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SUMMARY

It has been shown previously that, even in the absence of linkage,
selection can cause an appreciable change in the genetic variance of a
metric character due to disequilibrium ; this change is temporary and is
rapidly reversed when selection ceases. This result is here extended to
allow for the effect of linkage, anditisshownthat the changein the variance
is effectively determined by the harmonic mean of the recombination
fractions. The validity of the approximate general formula derived here
has been checked by comparison with exact results obtained from models
with five or six loci. In order to determine the likely value of the harmonic
mean recombination fraction, a simple model was constructed in which
it was assumed that loci are distributed at random along the chromosome
maps. Results of computer simulations of this model are reported for
different chromosome numbers and numbers of loci.

1. INTRODUCTION

It has been shown in a previous paper (Bulmer, 1971) that, if a metric character
is determined by an effectively infinite number of unlinked loci, selection cannot
cause any permanent change in the genetic variance but will cause a temporary
change which is rapidly reversed when selection ceases. This effect must be due to
genetic disequilibrium, that is to say to the correlation between pairs of loci which
is induced by selection. This result depends on the assumptions that there is no
linkage and that the number of loci is effectively infinite. When the number of loci
is finite, as it must be in any actual situation, selection can also cause a permanent
change in the genetic variance due to a change in the gene frequencies, but it seems
likely that the results about the temporary change in the variance due to disequi-
librium will remain approximately valid provided that the number of loci is not very
small; the magnitude of the permanent change in the genetic variance has recently
been discussed by O’Donald (1972). The purpose of this paper is to remove the first
restriction and to show the modifications which must be made to the analysis in the
presence of linkage.

We shall therefore consider a metric character determined by N loci, where N is
large, and we shall denote by V, the phenotypic variance (measured before selection
operates) in the ith generation of selection, so that V] is the variance in the absence
of selection. It will be assumed that the effect of selection in the ith generation is to
change the variance from ¥, to V,+ AV,. The effect of selection will usually be to
decrease the phenotypic variance so that AV, will be negative.
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We define the disequilibrium contribution in the ith generation of selection as
d; = V,—T. (1)

Tt has been shown previously that d, behaves as if it were a component of the additive
genetic variance, 4;, so that we may write

Ai = Ao + di, (2)

where 4, is the additive genetic variance in the absence of selection. The heritability
in the ith generation can be defined as

B = A,V (3)

The basic result proved in the previous paper (Bulmer, 1971) is that, in the absence
of linkage,

diyy = 3+ 5RAV (4)

The term 1h2AV, is due to the fresh disequilibrium introduced by the action of
selection in the sth generation; the term 4d, is due to the fact that, in the absence of
linkage, only half the disequilibrium contribution present in the previous generation
is preserved. If AV, approaches a limiting value, AV*, under continued selection,
then d; will tend to a limiting value d*, which can be evaluated by putting d;,, = d;
in equation (4); hence

d* = BMATV#, (5)

where h*? is the limiting value of the heritability.

2. THE EFFECT OF LINKAGE

The basic equation (4) has been derived (Bulmer, 1971) by considering the re-
gression between relatives, such as child on parent or grandchild on grandparent,
on the assumption that the joint probability distribution of these related individuals
is multivariate normal so that the regressions are linear and homoscedastic. It was
shown that this assumption is true for parent and child when there is a large number
of loci whether or not there is linkage. The expression 3k} AV, for the fresh disequi-
librium contribution in the offspring generation generated by selection in the previous
generation was based on the child-parent regression and is therefore unaffected by
the presence of linkage. On the other hand rather more than half of the disequi-
librium contribution present in the previous generation will be preserved in the
presence of linkage, so that d; must be multiplied by a factor larger than } in the
first term on the right-hand side of equation (4).

