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Abstract For a ∈ (0, 1
2 ] and r ∈ (0, 1), let µa(r) be the so-called generalized Grötzsch function which

appears in Ramanujan’s generalized modular equations. In this paper, several sharp inequalities for µa(r)
are obtained and a conjecture on µa(r), which was presented by Qiu and Vuorinen in 1999, is proved.
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1. Introduction

Throughout this paper, we let r′ =
√

1 − r2 for r ∈ (0, 1). For x > 0, let

Γ (x) =
∫ ∞

0
tx−1e−t dt and Ψ(x) =

Γ ′(x)
Γ (x)

(1.1)

be the classical Euler gamma function and psi function, respectively. For real numbers
a, b and c with c �= 0,−1,−2, . . . , the Gaussian hypergeometric function is defined by [1]

F (a, b; c; x) = 2F1(a, b; c; x) ≡
∞∑

n=0

(a, n)(b, n)
(c, n)

xn

n!
for |x| < 1. (1.2)

Here (a, 0) = 1 for a �= 0, and (a, n) is the shifted factorial function

(a, n) ≡ a(a + 1)(a + 2) · · · (a + n − 1) =
Γ (n + a)

Γ (a)
(1.3)

for n ∈ N ≡ {k : k is a positive integer}. For r ∈ (0, 1) and a ∈ (0, 1), the generalized
elliptic integrals(cf. [5, § 5.5]) are defined as

Ka = Ka(r) ≡ 1
2πF (a, 1 − a; 1; r2),

K′
a = K′

a(r) ≡ Ka(r′),

Ka(0) = 1
2π, Ka(1) = ∞,

⎫⎪⎪⎬
⎪⎪⎭

(1.4)
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and
Ea = Ea(r) ≡ 1

2πF (a − 1, 1 − a; 1; r2),

E ′
a = E ′

a(r) ≡ Ea(r′),

Ea(0) = 1
2π, Ea(1) =

sin(πa)
2(1 − a)

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1.5)

In the particular case a = 1
2 , the functions Ka and Ea reduce to K(r) and E(r), respec-

tively, which are the well-known complete elliptic integrals of the first and second kind,
respectively (cf. [6]). By symmetry of a and b in (1.2), it is obvious that Ka = K1−a

for a ∈ (0, 1
2 ]. Hence, we may assume that a ∈ (0, 1

2 ] in the following. For a ∈ (0, 1
2 ] and

r ∈ (0, 1), define the generalized Grötzsch function

µa(r) ≡ π

2 sin(πa)
K′

a(r)
Ka(r)

, µ(r) = µ1/2(r). (1.6)

The function µa(r) plays a very important role in some fields of mathematics. For
instance, it is indispensable in geometric function theory, quasiconformal theory and the
theory of Ramanujan’s modular equations (see [2–4,7]). In the general case a ∈ (0, 1

2 ),
however, the known properties of µa(r) are fewer than those of µ(r), which is the modulus
of the Grötzsch ring domain in the plane. One of the tasks for the study of the properties
of µa(r) is to extend the known results for µ(r) to the function µa(r). On the other hand,
the comparison of µa(r) and µ(r) will enable us to use the known bounds of µ(r) to give
estimates for µa(r). In this paper we shall extend some well-known results for µ(r) to
µa(r), and give bounds of µa(r) in terms of µ(r) as well as in terms of elementary func-
tions. We shall also prove a conjecture concerning µa(r) [9], and show some properties
of Ka.

2. Main results

We now state our main results. Our first result answers the question of whether the
well-known identities [2, (5.2) and (5.4)]

2µ

(
2
√

r

1 + r

)
≡ µ(r), µ

(
1 − r

1 + r

)
≡ 2µ(r′) (2.1)

can be extended to µa(r).

Theorem 2.1.

