A Strong Form of a Problem of R. L. Graham

Kevin Ford

Abstract. If A is a set of M positive integers, let $G(A)$ be the maximum of $a_{i} / \operatorname{gcd}\left(a_{i}, a_{j}\right)$ over $a_{i}, a_{j} \in$ A. We show that if $G(A)$ is not too much larger than M, then A must have a special structure.

1 Introduction

In 1970, R. L. Graham [3] conjectured that for any set of n positive integers, there are two of them, say a and b, such that $a /(a, b) \geq n$. Here (a, b) is the greatest common divisor of a and b. Graham's conjecture was proved for all large n independently by Zaharescu [5] and Szegedy [4] in the mid-1980s. Introducing several new ideas, and making use of explicit bounds for prime number counting functions, Balasubramanian and Soundararajan [1] recently proved the conjecture for all n. They also noted that their method of proof could be used to prove a stronger form of Graham's conjecture, but gave no details.

For a set $A=\left\{a_{1}, \ldots, a_{n}\right\}$ of positive integers, define

$$
A^{*}=\left\{\frac{L}{a_{1}}, \frac{L}{a_{2}}, \ldots, \frac{L}{a_{n}}\right\}, \quad L=\operatorname{lcm}\left[a_{1}, a_{2}, \ldots, a_{n}\right]
$$

which we refer to as the dual of A. Let $G(A)$ be the maximum over all i, j of $\frac{a_{i}}{\left(a_{i}, a_{j}\right)}$. We will confine our discussion to sets with $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=1$, since $G(A)=G(d A)$, where $d A=\left\{d a_{1}, \ldots, d a_{n}\right\}$. Also, since $\frac{a_{i}}{\left(a_{i}, a_{j}\right)}=\frac{L / a_{j}}{\left(L / a_{i}, L / a_{j}\right)}$ for all i, j, it follows that $G(A)=G\left(A^{*}\right)$.
Theorem BS (Balasubramanian-Soundararajan [1]) Let $n>4$. For every set A of n positive integers, $G(A) \geq n$. Furthermore, if $G(A)=n$ then either A or A^{*} is equal to $\{1,2, \ldots, n\}$.

The strengthening of Graham's conjecture which we are concerned with is an extension of the second part of the conjecture. We show that if A is a set of M positive integers and $G(A)=N$ with N "not too much larger" than M, then either A or A^{*} lies in $\{1,2, \ldots, N\}$.

Definition Let $f(N)$ denote the largest number R so that the following holds: for every set A of M positive integers with $N-R \leq M \leq N$ and $G(A) \leq N$, either A or A^{*} lies in $\{1,2, \ldots, N\}$.

[^0]Theorem 1 We have $f(N) \geq \frac{c N \log \log N}{\log ^{2} N}$ for large N, where $c>0$ is an absolute constant.

Lower bounds for $f(N)$ have an application to a problem of determining the maximum number of k-term arithmetic progressions of real numbers one can have, any two of which have two elements in common (see [2]). This in fact was the motivation for this work. (In [2] a crude bound $f(N) \geq 0.156 \frac{N}{\log ^{3} N}$ for $N \geq e^{10000}$ is proved). In this paper we concentrate only on the behavior of the bound for large N, as a totally explicit version of Theorem 2 would require a great deal of extra computation. By Theorem BS, $f(N) \geq 0$ for $N \geq 5$. A natural question is to determine the smallest X so that $f(N) \geq 1$ for $N \geq X$. The example $A=\{2,3,4,6,8,9,10,12,18\}$ shows that $f(10)=0$. Perhaps one can prove that $f(N) \geq 1$ for $N \geq 11$ using the methods in [1].

Remark Balasubramanian and Soundararajan claim that their method yields $f(N) \geq \frac{c N}{\log N \log \log N}$, but this appears to be too optimistic.