To compute the effect of this change, suppose that §; is the contribution to d; from
a particular pair of loci with recombination fraction ». Then in the next generation
a fraction (1 —r)d, of the contribution from this pair of loci will be preserved since
under random mating J; must be determined entirely by gametic phase disequi-
librium which decays at a rate (1 —7) per generation. We now make the simplifying
assumption that the genetic effects of all the loci are the same, so that the fresh
contribution to §;,, as a result of selection in the ith generation must be the same for
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all loci, and must therefore be equal to 3h; AV[3N(N — 1), since there are altogether
3N(N — 1) pairs of loci which contribute to d; if there are IV loci. (It is assumed in
the above argument that the fresh contribution to &;,,; does not depend on §;. The
validity of this assumption will be investigated numerically in the next section.) It
follows that

$hi AV

Oy = (1—7)3i+g17(N—_1—) . (6)

If §; tends to a limiting value §*, then this limiting value can be evaluated by putting
d;4, = 0; in equation (6), so that
AV 1

[ A ——
=N ()
1}%4 *
Hence d* = 6% = ;Nh—(ﬂ—l) xZ;l- = IWMAV*H, (8)

where H is the harmonic mean of the recombination fractions. In the absence of
linkage the rate of approach to the limiting value is very rapid, more than half the
final value being attained after one generation of selection (Bulmer, 1971). The rate
of approach will be slower in the presence of linkage, but nevertheless it is still likely
to be quite rapid.

Equation (8) provides an implicit equation for d* whose solution can usually be
found if the selection function is known. Consider, for example, a population subject
to ‘nor-optimal’ selection under which the fitness of an individual with phenotypic
value y is exp [ —¢(y — 6)?]. If y is normally distributed with mean ¢ (as it must be at
equilibrium) and with variance V, the change in the variance as the result of selection

18 AV = —2V2(1+2V). (9)
By using (1) — (3), Equation (8) can be written

d¥[1 + 20(F; + A¥) H + oAy +d*) = 0, (10)
where 4, and V] are the additive genetic variance and the phenotypic variance in the
absence of selection (i.e. in linkage equilibrium). This leads to a quadratic equation
for d*; only one of the roots lies in the permissible range, so that the solution is

unique. Similarly, under the quadratic optimum model in which the fitness function
is 1 —c(y —0)?, it will be found that

AV = —2cV3(1—cV), (11)
which again leads to a quadratic equation for d*:
{1 —c(F+ ) H +c(Ay+d*)? = 0. (12)
Finally, under many forms of artificial selection, AV = —kV, where k is a constant.
This leads to the quadratic equation:
d*(V+d*)H +4k(4,+d*)? = 0. (13)

The practical applications of these results will be discussed further in Section 4.
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3. COMPARISON WITH EXACT RESULTS

The preceding results depend on two main assumptions, first that the fresh contri-
bution to linkage disequilibrium in any generation is the same for all pairs of loci,
so that the final disequilibrium is inversely proportional to the recombination
fraction, and secondly that the regression of child on parent is linear and homo-
scedastic so that the fresh disequilibrium contribution in any generation is altogether
$h*AV. The first assumption seems plausible provided that the linkage disequi-
librium between all pairs of loci is fairly small. The second assumption is true when
the number of loci is large since in the limit the joint distribution of offspring and
parents is multivariate normal (Bulmer, 1971), but may break down when there are
only a few loci, particularly in the presence of dominance which may introduce
some curvature into the regression. It is therefore desirable to compare the pre-
dictions made here with exact results obtained by computing equilibrium gametic
frequencies. Unfortunately it is not possible to calculate exact equilibria with more
than five or six loci in a reasonable amount of computer time.

Lewontin (1964) has tabulated equilibrium gametic frequencies and linkage dis-
equilibrium parameters for a five-locus model under quadratic optimum selection.
At each locus the three genotypes have effects 6, 4-8 and — 6 respectively, and the
five loci contribute additively to the phenotypie value, y. The fitness function is
1—(y—24)%[3000. The loci are spaced at equal distances along a line with recombina-
tion fraction R between adjacent loci. To test whether linkage disequilibrium is
inversely proportional to the recombination fraction I have calculated Dj;x 7y,
where D;; is the linkage disequilibrium between loci ¢ and j relative to its maximum
possible value (as given by Lewontin) and 7 is the recombination fraction. The
results are shown in Table 1. It will be seen that this quantity is nearly constant in
each column except when the linkage is very tight (B < 0-01). If the line corre-
sponded to a chromosome of length 100 centimorgans, the map distance between
adjacent loci would be 20 centimorgans, which corresponds to a recombination
fraction of 0-165. Thus Dj; is inversely proportional to r;; to a good approximation
over the range of values of R likely to be of biological significance.

