ON DEGENERATIONS OF MODULES WITH NONDIRECTING INDECOMPOSABLE SUMMANDS

A. SKOWROŃSKI AND G. ZWARA

Let A be a finite dimensional associative K-algebra with an identity ABSTRACT. over an algebraically closed field K, d a natural number, and $mod_A(d)$ the affine variety of d-dimensional A-modules. The general linear group $\operatorname{Gl}_d(K)$ acts on $\operatorname{mod}_A(d)$ by conjugation, and the orbits correspond to the isomorphism classes of d-dimensional modules. For M and N in $mod_A(d)$, N is called a degeneration of M, if N belongs to the closure of the orbit of M. This defines a partial order \leq_{deg} on $mod_A(d)$. There has been a work [1], [10], [11], [21] connecting \leq_{deg} with other partial orders \leq_{ext} and \leq on mod₄(d) defined in terms of extensions and homomorphisms. In particular, it is known that these partial orders coincide in the case A is representation-finite and its Auslander-Reiten guiver is directed. We study degenerations of modules from the additive categories given by connected components of the Auslander-Reiten quiver of A having oriented cycles. We show that the partial orders \leq_{ext} , \leq_{deg} and \leq coincide on modules from the additive categories of quasi-tubes [24], and describe minimal degenerations of such modules. Moreover, we show that $M \leq_{deg} N$ does not imply $M \leq_{ext} N$ for some indecomposable modules M and N lying in coils in the sense of [4].

1. Introduction and main results. Throughout the paper K denotes a fixed algebraically closed field. By an algebra we mean an associative finite dimensional K-algebra with an identity, and by an A-module a finite dimensional (unital) right A-module. We shall denote by mod A the category of A-modules, by Γ_A the Auslander-Reiten quiver of A, and by τ_A the Auslander-Reiten translation in Γ_A .

In this article we are interested in geometric properties of modules with indecomposable summands in connected Auslander-Reiten components of a prescribed form. Let A be an algebra with a basis $a_1 = 1, a_2, ..., a_n$ and the associated structure constants a_{ijk} . For any natural number d we have the affine variety $mod_A(d)$ of d-dimensional Amodules consisting in n-tuples $m = (m_1, ..., m_n)$ of $d \times d$ matrices with coefficients in K such that m_1 is the identity matrix and $m_i m_j = \sum m_k a_{kij}$ for all indices i and j. The general linear group $Gl_d(K)$ acts on $mod_A(d)$ by conjugation, and the orbits correspond to the isomorphism classes of d-dimensional A-modules (see [16]). We shall agree to identify a d-dimensional A-module M with its isomorphism class, and with the point of $mod_A(d)$ corresponding to it. Then one says that a module M in $mod_A(d)$ degenerates to a module N in $mod_A(d)$, and writes $M \leq_{deg} N$, if the $Gl_d(K)$ -orbit O(N) of N is contained in the closure $\overline{O(M)}$ of the $Gl_d(K)$ -orbit O(M) of M in $mod_A(d)$. Thus \leq_{deg} is a partial order on the set of isomorphism classes of d-dimensional A-modules. There has been an important

The research was partially supported by the Polish Scientific Grant KBN. No. 590/PO3/95/08 Received by the editors May 5, 1995.

AMS subject classification: 14L30, 16G10, 16G70.

[©] Canadian Mathematical Society 1996.

work by S. Abeasis and A. del Fra [1], K. Bongartz [10], [11] and Ch. Riedtmann [21] connecting \leq_{deg} with other partial orders \leq_{ext} , \leq_{virt} and \leq on the isomorphism classes in mod₄(*d*) which are defined in terms of representation theory as follows:

- $M \leq_{\text{ext}} N$: \iff there are modules M_i , U_i , V_i and short exact sequences $0 \rightarrow U_i \rightarrow M_i \rightarrow V_i \rightarrow 0$ in mod A such that $M = M_1$, $M_{i+1} = U_i \oplus V_i$, $1 \leq i \leq s$, and $N = M_{s+1}$ for some natural number s.
- $M \leq_{\text{virt}} N : \iff M \oplus X \leq_{\text{deg}} N \oplus X$ for some *A*-module *X*.
- $M \le N$: $\iff [X, M] \le [X, N]$ holds for all modules X.

Here and later on we abbreviate $\dim_K \operatorname{Hom}_A(X, Y)$ by [X, Y]. Then for modules M and N in $\operatorname{mod}_A(d)$ the following implications hold:

$$M \leq_{\text{ext}} N \Rightarrow M \leq_{\text{deg}} N \Rightarrow M \leq_{\text{virt}} N \Rightarrow M \leq N$$

(see [10], [21]). Unfortunately, the reverse implications are not true in general, and it is interesting to find out when they are. This is the case for all modules over representation-finite algebras A with Γ_A directed, and hence for representations of Dynkin quivers [10], [11]. Finally, for a module M in mod A, we shall denote by [M] the image of M in the Grothendieck group $K_0(A)$ of A. Thus [M] = [N] if and only if M and N have the same simple composition factors including the multiplicities. Observe that, if M and N have the same dimension and $M \leq N$, then [M] = [N].

We are interested in the following problem. Let C be a family of connected components of an Auslander-Reiten quiver Γ_A and add(C) the additive category of C. We may ask when $M \leq_{deg} N$ for M and N in add(C) with [M] = [N]? For preprojective components this problem has been investigated in [10]. In particular, it was shown in [10] that, for C preprojective, the partial orders \leq_{ext} and \leq coincides on add(C). An important feature of preprojective components is that they consists of modules not lying on oriented cycles of nonzero nonisomorphisms between indecomposable modules (directing modules [22]), and hence such modules are uniquely determined (up to isomorphism) by their composition factors. Here, we are interested in degenerations of modules from add(C)for connected components C of Γ_A containing oriented cycles. Our interest in such components is motivated by a result due to L. Peng -J. Xie [19] and the first named author [25] saying that the Auslander-Reiten quiver Γ_A of any algebra A has at most finitely many τ_A -orbits containing directing modules. A distinguished role in the representation theory is played by components consisting of τ_{d} -periodic modules, called stable tubes (see [13], [14], [15], [22], [26]), that is, components of the form $\mathbb{Z}A_{\infty}/(\tau^{r}), r \geq 1$. In [14] d'Este and Ringel investigated components, called (coherent) tubes, which can be obtained from stable tubes by ray and coray insertions. In recent investigations of tame simply connected algebras appeared a natural generalization of the notion of tube called coil, introduced by I. Assem and the first named author in [3], [4]. Roughly speaking a coil is a translation quiver whose underlying topological space, modulo projectiveinjective points, is homeomorphic to a crowned cylinder. Special types of coils are quasitubes [24] whose underlying topological space, modulo projective-injective vertices, is homeomorphic to a tube. It is shown in [4] that coils can be obtained from stable tubes

by a sequence of admissible operations. Moreover, it was shown in [29] (see also [28]) that a strongly simply connected algebra A is (tame) of polynomial growth if and only if every nondirecting indecomposable A-module lies in a standard coil of a multicoil of Γ_A . We note also that quasi-tubes frequently appear in the Auslander-Reiten quivers of selfinjective algebras (see [24]). Recall that a component C of Γ_A is called standard if the full subcategory of mod A formed by modules from C is equivalent to the mesh-category K(C) of C [12], [22].

Our first main result shows that the partial orders \leq_{ext} , \leq_{deg} , \leq_{virt} and \leq coincide on the additive categories of quasi-tubes.

THEOREM 1. Let A be an algebra, $C = (C_i)_{i \in I}$ be a family of pairwise orthogonal standard quasi-tubes in Γ_A , and M, N modules in add(C) with [M] = [N]. Then the following conditions are equivalent:

(i) $M \leq_{\text{ext}} N$,

(ii) $M \leq N$,

(iii) $[X, M] \leq [X, N]$ for all modules X in C.

Note that the condition (iii) is rather easy to check, so the above theorem gives a handy criterion to decide when N is a degeneration of M.

Our second theorem shows the convexity of the degenerations between modules from the additive categories of pairwise orthogonal standard quasi-tubes of Γ_A in the lattices of all degenerations between A-modules of a given dimension.

THEOREM 2. Let A be an algebra and $C = (C_i)_{i \in I}$ a family of pairwise orthogonal standard quasi-tubes in Γ_A . Assume that M, N, V are A-modules such that [M] = [V] = [N], $M \leq_{deg} V \leq_{deg} N$, and M and N belong to add(C). Then V belongs to add(C).

It is well known that if O(M) is a $\operatorname{Gl}_d(K)$ -orbit in $\operatorname{mod}_A(d)$ then the set $\overline{O(M)} \setminus O(M)$ is a union of orbits of smaller dimension than dim O(M), and dim $O(M) = \dim \operatorname{Gl}_d(K) - \dim \operatorname{Stab}_{\operatorname{Gl}_d(K)}(M) = d^2 - [M, M]$ (see [16]). Hence any chain of neighbours

$$M = M_0 <_{\deg} M_1 <_{\deg} \cdots <_{\deg} M_r = N$$

in $\operatorname{mod}_{\mathcal{A}}(d)$ has at $\operatorname{most}[N, N] - [M, M]$ members (see also [10]). We shall now describe the minimal degenerations in the additive categories of quasi-tubes. With each coil Γ one associates in [5] two numerical invariants $(p(\Gamma), q(\Gamma))$ which measure respectively the number of rays and corays in Γ . For Γ a quasi-tube, we define in Section 4 canonical short exact sequences

$$\Sigma(U, s, t): 0 \longrightarrow U \longrightarrow E(U, s, t) \longrightarrow \varphi^{-s} \psi^t U \longrightarrow 0$$

with U and $\varphi^{-s}\psi^t U$ indecomposable modules in Γ , and s and t measuring the size of the rectangle

$$\mathcal{R}(U,s,t) = \{\varphi^{-i}\psi^{j}U; 0 \le i < s, 0 \le j < t\}$$

determined by U and $\tau_A V = \varphi^{-s+1} \psi^{t-1} U$. Then our next main result is as follows.

THEOREM 3. Let A be an algebra, $C = (C_i)_{i \in I}$ a family of pairwise orthogonal standard quasi-tubes in Γ_A , and M, N modules in add(C) with [M] = [N]. Then N is a minimal degeneration of M if and only if $M = E \oplus U^{m-1} \oplus V^{r-1} \oplus X$, $N = U^m \oplus V^r \oplus X$, $m, r \geq 1$, and the following conditions are satisfied:

- (i) $U \oplus V$ and $E \oplus X$ have no common nonzero direct summands.
- (ii) U and V are indecomposable modules lying in one quasi-tube $\Gamma = C_{i_0}$ of C.
- (iii) There exists a canonical exact sequence

$$0 \longrightarrow U \longrightarrow E(U, s, t) \longrightarrow \varphi^{-s} \psi^t U \longrightarrow 0$$

with $E \simeq E(U, s, t)$, $V \simeq \varphi^{-s} \psi^t U$, and s, t satisfying one of the following conditions:

- (a) $s < p(\Gamma)$.
- (b) $t < q(\Gamma)$.
- (c) $s = p(\Gamma)$ and $t = kq(\Gamma)$, for some $k \ge 1$.
- (d) $s = kp(\Gamma)$ and $t = q(\Gamma)$, for some $k \ge 1$.
- (iv) Any common indecomposable direct summand $W \not\simeq \varphi^{-s} \psi^t U$ of M and N does not belong to the rectangle $\mathcal{R}(\tau_A^- U, s, t)$.
- (v) Any common indecomposable direct summand $W \not\simeq U$ of M and N does not belong to the rectangle $\mathcal{R}(U, s, t)$.

From the description of the exact sequences $\Sigma(U, s, t)$ given in Section 4 we then get the following fact (*cf.* [11, Lemma 5]).

COROLLARY 1. Let A be an algebra, $C = (C_i)_{i \in I}$ a family of pairwise orthogonal standard quasi-tubes in Γ_A , and M, N modules in add(Γ) with [M] = [N] and without common nonzero direct summands. If there is a minimal degeneration $M <_{deg} N$, then no indecomposable direct summand X occurs twice in M.

For coils which are not quasi-tubes we shall prove the following fact.

THEOREM 4. Let A be an algebra and C a standard coil of Γ_A which is not a quasitube. Then there exist indecomposable modules M and N in C such that [M] = [N] and $M <_{\text{deg}} N$.

As a direct consequence of Theorems 1 and 4 we get the following corollary.

COROLLARY 2. Let A be an algebra and C a standard coil in Γ_A . Then C is a quasitube if and only if, for any M and N in add(C) with [M] = [N], $M \leq_{deg} N$ implies $M \leq_{ext} N$.

The paper is organized as follows. In Section 2 we fix the notation, recall the relevant definitions and facts, and prove some preliminary results on modules which we apply in our investigations. Section 3 is devoted to coils and their construction from stable tubes by admissible operations. We prove also there that the additive category $add(\Gamma)$ of a standard coil Γ of an Auslander-Reiten quiver Γ_A is closed under extensions. In Section 4 we prove several facts on additive functions determined by short exact sequences in the

additive categories of standard quasi-tubes. Sections 5, 6 and 7 are devoted to the proofs of Theorems 1 and 2, 3, and 4, respectively.

For a basic background on the topics considered here we refer to [11], [16], [22] and [26].