We can also show a non-trivial upper bound on $f(N)$.
Theorem 2 We have $f(N)=O\left(\frac{N}{\log \log N}\right)$.
Proof Suppose that N is large, set $L=\frac{1}{2} \log N$ and let H be the product of the primes $\leq L$. By the Prime Number Theorem, $N^{2 / 5} \leq H \leq N^{3 / 5}$ for large N. Let $N_{0}=H\lfloor N / H\rfloor$ so that $N \geq N_{0} \geq N-H \geq N-N^{3 / 5}$. Here $\lfloor x\rfloor$ denotes the largest integer $\leq x$. Let

$$
A=\left\{m \leq N_{0}:(m, H)>1\right\} \cup\left\{2 N_{0}\right\} .
$$

It is clear that $G(A) \leq N$ and neither A nor A^{*} is a subset of $\{1,2, \ldots, N\}$. Also

$$
\begin{aligned}
|A| & =N_{0}+1-\phi\left(N_{0}\right)=N_{0}+1-N_{0} \prod_{p \leq L}(1-1 / p) \\
& \geq N_{0}-\frac{c_{1} N_{0}}{\log L} \geq N-\frac{c_{2} N}{\log \log N} .
\end{aligned}
$$

Here c_{1}, c_{2} are positive absolute constants.

2 General Lower Bounds

We first need to introduce some of the notation from [1]. Suppose $A=\left\{a_{1}, \ldots, a_{M}\right\}$, $\operatorname{gcd}\left(a_{1}, \ldots, a_{M}\right)=1, N \geq 7$ and $G(A) \leq N$. If p is a prime in $(1.5 N, 2 N)$ and $p-N \leq m \leq N$, define

$$
\begin{equation*}
R_{p}(m)=\left\{\operatorname{pairs}\left(a_{i}, a_{j}\right): \frac{a_{i}}{\left(a_{i}, a_{j}\right)}=m, \frac{a_{j}}{\left(a_{i}, a_{j}\right)}=p-m\right\} \tag{2.1}
\end{equation*}
$$

and put $r_{p}(m)=\left|R_{p}(m)\right|$. Our proof is based on upper and lower bounds for averages of $r_{p}(m)$. Suppose that neither A nor A^{*} lies in $\{1,2, \ldots, N\}$, and that
$N / 2+2<M \leq N$. We need not consider M outside this range, since the set $A=\{a \leq N:(6, N)>1\} \cup\{6\lfloor N / 3\rfloor\}$ shows that $f(N) \leq N / 3-1<N / 2-2$ for $N \geq 7$. By Lemmas 4.1 and 4.2 of [2],

$$
\begin{align*}
\sum_{\substack{\frac{p+1}{2} \leq m \leq N \\
r_{p}(m) \geq 2}}\left(r_{p}(m)-1\right) & \geq \sum_{\substack{\frac{p+1}{2} \leq m \leq N \\
r_{p}(m)=0}} 1-(N-M) \tag{2.2}\\
& \geq \pi(N)-\pi(p-N-1)-(N-M)
\end{align*}
$$

where $\pi(x)$ denotes the number of primes $\leq x$. Let

$$
\begin{equation*}
K_{D, N}(m)=\left|\left\{m=a b c: 1<a<b \leq D,(a, b)=1, \frac{b}{a} \leq \frac{N}{m}\right\}\right| \tag{2.3}
\end{equation*}
$$

For any triple (a, b, c) counted in $K_{D, N}(m)$, we have

$$
\begin{equation*}
\frac{m}{N-m} \leq a \leq D-1, \quad a+1 \leq b \leq \frac{N}{m} a, \quad c \leq \frac{N}{b^{2}} \tag{2.4}
\end{equation*}
$$

In particular, $b \leq \sqrt{N}$, so

$$
\begin{equation*}
K_{D, N}(m)=K_{\sqrt{N}, N}(m) \quad(D \geq \sqrt{N}) \tag{2.5}
\end{equation*}
$$