(i) For each r ∈ (0, 1), the function

f(a, r) ≡ 2µa

(
2
√

r

1 + r

)
− µa(r)

is strictly decreasing in a from (0, 1
2 ] onto [0,∞). In particular, for all r ∈ (0, 1)

and a ∈ (0, 1
2 ],

2µa

(
2
√

r

1 + r

)
� µa(r), (2.2)

with equality if and only if a = 1
2 .
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(ii) For each r ∈ (0, 1), the function

g(a, r) ≡ µa

(
1 − r

1 + r

)
− 2µa(r′)

is strictly increasing in a from (0, 1
2 ] onto (−∞, 0]. In particular, for all r ∈ (0, 1)

and a ∈ (0, 1
2 ],

µa

(
1 − r

1 + r

)
� 2µa(r′), (2.3)

with equality if and only if a = 1
2 .

The next theorem gives comparisons of µa(r) and µ(r).

Theorem 2.2.

(i) For each r ∈ (0, 1), the function h(a, r) ≡ a2µa(r) is strictly increasing in a from
(0, 1

2 ] onto (0, 1
4µ(r)].

(ii) For each a ∈ (0, 1
2 ], the function H(r) ≡ µa(r)/µ(r) is strictly increasing from (0, 1)

onto (1, 1/ sin2(πa)). In particular,

µ(r) � µa(r) � 1
sin2(πa)

µ(r), (2.4)

with equality in each instance if and only if a = 1
2 .

Applying Theorem 2.2, one can easily derive monotonicity properties of certain func-
tions defined in terms of µa(r) and some elementary functions. As an example, we give
the following theorem.

Theorem 2.3.

(i) The function

f1(r) ≡ µa(r)√
r′ log(4/r)

is strictly increasing from (0, 1) onto (1,∞).

(ii) The function

f2(r) ≡ µa(r)
arth 4

√
r′

is strictly increasing from (0, 1) onto (1,∞).

(iii) The function f3(r) ≡ µa(r) arth 4
√

r is strictly increasing from (0, 1) onto(
0,

π2

4 sin2(πa)

)
.

Remark 2.4. In [11, Theorem 1.14], the monotonicity properties of f(a, r) and g(a, r)
as functions of r ∈ (0, 1), have been obtained, and [11, Theorem 1.22] says that the
function µa(r) is strictly decreasing from (0, 1

2 ] onto [µ(r),∞) with respect to a for
given r.

In [9], it was conjectured that the function f2(r) ≡ µa(r)/ arth 4
√

r′ is increasing from
(0, 1) onto (1,∞). Theorem 2.3 (ii) gives the proof of this conjecture.
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3. Preliminaries

In this section, we establish the following technical lemma, which shows some properties
of Ka and is needed in the proofs of the main theorems.

Lemma 3.1.

(i) For x � 0 and a ∈ (0, 1
2 ), let b = 1−a. Then the function f1(x) ≡ Ψ(x+a)−Ψ(x+b)

is strictly increasing and concave from [0,∞) onto [Ψ(a) − Ψ(b), 0).

(ii) For each n, the function f2(a) ≡ (a, n)(1−a, n) is strictly increasing on (0, 1
2 ], while

the function g(a) ≡ f2(a)/a is strictly decreasing on (0, 1
2 ].

(iii) For a ∈ (0, 1
2 ], the function

f3(r) ≡ ∂

∂a
log Ka(r)

is strictly increasing on (0, 1).

(iv) The function f4(a) ≡ Ka/a is strictly decreasing from (0, 1
2 ] onto [2K(r),∞).

(v) The function

f5(r) ≡ K(r)
Ka(r)

is strictly increasing from (0, 1) onto (1, 1/ sin(πa)).

Proof. (i) It is well-known that Ψ ′ and Ψ ′′ are strictly decreasing and increasing,
respectively, on (0,∞). Since a < b, f ′

1(x) = Ψ ′(x + a) − Ψ ′(x + b) > 0, and f ′′
1 (x) =

Ψ ′′(x + a) − Ψ ′′(x + b) < 0. Thus, the result for f1 follows.

(ii) It follows from (1.3) that

f2(a) = (a, n)(1 − a, n) =
Γ (n + a)

Γ (a)
Γ (n + 1 − a)

Γ (1 − a)
.