2. Preliminaries on modules.

2.1. Throughout the paper A denotes a fixed finite dimensional associative K-algebra with an identity over an algebraically closed field K. We denote by mod A the category of finite dimensional right A-modules, by ind A the full subcategory of mod A formed by indecomposable modules, by rad(mod A) the Jacobson radical of mod A, and by rad^{∞}(mod A) the intersection of all powers rad^{*i*}(mod A), $i \geq 1$, of rad(mod A). By an A-module is meant an object from mod A. Further, we denote by Γ_A the Auslander-Reiten quiver of A and by $\tau = \tau_A$ and $\tau^- = \tau_A^-$ the Auslander-Reiten translations DTr and TrD, respectively. We shall agree to identify the vertices of Γ_A with the corresponding indecomposable modules. For M in mod A we denote by [M] the image of M in the Grothendieck group $K_0(A)$ of A. Further, for X, Y from mod A we abbreviate dim_K Hom_A(X, Y) by [X, Y]. Finally, for a family Γ of A-modules, we denote by add(Γ) the additive category given by Γ , that is, the full subcategory of mod A formed by all modules isomorphic to the direct sums of modules from Γ .

2.2 Following [21], for M, N from mod A, we set $M \le N$ if and only if $[X, M] \le [X, N]$ for all A-modules X. The fact that \le is a partial order on the isomorphism classes of A-modules follows from a result by M. Auslander (see [6], [9]). M. Auslander and I. Reiten have shown in [7] that, if [M] = [N] for A-modules M and N, then for all nonprojective indecomposable A-modules X and all noninjective indecomposable modules Y the following formulas hold:

$$[X, M] - [M, \tau X] = [X, N] - [N, \tau X],$$

$$[M, Y] - [\tau^{-}Y, M] = [N, Y] - [\tau^{-}Y, N].$$

Hence, if [M] = [N], then $M \le N$ if and only if $[M, X] \le [N, X]$ for all A-modules X.

2.3. Let M and N be A-modules with [M] = [N] and

$$\Sigma: 0 \longrightarrow D \longrightarrow E \longrightarrow F \longrightarrow 0$$

an exact sequence in mod A. Following [21] we define the additive functions $\delta_{M,N}$, $\delta'_{M,N}$, δ_{Σ} and δ'_{Σ} for an A-module X as follows:

$$\begin{split} \delta_{M,N}(X) &= [N, X] - [M, X] \\ \delta'_{M,N}(X) &= [X, N] - [X, M] \\ \delta_{\Sigma}(X) &= \delta_{E,D \oplus F}(X) = [D \oplus F, X] - [E, X] \\ \delta'_{\Sigma}(X) &= \delta'_{E,D \oplus F}(X) = [X, D \oplus F] - [X, E] \end{split}$$

From the Auslander-Reiten formulas (2.2) we get the following very useful equalities

$$\delta_{M,N}(X) = \delta'_{M,N}(\tau^{-}X), \quad \delta_{M,N}(\tau X) = \delta'_{M,N}(X)$$

and

$$\delta_{\Sigma}(X) = \delta'_{\Sigma}(\tau^{-}X), \quad \delta_{\Sigma}(\tau X) = \delta'_{\Sigma}(X)$$

for all A-modules X. Observe also that $\delta_{M,N}(I) = 0$ for any injective A-module I, and $\delta'_{M,N}(P) = 0$ for any projective A-module P. In particular, we get that the following conditions are equivalent:

- (1) $M \leq N$.
- (2) $\delta_{M,N}(X) \ge 0$ for all $X \in \text{ind } A$.
- (3) $\delta'_{M,N}(X) \ge 0$ for all $X \in \text{ind } A$.

2.4. For an A-module M and an indecomposable A-module Z, we denote by $\mu(M, Z)$ the multiplicity of Z as a direct summand of M. For a noninjective indecomposable A-module U we denote by $\Sigma(U)$ an Auslander-Reiten sequence

$$\Sigma(U): 0 \longrightarrow U \longrightarrow E(U) \longrightarrow \tau^- U \longrightarrow 0,$$

and define $\pi(U)$ to be the unique indecomposable projective-injective direct summand of E(U), if such a summand exists, or 0 otherwise.

We shall need the following lemmas.

LEMMA 2.5. Let G be an A-module and U an indecomposable A-module. Then (i) If U is noninjective, then $\delta_{\Sigma(U)}(G) = \mu(G, U)$. (ii) If U is nonprojective, then $\delta'_{\Sigma(\tau U)}(G) = \mu(G, U)$.

PROOF. (i) The Auslander-Reiten sequence $\Sigma(U)$ induces an exact sequence

 $0 \longrightarrow \operatorname{Hom}_{\mathcal{A}}(\tau^{-}U, G) \longrightarrow \operatorname{Hom}_{\mathcal{A}}(E(U), G) \longrightarrow \operatorname{rad}(U, G) \longrightarrow 0,$

and hence we get that

$$\delta_{\Sigma(U)}(G) = [U \oplus \tau^{-}U, G] - [E(U), G] = [U, G] - \dim_{K} \operatorname{rad}(U, G) = \mu(G, U)$$

(ii) The Auslander-Reiten sequence $\Sigma(\tau U)$ induces an exact sequence

 $0 \longrightarrow \operatorname{Hom}_{A}(G, \tau U) \longrightarrow \operatorname{Hom}_{A}(G, E(\tau U)) \longrightarrow \operatorname{rad}(G, U) \longrightarrow 0$

and hence we get the equalities

$$\delta'_{\Sigma(\tau U)}(G) = [G, \tau U \oplus U] - [G, E(\tau U)] = [G, U] - \dim_K \operatorname{rad}(G, U) = \mu(G, U)$$

LEMMA 2.6. Let Γ be a standard component of Γ_A and assume that there exists in Γ a mesh-complete subquiver of the form

with all U_i , V_i , $i \ge 1$, pairwise nonisomorphic. Then for any $Z \in \text{add}(\Gamma)$ the following equality holds

$$[V_1, Z] - [U_1, Z] = \sum_{i \ge 1} \mu(Z, V_i)$$

PROOF. Since Γ is standard there exist irreducible maps $f_i: V_i \to V_{i+1}, g_i: U_i \to U_{i+1}, h_i: V_i \to U_i, i \ge 1$, such that $g_i h_i = h_{i+1} f_i$ for all $i \ge 1$. Moreover, by [18], for any indecomposable modules X and Y in Γ , $\operatorname{rad}^{\infty}(X, Y) = 0$ (Γ is generalized standard in the sense of [27]), and hence any nonzero morphism in $\operatorname{rad}(X, Y)$ is a linear combination of the composites of irreducible morphisms between indecomposable modules in Γ . Clearly, in order to prove the lemma, we may consider an indecomposable module Z in Γ . First observe that the induced map $\operatorname{Hom}_A(h_1, Z)$: $\operatorname{Hom}_A(U_1, Z) \to \operatorname{Hom}_A(V_1, Z)$ is a monomorphism. Indeed, take a nonzero map w in $\operatorname{Hom}_A(U_1, Z)$. Then by the above remarks there exists $r \ge 0$ such that $w \in \operatorname{rad}^r(U_1, Z) \setminus \operatorname{rad}^{r+1}(U_1, Z)$. Applying now the dual of Corollary 1.6 in [17], we get that $h_1: V_1 \to U_1$ is of infinite right degree, and consequently $wh_1 \in \operatorname{rad}^{r+1}(V_1, Z) \setminus \operatorname{rad}^{r+2}(V_1, Z)$. In particular, $wh_1 \neq 0$ and we are done. Further, we know that any irreducible map $V_i \to W$ with W indecomposable is of the form $\alpha f_i + \varphi$, $\varphi \in \operatorname{rad}^2(V_i, V_{i+1})$, or $\alpha h_i + \psi$, $\psi \in \operatorname{rad}^2(V_i, U_i)$, for some $\alpha \in K$. Hence, if $Z \not = V_i$, for any $i \ge 1$, then using the equalities $g_i h_i = h_{i+1} f_i$ we get that the map $\operatorname{Hom}_A(h_1, Z)$ is an isomorphism. Then

$$[V_1, Z] - [U_1, Z] = 0 = \sum_{i \ge 1} \mu(Z, V_i).$$

Assume $Z = V_j$ for some $j \ge 1$. Then we get

$$\operatorname{Hom}_{\mathcal{A}}(V_1, Z) = \operatorname{im} \operatorname{Hom}_{\mathcal{A}}(h_1, Z) + Kf_{j-1} \cdots f_1$$

where, in case $j = 1, f_0$ is the identity map $V_1 \rightarrow V_1$. Moreover, by [8], $f_{j-1} \cdots f_1$ does not belong to im Hom_A(h_1, Z), because $\tau^- V_i = U_{i+1} \not\simeq V_{i+2}$ for any $i \ge 1$. Therefore, we get

$$[V_1, Z] - [U_1, Z] = 1 = \mu(Z, V_j) = \sum_{i \ge 1} \mu(Z, V_i)$$

because the modules V_1, V_2, \ldots are pairwise nonisomorphic.

LEMMA 2.7. Let $\Gamma_A = \Gamma' \cup \Gamma''$ be a decomposition of Γ_A into a disjoint sum of connected components. Assume that M and N are A-modules such that [M] = [N] and $\delta_{M,N}(X) = 0$ for all $X \in \operatorname{add}(\Gamma')$. Then the following statements hold:

- (i) If $M, N \in \text{add}(\Gamma')$ then $M \simeq N$.
- (ii) $M \in \operatorname{add}(\Gamma'')$ if and only if $N \in \operatorname{add}(\Gamma'')$.

PROOF. Since each $X \in \text{mod } A$ has a decomposition $X = X' \oplus X''$ with $X' \in \text{add}(\Gamma')$ and $X'' \in \text{add}(\Gamma'')$ it is sufficient to prove that $\mu(M, U) = \mu(N, U)$ for any indecomposable module U in Γ' . Take an indecomposable module U in Γ' . Assume first that U is not projective. Then by our assumption and Lemma 2.5(ii) we get the equalities

$$\mu(N, U) - \mu(M, U) = \delta'_{\Sigma(\tau U)}(N) - \delta'_{\Sigma(\tau U)}(M)$$

= $[N, \tau U \oplus U] - [N, E(\tau U)] - [M, \tau U \oplus U] + [M, E(\tau U)]$
= $\delta_{M,N}(\tau U) + \delta_{M,N}(U) - \delta_{M,N}(E(\tau U)) = 0$

because $U, \tau U$, and $E(\tau U)$ belong to $add(\Gamma')$. Assume now that U is projective. Then we get the equalities

$$\mu(M, U) = [M, U] - [M, \text{rad } U] = [N, U] - [N, \text{rad } U] = \mu(N, U)$$

because rad $U \in \text{add}(\Gamma')$ and $\delta_{M,N}(U) = 0$, $\delta_{M,N}(\text{rad } U) = 0$. This finishes the proof.

2.8. Let Γ be a connected component of Γ_A . For modules M and N in add(Γ) we set

 $M \leq_{\Gamma} N \iff [X, M] \leq [X, N]$ for all modules X in add(Γ).

Clearly, $M \leq N$ implies $M \leq_{\Gamma} N$. The following direct consequence of the above lemma shows that \leq_{Γ} is a partial order on the isomorphism classes of modules in add(Γ) having the same composition factors.

COROLLARY. Let M and N be two modules in $add(\Gamma)$ such that [M] = [N]. Then $M \simeq N$ if and only if $M \leq_{\Gamma} N$ and $N \leq_{\Gamma} M$.

Moreover, if M and N belongs to $add(\Gamma)$ and [M] = [N] then the following conditions are equivalent (see (2.3)):

(1) $M \leq_{\Gamma} N$.

(2) $\delta_{M,N}(X) \ge 0$ for all modules X in Γ .

(3) $\delta'_{MN}(X) \ge 0$ for all modules X in Γ .

3. Coils. We shall recall some basic facts on coils introduced by I. Assem and the first named author in [3] (see also [4]) and prove that the additive categories of standard coils are closed under extensions.

3.1. A translation quiver Γ is called a *tube* [14], [22] if it contains a cyclical path and its underlying topological space is homeomorphic to $S^1 \times \mathbb{R}^+$ (where S^1 is the unit circle, and \mathbb{R}^+ the non-negative real half-line). Tubes containing neither projective vertices nor injective vertices are called stable. The *rank* of a stable tube Γ is the least positive integer such that $\tau^r X = X$ for all $X \in \Gamma$.

3.2 The one-point extension of an algebra B by a B-module X is the matrix algebra

$$B[X] = \begin{bmatrix} K & X \\ 0 & B \end{bmatrix}$$

with the usual addition and multiplication of matrices. The B[X]-modules are usually identified with the triples (V, M, φ) , where V is a K-vector space, M is a B-module and $\varphi: V \to \text{Hom}_A(X, M)$ is a K-linear map. A B[X]-linear map $(V, M, \varphi) \to (V', M', \varphi')$ is

then identified with a pair (f, g), where $f: V \to V'$ is K-linear, $g: M \to M'$ is B-linear and $\varphi' f = \text{Hom}_B(X, g)\varphi$. One defines dually the one-point coextension [X]B of B by X (see [22]).

3.3. A coil is a translation quiver constructed inductively from a stable tube by a sequence of operations called admissible. Our first task is to define the latter. Let *B* be an algebra and Γ be a standard component of Γ_B . Recall that Γ is called *standard* if the full subcategory of mod *B* formed by modules from Γ is equivalent to the mesh-category $K(\Gamma)$ of Γ (see [22]). For an indecomposable module *X* in Γ , the support S(X) of the functor Hom_{*B*}(*X*, -)| $_{\Gamma}$ is the factor category of $K(\Gamma)$ by the ideal I_X of $K(\Gamma)$ generated by all morphisms $f: M \to N$ such that Hom_{*B*}(*X*, f) = 0. For an indecomposable module *X* in Γ , called the pivot, one defines admissible operations (ad 1), (ad 2), (ad 3) and their duals (ad 1^{*}), (ad 2^{*}), (ad 3^{*}), modifying (Γ, τ) to a new translation quiver (Γ', τ'), depending on the shape of the support S(X).