Let

$$
D(p, A)=\max _{p-N \leq m \leq N} \max _{\left(a_{i}, a_{j}\right),\left(a_{i^{\prime}}, a_{j^{\prime}}\right) \in R_{p}(m)}\left\{\frac{\operatorname{gcd}\left(a_{i}, a_{j}\right)}{\operatorname{gcd}\left(a_{i}, a_{j}, a_{i^{\prime}}, a_{j^{\prime}}\right)}\right\}
$$

Lemma 2.1 If $D=D(p, A)$, then

$$
D=1 \text { or } \frac{N}{2 N-p} \leq D \leq N
$$

and for $\frac{p+1}{2} \leq m \leq N$ we have

$$
r_{p}(m) \leq\left(K_{D, N}(m)+1\right)\left(K_{D, N}(p-m)+1\right)
$$

Proof This follows from Lemmas 2.3, 2.4 and 2.5 of [1].
It follows from Lemma 2.1 and the definition of $D(p, A)$ that $r_{p}(m) \leq 1$ for all m if and only if $D(p, A)=1$.

The next lemma, a slightly weaker form of Lemma 4.1 of [1], shows that A cannot contain many elements divisible by primes $>2 N D^{-1 / 3}$.

Lemma 2.2 Suppose p is a prime in $(1.5 N, 2 N-\sqrt{N})$ and $D=D(p, A)>1$. With the possible exception of two primes, no prime $q>2 N D^{-1 / 3}$ can divide an element of A.

A version of the Prime Number Theorem with crude error term will also be needed:

$$
\begin{equation*}
\pi(x)=\int_{2}^{x} \frac{d t}{\log t}+O\left(\frac{x}{\log ^{10} x}\right) \tag{2.6}
\end{equation*}
$$

We may now state the fundamental lower bound for $f(N)$. Here $P^{+}(n)$ denotes the largest prime factor of n.

Theorem 3 Suppose N is large and let \mathcal{P} be a subset of the primes in $(1.5 N, 2 N-\sqrt{N})$. Then

$$
\begin{align*}
& f(N) \geq-1+\min (\frac{N}{3(\log N)^{3 / 2}}, \tag{2.7}\\
&\left.|\mathcal{P}|^{-1} \min _{\sqrt{\log N \leq D \leq \sqrt{N}}} \sum_{p \in \mathcal{P}}\left\{S_{1}(p, N, D)-S_{2}(p, N, D)\right\}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& S_{1}(p, N, D)=\left|\left\{m \in[p-N, N]: P^{+}(m)>2 N D^{-1 / 3}\right\}\right|-\frac{2 N-p}{N D^{-1 / 3}}-2 \\
& S_{2}(p, N, D)=\sum_{\frac{p+1}{2} \leq m \leq N}\left(\left(K_{D, N}(m)+1\right)\left(K_{D, N}(p-m)+1\right)-1\right)
\end{aligned}
$$

Proof Suppose $|A|=M, G(A) \leq N$ and neither A nor A^{*} is contained in $\{1,2$, $\ldots, N\}$. Let

$$
D_{0}=\max _{1.5 N<p<2 N-\sqrt{N}} D(p, A) .
$$

If $D_{0}=1$, let p be the smallest prime $>1.5 N$. By (2.6), $p \leq 1.6 N$. Since $D(p, A)=$ $1, r_{p}(m) \leq 1$ for $p-N \leq m \leq N$ and thus by (2.2) and (2.6),

$$
N-M \geq \pi(N)-\pi(p-N-1) \geq \frac{N}{3 \log N}
$$

If $1<D_{0} \leq \sqrt{\log N}$, let p be the smallest prime $>2 N-N / D_{0}$. By (2.6), $p \leq$ $2 N-N /\left(2 D_{0}\right)$. By Lemma 2.1, $D(p, A)=1$ and we similarly obtain from (2.2) and (2.6) the bound

$$
N-M \geq \pi(N)-\pi(p-N-1) \geq \frac{N}{3 D_{0} \log N} \geq \frac{N}{3(\log N)^{3 / 2}}
$$

