A PROOF OF AN IDENTITY FOR MULTIPLICATIVE FUNCTIONS

BY
K. KRISHNA

Introduction. An arithmetic function f is said to be multiplicative if $f(m n)=$ $f(m) f(n)$, whenever $(m, n)=1$ and $f(1)=1$. The Dirichlet convolution of two arithmetic functions f and g, denoted by $f \cdot g$, is defined by $f \cdot g(n)=$ $\sum_{d \mid n} f(d) g(n / d)$. Let $w(n)$ denote the product of the distinct prime factors of n, with $w(1)=1$. R. Vaidyanathaswamy [3] proved the following identical equation for any multiplicative arithmetic function f :

$$
\begin{equation*}
f(m n)=\sum_{\substack{a|m \\ b| n}} f(m / a) f(n / b) f^{-1}(a b) C(a, b), \tag{1}
\end{equation*}
$$

where m and n are arbitrary positive integers, f^{-1} is the Dirichlet inverse of f defined by

$$
\sum_{d \mid n} f(d) f^{-1}(n / d)=E_{o}(n)=\left\{\begin{array}{lll}
1 & \text { if } & n=1 \\
0 & \text { if } & n>1
\end{array}\right.
$$

and $C(a, b)$ is a multiplicative function of two variables defined by

$$
C(a, b)=\left\{\begin{array}{cl}
(-1)^{k} & \text { if } \quad w(a)=w(b)=k \\
0 & \text { otherwise }
\end{array}\right.
$$

The K-product of any two arithmetic functions f and g is the arithmetic function $f \times g$ defined by

$$
f \times g(n)=\sum_{d \mid n} f(d) g(n / d) K((d, n / d)),
$$

where $K(n)$ is a fixed arithmetic function satisfying $K(1)=1$ and, for arbitrary positive integers a, b, c,

$$
\begin{equation*}
K((a, b)) K((a b, c))=K((a, b c)) K((b, c)) . \tag{2}
\end{equation*}
$$

It has been shown [1] that (2) assures the associativity of the K-product and, together with the condition $K(1)=1$, it implies that $K(n)$ is multiplicative.
M. V. Subba Rao and A. A. Gioia [2] gave a generalization of the identity

Received by the editors March 29, 1978 and, in revised form, September 10, 1978.
(1), which holds in the case of the K-product. The generalized identity is

$$
\begin{equation*}
f(m n)=\sum_{\substack{a|m \\ b| n}} f(m / a) f(n / b) f^{-1}(a b) K((m n / a b, a b)) K((m / a, n / b)) C(a, b) . \tag{3}
\end{equation*}
$$

Their proof of (3) is based on the observation that the right side of (3) actually defines a multiplicative function of both the variables m and n so that one need only evaluate it when m and n are prime powers. The object of this note is to point out a new proof of (3) which is a straightforward generalization of Vaidyanathaswamy's proof of (1).

Lemma 1. Let f be any multiplicative function and f^{-1} be its inverse with respect to the K-product operation. Then, for arbitrary positive integers m_{1}, m_{2} and n, the sum

$$
\sum f\left(m_{1} d\right) f^{-1}\left(m_{2} n / d\right) K\left(\left(m_{1} d, m_{2} n / d\right)\right)
$$

extended over all the divisors d of n, vanishes unless every prime factor of n divides $m_{1} m_{2}$.

Proof. Let $n=n_{1} n_{2}$, where all the prime factors of n_{1} divide $m_{1} m_{2}$, and n_{2} is relatively prime to $m_{1} m_{2}$. Then it is clear that $\left(n_{1}, n_{2}\right)=1$, and therefore any factor d of n can be expressed uniquely in the form $d_{1} d_{2}$, where d_{1} is a divisor of n_{1} and d_{2} is a divisor of n_{2}.