(ad 1) Assume that S(X) is the K-linear category of an infinite sectional path starting at X:

$$X = X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow \cdots$$

In this case, we let $t \ge 1$ be a positive integer, *D* denote the full $t \times t$ -lower triangular matrix algebra and Y_1, \ldots, Y_t denote the indecomposable injective *D*-modules with $Y = Y_1$ the unique indecomposable projective-injective module. We define the modified algebra *B'* of *B* to be the one-point extension

$$B' = [B \times D][X \oplus Y]$$

and the modified component Γ' of Γ to be obtained by inserting in Γ a rectangle consisting of the modules $Z_{ij} = (K, X_i \oplus Y_j, {1 \choose 1})$ for $i \ge 0, 1 \le j \le t$, and $X'_i = (K, X_i, 1)$ for $i \ge 0$. The translation τ' of Γ' is defined as follows: $\tau'Z_{ij} = Z_{i-1,j-1}$ if $i \ge 1, j \ge 2, \tau'Z_{i1} = X_{i-1}$ if $i \ge 1, \tau'Z_{0j} = Y_{j-1}$ if $j \ge 2, Z_{01} = P$ is projective, $\tau'X'_0 = Y_t, \tau'X'_i = Z_{i-1,t}$ if $i \ge 1, \tau'(\tau^-X_i) = X'_i$ provided X_i is not an injective *B*-module, otherwise X_i is injective in Γ' . For the remaining vertices of Γ (or Γ_D), the translation τ' coincides with τ (or τ_D , respectively).

If now t = 0, we define the modified algebra B' to be the one-point extension B' = B[X] and the modified component Γ' to be the component obtained from Γ by inserting only the sectional path consisting of the X'_i , $i \ge 0$.

(ad 2) Assume S(X) is the K-linear category given by two sectional paths starting at X, the first infinite and the second finite with at least one arrow

$$Y_t \leftarrow \cdots \leftarrow Y_2 \leftarrow Y_1 \leftarrow X = X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow \cdots$$

where $t \ge 1$. In particular, X is necessarily injective. We define the modified algebra B' of B to be the one-point extension B' = B[X] and the modified component Γ' of Γ to be obtained by inserting in Γ a rectangle consisting of the modules $Z_{ij} = (K, X_i \oplus Y_j, {1 \choose i})$ for $i \ge 1, 1 \le j \le t$, and $X'_i = (K, X_i, 1)$ for $i \ge 1$. The translation τ' of Γ' is defined as follows: $P = X'_0$ is projective-injective, $\tau' Z_{ij} = Z_{i-1,j-1}$ if $i \ge 2, j \ge 2, \tau' Z_{i1} = X_{i-1}$ if $i \ge 1, \tau' Z_{1j} = Y_{j-1}$ if $j \ge 2, \tau' X'_i = Z_{i-1,t}$ if $i \ge 2, \tau' X'_1 = Y_t, \tau'(\tau^- X_i) = X'_t$ if $i \ge 1$, provided X_i is not injective *B*-module, otherwise X'_i is injective in Γ' . For the remaining vertices of Γ' , the translation τ' coincides with the translation τ .

(ad 3) Assume S(X) is the mesh-category of two parallel sectional paths

where $t \ge 2$. In particular, X_{t-1} is necessarily injective. We define the modified algebra B' of B to be the one-point extension B' = B[X] and the modified component Γ' to be obtained by inserting in Γ a rectangle consisting of the modules $Z_{ij} = (K, X_i \oplus Y_j, \binom{1}{1})$ for $i \ge 1, 1 \le j \le i$, and $X'_i = (K, X_i, 1)$ for $i \ge 1$. The translation τ' of Γ' is defined as follows: $P = X'_0$ is projective, $\tau'Z_{ij} = Z_{i-1,j-1}$ if $i \ge 2, 2 \le j \le i, \tau'Z_{i1} = X_{i-1}$ if $i \ge 1$, $\tau'X'_i = Y_i$ if $1 \le i \le t, \tau'X'_i = Z_{i-1,i}$ if $i > t, \tau'Y_j = X'_{j-2}$ if $2 \le j \le t, \tau'(\tau^-X_i) = X'_i$ if $i \ge t$ provided X_i is not an injective B-module, otherwise X'_i is injective in Γ' . For the remaining vertices of Γ' , the translation τ' coincides with τ . We note that X'_{t-1} is injective.

Finally, together with each of the admissible operations (ad 1), (ad 2) and (ad 3), we must consider its dual, denoted by (ad 1^*), (ad 2^*) and (ad 3^*), respectively.

3.4. A translation quiver Γ is called a *coil* if there exists a sequence of algebras B_0, B_1 , ..., $B_m = \Lambda$ and components Γ_i of Γ_{B_i} ; $0 \le i \le m$, such that $\Gamma = \Gamma_m$, Γ_0 is a standard stable tube, and for each i ($0 \le i < m$), B_{i+1} is the modified algebra B_i of B_i and Γ_{i+1} is the modified component of Γ_i , by one of the admissible operations (ad 1), (ad 2), (ad 3), (ad 1^{*}), (ad 2^{*}), or (ad 3^{*}). It is shown in [3] that such a coil Γ is a standard component of Γ_{Λ} . We refer to [4] for an axiomatic definition of a coil and examples. Hence any stable tube is trivially a coil. A (coherent) tube in the sense of [14] is a coil having the property that each admissible operation in the sequence defining it is of the form (ad 1) or (ad 1*). If we apply only operations of the type (ad 1) (respectively, of the type (ad 1^{*})) then such a coil is called a *ray tube* (respectively, *coray tube*). Observe that a coil without injective (respectively, projective) vertices is a ray tube (respectively, coray tube). A quasi-tube (in the sense of [24]) is a coil having the property that each admissible operation in the sequence defining it is of the form (ad 1), (ad 1*), (ad 2) or (ad 2*). The quasi-tubes occur frequently in the Auslander-Reiten quiver of selfinjective algebras (see [24]). Note that a coil Γ in the Auslander-Reiten quiver Γ_A of an arbitrary algebra A is not necessarily standard. But for any coil Γ there exists a triangular algebra A (and hence of finite global dimension) such that Γ is a standard component of Γ_{Λ} . We shall show now that the additive categories of standard coils are closed under extensions.

PROPOSITION 3.5. Let B be an algebra, Γ a standard component of Γ_B , and assume that add(Γ) is closed under extensions. Let X be the pivot of an admissible operation,

B' the modified algebra, and Γ' the modified component. Then $add(\Gamma')$ is closed under extensions.

PROOF. We may assume, by duality, that the admissible operation leading from Γ to Γ' is one of (ad 1), (ad 2), or (ad 3). For a *B*-module *M*, we let M_0 denote its restriction to $B \times D$, if the operation is of type (ad 1) with $t \ge 1$, or to *B* in the remaining cases. Denoting by ω the extension vertex of *B'*, we represent a *B'*-module *M* as a triple $(M_{\omega}, M_0, \gamma_M)$, where M_{ω} is a finite dimensional *K*-vector space and γ_M is a *K*-linear map from M_{ω} to $\text{Hom}_{B \times D}(X \oplus Y_1, M_0)$ or to $\text{Hom}_B(X, M_0)$, respectively. Let now

$$0 \longrightarrow M \longrightarrow E \longrightarrow N \longrightarrow 0$$

be an exact sequence in mod B' with M and N in add(Γ'). Clearly, we may assume that this sequence is not splittable. We get an exact sequence

$$0 \longrightarrow M_0 \longrightarrow E_0 \longrightarrow N_0 \longrightarrow 0$$

in mod *B* with M_0 and N_0 in add(Γ). Since add(Γ) is closed under extensions, we infer that $E_0 \in \operatorname{add}(\Gamma)$. From the description of admissible operations in (3.3) we know that the vector space category $\operatorname{Hom}_{B \times D}(X \oplus Y_1, \operatorname{add}(\Gamma))$, if the admissible operation is of type (ad 1) and $t \ge 1$, and $\operatorname{Hom}_B(X, \operatorname{add}(\Gamma))$ in the remaining cases, is given by a partially ordered set of width at most 2. Then, since $E_0 \in \operatorname{add}(\Gamma)$, the indecomposable direct summands of *E* are of the form (0, Z, 0) with *Z* an indecomposable *B*-module lying in Γ' (and hence in Γ), $(K, X_i \oplus Y_j, {1 \choose l})$, $(K, X_i, 1)$ or $(K, Y_j, 1)$ (see [23, (2.4)] for details). Therefore, we must show that *E* has no direct summand of the form $(K, Y_j, 1)$. Suppose this is not the case. Then there is a nonzero map from a module $(K, Y_j, 1)$ to an indecomposable direct summand, say *V*, of *N*. By our assumption, *V* belongs to Γ' . Observe now that any indecomposable *B*-module *U* in Γ' with $\operatorname{Hom}_A(Y_j, U) \neq 0$ is isomorphic to Y_l with $l \geq j$. Since the modules $(K, Y_l, 1)$ do not belong to Γ' , *V* is isomorphic to a module of the form $(0, Y_l, 0)$ or $(K, X_i \oplus Y_l, {1 \choose 1})$. But it is easy to check that any map in mod *B'* from $(K, Y_j, 1)$ to any of the modules $(0, Y_l, 0)$ or $(K, X_i \oplus Y_l, {1 \choose 1})$ is zero. Consequently, *E* belongs to add(Γ'). This shows that add(Γ') is closed under extensions.

THEOREM 3.6. Let A be an algebra and Γ a standard coil of Γ_A . Then add(Γ) is closed under extensions.

PROOF. Let $I = \operatorname{ann}(\Gamma)$ be the annihilator of Γ in A, that is, the intersection of the annihilators ann X of the modules X in Γ , and B = A/I. Clearly, Γ is a standard coil in Γ_B . Moreover, if $0 \to M \to E \to N \to 0$ is an exact sequence in mod A with M and N in add(Γ) then MI = 0, NI = 0, and so EI = 0. Therefore, we may assume that B = A, that is, Γ is a faithful standard coil of Γ_A . Repeating now the arguments from [4, (5.4)] we infer that there exists a sequence of algebras $C = A_0, A_1, \ldots, A_m = A$ and a standard faithful stable tube \mathcal{T} in Γ_C such that, for each $0 \leq i < m$, A_{i+1} is obtained from the algebra A_i by an admissible operation with pivot in the coil Γ_i of Γ_{A_i} , obtained from the stable tube \mathcal{T} by the sequence of admissible operations done so far, and Γ is the modified

coil $\Gamma_m = \Gamma'_{m-1}$. Hence, by Proposition 3.5, it is sufficient to show that add(\mathcal{T}) is closed under extensions in mod *C*. Since \mathcal{T} is a faithful standard (hence generalized standard) stable tube of Γ_C , we infer that $pd_C X \leq 1$ for any *X* in \mathcal{T} (see [27, (5.9)]). Let E_1, \ldots, E_r be a complete set of modules lying on the mouth of \mathcal{T} . Then the modules E_1, \ldots, E_r are pairwise orthogonal with endomorphism rings isomorphic to *K* (because \mathcal{T} is standard), and $Ext^2_C(E_i, E_j) = 0$ for all $1 \leq i, j \leq r$. Then by [22, (3.1)], add(\mathcal{T}) is a serial abelian category consisting of all *C*-modules *X* having a filtration

$$X = X_0 \supset X_1 \supset X_2 \supset \cdots \supset X_s = 0, \quad s \ge 1,$$

with X_{i-1}/X_i being isomorphic to one of E_1, \ldots, E_r , for any $1 \le i \le s$. But then add(\mathcal{T}) is closed under extensions, and we are done.

4. Exact sequences in quasi-tubes.

4.1. Throughout this section Γ denotes a standard quasi-tube in the Auslander-Reiten quiver Γ_A of an algebra A. We shall investigate short exact sequences in the additive category add(Γ) in mod A given by Γ . Since Γ is standard, add(Γ) is equivalent to the additive category add($K(\Gamma)$) of the mesh-category $K(\Gamma)$ of Γ . Hence we may assume that Γ is a sincere quasi-tube in Γ_A , A is obtained from an algebra C by a sequence of admissible operations of type (ad 1), (ad 1*), (ad 2), (ad 2*), and Γ is obtained from a sincere standard stable tube \mathcal{T} of Γ_C by the same sequence of admissible operations. By $\overline{\Gamma}$ we denote the translation quiver obtained from Γ by removing all projective-injective vertices. Hence, $\overline{\Gamma}$ is a tube. A vertex X of $\overline{\Gamma}$ will be said to belong to the mouth of $\overline{\Gamma}$ if Xis starting, or ending, vertex of a mesh in $\overline{\Gamma}$ with a unique middle term. The arrows of $\overline{\Gamma}$ may be subdivided into two classes: arrows pointing to the mouth and arrows pointing to infinity (from the mouth). Denote by $\overline{\Gamma}_0$ the set of vertices in $\overline{\Gamma}$. We define two functions

$$\varphi, \psi: \overline{\Gamma}_0 \cup \{0\} \longrightarrow \overline{\Gamma}_0 \cup \{0\}$$

such that: $\varphi(0) = 0$, $\psi(0) = 0$, and for $X \in \overline{\Gamma}_0$:

- $\varphi(X)$ is the starting vertex of a (unique) arrow with end vertex X and pointing to the mouth, if such an arrow exists, and $\varphi(X) = 0$ otherwise;
- $\psi(X)$ is the ending vertex of a (unique) arrow with starting vertex X and pointing to infinity, if such an arrow exists, and $\psi(X) = 0$ otherwise.