Lastly, if $D_{0}>\sqrt{\log N}$, then we apply Lemma 2.2. Let q_{1}, \ldots, q_{s} be the primes in the interval $\left(2 N D^{-1 / 3}, N\right]$. Since $2 N D^{-1 / 3} \geq N^{2 / 3}$, each number $m \leq N$ is divisible by
at most one prime q_{i}. Fix $p \in \mathcal{P}$ and let R_{i} be the number of $m \in[p-N, N]$ divisible by q_{i}. Then $r_{p}(m)=0$ for at least $S_{0}\left(p, N, D_{0}\right)$ values of $m \in\left[\frac{p+1}{2}, N\right]$, where

$$
S_{0}\left(p, N, D_{0}\right)=\min _{\substack{T \subset\{1,2, \ldots, s\} \\|T|=s-2}} \sum_{i \in T} R_{i}
$$

By (2.2), Lemma 2.1 and the fact that $K_{D^{\prime}, N}(m) \leq K_{D, N}(m)$ if $D^{\prime} \leq D$,

$$
N-M \geq S_{0}\left(p, N, D_{0}\right)-S_{2}(p, N, D(p, A)) \geq S_{0}\left(p, N, D_{0}\right)-S_{2}\left(p, N, D_{0}\right)
$$

Averaging over $p \in \mathcal{P}$ gives

$$
\begin{equation*}
N-M \geq|\mathcal{P}|^{-1} \sum_{p \in \mathcal{P}}\left[S_{0}\left(p, N, D_{0}\right)-S_{2}\left(p, N, D_{0}\right)\right] \tag{2.8}
\end{equation*}
$$

Since $S_{0}(p, N, D)$ is an increasing function of D and $S_{2}(p, N, D)$ is constant for $N^{1 / 2} \leq D \leq N$ by (2.5), the minimum over D_{0} of the right side of (2.8) occurs for some $D_{0} \leq N^{1 / 2}$. Finally, $S_{0}(p, N, D) \geq S_{1}(p, N, D)$ and this completes the proof.

3 Lower Bounds for S_{1}

Lemma 3.1 Suppose N is large, $1.98 N \leq p \leq 2 N-N / \log ^{5} N$ and $100 \leq D \leq \sqrt{N}$. Then

$$
S_{1}(p, N, D) \geq \frac{(2 N-p) \log D}{6 \log N}
$$

Proof Let $R=\frac{p-N}{2 N D^{-1 / 3}}$ and note that $R \leq \frac{1}{2} N^{1 / 6}$. At most one prime $q>2 N D^{-1 / 3}$ can divide any number in $[p-N, N$], so

$$
S_{1}(p, N, D) \geq \sum_{1 \leq r \leq R}\left(\pi\left(\frac{N}{r}\right)-\pi\left(\frac{p-N}{r}\right)\right)-\frac{2 N-p}{N^{5 / 6}}-2
$$

By hypothesis, $2 \leq 2(2 N-p) N^{-5 / 6}$. Thus, by (2.6),

$$
S_{1}(p, N, D) \geq \sum_{1 \leq r \leq R}\left(\int_{(p-N) / r}^{N / r} \frac{d t}{\log t}-O\left(\frac{N}{r \log ^{10} N}\right)\right)-\frac{3(2 N-p)}{N^{5 / 6}}
$$

The integral is

$$
\geq \frac{2 N-p}{r \log (N / r)} \geq \frac{2 N-p}{r \log N}
$$

and

$$
\sum_{r \leq R} \frac{1}{r} \geq \int_{1}^{R+1} \frac{d t}{t} \geq \log \left(\frac{0.98}{2} D^{1 / 3}\right) \geq 0.178 \log D
$$

since $D \geq 100$. For large N the result follows.