Hence we have

$$
\begin{aligned}
\sum f\left(m_{1} d\right) f^{-1}\left(m_{2} n / d\right) & K\left(\left(m_{1} d, m_{2} n / d\right)\right) \\
= & \sum f\left(m_{1} d_{1} d_{2}\right) f^{-1}\left(m_{2} n_{1} / d_{1} \cdot n_{2} / d_{2}\right) K\left(\left(m_{1} d_{1} d_{2}, m_{2} n_{1} n_{2} / d_{1} d_{2}\right)\right) \\
= & \left\{\sum f\left(m_{1} d_{1}\right) f^{-1}\left(m_{2} n_{1} / d_{1}\right) K\left(\left(m_{1} d_{1}, m_{2} n_{1} / d_{1}\right)\right)\right\} \\
& \times\left\{\sum f\left(d_{2}\right) f^{-1}\left(n_{2} / d_{2}\right) K\left(\left(d_{2}, n_{2} / d_{2}\right)\right)\right\},
\end{aligned}
$$

where we have used the multiplicativity of f and f^{-1} together with the relation (see Lemma in section 3 of [2]):
(4) $\quad K((a b, c d))=K((a, c)) K((b, d)) \quad$ if $\quad(a, b)=1,(a, d)=1 \quad$ and $\quad(b, c)=1$.

Now the summation in the second curly bracket above vanishes unless $n_{2}=1$, which proves the result.

Corollary. Calling a factor n_{1} of n a block factor if $\left(n_{1}, n / n_{1}\right)=1$, we have

$$
\sum f(n / d) f^{-1}(d) K((n / d, d))=0
$$

where the summation extends over all the divisors d of a block factor $n_{1}(\neq 1)$ of n.

Lemma 2. Let $w(n)=\nu$. Then

$$
\sum_{\substack{d \mid n \\ w(d)=w(n)}} f(n / d) f^{-1}(d) K((n / d, d))=(-1)^{\nu} f(n)
$$

Proof. Let $n_{i 1}, n_{i 2}, \ldots, n_{i k}\left(k=\binom{\nu}{i}\right)$ denote the distinct block factors of n which contain exactly i of the prime factors. Consider the sum

$$
\begin{aligned}
A= & \sum_{n} f(n / d) f^{-1}(d) K((n / d, d))-\sum_{k=1}^{\nu}\left\{\sum_{n_{\nu-1 k}} f(n / d) f^{-1}(d) K((n / d, d))\right\} \\
& +\sum_{k=1}^{\nu(\nu-1) / 2}\left\{\sum_{n_{\nu-2 k}} f(n / d) f^{-1}(d) K((n / d, d))\right\}-\cdots \\
& +(-1)^{\nu-1} \sum_{k=1}^{\nu}\left\{\sum_{n_{1 k}} f(n / d) f^{-1}(d) K((n / d, d))\right\},
\end{aligned}
$$

where the $n_{i j}$ below \sum indicates that the sum is extended over all the divisors d of $n_{i j}$. We evaluate the expression A in two ways. First, we observe that every partial sum in A, except the first, vanishes by the corollary to Lemma 1. Hence we have,

$$
A=\sum_{n} f(n / d) f^{-1}(d) K((n / d, d))=0, \quad(n>1)
$$

On the other hand consider a particular divisor d of n, containing i distinct prime factors. The coefficient of $f(n / d) f^{-1}(d) K((n / d, d))$ in A is

$$
1-\binom{\nu-i}{1}+\binom{\nu-i}{2}-\cdots=\left\{\begin{array}{lll}
0 & \text { if } & 0<i<\nu \\
1 & \text { if } & i=\nu
\end{array}\right.
$$

If $d=1$, the coefficient of $f(n / 1) f^{-1}(1) K((n / 1,1))$ is

$$
1-\binom{\nu}{1}+\binom{\nu}{2}-\cdots+(-1)^{\nu-1}\binom{\nu}{\nu-1}=(-1)^{\nu-1}
$$

Therefore we have

$$
A=\sum_{\substack{d \mid n \\ w(d)=w(n)}} f(n / d) f^{-1}(d) K((n / d, d))+(-1)^{\nu-1} f(n)
$$

But we have already observed that $A=0$. Hence we obtain the required identity.

Lemma 3. Let $w(m)=w(n)=\nu$. Then
(5) $\sum_{b \mid n} f(m n / b) f^{-1}(b) K((m n / b, b))=(-1)^{\nu} \sum_{\substack{a \mid m \\ w(a)=w(m)}} f(m / a) f^{-1}(n a) K((m / a, n a))$.