In an obvious way we define also partial inverse functions

$$\varphi^-, \psi^- : \overline{\Gamma}_0 \cup \{0\} \longrightarrow \overline{\Gamma}_0 \cup \{0\}$$

such that for $X \in \overline{\Gamma}_0$ we have:

- $\varphi^{-}(X) = Y$ if $\varphi(Y) = X$, and $\varphi^{-}(X) = 0$ otherwise;
- $\psi^{-}(X) = Y$ if $\psi(Y) = X$, and $\psi^{-}(X) = 0$ otherwise.

Recall also that an infinite sectional path in $\overline{\Gamma}$ starting from a module lying on the mouth of $\overline{\Gamma}$ and consisting of arrows pointing to infinity is called a *ray*. Dually, an infinite path in $\overline{\Gamma}$ with the ending module lying on the mouth of $\overline{\Gamma}$ and consisting of arrows

pointing to the mouth is called a *coray* (see [22]). Then one associates two numerical invariants $(p(\Gamma), q(\Gamma))$ such that $p(\Gamma)$ is the number of rays in $\overline{\Gamma}$ and $q(\Gamma)$ is the number of corays in $\overline{\Gamma}$. We shall use the abbreviation $p = p(\Gamma)$ and $q = q(\Gamma)$. Finally, observe that a module $X \in \overline{\Gamma}_0$ lies on a ray (respectively, coray) in $\overline{\Gamma}$ if and only if $\psi^i(X) \neq 0$ (respectively, $\varphi^i(X) \neq 0$) for all $i \geq 0$.

4.2 Following [20] by a *short cycle* in add(Γ) we mean a cycle $X \to Y \to X$ of nonzero nonisomorphisms between modules X and Y from Γ . We collect now the following properties of φ and ψ , needed in our proofs.

LEMMA. Let X be an indecomposable module in $\overline{\Gamma}$. Then the following statements hold:

- (i) X lies on a short cycle in add(Γ) if and only if X lies on a ray and on a coray in $\overline{\Gamma}$. Moreover, if this is the case, then $\varphi^p X = \psi^q X$ and there is a cycle $X \to \psi X \to$ $\dots \to \psi^q X = \varphi^p X \to \dots \to \varphi X \to X$.
- (ii) X lies on a short cycle in add(Γ) if and only if $\varphi^{p-1}X \neq 0$ and $\psi^{q-1}X \neq 0$.
- (iii) If X lies on a short cycle in add(Γ) then, for any integers $i, j, k \ge 0$, $\varphi^i \psi^j X = \psi^j \varphi^i X = \varphi^{i-kp} \psi^{j+kq} X$ lies on a short cycle.
- (iv) If $\varphi^i \psi^j X = X$ or $\psi^j \varphi^i X = X$ then there is an integer k such that i = kp and j = (-k)q.

Assume that U is a module in $\overline{\Gamma}$ and s, t are two positive integers such that the modules $\varphi^{-i}\psi^{j}U, 0 \leq i < s, 0 \leq j < t$, are nonzero. Then

$$\mathcal{R}(U, s, t) = \{ \varphi^{-i} \psi^{j} U; 0 \le i < s, 0 \le j < t \}$$

is called a *rectangle of size* (s, t) in $\overline{\Gamma}$ determined by U.

4.3. Let Γ_0 be the set of vertices in Γ . For any noninjective vertex $U \in \Gamma_0$ we have in the notation of (2.4) an Auslander-Reiten sequence

$$\Sigma(U): 0 \longrightarrow U \longrightarrow E(U) \longrightarrow \tau^- U \longrightarrow 0$$

where $E(U) = \pi(U) \oplus \psi(U) \oplus \varphi^{-}(U)$, and $\psi(U) \neq 0$.

LEMMA. Let $U \in \Gamma_0$, $s, t \ge 1$ be integers, and assume that there exists in Γ a rectangle $\mathcal{R} = \mathcal{R}(U, s, t)$ consisting of nonzero and noninjective modules. Then

(i) There exists a nonsplittable exact sequence

$$\Sigma(U,s,t): 0 \longrightarrow U \longrightarrow E(U,s,t) \longrightarrow \varphi^{-s} \psi^t U \longrightarrow 0,$$

where

$$E(U,s,t) = \psi^{t}U \oplus \varphi^{-s}U \oplus \left(\bigoplus_{0 \le i < s} \bigoplus_{0 \le j < t} \pi(\varphi^{-i}\psi^{j}U)\right).$$

(ii) $\delta_{\Sigma(U,s,t)} = \sum_{0 \le i < s} \sum_{0 \le j < t} \delta_{\Sigma(\varphi^{-i}\psi^{j}U)}$.

(iii) $\delta_{\Sigma(U,s,t)}(Z) \ge 1$ for any $Z \in \mathcal{R}$ and $\delta_{\Sigma(U,s,t)}(Z) = 0$ for the remaining indecomposable A-modules Z. Moreover, if $s \le p(\Gamma) = p$ or $t \le q(\Gamma) = q$, then $\delta_{\Sigma(U,s,t)}(Z) = 1$ for any $Z \in \mathcal{R}$.

PROOF. (i) From our assumptions we have for any $0 \le i < s$ and $0 \le j < t$ Auslander-Reiten sequences

$$0 \to \varphi^{-i} \psi^{j} U \to \varphi^{-i-1} \psi^{j} U \oplus \varphi^{-i} \psi^{j+1} U \oplus \pi(\varphi^{-i} \psi^{j} U) \to \varphi^{-i-1} \psi^{j+1} U \to 0.$$

Applying now [2, Corollary 2.2] we get the required short exact sequence

$$\Sigma(U, s, t): 0 \longrightarrow U \longrightarrow E(U, s, t) \longrightarrow \varphi^{-s} \psi^t U \longrightarrow 0$$

with

$$E(U,s,t) = \psi^{t}U \oplus \varphi^{-s}U \oplus \left(\bigoplus_{0 \le i < s} \bigoplus_{0 \le j < t} \pi(\varphi^{-i}\psi^{j}U)\right).$$

(ii) Let

$$W = \left(\bigoplus_{0 \le i \le s} \bigoplus_{0 < j < t} \varphi^{-i} \psi^{j} U\right) \oplus \left(\bigoplus_{0 < i < s} \bigoplus_{0 \le j \le t} \varphi^{-i} \psi^{j} U\right).$$

Then

$$\bigoplus_{0 \le i < s} \bigoplus_{0 \le j < t} (\varphi^{-i} \psi^j U \oplus \varphi^{-i-1} \psi^{j+1} U) = W \oplus U \oplus \varphi^{-s} \psi^t U$$

and

$$\bigoplus_{0 \le i < s} \bigoplus_{0 \le j < t} E(\varphi^{-i}\psi^{j}U) = W \oplus E(U, s, t).$$

Hence, for each $X \in \text{mod } A$, we get

$$\sum_{0 \le i < s} \sum_{0 \le j < t} \left(\left[\varphi^{-i} \psi^j U \oplus \varphi^{-i-1} \psi^{j+1} U, X \right] - \left[E(\varphi^{-i} \psi^j U), X \right] \right)$$
$$= \left[U \oplus \varphi^{-s} \psi^t U, X \right] - \left[E(U, s, t), X \right]$$

Therefore, by Lemma 2.5(i), we get

$$\delta_{\Sigma(U,s,t)}(X) = \sum_{0 \le i < s} \sum_{0 \le j < t} \delta_{\Sigma(\varphi^{-i}\psi^j U)}(X) = \sum_{0 \le i < s} \sum_{0 \le j < t} \mu(X, \varphi^{-i}\psi^j U).$$

Since $\Re = \{\varphi^{-i}\psi^{j}U; 0 \le i < s, 0 \le j < t\}$ we conclude that $\delta_{\Sigma(U,s,t)}(Z) \ge 1$ for all $Z \in \Re$ and $\delta_{\Sigma(U,s,t)} = 0$ for the remaining indecomposable *A*-modules *Z*. Now, if $s \le p = p(\Gamma)$ or $t \le q = q(\Gamma)$ then any module $\varphi^{-i}\psi^{j}U \in \Re$ is uniquely determined (up to isomorphism) by the pair (i, j), because Γ is obtained from a standard stable tube \mathcal{T} by a sequence of admissible operations. This shows that $\delta_{\Sigma(U,s,t)}(Z) = \sum_{X \in \Re} \delta_{\Sigma(X)}(Z)$ has value 1 on any module $Z \in \Re$. This finishes the proof.

LEMMA 4.4. Assume that there exists a short exact sequence $\Sigma(U, p, kq)$ for some $k \ge 1$ and $U \in \overline{\Gamma}_0$. Then there exists a short exact sequence $\Sigma(W, kp, q)$ for $W = \varphi^{-p} \psi^{kq} U$. Moreover, $\delta_{\Sigma(U, p, kq)} = \delta_{\Sigma(W, kp, q)}$ and $E(U, p, kq) \simeq E(W, kp, q)$.

PROOF. First observe that $\varphi^{-p+1}U$ has the property: $\varphi^{p-1}(\varphi^{-p+1}U) = U \neq 0$ and $\psi^{q-1}(\varphi^{-p+1}U) = \varphi^{-(p-1)}\psi^{q-1}U \neq 0$, because $\Sigma(U, p, kq)$ exists. Hence, by 4.2(ii), $\varphi^{-p+1}U$ lies on a short cycle in add(Γ). Then clearly the modules $\varphi^{-i}\psi^{j}U = \psi^{j}\varphi^{-i}U$ for $0 \leq i < p, 0 \leq j < kq$, also lie on short cycles in add(Γ), by 4.2(iii).

Take now nonnegative integers *i*, *c*, *d* such that i < p, c < k, and d < q. Since $\varphi^{-i}\psi^{cq+d}U$ and $W = \varphi^{-p}\psi^{kq}$ lie on short cycles in add(Γ), we get, again by 4.2(iii), that

$$\varphi^{-i}\psi^{cq+d}U = \varphi^{-i-(k-c)p}\psi^{cq+d+(k-c)q}U$$
$$= \varphi^{-i-(k-c)p}\psi^{d+kp}U$$
$$= \varphi^{p-i-(k-c)p}\psi^{d}\varphi^{-p}\psi^{kq}U$$
$$= \varphi^{-i-(k-c-1)p}\psi^{d}W.$$

From the existence of $\Sigma(U, p, kq)$ we know that any module X in the rectangle

$$\mathcal{R} = \mathcal{R}(U, p, kq) = \{\varphi^{-i}\psi^{j}U; 0 \le i < p, 0 \le j < kq\}$$

is nonzero and noninjective. Observe now that

$$\begin{split} \mathcal{R} &= \{\varphi^{-i}\psi^{cq+d}U; \ 0 \le i < p, \ 0 \le c < k, \ 0 \le d < q\} \\ &= \{\varphi^{-i-(k-c-1)p}\psi^dW; \ 0 \le i < p, \ 0 \le c < k, \ 0 \le d < q\}, \end{split}$$

and so \mathcal{R} coincides with the rectangle

$$\mathcal{R}' = \mathcal{R}(W, kp, q) = \{\varphi^{-e}\psi^d W; 0 \le e < kp, 0 \le d < q\}.$$

Consequently, we infer, by Lemma 4.3, that there exists a short exact sequence

$$\Sigma(W, kp, q): 0 \longrightarrow W \longrightarrow E(W, kp, q) \longrightarrow \varphi^{-kp} \psi^q W \longrightarrow 0$$

and for any indecomposable A-module X the equalities

$$\delta_{\Sigma(U,p,kq)}(X) = \sum_{Y \in \mathcal{R}} \delta_{\Sigma(Y)}(X) = \sum_{Y \in \mathcal{R}'} \delta_{\Sigma(Y)}(X) = \delta_{\Sigma(W,kp,q)}(X).$$

hold. This gives the equality

$$[U \oplus \varphi^{-p}\psi^{kq}U, X] - [E(U, p, kq), X] = [W \oplus \varphi^{-kp}\psi^{q}W, X] - [E(W, kp, q), X]$$

for any $X \in \text{ind } A$. Since $U = \varphi^{-kp} \psi^q W$ and $\varphi^{-p} \psi^{kq} U = W$, we then obtain that

$$[E(U, p, kq), X] = [E(W, kp, q), X]$$

for all $X \in \text{ind } A$. Therefore, $E(U, p, kq) \simeq E(W, kp, q)$, by the theorem of Auslander [6].