4 Upper Bounds for S_{2}

Lemma 4.1 If $\max \left(N / D, 2 N^{5 / 6}\right) \leq \lambda \leq N / 50$, then

$$
\sum_{N-\lambda \leq m \leq N} K_{D, N}(m) \leq \frac{\lambda^{2}}{2(N-\lambda)}\left(\log \left(\frac{\lambda D}{N}\right)+4 \frac{\lambda}{N}+\frac{D^{2}}{2(N-\lambda)}\right)
$$

Remark 1 When $\lambda<N / D$, the left side is zero by (2.4).
Proof Ignoring the condition $(a, b)=1$ in (2.3), the left side in the lemma is at most the number of triples (a, b, c) with

$$
N-\lambda \leq a b c \leq N, \quad 1<\frac{b}{a} \leq \frac{N}{a b c}, \quad b \leq D .
$$

By (2.4),

$$
\begin{equation*}
\frac{N-\lambda}{a b} \leq c \leq \frac{N}{b^{2}}, \quad a \geq \frac{N-\lambda}{\lambda}, \quad b \leq(1+\beta) a, \quad \beta=\frac{\lambda}{N-\lambda} \tag{4.1}
\end{equation*}
$$

Let E be a parameter in $\left[\frac{N}{\lambda}, D\right]$, let T_{1} be the number of triples with $a \leq E-1$ and T_{2} be the number of remaining triples.

We first estimate T_{1}. For each pair (a, b), the number of c is at most

$$
\frac{N}{b^{2}}-\frac{N-\lambda}{a b}+1=\frac{N}{b}\left(\frac{1}{b}-\frac{1}{a(1+\beta)}\right)+1
$$

This is a decreasing function of b and is positive for $b \leq(1+\beta) a$, so for each a, the number of pairs (b, c) is

$$
\begin{aligned}
& \leq a \beta+\int_{0}^{a \beta} \frac{N}{(a+t)^{2}}-\frac{N-\lambda}{a(a+t)} d t=a \beta+\frac{\beta N}{a(1+\beta)}-\frac{(N-\lambda) \log (1+\beta)}{a} \\
& \leq a \beta+\frac{1}{a}\left(\lambda-(N-\lambda)\left(\beta-\frac{1}{2} \beta^{2}\right)\right)=a \beta+\frac{\lambda^{2}}{2(N-\lambda) a}
\end{aligned}
$$

Thus

$$
\begin{aligned}
T_{1} & \leq \frac{\beta E^{2}}{2}+\frac{\lambda^{2}}{2(N-\lambda)} \int_{N / \lambda-2}^{E} \frac{d t}{t} \\
& =\frac{\lambda^{2}}{2(N-\lambda)}\left(\log \left(\frac{E \lambda}{N}\right)-\log (1-2 \lambda / N)+\frac{E^{2}}{\lambda}\right) \\
& \leq \frac{\lambda^{2}}{2(N-\lambda)}\left(\log \left(\frac{E \lambda}{N}\right)+2.1 \frac{\lambda}{N}+\frac{E^{2}}{\lambda}\right)
\end{aligned}
$$

When $D \leq N^{1 / 3}$, we take $E=D$, so that $T_{2}=0$ and

$$
\frac{E^{2}}{\lambda} \leq \frac{N^{2 / 3}}{\lambda} \leq \frac{\lambda}{4 N}
$$

This gives the lemma in this case. Next assume $D>N^{1 / 3}$. To bound T_{2}, note that

$$
\frac{N-\lambda}{D^{2}} \leq c<\frac{N}{E^{2}}
$$

For fixed c, we count the number of (a, b) for which

$$
\frac{N-\lambda}{\sqrt{N c}} \leq a<b \leq \frac{N}{\sqrt{N c}}, \quad b \geq \frac{N-\lambda}{a c}
$$