Proof. The proof is analogous to the proof of Theorem 3 of [3]. We shall just outline the proof here.

Let $m=m_{i k} m_{i k}^{\prime}$ and $n=n_{i k} n_{i k}^{\prime}$, where $m_{i k}$ and $n_{i k}\left(k=1,2, \ldots,\binom{\nu}{i}\right)$ are the block factors of m and n respectively, which contain the same i prime factors. Hence $\left(m_{i k}, m_{i k}^{\prime}\right)=1,\left(n_{i k}, n_{i k}^{\prime}\right)=1$, and $m_{i k}^{\prime}$ and $n_{i k}^{\prime}$ are the block factors of m and n respectively, containing the same $(\nu-i)$ prime factors.

Consider the expression

$$
\begin{aligned}
B= & \sum f(m n / b) f^{-1}(b) K((m n / b, b)) \\
& +\sum_{k=1}^{\nu}\left\{\sum \sum f\left(m_{1 k} / a \cdot m_{1 k}^{\prime} n_{1 k}^{\prime} / b\right) f^{-1}\left(n_{1 k} a b\right) K\left(\left(m_{1 k} / a \cdot m_{1 k}^{\prime} n_{1 k}^{\prime} / b, n_{1 k} a b\right)\right)\right\} \\
& -\sum_{k=1}^{\nu(\nu-1) / 2}\left\{\sum \sum f\left(m_{2 k} / a \cdot m_{2 k}^{\prime} n_{2 k}^{\prime} / b\right) f^{-1}\left(n_{2 k} a b\right) K\left(\left(m_{2 k} / a \cdot m_{2 k}^{\prime} n_{2 k}^{\prime} / b, n_{2 k} a b\right)\right)\right\} \\
& +\cdots+(-1)^{\nu-1} \sum f(m / a) f^{-1}(n b) K((m / a, n b)) .
\end{aligned}
$$

Here the first term of B is a summation over all divisors b of n. Every succeeding term contains three summations; the two inner summations relate respectively to all divisors b of $m_{i k}^{\prime} n_{i k}^{\prime}$ and to all such divisors a of $m_{i k}^{\prime}$ which contain all its distinct prime factors; the outer summation relates to all possible resolutions of m and n into corresponding block factors containing i and $(\nu-i)$ primes. The signs of the $(\nu+1)$ terms in B alternate from the second term onwards. In the last term $i=\nu$, and so the outer summation as well as the summation relating to b, has disappeared, leaving only the summation over all factors a of m containing all its ν prime factors.

The proof is now complete after the evaluation of the expression B in two ways, as we have done in the previous lemma.

Corollary 1. Let $w(m)=w(n)=\nu$ and $\left(m_{1}, m\right)=1$, and hence $\left(m_{1}, n\right)=1$. Put $m^{\prime}=m_{1} m$. Then, multiplying both sides of (5) by $f\left(m_{1}\right) K\left(\left(m_{1}, 1\right)\right)$, we get, on using (4) and the multiplicativity of f

$$
\begin{aligned}
\sum_{b \mid n} f\left(m^{\prime} n / b\right) f^{-1}(b) K\left(\left(m^{\prime} n / b, b\right)\right) & \\
& =(-1)^{\nu} \sum_{\substack{a \mid m^{\prime} \\
w(a)=w(n)}} f\left(m^{\prime} / a\right) f^{-1}(n a) K\left(\left(m^{\prime} / a, n a\right)\right) .
\end{aligned}
$$

Corollary 2. Let m and n be any two positive integers, with $w(n)=\nu$. Then

$$
\sum_{b \mid n} f(m n / b) f^{-1}(b) K((m n / b, b))=(-1)^{\nu} \sum_{\substack{a \mid m \\ w(a)=w(n)}} f(m / a) f^{-1}(n a) K((m / a, n a)) .
$$

Proof. If $w(n) \mid w(m)$, then this reduces to Corollary 1 above. If $w(n)+$ $w(m)$, the left side is zero by Lemma 1 , while the right side is an empty sum.