LEMMA 4.5. Let M and N be A-modules with [M] = [N], and $W \in \overline{\Gamma}_0$. Then

$$\mu(N, W) - \mu(M, W) = \delta_{M,N}(W) - \delta_{M,N}(\varphi W) - \delta_{M,N}(\psi^- W) + \delta_{M,N}(\psi^- \varphi W).$$

Moreover, if W is noninjective and $\pi(W) \neq 0$ *then*

$$\mu(N, \pi(W)) - \mu(M, \pi(W)) = -\delta_{M,N}(W).$$

PROOF. We split the proof of the first formula into two cases. Assume first that W is nonprojective. Then $\tau W = \psi^- \varphi W$ and $E(\tau W) = \varphi W \oplus \psi^- W \oplus \pi(\tau W)$. Applying 2.5(ii), we get the equalities

$$\mu(N, W) - \mu(M, W) = \delta'_{\Sigma(\tau W)}(N) - \delta'_{\Sigma(\tau W)}(M)$$

= $([N, \psi^{-} \varphi W \oplus W] - [N, \varphi W \oplus \psi^{-} W \oplus \pi(\tau W)])$
 $- ([M, \psi^{-} \varphi W \oplus W] - [M, \varphi W \oplus \psi^{-} W \oplus \pi(\tau W)])$
= $\delta_{M,N}(W) + \delta_{M,N}(\psi^{-} \varphi W) - \delta_{M,N}(\varphi W)$
 $- \delta_{M,N}(\psi^{-} W) - \delta_{M,N}(\pi(\tau W)).$

Since $\pi(\tau W)$ is either zero or injective and [M] = [N] we have $\delta_{M,N}(\pi(\tau W)) = 0$. Hence the required formula is true. Assume now that W is projective. Observe that then W is noninjective, because $W \in \overline{\Gamma}_0$. Obviously, rad $W = \varphi W \oplus \psi^- W$ and $\operatorname{Hom}_A(X, \operatorname{rad} W) \simeq$ rad(X, W) as K-vector spaces. We then get that

$$\mu(N, W) - \mu(M, W) = ([N, W] - [N, \operatorname{rad} W]) - ([M, W] - [M, \operatorname{rad} W])$$
$$= \delta_{M,N}(W) - \delta_{M,N}(\operatorname{rad} W)$$
$$= \delta_{M,N}(W) - \delta_{M,N}(\varphi W) - \delta_{M,N}(\psi^- W).$$

Since either $\psi^- \varphi W = 0$ or $\psi^- \varphi W$ is injective we have $\delta_{M,N}(\psi^- \varphi W) = 0$, and so the required formula is true.

Finally, assume that W is noninjective and $\pi(W) \neq 0$. Then $W = \operatorname{rad} \pi(W)$, and we obtain that

$$\mu(N, \pi(W)) - \mu(M, \pi(W)) = ([N, \pi(W)] - [N, W]) - ([M, \pi(W)] - [M, W])$$
$$= \delta_{M,N}(\pi(W)) - \delta_{M,N}(W) = -\delta_{M,N}(W)$$

because $\pi(W)$ is injective and [M] = [N]. This finishes the proof.

LEMMA 4.6. Let M and N be A-modules with [M] = [N], and $U \in \overline{\Gamma}_0$. Assume that a rectangle $\mathcal{R}(U, s, t)$ consists of nonzero and noninjective modules. Then

$$\sum_{0 \le i < s} \sum_{0 \le j < t} (\mu(N, \varphi^{-i}\psi^{j}U) - \mu(M, \varphi^{-i}\psi^{j}U)) = \delta_{M,N}(\psi^{-}\varphi U) - \delta_{M,N}(\psi^{-}\varphi^{-s+1}U) - \delta_{M,N}(\varphi\psi^{t-1}U) + \delta_{M,N}(\varphi^{-s+1}\psi^{t-1}U).$$

PROOF. From Lemmas 2.5(i) and 4.3(ii) we get the equalities

$$\begin{split} \sum_{0 \le i < s} \sum_{0 \le j < t} \left(\mu(N, \varphi^{-i}\psi^{j}U) - \mu\left(M, \varphi^{-i}\psi^{j}U\right) \right) \\ &= \sum_{0 \le i < s} \sum_{0 \le j < t} \left(\delta_{\Sigma(\varphi^{-i}\psi^{j}U)}(N) - \delta_{\Sigma(\varphi^{-i}\psi^{j}U)}(M) \right) \\ &= \delta_{\Sigma(U,s,t)}(N) - \delta_{\Sigma(U,s,t)}(M) \\ &= \left[U \oplus \varphi^{-s}\psi^{t}U, N \right] - \left[E(U,s,t), N \right] - \left[U \oplus \varphi^{-s}\psi^{t}U, M \right] + \left[E(U,s,t), M \right] \\ &= \delta'_{M,N}(U \oplus \varphi^{-s}\psi^{t}U) - \delta'_{M,N}(E(U,s,t)) \\ &= \delta_{M,N}(\tau U \oplus \tau \varphi^{-s}\psi^{t}U) - \delta_{M,N}(\tau E(U,s,t)) \\ &= \delta_{M,N}(\tau U \oplus \varphi^{-s+1}\psi^{t-1}U) - \delta_{M,N}(\tau \varphi^{-s}U \oplus \tau \psi^{t}U) - \delta_{M,N}(\varphi^{-s+1}U) - \delta_{M,N$$

which is the required formula.

5. **Proofs of Theorems 1 and 2.** We shall divide our proof of Theorem 1 into several steps. We use the notations introduced in Sections 3 and 4.

5.1. Let \mathcal{T} be a standard stable tube in Γ_A , and E_1, \ldots, E_r a complete set of modules lying on the mouth of \mathcal{T} . Then \mathcal{T} consists of the modules $\psi^i E_j$, $i \ge 0, 1 \le j \le r$. For each $k, 1 \le k \le r$, we denote by $l_k : \operatorname{add}(\Gamma) \to \mathbb{N}$ the additive function defined on modules $\psi^i E_j$ by

$$l_k(\psi^i E_j) = \#\{t \in \{j, j+1, \dots, j+i\}; r \text{ divides } t-k\}.$$

Then it is easy to see that

$$[\psi^{i}E_{j}] = l_{1}(\psi^{i}E_{j})[E_{1}] + \dots + l_{r}(\psi^{i}E_{j})[E_{r}]$$

for $i \ge 0, 1 \le j \le r$, and hence

$$[W] = l_1(W)[E_1] + \dots + l_r(W)[E_r]$$

for any module W in add(Γ). Moreover, we have also the following lemma.

LEMMA. For $i \ge m \ge 0$ and $1 \le j$, $t \le r$, the following equality holds:

$$[\psi^m E_t, \psi^i E_i] = l_i(\psi^m E_t).$$

PROOF. Straightforward because T is a standard stable tube.

LEMMA 5.2. Let Γ be a standard quasi-tube in Γ_A , and assume that M and N are two modules in add(Γ) with [M] = [N] and $M \leq_{\Gamma} N$. Then $\delta_{M,N}(X) = 0$ and $\delta'_{M,N}(X) = 0$ for all but finitely many modules X in Γ .

PROOF. Assume first that Γ is a stable tube, say of rank r. Take $s \ge 0$ such that for any $i \ge s$ and $1 \le j \le r$, the module $\psi^i(E_j)$ is not a direct summand of $M \oplus N$. Then applying Lemma 5.1 we get that $[M, \psi^i E_j] = l_j(M)$ and $[N, \psi^i E_j] = l_j(N)$, which implies $l_j(N) - l_j(M) = \delta_{M,N}(\psi^i E_j) \ge 0$, because $M \le_{\Gamma} N$. Hence, for $i \ge s$, we have

$$\sum_{1 \le j \le r} \delta_{M,N}(\psi^i E_j)[E_j] = \sum_{1 \le j \le r} (l_j(N) - l_j(M))[E_j]$$
$$= \left(\sum_{1 \le j \le r} l_j(N)[E_j]\right) - \left(\sum_{1 \le j \le r} l_j(M)[E_j]\right)$$
$$= [N] - [M] = 0$$

Therefore, $\delta_{M,N}(\psi^i E_j) = 0$ for any $i \ge s$ and $1 \le j \le r$, and so $\delta_{M,N}(X)$ for all but finitely many module X in Γ . Since $\delta'_{M,N}(Y) = \delta_{M,N}(\tau Y)$ for all nonprojective modules $Y \in \operatorname{add}(\Gamma)$, we get that $\delta'_{M,N}(X) = 0$ for all but finitely many ann modules X in Γ .

Assume now that Γ is not a stable tube. Since Γ is a standard tube in $\Gamma_{A/\operatorname{ann}(\Gamma)}$, where ann(Γ) is the annihilator of Γ in A, we may assume that ann(Γ) = 0. Then there exists (see [4, (5.4)]) a sequence of algebras $C = A_0, A_1, \ldots, A_{m-1}, A_m = A$ and a standard faithful stable tube T in Γ_C such that, for each $0 \le i < m, A_{i+1}$ is obtained from the algebra A_i by an admissible operation with pivot in the quasi-tube Γ_i of Γ_{A_i} , obtained from T by the sequence of admissible operations (of types (ad 1), (ad 1^{*}), (ad 2), (ad 2^{*})) done so far, and $\Gamma = \Gamma_m$. Therefore, we may proceed by induction on m. The case m = 0 is discussed above. By duality, we may assume that A is obtained from $B = A_{m-1}$ by an admissible operation of type (ad 1) or (ad 2). Clearly B = eAe for some idempotent e of A. Further, Γ is the modified component C' of the standard quasi-tube $C = \Gamma_{m-1}$ in Γ_B . From the description of C' given in Section 3, we infer that the *B*-modules *Me* and *Ne* belong to add(C). Moreover, [M] = [N] implies that [Me] = [Ne] in $K_0(B)$. Then, for any $X \in C$, we get

$$\dim_K \operatorname{Hom}_B(X, Me) = [X, M] \le [X, N] = \dim_K \operatorname{Hom}_B(X, Ne)$$

Thus $Me \leq_{\mathcal{C}} Ne$, and by induction we may assume that $\delta_{Me,Ne}(X) = 0$ and $\delta'_{Me,Ne}(X) = 0$ for all but finitely many modules X in \mathcal{C} . Therefore, $\delta'_{M,N} = 0$ for all but finitely many indecomposable B-modules lying in Γ . From the shape of the modified component $\Gamma = \mathcal{C}'$ (see Section 3) we deduce that there exists $s \geq 1$ such that the modules X_i, Z_{ij}, X'_i , $i \geq s, 1 \leq j \leq t$, are not direct summands of $M \oplus N$, and there are Auslander-Reiten sequences in mod A

$$\begin{array}{l} 0 \longrightarrow X_{i} \longrightarrow Z_{i1} \oplus X_{i+1} \longrightarrow Z_{i+1,1} \longrightarrow 0 \\ 0 \longrightarrow Z_{ij} \longrightarrow Z_{i,j+1} \oplus Z_{i+1,j} \longrightarrow Z_{i+1,j+1} \longrightarrow 0 \\ 0 \longrightarrow Z_{it} \longrightarrow X'_{i} \oplus Z_{i+1,t} \longrightarrow X'_{i+1} \longrightarrow 0 \end{array}$$

for $s \le i$, $1 \le j < t$. Observe also that all but finitely many modules L in Γ with $L(1-e) \ne 0$ are of the above form Z_{ij}, X'_i . Applying now Lemma 2.6, we get, for $i \ge s$, $1 \le j < t$, the equalities

$$\begin{split} & [X_i, M] - [Z_{i1}, M] = \sum_{k \ge i} \mu(M, X_k) = 0, \\ & [Z_{ij}, M] - [Z_{i,j+1}, M] = \sum_{k \ge i} \mu(M, Z_{kj}) = 0, \\ & [Z_{it}, M] - [X'_i, M] = \sum_{k \ge i} \mu(M, Z_{kt}) = 0, \end{split}$$

and similar ones if we replace M by N. Hence $\delta'_{M,N}(Z_{ij}) = \delta'_{M,N}(X_i) = \delta'_{M,N}(X'_i)$ for $i \ge s$ and $1 \le j \le t$. But the modules X_i belong to mod B, and so, by the above considerations, $\delta'_{M,N}(X_i) = 0$ for all but finitely many i. Therefore, $\delta'_{M,N}(X) = 0$, and hence also $\delta_{M,N}(X) = 0$, for all but finitely many modules X in Γ . This finishes the proof.

LEMMA 5.3. Let Γ be a standard quasi-tube in Γ_A , and M, N be modules in add(Γ) such that [M] = [N] and $M \leq_{\Gamma} N$. Assume that $\delta_{M,N}(Z) \neq 0$ for some module Z in Γ . Then there exists a nonsplittable exact sequence

$$\Sigma(U,s,t): 0 \longrightarrow U \longrightarrow E(U,s,t) \longrightarrow \varphi^{-s} \psi^t U \longrightarrow 0,$$

for some $U \in \overline{\Gamma}_0$, with $1 \leq s \leq p(\Gamma)$ or $1 \leq t \leq q(\Gamma)$, such that E(U, s, t) is a direct summand of M and $\delta_{M,N}(X) \geq \delta_{\Sigma(U,s,t)}(X)$ for all modules X in Γ .

PROOF. Take a module $W \in \overline{\Gamma}_0$ for which $\delta_{M,N}(W) > 0$. We may assume that $\delta_{M,N}(\varphi^- W) = 0$, $\delta_{M,N}(\psi^- W) = 0$ and $\delta_{M,N}(\varphi^- \psi^- W) = 0$. Since $\delta_{M,N}(W) \neq 0$ and [M] = [N], we infer that W is not injective. We put $\delta = \delta_{M,N}$. Observe first that $\varphi^- W$ is a direct summand of M. It is clear if $\varphi^- W = 0$. Assume $\varphi^- W \neq 0$. Then by Lemma 4.5 we get that

$$\mu(N, \varphi^- W) - \mu(M, \varphi^- W) = \delta(\varphi^- W) - \delta(\psi^-(\varphi^- W)) - \delta(\varphi(\varphi^- W)) + \delta(\psi^- \varphi(\varphi^- W)) = \delta(\varphi^- W) - \delta(\psi^- \varphi^- W) - \delta(W) + \delta(\psi^- W) = -\delta(W) < 0$$

by our assumption on W. Hence $\mu(M, \varphi^- W) \neq 0$, and so $\varphi^- W$ is a direct summand of M.