By symmetry (counting solutions with $b<a$ also), this is

$$
\begin{aligned}
= & \frac{1}{2}\left[\left|\left\{\frac{N-\lambda}{\sqrt{N c}} \leq a \leq \frac{N}{\sqrt{N c}}, \frac{N-\lambda}{a c} \leq b \leq \frac{N}{\sqrt{N c}}\right\}\right|\right. \\
& \left.-\left|\left\{\sqrt{\frac{N-\lambda}{c}} \leq a \leq \frac{N}{\sqrt{N c}}\right\}\right|\right] \\
\leq & \frac{1}{2}\left[\sum_{a}\left(\frac{N}{\sqrt{N c}}-\frac{N-\lambda}{a c}+1\right)-\left(\frac{N}{\sqrt{N c}}-\sqrt{\frac{N-\lambda}{c}}-1\right)\right] \\
\leq & \frac{1}{2}\left[\int_{\frac{N-\lambda}{\sqrt{N c}}}^{\frac{N}{\sqrt{N c}}} \frac{N}{\sqrt{N c}}-\frac{N-\lambda}{a c}+1 d a+\frac{\lambda}{\sqrt{N c}}+2-\frac{\sqrt{N}-\sqrt{N-\lambda}}{\sqrt{c}}\right] \\
\leq & \frac{1}{2}\left[\frac{\lambda}{c}+\frac{2 \lambda}{\sqrt{N c}}-\frac{N-\lambda}{c} \log \frac{N}{N-\lambda}+2-\frac{\lambda}{2 \sqrt{N c}}\right] \\
\leq & 1+\frac{3 \lambda}{4 \sqrt{N c}}+\frac{\lambda^{2}}{4 c(N-\lambda)} .
\end{aligned}
$$

Next we sum over c, using for $0<x<y$ the bounds

$$
\sum_{x \leq c \leq y} c^{-1 / 2}<2 \sqrt{y}, \quad \sum_{x \leq c \leq y} c^{-1} \leq 1 / x+\log (y / x)
$$

We conclude that

$$
\begin{aligned}
T_{2} & \leq \frac{N}{E^{2}}+\frac{3 \lambda}{2 E}+\frac{\lambda^{2}}{4(N-\lambda)}\left(\frac{D^{2}}{N-\lambda}+\log \frac{N D^{2}}{(N-\lambda) E^{2}}\right) \\
& \leq \frac{\lambda^{2}}{2(N-\lambda)}\left(\frac{D^{2}}{2(N-\lambda)}+0.51 \frac{\lambda}{N}+\log \frac{D}{E}+\frac{3 N}{E \lambda}+\frac{2 N^{2}}{\lambda^{2} E^{2}}\right)
\end{aligned}
$$

Take $E=N^{1 / 3}$, which is close to optimal. Then combine the bounds for T_{1} and T_{2}, using the bound $\lambda \geq 2 N^{5 / 6}$ to simplify the expression. This completes the proof for $D>N^{1 / 3}$.

Lemma 4.2 Uniformly in $x \geq y \geq 2$ we have

$$
\sum_{y \leq n \leq x} \frac{1}{\phi(n)} \ll \log \frac{x}{y}+\frac{\log x}{y}
$$

Proof Start with the identity

$$
\frac{n}{\phi(n)}=\sum_{d \mid n} \frac{\mu^{2}(d)}{\phi(d)}
$$

Then

$$
\begin{aligned}
\sum_{y \leq n \leq x} \frac{1}{\phi(n)} & =\sum_{d \leq x} \frac{\mu^{2}(d)}{d \phi(d)} \sum_{y / d \leq m \leq x / d} \frac{1}{m} \\
& \leq \sum_{d \leq x} \frac{\mu^{2}(d)}{d \phi(d)}\left(\frac{d}{y}+\log \frac{x}{y}\right) \\
& \leq \frac{1}{y} \prod_{p \leq x}\left(1+\frac{1}{p-1}\right)+\left(\log \frac{x}{y}\right) \sum_{d=1}^{\infty} \frac{\mu^{2}(d)}{d \phi(d)} \\
& \ll \log \frac{x}{y}+\frac{\log x}{y}
\end{aligned}
$$