Table 1 also shows the observed value of d* (= V*—¥, where V* is the variance
in linkage disequilibrium and ¥} is the variance in linkage equilibrium with the same
gene frequencies) and the value of d* predicted from equation (12). The predicted
value is higher than the observed value for all B, but the agreement is nevertheless
remarkably good in view of the small number of loci and the presence of dominance.

As a second example I have considered a model with five loci without dominance,
the three genotypes at each locus having effects 6, 0 and — 6 respectively; the fitness
function was taken as exp (—%2/3000). The five loci are spaced evenly along a line
as in Lewontin’s model. The equilibrium gametic frequencies with all gene frequencies
equal to  were computed and the results are shown in Table 2. (This is an unstable
equilibrium, but it serves as well as a stable equilibrium to demonstrate the amount
of linkage disequilibrium generated by selection.) The quantity Dj; x r,; is not as
constant as in Lewontin’s model, due to the development of two position effects
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under tight linkage; D1, is larger than expected (and in particular larger than Djs),
while D;, is smaller than expected (and in particular smaller than Dj;). Nevertheless
the observed value of d* is close to the value predicted from equation (10) even under
very tight linkage; it seems that the two position effects, which are in opposite
directions, have to a large extent cancelled each other when the total disequilibrium
is considered.

Table 1. Linkage disequilibrium under a five-locus model (Lewontin, 1964)

R between adjacent
loci 0-0005 0-00125 0-005 0-01 0-02 0-03 0-05 0-1 0-234

—D'(12)xr(12)x 10 041 082 176 223 258 272 286 303  3-07
—D/(13)xr(13)x 103 071 126 211 244 265 274 276 296 312
—D/(14)xr(14)x 108 0-93 145 219 247 266 266 266 304 3-39
—D'(15)xr(15)x 103 1.03 144 218 245 259 261 255 3-03 3-16
—D/(23)xr(23)x 105 042 086 181 225 259 273 285 297 306
—D'(24)xr(24)x 10 073 130 213 245 265 275 277 293 312
—d* (observed) 7.63 444 143 076 040 027 016 t 0-04
— d* (predicted) 879 551 191 101 052 035 021 t 0-05

T Not calculated owing to an internal inconsistency in the data.

Table 2. Linkage disequilibrium under a five-locus model without dominance

R between adjacent
loci 0-001 0-0025 0-005 001 0025 005 01 0-25 0-5

—D(12)x7(12)x 10 045 100 166 247 3-57 429 482 521 531
—D'(13)xr(13)x 108 0-23 056 1-02 173 295 386 457 512 531
—D'(14)xr(14)x 10° 020 049 093 163 287 381 454 511 531
—D'(15)xr(15)x 10 0-28 066 119 177 3-20 404 467 516 531
-D'(23)xr(23)x 10° 024 057 104 175 299 391 461 514 531
—D'(24)xr(24)x 10*° 0-13 033 065 1-32 260 362 444 508 531
—d* (observed) 680 627 554 450 293 190 114 57 38

—d* (predicted) 716 627 541 441 300 204 129 67 46

As a final example I have considered a model with six loci without dominance,
the three genotypes at each locus having effects 6, 0 and — 6 as before, distributed
in three pairs on three chromosomes, with recombination fraction R between the
two loci on the same chromosome. The fitness function was taken as exp (—y?/3600),
which gives the same intensity of selection as in the previous model with five loci.
The equilibrium gametic frequencies with all gene frequencies equal to % were com-
puted as before; the results are shown in Table 3. The linkage disequilibrium is
inversely proportional to the recombination fraction if B > 0-05, but this relation-
ship breaks down badly under tight linkage. The observed value of d* is in reason-
able agreement with the value predicted from equation (10) when B > 0-01, but is
rather larger than its predicted value under tight linkage. However, if there are only
two loci on a chromosome, the recombination fraction between them is unlikely to
be as low as 0-01.

It is concluded that equation (8) is likely to provide a reasonable approximation
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to the disequilibrium generated by selection for a character determined by about
five loci. When the number of loci becomes larger the assumption that the regression
of child on parent is linear and homoscedastic will become more accurate since it is
an asymptotic result based on the central limit theorem which becomes exact when
the number of loci is infinite. The first assumption, that linkage disequilibrium is
inversely proportional to the recombination fraction, will be affected by two factors
when the number of loci increases; adjacent loci will tend to be closer together but
at the same time the selection pressure at each locus will become weaker. The
disequilibrium between adjacent loci is thus likely to remain approximately un-
changed, and the first assumption is likely to be satisfied as accurately when the
number of loci is large as when it is small. It is therefore suggested that equation (8)
will provide a satisfactory approximation under most circumstances likely to be of
biological significance.