Take now a > 0 minimal such that $\delta(\varphi^a W) = 0$. Observe that such *a* exists because $\delta(X) = 0$ for all but finitely many $X \in \Gamma$, by the above lemma. Further, take a pair (b, c) with $0 \le c < a$ and b > 0 minimal such that $\delta(\psi^b \varphi^c W) = 0$. Then $\delta(\psi^i \varphi^j W) > 0$ for $0 \le i < b, 0 \le j < a$. Hence, for $Z = \psi \varphi^{a-1} W$, we get that $\varphi^{-(a-1-j)} \psi^{i-1} Z = \psi^i \varphi^j W \ne 0$, for $0 \le j < a, 0 \le i < b$, and is noninjective, because [M] = [N]. Applying now

Lemma 4.6 we get

$$\begin{split} \sum_{1 \le i \le b} \sum_{c \le j < a} \left(\mu(N, \psi^i \varphi^j W) - \mu(M, \psi^i \varphi^j W) \right) \\ &= \sum_{0 \le i < b} \sum_{0 \le j < a-c} \left(\mu(N, \varphi^{-j} \psi^j Z) - \mu(M, \varphi^{-j} \psi^j Z) \right) \\ &= \delta(\psi^- \varphi Z) - \delta(\psi^- \varphi^{-(a-c-1)} Z) - \delta(\varphi \psi^{b-1} Z) + \delta(\varphi^{-(a-c-1)} \psi^{b-1} Z) \\ &= \delta(\psi^- \varphi Z) - \delta(\varphi^c W) - \delta(\psi^b \varphi^a W) + \delta(\psi^b \varphi^c W). \end{split}$$

Observe that $\delta(\psi^-\varphi Z) = 0$. Indeed, if Z is projective then either $\psi^-\varphi Z = 0$ or $\psi^-\varphi Z$ is injective, and hence in the both cases $\delta(\psi^-\varphi Z) = 0$. Assume Z is not projective. Then $\psi^-\varphi Z = \varphi\psi^-Z = \varphi\psi^-\psi\varphi^{a-1}W = \varphi^aW$, and so $\delta(\psi^-\varphi Z) = \delta(\varphi^a W) = 0$ by our choice of a. Since $\delta(\psi^-\varphi Z) = 0$, $\delta(\psi^b\varphi^c W) = 0$ and $\delta(\varphi^c W) > 0$, we obtain that

$$\sum_{1\leq i\leq b}\sum_{c\leq j< a} \left(\mu(N,\psi^i\varphi^j W) - \mu\left(M,\psi^i\varphi^j W\right)\right) < 0.$$

Thus there is a pair (s, t) such that $c \le s - 1 < a, 1 \le t \le b$ and $\psi^t \varphi^{s-1} W$ is a direct summand of M. We set $U = \varphi^{s-1} W$. From Lemma 4.3 we infer that there exists a nonsplittable exact sequence

$$\Sigma(U,s,t): 0 \longrightarrow U \longrightarrow E(U,s,t) \longrightarrow \varphi^{-s} \psi^t U \longrightarrow 0.$$

Moreover, $\varphi^{-s}U \oplus \psi' U = \varphi^{-}W \oplus \psi' \varphi^{s-1}W$ is a direct summand of *M*.

Suppose now that $s > p(\Gamma) = p$ and $t > q(\Gamma) = q$. Then $\varphi^{p-1}W \neq 0$, $\psi^{q-1}W \neq 0$, and so W lies on a short cycle in add(Γ), by Lemma 4.2. Then $\varphi^{a-p}W$ lies on a short cycle, and $\psi^{q}(\varphi^{a-p}W) = \varphi^{p}(\varphi^{a-p}W) = \varphi^{a}W$. But then $\delta(\psi^{q}\varphi^{a-p}W) = \delta(\varphi^{a}W) = 0$, which contradicts the minimality of b, since $0 \leq s - p \leq a - p < a$ and $0 < q < t \leq b$. Consequently, $1 \leq s \leq p(\Gamma)$ or $1 \leq t \leq q(\Gamma)$. Consider now the rectangle

$$\mathcal{R} = \mathcal{R}(U, s, t) = \{\varphi^{-j}\psi^i U; 0 \le j < s, 0 \le i < t\}.$$

By Lemma 4.3(iii) we have that $\delta_{\Sigma(U,s,t)}(Z) = 1$ for $Z \in \mathcal{R}$ and $\delta_{\Sigma(U,s,t)}(Z) = 0$ for the remaining indecomposable *A*-modules *Z*. Our choice of *b* and the inequalities $s \leq a$, $t \leq b$, imply that $\delta(X) > 0$ for all $X \in \mathcal{R}$. Hence $\delta = \delta_{M,N}(X) \geq \delta_{\Sigma(U,s,t)}(X)$ for all modules *X* in Γ . Further, by Lemma 4.5, if $\pi(X) \neq 0$ for some $X \in \mathcal{R}$, then

$$\mu(N,\pi(X)) - \mu(M,\pi(X)) = -\delta_{M,N}(X) < 0$$

and so $\pi(X)$ is a direct summand of M. Finally, since $s \leq p(\Gamma)$ or $t \leq q(\Gamma)$, then

$$E(U,s,t) = \varphi^{-s}U \oplus \psi^{t}U \oplus \left(\bigoplus_{X \in \mathcal{R}} \pi(X)\right)$$

is a direct summand of M. This finishes the proof.

PROPOSITION 5.4. Let Γ be a standard quasi-tube in Γ_A and M, N two modules in add(Γ) with [M] = [N]. If $M \leq_{\Gamma} N$ then $M \leq_{ext} N$.

PROOF. We shall proceed by induction on $\sum_{X \in \Gamma_0} \delta_{M,N}(X) \ge 0$. Observe that, by Lemma 5.2, this sum is finite. If $\sum_{X \in \Gamma_0} \delta_{M,N}(X) = 0$ then $\delta_{M,N}(X) = 0$ for all $X \in \Gamma_0$, and so also $N \le_{\Gamma} M$. Hence, $M \simeq N$ by Corollary 2.8, and this implies $M \le_{\text{ext}} N$.

Assume that $\sum_{X \in \Gamma_0} \delta_{M,N}(X) > 0$. Applying Lemma 5.3 we infer that there exists a nonsplittable exact sequence

$$\Sigma: 0 \longrightarrow D \longrightarrow E \longrightarrow F \longrightarrow 0$$

and $M' \in \text{add}(\Gamma)$ such that $M = E \oplus M'$ and $\delta_{M,N}(X) \ge \delta_{\Sigma}(X)$ for all $X \in \Gamma_0$. Then, for any $X \in \Gamma_0$, we get that

$$\delta_{M'\oplus D\oplus F,N}(X) = [N,X] - [M'\oplus D\oplus F,X]$$

= ([N,X] - [M' \oplus E,X]) - ([D \oplus F,X] - [E,X])
= $\delta_{M'\oplus E,N}(X) - \delta_{E,D\oplus F}(X) = \delta_{M,N}(X) - \delta_{\Sigma}(X) \ge 0.$

Thus $M' \oplus D \oplus F \leq_{\Gamma} N$, because $[M' \oplus D \oplus F] = [M' \oplus E] = [M] = [N]$. Observe that $E <_{ext} D \oplus F$ implies $E <_{\Gamma} D \oplus F$, and hence $\delta_{\Sigma}(X) \ge 0$ for all $X \in \Gamma_0$ and $\delta_{\Sigma}(D) > 0$, because Σ is not splittable. Hence we get

$$\sum_{X \in \Gamma_0} \delta_{M' \oplus D \oplus F, N}(X) = \sum_{X \in \Gamma_0} \left(\delta_{M, N}(X) - \delta_{\Sigma}(X) \right) < \sum_{X \in \Gamma_0} \delta_{M, N}(X).$$

Therefore, $M' \oplus D \oplus F \leq_{ext} N$ by our inductive assumption. Since $M = M' \oplus E$ and $M' \oplus E \leq_{ext} M' \oplus D \oplus F$, we have $M \leq_{ext} N$. This finishes the proof.

LEMMA 5.5. Let $C = (C_i)_{i \in I}$ be a family of pairwise orthogonal standard quasitubes in Γ_A and M, N modules in add(C) such that [M] = [N] and $[X, M] \leq [X, N]$ for all modules X in C. Moreover, let $M = \bigoplus_{i \in I} M_i$ and $N = \bigoplus_{i \in I} N_i$, for $M_i, N_i \in \text{add}(C_i)$. Then $[M_i] = [N_i]$ and $M_i \leq_C N_i$ for all $i \in I$.

PROOF. Assume first that C_i is a stable tube, say of rank r. From the orthogonality of quasi-tubes in $C = (C_i)$, we deduce that $[M, X] = [M_i, X]$ and $[N, X] = [N_i, X]$ for all $X \in C_i$, and hence $[N_i, X] \ge [M_i, X]$ for all $X \in add(C_i)$. Let E_1, \ldots, E_r be a complete set of modules lying on the mouth of C_i . Take now $n \ge 0$ such that if $\psi^s E_k$ is a direct summand of $M_i \oplus N_i$, for some $1 \le k \le r$, then $s \le n$. Applying Lemma 5.1 we obtain that

$$[M_i, \psi^n E_k] = l_k(M_i)$$
 and $[N_i, \psi^n E_k] = l_k(N_i)$,

and so $l_k(M_i) \leq l_k(N_i)$, for any $1 \leq k \leq r$. Since

$$[M_i] = \sum_{1 \le k \le r} l_k(M_i)[E_k] \text{ and } [N_i] = \sum_{1 \le k \le r} l_k(N_i)[E_k]$$

we infer that $[M_i] \leq [N_i]$.

Assume now that C_i is not a stable tube. As in (5.2) we may assume that there exists an algebra *B* and a standard quasi-tube Γ_i in Γ_B such that *A* is obtained from *B* by one of the admissible operations of type (ad 1), (ad 1*), (ad 2) or (ad 2*) with pivot in Γ_i , and C_i is the modified component Γ'_i of Γ_i . By duality we may assume that *A* is obtained from *B* by one of the admissible operations (ad 1) or (ad 2). Let *e* be an indempotent of *A* such that B = eAe. Observe that $[Xe, Y] = \dim_K \operatorname{Hom}_B(Xe, Ye)$. Moreover, from the description of $C_i = \Gamma'_i$ we know that $M_i e, N_i e \in \operatorname{add}(\Gamma_i)$. Since Γ_i has less projective modules than C_i , by induction, we get that $[M_i e] \leq [N_i e]$. Further, we have $M_i(1 - e) = M(1 - e) = N(1 - e) = N(1 - e)$, and hence $[M_i] = [M_i e] + [M_i(1 - e)] \leq [N_i e] + [N_i(1 - e)] = [N_i]$. From the equality $\sum_{i \in I} [M_i] = [M] = [N] = \sum_{i \in I} [N_i]$ we then conclude that $[M_i] = [N_i]$ for all $i \in I$. Moreover, $M_i \leq_{C_i} N_i$ for any $i \in I$, because the quasi-tubes in $C = (C_i)_{i \in I}$ are pairwise orthogonal. This proves our lemma.

5.6 Proof of Theorem 1. Let $C = (C_i)_{i \in I}$ be a family of pairwise orthogonal standard quasi-tubes in Γ_A and M, N modules in add(C) with [M] = [N]. Clearly, $M \leq_{ext} N \Rightarrow$ $M \leq N \Rightarrow M \leq_C N$. Assume that $[X, M] \leq [X, N]$ for all modules X in C. Then, by (2.8), we get that $[M, X] \leq [N, X]$ for all $X \in add(C)$. Consider decompositions $M = \bigoplus_{i \in I} M_i$ and $N = \bigoplus_{i \in I} N_i$, with $M_i, N_i \in add(C_i)$, for $i \in I$. It follows from Lemma 5.5 that, for any $i \in I$, $[M_i] = [N_i]$ and $M_i \leq_{C_i} N_i$. Then, by Proposition 5.4, we get $M_i \leq_{ext} N_i$ for any $i \in I$, which clearly implies that $M \leq_{ext} N$.