Let \mathcal{P}_{B} be the set of primes in $[N-2 B, N-B]$, where $2 N^{5 / 6}<B \leq N / 100$. Making the substitution $m \rightarrow p-m$ in the definition of S_{2}, we see that

$$
\begin{equation*}
\sum_{p \in \mathcal{P}_{B}} S_{2}(p, N, D)=\sum_{\substack{p \in \mathcal{P}_{B} \\ p-N \leq m \leq N}} \frac{1}{2} K_{D, N}(m) K_{D, N}(p-m)+K_{D, N}(m) \tag{4.2}
\end{equation*}
$$

Suppose $\frac{N}{2 B} \leq D \leq \sqrt{N}$. By (2.6) and Lemma 4.1,

$$
\begin{equation*}
\sum_{\substack{p \in \mathcal{P}_{B} \\ p-N \leq m \leq N}} K_{D, N}(m) \ll \frac{B^{3}}{N \log N}\left(\log \frac{2 B D}{N}+\frac{B+D^{2}}{N}\right) . \tag{4.3}
\end{equation*}
$$

Lemma 4.3 Suppose $2 N^{5 / 6} \leq B \leq N / 100, N /(2 B) \leq D \leq \sqrt{N}$ and $N-2 B \leq$ $m \leq N$. Then

$$
\sum_{2 N-2 B \leq p \leq N+m} K_{D, N}(p-m) \ll \frac{B^{2} \log D}{N \log N} .
$$

Proof By (2.4) and (4.1), the left side is at most the number of triples (a, b, c) with $a b c+m$ prime and

$$
\frac{N-2 B}{a b} \leq c \leq \frac{N}{b^{2}}, \quad \frac{N-2 B}{2 B} \leq a<b \leq(1+\beta) a, \quad \beta=\frac{2 B}{N-2 B}
$$

Put $E=\min \left(D, N^{1 / 3}\right)$, let T_{1} be the number of triples with $a \leq E-1$ and T_{2} be the number of remaining triples. For fixed $a<b \leq E$, the number of c is at most the number of primes in $[2 N-2 B, 2 N]$ which are $\equiv m(\bmod a b)$. This is

$$
\ll \frac{B}{\phi(a b) \log (2 B /(a b))} \ll \frac{B}{\phi(a) \phi(b) \log N}
$$

by the Brun-Titchmarsh inequality and the inequality $\phi(a b) \geq \phi(a) \phi(b)$. By Lemma 4.2,

$$
\begin{aligned}
\sum_{a} \frac{1}{\phi(a)} \sum_{b} \frac{1}{\phi(b)} & \ll \sum_{a} \frac{1}{\phi(a)}\left(\log (1+\beta)+\frac{\log a}{a}\right) \\
& \ll \frac{B}{N}\left(\log \frac{2 B E}{N-2 B}+\frac{B \log E}{N}\right)+\sum_{a \geq N /(3 B)} \frac{\log a}{a \phi(a)} \\
& \ll \frac{B}{N}\left(\log \frac{2 B E}{N}+\log E+\log \frac{N}{B}\right) \\
& \ll \frac{B \log E}{N}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
T_{1} \ll \frac{B^{2} \log E}{N \log N} \tag{4.4}
\end{equation*}
$$

If $D \leq N^{1 / 3}$, then $T_{2}=0$ and the lemma follows from (4.4). Otherwise we bound T_{2} starting with the inequalities

$$
\frac{N-2 B}{D^{2}} \leq c \leq \frac{N}{E^{2}}=N^{1 / 3}
$$

and

$$
\frac{N-2 B}{\sqrt{N c}} \leq a<b \leq \frac{N}{\sqrt{N c}}
$$

In particular, $b c \leq N^{2 / 3}$. For fixed b, c the number of a is at most the number of primes in $[2 N-2 B, 2 N]$ which are $\equiv m(\bmod b c)$. By the Brun-Titchmarsh inequality, this is

$$
\ll \frac{B}{\phi(b c) \log \left(\frac{2 B}{b c}\right)} \ll \frac{B}{\phi(b) \phi(c) \log N}
$$