Table 3. Linkage disequilibrium under a siz-locus model with three chromosomes

R between adjacent 0001 0-0025 0-005 0-01 0-025 0056 O0-1 0-25 0-5

loci
— D’ (adj.loci) x R x 103 0-91 1-94 301 390 435 440 441 440 440
— D’(non-adj. loci) 0-04 024 074 171 309 374 410 432 440
x4 x10%
—d* (observed) 97-6 83-8 657 436 214 127 83 5-6 4-7
—d* (predicted) 71-8 57-1 447 32-7 19-8 133 92 65 55

4. APPLICATIONS

Before discussing the disequilibrium generated under natural or artificial selection
it is necessary to consider the value of the harmonic mean recombination fraction,
H, likely to be found in a natural population. As an approximate model we
shall suppose that there are » pairs of chromosomes, each with the same length
of 100 centimorgans in map units, that IV loci are distributed at random along the
chromosome maps, and that the recombination fraction, r, between a pair of loci
is 4 if the loci are on different chromosomes, and is given by the mapping function

r=3(l-e) (19)

if the loci are on the same chromosome at a map distance of  morgans. (See Bailey,
1961 for an account of the theory of mapping functions.) It is of course realised that
chromosomes do not all have the same length, that loci may not be distributed at
random along their length, and that the above mapping function may be over-
simplified since it assumes that there is no interference. Nevertheless, it seems
reasonable to suppose that this model will give results of the right order of magnitude.
The only complication which will be considered is absence of crossing over in the
male sex in Drosophila which can be taken into account by using the mapping

function r = }(1—e2) (15)

for loci on the same chromosome, and r = % as before for loci on different chromo-
somes. As a rough model for Drosophila melanogaster it seems adequate to assume

https://doi.org/10.1017/50016672300014920 Published online by Cambridge University Press


https://doi.org/10.1017/S0016672300014920

Linkage disequilibrium and genetic variability 287

a haploid number of 3 chromosomes, each 100 centimorgans long, since the fourth
chromosome is extremely short; in fact, of course, the first chromosome is shorter
and the second and third chromosomes are longer than 100 centimorgans, but it
seems unlikely that these departures will make an appreciable difference in this
context.

Since the loci are assumed to be randomly distributed along the chromosome
maps, the harmonic mean recombination fraction will be a random variable, de-
pending on the positions of the loci, with a highly intractable distribution. Recourse
was therefore made to simulation. Consider as an example the case with 6 pairs of
chromosomes and 12 loci. 12 random numbers between 1-0 and 6-99 were obtained
by means of a pseudo-random number generator. The integral part of each number

Table 4. Median and inter-decile range of the harmonic mean recombination
Jraction based on 100 compuler simulations

Haploid
number ... 3t 3 6 12 24 48
Number
of loci Median
6 0-17 0-26 0-39 0-46 0-50 0-50
12 0-11 0:20 0-33 0-41 0-46 0-49
24 0-10 0-17 0-27 0-38 0-43 0-48
48 0-08 0-15 0-26 0-35 0-41 0-46
96 0-07 0-13 0-21 0-32 0-39 0-45

Inter-decile range
6 0-06-0-28 0-11-0-40 0-17-0-47 0-25-0-50 0-37-0-50 0-43—-0-50
12 0-05-0-19 0-09-0-29 0-16-0-42 0-25-0-48 0-29-0-49 0-44-0-50
24 0-03-0-15 0-07-0-25 0-15-0-36 0-18-0-43 0-29-0-47 0-40-0-49
48 0-04-0-12 0-09-0-20 0-17-0-32 0-22-0-40 0-31-0-45 0-38-0-48
96 0:04-0-10 0-07-0-17 0-15-0-26 0-23-0-37 0-32-0-43 0-39-0-47