5.7 Proof of Theorem 2. Let $C = (C_i)_{i \in I}$ be a family of pairwise orthogonal standard quasi-tubes in Γ_A . Assume that, for $M, N \in \operatorname{add}(C)$ and $V \in \operatorname{mod} A$, we have [M] = [V] = [N] and $M \leq_{\operatorname{deg}} V \leq_{\operatorname{deg}} N$. Clearly, then $M \leq N$. We first show that $\delta_{M,N}(X) = 0$ for all indecomposable A-modules X which are not in C. Let $M = \bigoplus_{i \in I} M_i$ and $N = \bigoplus_{i \in I} N_i$, with $M_i, N_i \in \operatorname{add}(C_i)$ for any $i \in I$. Then, by Lemma 5.5, we get $[M_i] = [N_i]$ and $M_i \leq_{C_i} N_i$ for any $i \in I$. Observe that

$$\delta_{M,N}(X) = [N,X] - [M,X] = \sum_{i \in I} ([N_i,X] - [M_i,X]) = \sum_{i \in I} \delta_{M_i,N_i}(X).$$

Therefore we may assume that *M* and *N* belong to the additive category of a quasi-tube $\Gamma = C_{i_0}$. Applying now (5.3) and (5.4), we infer that there exists an exact sequence

$$\Sigma(U, s, t): 0 \longrightarrow U \longrightarrow E(U, s, t) \longrightarrow \varphi^{-s} \psi^t U \longrightarrow 0$$

such that $M = E(U, s, t) \oplus M'$ and $\delta_{M,N}(X) \ge \delta_{\Sigma(U,s,t)}(X)$ for all X in Γ . Moreover,

$$\delta_{\Sigma(U,s,t)}(X) = [U \oplus \varphi^{-s} \psi^t U, X] - [E(U,s,t), X]$$

= $[U \oplus \varphi^{-s} \psi^t U \oplus M', X] - [E(U,s,t) \oplus M', X] = \delta_{Z_0, Z_1}(X)$

for any $X \in \text{mod } A$ and $Z_0 = M = E(U, s, t) \oplus M'$ and $Z_1 = U \oplus \varphi^{-s} \psi^t U \oplus M'$. In particular, $\delta_{M,N}(X) \ge \delta_{Z_0,Z_1}(X)$ for all $X \in \Gamma$, which gives $Z_1 \le_{\Gamma} N$. By Theorem 1 we then get $Z_1 \le N$. Repeating these arguments we obtain a sequence $M = Z_0 \le Z_1 \le$ $Z_2 \le \cdots \le Z_k = N$ such that, for each $0 \le i \le k - 1$, $\delta_{Z_i,Z_{i+1}} = \delta_{\Sigma(U_i,s_i,t_i)}$ for the corresponding exact sequence $\Sigma(U_i, s_i, t_i)$. Observe also that $\delta_{M,N} = \sum_{0 \le j \le k-1} \delta_{Z_j,Z_{j+1}}$. Hence, in order to prove our claim, we may assume that $\delta_{M,N} = \delta_{\Sigma(U,s,t)}$ for a short exact sequence and some $s, t \ge 1$. Applying now Lemma 4.3(iii), we get that $\delta_{\Sigma(U,s,t)}(X) = 0$ for any indecomposable module X which is not in Γ . Consequently, $\delta_{M,N}(X) = 0$ for all indecomposable modules X which are not in Γ . Let now $\Gamma'' = C = (C_i)_{i \in I}$ and Γ' be the union of the remaining connected components of Γ_A . Since $M \le V \le N$ we have $\delta_{M,N} = \delta_{M,V} + \delta_{V,N}$ and $\delta_{M,V}(X) \ge 0$, $\delta_{V,N}(X) \ge 0$ for all A-modules X. From the first part of our proof we know that $\delta_{M,N}(X) = 0$ for all X in Γ' . Clearly, then $\delta_{M,V}(X) = 0$ for all X in Γ' . Applying now Lemma 2.7(ii), we conclude that $V \in \text{add}(\Gamma'') = \text{add}(C)$. This finishes the proof.

6. Proof of Theorem 3.

6.1. Let $C = (C_i)_{i \in I}$ be a family of pairwise orthogonal standard quasi-tubes in Γ_A , and M, N two modules in add(C) with [M] = [N]. From Theorem 3.6 we know that add(C) is closed under isomorphism classes, extensions and direct summands. Moreover, by Theorem 1, the partial orders \leq_{ext} and \leq coincide on isomorphism classes of modules in add(C) with the same composition factors. Therefore, by [11, Theorem 4], N is a minimal degeneration of M if and only if there exist an exact sequence $0 \rightarrow U \rightarrow E \rightarrow V \rightarrow 0$ and integers $m, r \geq 1$ with the following properties:

- (α) U and V are indecomposable such that $M = E \oplus U^{m-1} \oplus V^{r-1} \oplus X$ and $N = U^m \oplus V^r \oplus X$, and $U \oplus V$ and $E \oplus X$ have no common nonzero direct summands.
- (β) $U \oplus V$ is a minimal degeneration of E.
- (γ) Any common indecomposable direct summand $W \not\simeq V$ of M and N satisfies [W, N] = [W, M].
- (b) Any common indecomposable direct summand $W \not\simeq U$ of M and N satisfies [N, W] = [M, W].

Hence, in order to prove our theorem, it remains to show that the minimal degenerations $U \oplus V <_{deg} E$ given by the exact sequences $0 \to U \to E \to V \to 0$, with U, Vindecomposable modules from C, coincide with those described in (iii) of Theorem 3, and (γ) , (δ) are equivalent to (iv) and (v), respectively. Clearly, in our case, U and V must belong to the same quasi-tube in C.

From now on let Γ be a standard quasi-tube in Γ_A . We use the notations introduced in Section 4.

LEMMA 6.2. Let M and N be two modules in add(Γ) with [M] = [N], and assume $M <_{\text{deg}} N$. Then there exists a nonsplittable exact sequence

$$\Sigma(U,s,t): 0 \longrightarrow U \longrightarrow E(U,s,t) \longrightarrow \varphi^{-s} \psi^t U \longrightarrow 0$$

in add(Γ) such that $N = U \oplus \varphi^{-s} \psi' U \oplus N'$ and $M \leq_{deg} N' \oplus E(U, s, t) <_{deg} N$.

PROOF. Since any chain of neighbours $M = M_0 < M_1 < \cdots < M_r = N$ has at most [N, N] - [M, M] members (see [10, (2.1)]) there exists a module $W \in \text{add}(\Gamma)$ such that

 $[M] = [W] = [N], M \leq_{deg} W <_{deg} N$ and $W <_{deg} N$ is minimal. Applying Lemma 5.3, we infer that there exists an exact sequence

$$\Sigma(U, s, t): 0 \longrightarrow U \longrightarrow E(U, s, t) \longrightarrow \varphi^{-s} \psi^t U \longrightarrow 0$$

in add(Γ) such that $W = E(U, s, t) \oplus N'$ and $\delta_{\Sigma(U,s,t)}(X) = \delta_{W,N}(X)$ for all modules X in Γ , because $W <_{\text{deg}} N$ is minimal, and $<_{\text{deg}}$ and $<_{\Gamma}$ coincide on add(Γ), by Theorem 1. Hence, for X in add(Γ), we get the equality

 $[U \oplus \varphi^{-s} \psi^{t} U, X] - [E(U, s, t), X] = [N, X] - [E(U, s, t) \oplus N', X].$

This gives that

$$[U \oplus \varphi^{-s} \psi' U \oplus N', X] = [N, X]$$

for all $X \in \text{add}(\Gamma)$, and finally $N = U \oplus \varphi^{-s} \psi' U \oplus N'$ by Corollary 2.8. This finishes the proof.

PROPOSITION 6.3. Let $\Sigma(U, s, t)$ be an exact sequence

$$0 \longrightarrow U \longrightarrow E(U, s, t) \longrightarrow \varphi^{-s} \psi^t U \longrightarrow 0$$

with U in the quasi-tube Γ and $s, t \ge 1$. Then the degeneration $E(U, s, t) <_{\text{deg}} U \oplus \varphi^{-s} \psi^t U$ induced by $\Sigma(U, s, t)$ is minimal if and only if the pair (s, t) satisfies one of the conditions:

(a) s < p(Γ).
(b) t < q(Γ).
(c) s = p(Γ) and t = kq(Γ) for some k ≥ 1.
(d) s = kp(Γ) and t = q(Γ) for some k ≥ 1.

PROOF. We set $p = p(\Gamma)$ and $q = q(\Gamma)$. Assume first that one of the above conditions (a)–(d) is satisfied. Suppose that there is a chain of degenerations $E(U, s, t) <_{deg} E' <_{deg} U \oplus \varphi^{-s} \psi^t U$ for some E' in mod A with [E'] = [E(U, s, t)]. Since E(U, s, t) and $U \oplus \varphi^{-s} \psi^t U$ belong to add(Γ) we infer by Theorem 2 that $E' \in add(\Gamma)$. Then by Lemma 6.2, applied to $E' <_{deg} U \oplus \varphi^{-s} \psi^t U$, we conclude that there exists an exact sequence

$$\Sigma(X, m, r): 0 \longrightarrow X \longrightarrow E(X, m, r) \longrightarrow \varphi^{-m} \psi^r X \longrightarrow 0$$

such that $U \oplus \varphi^{-s} \psi^t U \simeq X \oplus \varphi^{-m} \psi^r X$ and $E' \leq_{deg} E(X, m, r)$. Hence we get $E(U, s, t) <_{deg} E(X, m, r), \delta_{\Sigma(U,s,t)} \ge \delta_{\Sigma(X,m,r)}$ but $\delta_{\Sigma(U,s,t)} \ne \delta_{\Sigma(X,m,r)}$. We have two cases to consider:

1° Assume $U \simeq X$ and $\varphi^{-s} \psi' U \simeq \varphi^{-m} \psi' X$. Then *p* divides m-s, and *q* divides r-t. Since $s \leq p$ and $t \leq q$, we get $s \leq m$ and $t \leq r$. Hence, by Lemma 4.3, we have

$$\delta_{\Sigma(X,m,r)} = \sum_{0 \le i < r} \sum_{0 \le j < m} \delta_{\Sigma(\varphi^{-j}\psi^{i}X)} \ge \sum_{0 \le i < r} \sum_{0 \le j < s} \delta_{\Sigma(\varphi^{-j}\psi^{i}U)} = \delta_{\Sigma(U,s,t)},$$

and consequently $\delta_{\Sigma(X,m,r)} = \delta_{\Sigma(U,s,t)}$, a contradiction.

2° Assume $U \simeq \varphi^{-m}\psi^r X$ and $X \simeq \varphi^{-s}\psi^l U$. Then $U \simeq \varphi^{-m}\psi^r \varphi^{-s}\psi^l U = \varphi^{-(m+s)}\psi^{r+t}U$ and there exists $l \ge 1$ such that m + s = lp and r + t = lq. If s < p or t < q then, by Lemma 4.3(iii), we get $\delta_{\Sigma(U,s,t)}(X) = \delta_{\Sigma(U,s,t)}(\varphi^{-s}\psi^l U) = 0$ while

 $\delta_{\Sigma(X,m,r)}(X) \ge 1$. But this gives a contradiction because $\delta_{\Sigma(X,m,r)} \le \delta_{\Sigma(U,s,t)}$. Assume that s = p and t = kq for some $k \ge 1$. Then $l > k, m \ge kp, r \ge q$, and applying Lemma 4.3(ii) we have

$$\delta_{\Sigma(X,m,r)} = \sum_{0 \le i < r} \sum_{0 \le j < m} \delta_{\Sigma(\varphi^{-j}\psi^{i}X)} \ge \sum_{0 \le i < q} \sum_{0 \le j < kp} \delta_{\Sigma(\varphi^{-j}\psi^{i}X)} = \delta_{\Sigma(X,kp,q)}.$$

But by Lemma 4.4 $\delta_{\Sigma(U,p,kq)} = \delta_{\Sigma(X,kp,q)}$. This implies $\delta_{\Sigma(X,m,r)} = \delta_{\Sigma(U,s,t)}$, a contradiction. We get a similar contradiction in case s = kp and t = q for some $k \ge 1$. Therefore, the degeneration $E(U,s,t) <_{\text{deg}} U \oplus \varphi^{-s} \psi^t U$ induced by $\Sigma(U,s,t)$ is minimal.

Assume now that the pair (s, t) does not satisfy any of the conditions (a)–(d). We shall show that there exists an *A*-module E' with the properties [E(U, s, t)] = [E'] and $E(U, s, t) <_{deg} E' <_{deg} U \oplus \varphi^{-s} \psi^t U$. By our assumption we know that $s \ge p$ and $t \ge q$, and hence applying Lemma 4.2, we infer that $\varphi^{-(s-1)}U$ lies on a short cycle in add(Γ), and $\varphi^{-i}\psi^j U$, for any $0 \le i < s$, $0 \le j < t$, also lies on a short cycle in add(Γ). We have three cases to consider:

1° Assume s > p and t > q. Then by Lemma 4.3 there exists a nonsplittable short exact sequence $\Sigma(U, s - p, t - q)$ and

$$\delta_{\Sigma(U,s-p,t-q)} = \sum_{0 \le i < s-p} \sum_{0 \le j < t-q} \delta_{\Sigma(\varphi^{-i}\psi^{j}U)} \le \sum_{0 \le i < s} \sum_{0 \le j < t} \delta_{\Sigma(\psi^{-i}\psi^{j}U)} = \delta_{\Sigma(U,s,t)}$$

Since $\varphi^{-s}\psi^{t-q}U$ lies on a short cycle, we have $\varphi^{p}(\varphi^{-s}\psi^{t-q}U) = \psi^{q}(\varphi^{-s}\psi^{t-q}U)$, and hence, by (4.2), $\varphi^{-(s-p)}\psi^{t-q}U = \varphi^{-s}\psi^{t}U$. Then $\delta_{\Sigma(U,s-p,t-q)} \leq \delta_{\Sigma(U,s,t)}$ and $\delta_{\Sigma(U,s-p,t-q)} \neq \delta_{\Sigma(U,s,t)}$ imply that E(U,s,t) < E(U,s-p,t-q), and so $E(U,s,t) <_{\text{deg}} E(U,s-p,t-q)$. Moreover, $E(U,s-p,t-q) <_{\text{deg}} U \oplus \varphi^{-(s-p)}\psi^{t-q}U = U \oplus \varphi^{-s}\psi^{t}U$. Hence, in this case we may take E' = E(U,s-p,t-q).