By logarithmic differentiation, we have

f ′
2(a) = f2(a)[f1(n) − f1(0)],

which is a product of two positive functions by part (i). Hence, the monotonicity of f2

follows.
By the reflection property of the gamma function [12],

Γ (x)Γ (1 − x) =
π

sin(πx)
,

we get

g(a) =
sin(πa)

πa
[Γ (n + a)Γ (n + 1 − a)]. (3.1)
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Since
d
da

log[Γ (n + a)Γ (n + 1 − a)] = f1(n) < 0,

Γ (n+a)Γ (n+1−a) is strictly decreasing in a. Clearly, sin(πa)/(πa) is strictly decreasing
in a on (0, 1

2 ]. Hence, the right-hand side of (3.1) is a product of two positive and strictly
decreasing functions, so that g is strictly decreasing in a.

(iii) By (1.2), we have

f3(r) =
∑∞

n=0 Anr2n∑∞
n=0 Bnr2n

,

where An = f2(a)[f1(n) − f1(0)]/(n!)2 and Bn = f2(a)/(n!)2. Since An/Bn = f1(n) −
f1(0) is strictly increasing in n by part (i), f3 is strictly increasing in r by [8, Lemma
2.1].

(iv) By (1.2),

f4(a) =
π

2

[ ∞∑
n=0

g(a)
(n!)2

r2n

]
,

and hence the monotonicity of f4 follows from part (ii). The limiting values are clear.

(v) Write

Cn =
( 1
2 , n)2

(a, n)(1 − a, n)
.

Then

Cn+1 − Cn =
( 1
2 , n)2

(a, n)(1 − a, n)

[
( 1
2 + n)2

(a + n)(1 − a + n)
− 1

]

=
( 1
2 , n)2

(a, n)(1 − a, n)

1
4 − a(1 − a)

(a + n)(1 − a + n)

> 0

and hence Cn is strictly increasing in n. By (1.2),

K(r)
Ka(r)

=
∞∑

n=0

( 1
2 , n)2

(n!)2
r2n

( ∞∑
n=0

(a, n)(1 − a, n)
(n!)2

r2n

)−1

,

which is strictly increasing by [8, Lemma 2.1]. f5(0+) = 1 is clear. By l’Hôpital’s rule,

f5(1−) = lim
r→1−

E − r′2K
2(1 − a)(Ea − r′2Ka)

=
1

sin(πa)
.

This completes the proof of the lemma. �
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4. Proofs of main theorems

Proof of Theorem 2.1. (i) Let x = 2
√

r/(1+ r). Then x′ = (1− r)/(1+ r), dx/dr =
x′x/2r.

Differentiation gives

∂f

∂r
=

d
dr

[
2µa

(
2
√

r

1 + r

)
− µa(r)

]

= −2
1

xx′2F (a, 1 − a; 1;x2)2
xx′

2r
+

1
rr′2F (a, 1 − a; 1; r2)2

=
1

rr′2

[
1

F (a, 1 − a; 1; r2)2
− (1 + r)2

1
F (a, 1 − a; 1;x2)2

]
.

By the Landen inequalities [10, Theorem 1.2] and Lemma 3.1 (iii), we have

∂(∂f/∂r)
∂a

=
1

rr′2

[
− 2

F ′
a(a, 1 − a; 1; r2)

F (a, 1 − a; 1; r2)3
+ 2(1 + r)2

F ′
a(a, 1 − a; 1;x2)

F (a, 1 − a; 1;x2)3

]

� 2
rr′2

[
F ′

a(a, 1 − a; 1;x2)
F (a, 1 − a; 1;x2)F (a, 1 − a; 1; r2)2

− F ′
a(a, 1 − a; 1; r2)

F (a, 1 − a; 1; r2)3

]

=
2

rr′2F (a, 1 − a; 1; r2)2
[f3(x) − f3(r)]

> 0,

where
F ′

a(a, 1 − a; 1; r2) =
∂

∂a
F (a, 1 − a; 1; r2).

It follows that ∂f/∂r is strictly increasing in a ∈ (0, 1
2 ). Hence, for 0 < a < b � 1

2 , we
have

∂f(a, r)
∂r

<
∂f(b, r)

∂r
.