We can now prove the generalized identical equation for K-products:
Theorem. If f is multiplicative, then for any two positive integers m and n,

$$
f(m n)=\sum_{\substack{a|m \\ b| n}} f(m / a) f(n / b) f^{-1}(a b) K((m n / a b, a b)) K((m / a, n / b)) C(a, b)
$$

Proof. From Corollary 2, with n_{1} in the place of n, we have

$$
\begin{align*}
& \sum_{b \mid n_{1}} f\left(m n_{1} / b\right) f^{-1}(b) K\left(\left(m n_{1} / b, b\right)\right) \tag{6}\\
&=(-1)^{\nu} \sum_{\substack{a \mid m \\
w(a)=w\left(n_{1}\right)}} f(m / a) f^{-1}\left(n_{1} a\right) K\left(\left(m / a, n_{1} a\right)\right)
\end{align*}
$$

where $\nu=w\left(n_{1}\right)$.
We multiply both sides of (6) by $f\left(n_{2}\right) K\left(\left(n_{2}, m n_{1}\right)\right)$, and sum over all values of n_{1} and n_{2} with $n_{1} n_{2}=n$. The summation is carried out in two stages; namely, we first keep n_{1} / b fixed, and sum over all values of n_{2} and b such that $n_{2} b=n b / n_{1}$. On the left side, by using relation (2), we get

$$
\begin{aligned}
& \sum_{n_{1} n_{2}=n} \sum_{b \mid n_{1}} f\left(m n_{1} / b\right) f^{-1}(b) K\left(\left(m n_{1} / b, b\right)\right) f\left(n_{2}\right) K\left(\left(n_{2}, m n_{1}\right)\right) \\
&=\sum_{n_{1} n_{2}=n} \sum_{b \mid n_{1}} f\left(m n_{1} / b\right) f^{-1}(b) f\left(n_{2}\right) K\left(\left(m n_{1} / b, n_{2} b\right)\right) K\left(\left(n_{2}, b\right)\right), \\
&=\sum f\left(m n_{1} / b\right) K\left(\left(m n_{1} / b, n_{2} b\right)\right) \sum_{n_{2} b=n b / n_{1}} f\left(n_{2}\right) f^{-1}(b) K\left(\left(n_{2}, b\right)\right) .
\end{aligned}
$$

The second summation here vanishes, by Lemma 1 , unless $n b / n_{1}=1$ (equivalently $n_{2} b=1$), that is, unless $n_{1}=n b$, in which case it is 1 . Therefore the left side of (6) reduces to $f(m n) K((m n, 1))=f(m n)$.

The right side of (6), after multiplying by $f\left(n_{2}\right) K\left(\left(n_{2}, m n_{1}\right)\right)$, is

$$
\sum_{n_{1} n_{2}=n} \sum_{\substack{a \mid m \\ w(a)=w\left(n_{1}\right)}}(-1)^{\nu} f(m / a) f^{-1}\left(n_{1} a\right) K\left(\left(m / a, n_{1} a\right)\right) f\left(n_{2}\right) K\left(\left(n_{2}, m n_{1}\right)\right),
$$

which is equal to

$$
\sum \sum(-1)^{\nu} f(m / a) f(n / b) f^{-1}(a b) K((m / a, a b)) K((n / b, m b))
$$

where we sum over all the divisors b of n and all the divisors a of m with $w(a)=w(b)$.

This, by the definition of $C(a, b)$ and by the relation (2), is clearly equal to

$$
\sum_{\substack{a|m \\ b| n}} f(m / a) f(n / b) f^{-1}(a b) K((m n / a b, a b)) K((m / a, n / b)) C(a, b),
$$

and the proof of the theorem is complete.

Acknowledgement. I wish to thank Dr. R. Sitaramachandra Rao, Andhra University, Waltair, India, for having brought my attention to this problem.

A good part of this work was done when the author was in the University of Mysore, Manasa Gangotri, India.

References

1. A. A. Gioia, The K-product of Arithmetic Functions, Canad. J. Math. 17 (1965), 970-976.
2. M. V. Subba Rao and A. A. Gioia, Identities for multiplicative functions, Canad. Math. Bull. 10 (1967), 65-73.
3. R. Vaidyanathaswamy, The identical equations of the multiplicative function, Bull. Amer. Math. Soc. 36 (1930), 762-772.

Department of Mathematics
University of Pittsburgh
Pittsburgh, Penn, 15260

