algebras, Contemp. Math. 13(1982), 27-39.
7. M. Auslander and I. Reiten, Modules determined by their composition factors, Illinois Math. J. 29(1985), 280-301.
8. K. Bongartz, On a result of Bautista and Smalø, Comm. Algebra 11(1983), 2123-2124.
9. ___, A generalization of a theorem of M. Auslander, Bull. London Math. Soc. 21(1989), 255-256.
10. _ On degenerations and extensions of finite dimensional modules, Adv. Math., to appear.
11. __, Minimal singularities for representations of Dynkin quivers, Commentari Math. Helv. 69(1994), 575-611.
12. K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65(1982), 331-378.
13. W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 62(1988), 451-483.
14. G. D'Este and C. M. Ringel, Coherent tubes, J. Algebra 87(1984), 150-201.
15. D. Happel, U. Preiser and C. M. Ringel, Vingberg's characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules, Representation Theory II, Springer Lecture Notes in Math. 832(1980), 280-294.
16. H. Kraft, Geometric methods in representation theory, Representations of Algebras, Springer Lecture Notes in Math. 944(1982), 180-258.
17. S. Liu, Degrees of irreducible maps and the shapes of Auslander-Reiten quivers, J. London Math. Soc. 45(1992), 32-54.
18. __ Infinite radicals in standard Auslander-Reiten components, J. Algebra 166(1994), 245-254.
19. L. G. Peng and J. Xiao, On the number of DTr-orbits containing directing modules, Proc. Amer. Math. Soc. 118(1993), 753-756.
20. I. Reiten, A. Skowroński and S. O. Smalø, Short chains and short cycles of modules, Proc. Amer. Math. Soc. 117(1993), 343-354.
21. C. Riedtmann, Degenerations for representations of quivers with relations, Ann. Sci. Ecole Normal Sup. 4(1986), 275-301.
22. C. M. Ringel, Tame algebras and integral quadratic forms, Springer Lecture Notes in Math. 1099(1984).
23. D. Simson, Linear representations of partially ordered sets and vector space categories, Algebra, Logic and Appl. Series 4, Gordon and Breach Science Publ., Amsterdam, 1992.
24. A. Skowroński, Algebras of polynomial growth. In: Topics in Algebra, Banach Center Publications 26, Part I, PWN, Warszawa, 1990, 535-568.
25. \qquad Regular Auslander-Reiten components containing directing modules, Proc. Amer. Math. Soc. 120(1994), 19-26.
26. \quad, Cycles in module categories. In: Finite Dimenional Algebras and Related Topics, NATO ASI Series, Series C 424, Kluwer Acad. Publ., Dordrecht, 1994, 309-345.
27. __, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46(1994), 517-543.
28. __, Criteria for polynomial growth of algebras, Bull. Polish Acad. Sci., Mathematics 42(1994), 173183.
29. _, Tame algebras with simply connected Galois coverings, Toruń, 1995, preprint.

Faculty of Mathematics and Informatics
Nicholas Copernicus University
Chopina 12/18, 87-100 Toruń, POLAND
e-mail: skowron@mat.uni.torun.pl
gzwara@mat.uni.torun.pl