By Lemma 4.2 again,

$$
\begin{aligned}
\sum_{b, c} \frac{1}{\phi(b) \phi(c)} & \ll \sum_{c} \frac{1}{\phi(c)}\left(\log \frac{N}{N-2 B}+\frac{\log N}{E}\right) \\
& \ll \frac{B}{N} \sum_{c} \frac{1}{\phi(c)} \\
& \ll \frac{B}{N}\left(\log \frac{D}{E}+\frac{B}{N}+\frac{D^{2} \log N}{N}\right)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
T_{2} \ll \frac{B^{2}}{N \log N}\left(\log \frac{D}{E}+\frac{B}{N}+\frac{D^{2} \log N}{N}\right) \tag{4.5}
\end{equation*}
$$

Together, (4.4) and (4.5) give the lemma in the case $D>N^{1 / 3}$ because $\log D \gg$ $\log N \gg\left(D^{2} / N\right) \log N$.

If $D<\frac{N}{2 B}$, then the left side of (4.2) is zero. Otherwise, putting together (4.2), (4.3) and Lemmas 4.1 and 4.3 gives the following.

Lemma 4.4 If $2 N^{5 / 6} \leq B \leq N / 100$ and $1 \leq D \leq \sqrt{N}$, then

$$
\sum_{p \in \mathcal{P}_{B}} S_{2}(p, N, D) \ll \frac{B^{4} \log ^{2} D}{N^{2} \log N}+\frac{B^{3} \log D}{N \log N}
$$

5 Proof of Theorem 1

Take $B=\frac{c_{1} N}{\log N}$, where c_{1} is a sufficiently small positive constant, and put $\mathcal{P}=\mathcal{P}_{B}$. By (2.6), $\left|\mathcal{P}_{B}\right| \gg B / \log N$. Consequently, by Lemma 3.1,

$$
\sum_{p \in \mathcal{P}_{B}} S_{1}(p, N, D) \gg \frac{B^{2} \log D}{\log ^{2} N}
$$

By Theorem 3 and Lemma 4.4, there are absolute constants c_{2}, c_{3}, so that when N is large we have

$$
\begin{aligned}
& f(N) \geq \min \left(\frac{N}{3(\log N)^{3 / 2}},\right. \\
&\left.\min _{\sqrt{\log N \leq D \leq \sqrt{N}}}\left[\frac{c_{2} B \log D}{\log N}-c_{3}\left(\frac{B^{2} \log D}{N}+\frac{B^{3} \log ^{2} D}{N^{2}}\right)\right]\right) .
\end{aligned}
$$

The minimum of the inner expression occurs at $D=\sqrt{\log N}$ if c_{1} is small enough, and this completes the proof.

References

[1] R. Balasubramanian and K. Soundararajan, On a conjecture of R. L. Graham. Acta Arith. 75(1996), 1-38.
[2] K. Ford, Maximal collections of intersecting arithmetic progressions. Combinatorica 23(2003), 263-281.
[3] R. L. Graham, Advanced Problem 5749. Amer. Math. Monthly 77(1970), 775.
[4] M. Szegedy, The solution of Graham's greatest common divisor problem. Combinatorica 6(1986), 67-71.
[5] A. Zaharescu, On a conjecture of Graham, J. Number Theory 27(1987), 33-40.

Department of Mathematics
University of Illinois at Urbana-Champaign
Urbana, IL 61801
USA
e-mail: ford@math.uiuc.edu

[^0]: Received by the editors February 5, 2002; revised February 29, 2004.
 Research supported in part by National Science Foundation grant DMS-0070618.
 AMS subject classification: 11A05.
 (C)Canadian Mathematical Society 2004.