1 No crossing-over in one sex, e.g. Drosophila.

gives the chromosome on which the locus lies, and the decimal part its position
along the chromosome, measured in morgans. For each of the 66 possible pairs of loci
the recombination fraction was determined from equation (14), and then the harmonie
mean, H, of these 66 recombination fractions was evaluated. This procedure was
repeated 100 times to give 100 different values of H, which were then arranged in
rank order. The median and the lower and upper deciles of this distribution (i.e. the
50th, 10th and 90th observations in rank order) were recorded ; the median was 0-33,
the lower decile 0-16 and the upper decile 0-42. These quantities are shown in Table 4
for different haploid numbers and numbers of loci. As might be expected the likely
range of values of H depends critically on the number of chromosomes.
We can now consider the significance of the basic equation

a* = }h*AV*[H. (8 bis)

In a natural population which has been subject to stabilizing selection for a con-
siderable time A*?2 is the observed heritability and AV* the observed difference in

19-2
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the variance before and after selection. For example, if the heritability is 4 and if
the variance is found to decline from 100 before selection to 90 after selection, it can
be concluded that d* = —1-25/H. If the chromosome number is large, then H is
unlikely to be much less than }, so that d* would be about — 2-5; if selection were
relaxed the genetic variance would rise from 50 to 52-5. For Drosophila, on the other
hand, H is more likely to be of the order of 0-1, which makes d* about —12-5;
relaxation of selection would cause an increase in the genetic variance from 50 to
62-5.

Table 5. The final reduction in the genetic variance when the initial heritability s % and
the initial phenotypic variance is 100

H Lk..o001 0-10 025 0-50 0-75 0-90 0-99
0-02 5-3 23-3 31-4 36-4 38-7 39-7 40-1
0-04 2-9 16-7 25-4 31-4 34-5 35-7 36-3
0-06 2-0 131 215 28-0 31-4 329 33-6
0-08 1-5 10-8 i8-8 25-4 29-0 30-6 31-3
0-10 1-2 9-2 16-7 23-3 27-1 28-7 29-5
0-20 0-6 53 10-8 16-7 20-5 22-3 23-2
0-30 0-4 3-7 8:0 131 16-7 18-4 19-3
0-40 0-3 2-9 6-4 10-8 14-1 15-7 16-6
0-50 0-2 2-3 53 9-2 12-2 13-7 14-6

We consider next an artificial selection experiment with stabilizing selection in
which a proportion P of the population nearest the mean is chosen to provide the
parents of the next generation. If the character is normally distributed with variance

V, then AV = —kV, where
k = 2f(z)[P. (16)

In this equation z is the standard normal deviate corresponding to 4(1—P) and
f(z) is the standard normal density function. For example, if the middle 209, are
selected k& = 0-9785; the values of k for the middle 509, and the middle 809, are
0-8574 and 0-5623 respectively. The resulting quadratic equation for d* is given by
equation (13). Values of —d*, the reduction in the additive genetic variance, are
shown in Table 5 for different values of k¥ and H, in the case when 4, = 50 and
V, = 100. For example, if the middle 50 9, are selected, so that & = 0-8574, thend* is
about —13if H = 0-5; in an organism with a high chromosome number the additive
genetic variance would be reduced from 50 before selection to about 37 after several
generations of selection. For Drosophila, on the other hand, H might be 0-1 or less,
so that the additive genetic variance might be reduced eventually to about 20.

We consider finally an artificial selection experiment in which a proportion P of
individuals with the highest phenotypic values is chosen to provide the parents of
the next generation. In this case AV = —kV, where
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z being the standard normal deviate corresponding to P. For example, if P = 0-2 so
that 209, of the population with the highest phenotypic values are selected in each
generation, then k& = 0-7818. The effect of selection when 4, = 50 and ¥V, = 100
can be found from Table 5. However, this analysis does not take into account the
permanent change in the variance which occurs under directional selection due to
the change in the gene frequencies. As the number of loci becomes infinitely large
the permanent change in the variance will become infinitesimally small, but it may
clearly be of considerable importance in most practical situations. It is suggested
that equation (13) will still remain approximately valid after several generations of
selection if 4, and ¥} are re-interpreted as being the additive genetic variance and
the phenotypic variance which would be observed in linkage equilibrium under the
gene frequencies prevailing at the time, in other words the values which would be
observed if selection were relaxed.
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