2° Assume s = p and t = kq + m for some $m, 1 \le m < q$. We set $V = \varphi^{-s} \psi^t U$. Then

$$\varphi^{-kp}\psi^{q-m}V = \varphi^{-kp}\psi^{q-m}\varphi^{-s}\psi^{t}U = \varphi^{-(k+1)p}\psi^{(k+1)q}U = U.$$

Applying Lemma 4.3(ii), we get

$$\begin{split} \delta_{\Sigma(U,s,t)} &= \sum_{0 \leq i < p} \sum_{0 \leq j < kq + m} \delta_{\Sigma(\varphi^{-i}\psi^{j}U)} \\ &\geq \sum_{0 \leq i < p} \sum_{0 \leq j < kq} \delta_{\Sigma(\psi^{-i}\psi^{j}(\psi^{m}U))} = \delta_{\Sigma(\psi^{m}U,p,kq)} \end{split}$$

Further, by Lemma 4.4, we have

$$\delta_{\Sigma(\psi^m U, p, kq)} = \delta_{\Sigma(\varphi^{-p} \psi^{kq}(\psi^m U), kp, q)} = \delta_{\Sigma(V, kp, q)}$$
$$\geq \sum_{0 \le i < kp} \sum_{0 \le j < q - m} \delta_{\Sigma(\varphi^{-i} \psi^j V)} = \delta_{\Sigma(V, kp, q - m)}.$$

Hence, $\delta_{\Sigma(U,s,t)} \ge \delta_{\Sigma(V,kp,q-m)} \ne 0$, and $\delta_{\Sigma(U,s,t)} \ne \delta_{\Sigma(V,kp,q-m)}$. Observe that $U \oplus \varphi^{-s} \psi^{t} U = V \oplus \varphi^{-kp} \psi^{q-m} V$. Consequently, E(U,s,t) < E(V,kp,q-m) and so $E(U,s,t) <_{deg} E(V,kp,q-m) <_{deg} U \oplus \varphi^{-s} \psi^{t} U$. Thus we may take E' = E(V,kp,q-m).

3° In case s = kp + r, for $1 \le r < p$, and t = q, the proof of the existence of the required E' is similar.

LEMMA 6.4. Let $\Sigma: 0 \to U \to E \to V \to 0$ be a nonsplittable exact sequence in add(C) with U and V indecomposable. Assume that the induced degeneration $E <_{deg} U \oplus V$ is minimal. Then there exists an exact sequence

$$\Sigma(U, s, t): 0 \longrightarrow U \longrightarrow E(U, s, t) \longrightarrow \varphi^{-s} \psi^t U \longrightarrow 0$$

with $s, t \ge 1$ such that $V = \varphi^{-s} \psi^t U$ and E = E(U, s, t).

PROOF. Since the quasi-tubes in C are standard and pairwise orthogonal and the sequence is not splittable, we infer that U and V belong to one coil $\Gamma = C_{i_0}$ of C. Applying now Lemma 6.2 for M = E, $N = U \oplus V$, we get a nonsplittable exact sequence

$$\Sigma(W, s, t): 0 \longrightarrow W \longrightarrow E(W, s, t) \longrightarrow \varphi^{-s} \psi^t W \longrightarrow 0$$

in add(Γ), with W indecomposable, such that $U \oplus V = W \oplus \varphi^{-s} \psi^t W \oplus N'$ and $E \leq_{deg} N' \oplus E(W, s, t) <_{deg} U \oplus V$. Hence N' = 0 and $U \oplus V \simeq W \oplus \varphi^{-s} \psi^t W$. Moreover, since $E <_{deg} U \oplus V$ is minimal, we have E = E(W, s, t) and $\delta_{\Sigma} = \delta_{\Sigma(W, s, t)}$. If U = W and $V = \varphi^{-s} \psi^t W$ then $\Sigma(U, s, t)$ is the required sequence. Assume that $U = \varphi^{-s} \psi^t W$ and V = W. Then the exact sequence Σ induces an exact sequence

$$0 \longrightarrow \operatorname{Hom}_{\mathcal{A}}(V, U) \longrightarrow \operatorname{Hom}_{\mathcal{A}}(E, U) \xrightarrow{g} \operatorname{Hom}_{\mathcal{A}}(U, U).$$

Since Σ is not splittable, we infer that g is not epimorphism, and so we get

$$\delta_{\Sigma(W,s,t)}(\varphi^{-s}\psi^t W) = \delta_{\Sigma(W,s,t)}(U) = \delta_{\Sigma}(U) = [U \oplus V, U] - [E, U] > 0.$$

Applying now Lemma 4.3(ii) we obtain the inequality

$$\sum_{0 \le i < s} \sum_{0 \le j < t} \delta_{\Sigma(\varphi^{-i}\psi^{j}W)}(\varphi^{-s}\psi^{t}W) > 0.$$

Hence there exist *i* and *j* such that $0 \le i < s$, $0 \le j < t$, and $\delta_{\Sigma(\varphi^{-i}\psi^{j}W)}(\varphi^{-s}\psi^{t}W) > 0$. Then $\varphi^{-s}\psi^{t}W = \varphi^{-i}\psi^{j}W$, by Lemma 2.5(i). But then, by Lemma 4.2(iv), there exists a positive integer *l* such that s - i = lp and t - j = lq. Clearly then $s \ge p$ and $t \ge q$. The sequence $\Sigma(W, s, t)$ induces the same degeneration as the sequence Σ , and hence the pair (s, t) satisfies one of the conditions (c) or (d) of Proposition 6.3. By duality, we may assume that s = p and t = kq for some $k \ge 1$. Now, applying Lemma 4.4, we infer that there exists an exact sequence $\Sigma(Y, kp, q)$ such that $Y = \varphi^{-s}\psi^{t}W = U$, $\varphi^{-kp}\psi^{q}Y = W = V$, E(Y, kp, q) = E(U, p, kq) = E. We see that $\Sigma(U, kp, q)$ is the required exact sequence. This finishes our proof.

6.5. The required fact that the degenerations $U \oplus V <_{\text{deg}} E$ induced by the exact sequences $0 \to U \to E \to V \to 0$, with U and V indecomposable from C, coincide with those described in (iii) of Theorem 3 is a direct consequence of Lemmas 6.3 and 6.4. Further, since E = E(U, s, t) and $V = \varphi^{-s} \psi^t U$, we have that, for each indecomposable A-module W, [N, W] = [M, W] if and only if $\delta_{M,N}(W) = \delta_{\Sigma(U,s,t)}(W) = 0$. But $\delta_{\Sigma(U,s,t)}(W) = 0$ if and only if $W \notin \mathcal{R}(U, s, t)$, by Lemma 4.3(iii). This shows that (δ) is equivalent to (v). Dually, for each indecomposable A-module W, we have that

[W, N] = [W, M] if and only if $\delta'_{M,N}(W) = \delta_{M,N}(\tau W) = 0$. Clearly, $W \in \mathcal{R}(\tau^- U, s, t)$ if and only if $\tau W \in \mathcal{R}(U, s, t)$. Therefore, the conditions (γ) and (iv) are also equivalent. This finishes the proof of Theorem 3.

7. Proof of Theorem 4.

7.1. Let C be a standard coil in Γ_A which is not a quasi-tube. Then in any sequence of admissible operations leading from a stable tube T to C, we need at last one of the admissible operations (ad 3) or (ad 3^{*}). But then C admits a full translation subquiver of the form

where $M \not\simeq N$. Moreover, if U is a module lying on the sectional path $Z \to N \to \cdots \to \tau Y$ and different from τY , then the middle term of the Auslander-Reiten sequence with left term U is a direct sum of two indecomposable modules. Dually, if V is a module lying on the sectional path $\tau^- Y \to \cdots \to N \to \tau^- Z$ and different from $\tau^- Y$, then the middle term of the Auslander-Reiten sequence with right term V is a direct sum of two indecomposable modules.

Applying now [2, Corollary 2.2] we get exact sequences

$$\Sigma_1: 0 \longrightarrow Z \longrightarrow X_1 \oplus X_2 \oplus M \longrightarrow Y \longrightarrow 0$$

and

$$\Sigma_2: 0 \longrightarrow Y \longrightarrow \tau^- X_1 \oplus \tau^- X_2 \oplus Z \longrightarrow N \longrightarrow 0.$$

Clearly, we have also exact sequences

$$\Sigma_3: 0 \longrightarrow X_1 \longrightarrow Y \longrightarrow \tau^- X_1 \longrightarrow 0$$

and

$$\Sigma_4: 0 \longrightarrow X_2 \longrightarrow Y \longrightarrow \tau^- X_2 \longrightarrow 0.$$

Applying now Lemma (3 + 3 + 2) in [2, (2.1)] to the exact sequences Σ_1 and Σ_3 we get an exact sequence

$$0 \longrightarrow Z \longrightarrow X_2 \oplus M \longrightarrow \tau^- X_1 \longrightarrow 0.$$

Similarly, from the exact sequences Σ_4 and Σ_2 we get an exact sequence

$$0 \longrightarrow X_2 \longrightarrow \tau^- X_1 \oplus Z \longrightarrow N \longrightarrow 0.$$

Further, applying again [2, (2.1)] to the above two sequences we obtain an exact sequence

$$0 \longrightarrow Z \longrightarrow Z \oplus M \longrightarrow N \longrightarrow 0.$$

Observe that [M] = [N]. Finally, by [21, Proposition 3.4], we infer that $M \leq_{deg} N$. Then $M <_{deg} N$, since $M \not\simeq N$. This finishes the proof.

7.2 We end the paper with an example illustrating the situation described above. Let A be the bound quiver algebra KQ/I given by the quiver

and the ideal *I* in the path algebra KQ of *Q* generated by $\lambda \alpha$, $\alpha \gamma$, $\lambda \beta \gamma - \delta \mu$ (see [4, (2.5)]). Consider the algebraic family M_t , $t \in K$, of indecomposable *A*-modules of dimension 9 defined by

Let $M = M_1$ and $N = M_0$. It is easy to see that $M_t \simeq M$ for any $t \in K \setminus \{0\}$ and $M \not\simeq N$. Clearly, $M \leq_{deg} N$. Moreover, by [4, (2.5)], M and N lie in a standard coil in Γ_A of the form

where one identifies along the vertical dotted lines. Hence, $M <_{deg} N$ follows also from (7.1).

REFERENCES

- **1.** S. Abeasis and A. del Fra, *Degenerations for the representations of a quiver of type* \mathbb{A}_m , J. Algebra **93**(1985), 376–412.
- I. Assem and A. Skowroński, *Minimal representation-infinite coil algebras*, Manuscripta Math. 67(1990), 305–331.
- 3. _____, Indecomposable modules over multicoil algebras, Math. Scand. 71(1992), 31-61.
- 4. _____, Multicoil algebras, Representations of Algebras, CMS Conference Proceedings 14(1993), 29-68.
- I. Assem, A. Skowroński and B. Tomé, Coil enlargements of algebras, Tsukuba J. Math. 19(1995), 453– 479.
- 6. M. Auslander, Representation theory of finite dimensional algebras, Contemp. Math. 13(1982), 27-39.
- 7. M. Auslander and I. Reiten, *Modules determined by their composition factors*, Illinois Math. J. **29**(1985), 280–301.
- 8. K. Bongartz, On a result of Bautista and Smalø, Comm. Algebra 11(1983), 2123-2124.
- 9. _____, A generalization of a theorem of M. Auslander, Bull. London Math. Soc. 21(1989), 255–256.
- 10. _____, On degenerations and extensions of finite dimensional modules, Adv. Math., to appear.
- 11. _____, Minimal singularities for representations of Dynkin quivers, Commentari Math. Helv. 69(1994), 575–611.
- 12. K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 65(1982), 331-378.
- 13. W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 62(1988), 451–483.
- 14. G. D'Este and C. M. Ringel, Coherent tubes, J. Algebra 87(1984), 150-201.
- 15. D. Happel, U. Preiser and C. M. Ringel, Vingberg's characterization of Dynkin diagrams using subadditive functions with application to DTr-periodic modules, Representation Theory II, Springer Lecture Notes in Math. 832(1980), 280–294.
- H. Kraft, Geometric methods in representation theory, Representations of Algebras, Springer Lecture Notes in Math. 944(1982), 180–258.
- 17. S. Liu, Degrees of irreducible maps and the shapes of Auslander-Reiten quivers, J. London Math. Soc. 45(1992), 32–54.
- 18. _____, Infinite radicals in standard Auslander-Reiten components, J. Algebra 166(1994), 245–254.

A. SKOWROŃSKI AND G. ZWARA

- L. G. Peng and J. Xiao, On the number of DTr-orbits containing directing modules, Proc. Amer. Math. Soc. 118(1993), 753–756.
- I. Reiten, A. Skowroński and S. O. Smalø, Short chains and short cycles of modules, Proc. Amer. Math. Soc. 117(1993), 343–354.
- **21.** C. Riedtmann, *Degenerations for representations of quivers with relations*, Ann. Sci. Ecole Normal Sup. **4**(1986), 275–301.
- 22. C. M. Ringel, Tame algebras and integral quadratic forms, Springer Lecture Notes in Math. 1099(1984).
- D. Simson, Linear representations of partially ordered sets and vector space categories, Algebra, Logic and Appl. Series 4, Gordon and Breach Science Publ., Amsterdam, 1992.
- 24. A. Skowroński, Algebras of polynomial growth. In: Topics in Algebra, Banach Center Publications 26, Part I, PWN, Warszawa, 1990, 535–568.
- Regular Auslander-Reiten components containing directing modules, Proc. Amer. Math. Soc. 120(1994), 19–26.
- <u>Cycles in module categories</u>. In: Finite Dimenional Algebras and Related Topics, NATO ASI Series, Series C 424, Kluwer Acad. Publ., Dordrecht, 1994, 309–345.
- 27. _____, Generalized standard Auslander-Reiten components, J. Math. Soc. Japan 46(1994), 517-543.
- Criteria for polynomial growth of algebras, Bull. Polish Acad. Sci., Mathematics 42(1994), 173– 183.
- 29. ____, Tame algebras with simply connected Galois coverings, Toruń, 1995, preprint.

Faculty of Mathematics and Informatics Nicholas Copernicus University Chopina 12/18, 87-100 Toruń, POLAND e-mail: skowron@mat.uni.torun.pl gzwara@mat.uni.torun.pl