By integration, ∫ 1

r

∂f(a, r)
∂r

dr <

∫ 1

r

∂f(b, r)
∂r

dr;

hence,
f(a, r) > f(b, r).

This yields the monotonicity of f(a, r) in a.
For r ∈ (0, 1), f( 1

2 , r) = 0 by (2.1). Write A(a, n) = (a, n)(1−a, n)/(n!)2 and B(a, n) =
Γ (n + a)Γ (n + 1 − a)/(n!)2. By (1.2) and (1.6),

f(a, r) = 2
π

2 sin(πa)

∑∞
n=0 A(a, n)x′2n∑∞
n=0 A(a, n)x2n

− π

2 sin(πa)

∑∞
n=0 A(a, n)r′2n∑∞
n=0 A(a, n)r2n

=
π

sin(πa)

{∑∞
n=0 sin(πa)π−1B(a, n)x′2n∑∞
n=0 sin(πa)π−1B(a, n)x2n

− 1
2

∑∞
n=0 sin(πa)π−1B(a, n)r′2n∑∞
n=0 sin(πa)π−1B(a, n)r2n

}
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=
π

sin(πa)

{
1 + sin(πa)π−1 ∑∞

n=1 B(a, n)x′2n

1 + sin(πa)π−1
∑∞

n=1 B(a, n)x2n
− 1

2
1 + sin(πa)π−1 ∑∞

n=1 B(a, n)r′2n

1 + sin(πa)π−1
∑∞

n=1 B(a, n)r2n

}

∼ π

2 sin(πa)
(a → 0),

and hence f(0+, r) = ∞. The inequality (2.2) and its equality case are clear.

(ii) Let t = (1 − r)/(1 + r). Then r′ = 2
√

t/(1 + t), and g(a, r) = −f(a, t). Hence, the
assertion about g follows from part (i). �

Proof of Theorem 2.2. (i) By [3, Theorem 4.1(5)], we have

hr(a, r) ≡ dh

dr
= −π2

4
a2

rr′2K2
a

,

which is strictly decreasing in a by Lemma 3.1 (iv). Therefore, for 0 < a < b � 1
2 ,∫ 1

r

hr(a, r) dr >

∫ 1

r

hr(b, r) dr.

This gives
a2µa(r) < b2µb(r),

and hence h(a, r) is strictly increasing in a. Clearly, h( 1
2 , r) = 1

4µ(r). Let A(a, n) and
B(a, n) be as in the proof of Theorem 2.1 (i). Then

h(0+, r) = lim
a→0+

a2 π

2 sin(πa)

∑∞
n=0 A(a, n)r′2n∑∞
n=0 A(a, n)r2n

= lim
a→0+

a
πa

sin(πa)

∑∞
n=0 sin(πa)π−1B(a, n)r′2n∑∞
n=0 sin(πa)π−1B(a, n)r2n

= lim
a→0+

a
πa

sin(πa)
1 + sin(πa)π−1 ∑∞

n=1 B(a, n)r′2n

1 + sin(πa)π−1
∑∞

n=1 B(a, n)r2n

= 0.

(ii) Write H1(r) = µa(r) and H2(r) = µ(r). Then H1(1−) = H2(1−) = 0 and, by [3,
Theorem 4.1(5)],

H ′
1(r)

H ′
2(r)

=
− 1

4π2(rr′2K2
a)−1

− 1
4π2(rr′2K2)−1

=
(

K
Ka

)2

. (4.1)

Hence, the monotonicity of H follows from Lemma 3.1 (v) and [3, Lemma 5.1].
The limiting values follow from l’Hôpital’s rule, (4.1) and Lemma 3.1 (v). The second

inequality in (2.4) is clear, while the first inequality in (2.4) holds by [11, Theorem
1.22]. �

Proof of Theorem 2.3. Parts (i) and (ii) follow from Theorem 2.2 (ii) and the corre-
sponding results for µ(r) (see [2, Theorem 5.13 (5), (6)]). Part (iii) follows from part (ii)
and the identity

µa(r)µa(r′) =
π2

4 sin2(πa)
.

�
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