Reduction to Dimension Two of the Local Spectrum for an AH Algebra with the Ideal Property

Chunlan Jiang

Abstract

A C^{*}-algebra A has the ideal property if any ideal I of A is generated as a closed two-sided ideal by the projections inside the ideal. Suppose that the limit C^{*}-algebra A of inductive limit of direct sums of matrix algebras over spaces with uniformly bounded dimension has the ideal property. In this paper we will prove that A can be written as an inductive limit of certain very special subhomogeneous algebras, namely, direct sum of dimension-drop interval algebras and matrix algebras over 2-dimensional spaces with torsion H^{2} groups.

1 Introduction

An $A H$ algebra is a nuclear C^{*}-algebra of the form $A=\lim _{\rightarrow}\left(A_{n}, \phi_{n, m}\right)$ with

$$
A_{n}=\bigoplus_{i=1}^{t_{n}} P_{n, i} M_{[n, i]}\left(C\left(X_{n, i}\right)\right) P_{n, i}
$$

where $X_{n, i}$ are compact metric spaces, $t_{n},[n, i]$ are positive integers, $M_{[n, i]}\left(C\left(X_{n, i}\right)\right)$ are algebras of $[n, i] \times[n, i]$ matrices with entries in $C\left(X_{n, i}\right)$, the algebra of complexvalued functions on $X_{n, i}$, and finally, $P_{n, i} \in M_{[n, i]}\left(C\left(X_{n, i}\right)\right)$ are projections (see [Bla]). If we further assume that $\sup _{n, i} \operatorname{dim}\left(X_{n, i}\right)<+\infty$ and A has the ideal property, i.e., each ideal I of A is generated by the projections inside the ideal, then it is proved in [GJLP1, GJLP2] that A can be written as an inductive limit of

$$
B_{n}=\bigoplus_{i=1}^{s_{n}} P_{n, i}^{\prime} M_{[n, i]^{\prime}}\left(C\left(Y_{n, i}\right)\right) P_{n, i}^{\prime}
$$

In this paper, we will further reduce the dimension of local spectra (that is, the spectra of A_{n} or B_{n} above) to 2 (instead of 3). Namely, the above A can be written as an inductive limit of a direct sum of matrix algebras over the $\{\mathrm{pt}\},[0,1], S^{1}, T_{I I, k}$ (no $T_{I I I, k}$ and S^{2}) and $M_{l}\left(I_{k}\right)$, where I_{k} is the dimension-drop interval algebra

$$
I_{k}=\left\{f \in C\left([0,1], M_{k}(\mathbb{C})\right), f(0)=\lambda \mathbf{1}_{k}, f(1)=\mu \mathbf{1}_{k}, \lambda, \mu \in \mathbb{C}\right\} .
$$

In this paper, we will also call $\oplus_{i=1}^{s} M_{l_{i}}\left(I_{k_{i}}\right)$ a dimension-drop algebra.

[^0]This result unifies the theorems of [DG,EGS] (for the rank zero case) and [Li4] (for the simple case). Note that Li's reduction theorem was not used in the classification of simple $A H$ algebra, and Li's proof depends on the classification of simple $A H$ algebra (see [Li4, EGL1]). For our case, the reduction theorem is an important step toward the classification (see [GJL]). The proof is more difficult than Li's case. For example, in the case of an $A H$ algebra with the ideal property, one cannot remove the space S^{2} without introducing $M_{l}\left(I_{k}\right)$ (for the simple case, the space S^{2} is removed from the list of spaces in [EGL1] without introducing dimension-drop algebras). Another point is that, in the simple $A H$ algebras, one can assume each partial map $\phi_{n, m}^{i, j}$ is injective, but in $A H$ algebras with the ideal property, we cannot make such an assumption. For the classification of real rank zero $A H$ algebras, we refer the readers to [Ell1,EG1,EG2,G34, DG, D1, D2, G1, G2]. For the classification simple $A H$ algebra, we refer the readers to [Ell2, Ell3, Li1, Li2, Li3, EGL1, EGL2, G5].

The paper is organized as follows. In Section 2, we will do some necessary preparation. In Section 3, we will prove our main theorem.

2 Preparation

We will adopt all the notation from [GJLP2, section 2]. For example, we refer the reader to [GJLP2] for the concepts of $G-\delta$ multiplicative maps (see Definition 2.2 there), spectral variation $\operatorname{SPV}(\phi)$ of a homomorphism ϕ (see 2.12 there) weak variation $\omega(F)$ of a finite set $F \subset Q M_{N}(C(X)) Q$ (see 2.16 there).

As in [GJLP2, 2.17], we will use \bullet to denote any possible integer.
2.1 In this article, without lose of generality we will assume the $A H$ algebras A are inductive limit of

$$
A=\lim \left(A_{n}=\bigoplus_{i=1}^{t_{n}} M_{[n, i]}\left(C\left(X_{n, i}\right)\right), \phi_{n, m}\right)
$$

where $X_{n, i}$ are the spaces of $\{\mathrm{pt}\},[0,1], S^{1}, T_{I I, k}, T_{I I I, k}$, and S^{2}. (Note that by the main theorem of [GJLP2], all $A H$ algebras with the ideal property and with no dimension growth are corner subalgebras of the above form (see also [GJLP2, 2.7]).)
2.2 Recall that a projection $P \in M_{k}(C(X))$ is called a trivial projection if it is unitarily equivalent to $\left(\begin{array}{cc}1_{k_{1}} & 0 \\ 0 & 0\end{array}\right)$ for $k_{1}=\operatorname{rank}(P)$. If P is a trivial projection and $\operatorname{rank}(P)=k_{1}$, then

$$
P M_{k}(C(X)) P \cong M_{k_{1}}(C(X)) .
$$

2.3 Let X be a connected finite simplicial complex, $A=M_{k}(C(X))$. A unital $*$ homomorphism $\phi: A \rightarrow M_{l}(A)$ is called a (unital) simple embedding if it is homotopic to the homomorphism id $\oplus \lambda$, where $\lambda: A \rightarrow M_{l-1}(A)$ is defined by

$$
\lambda(f)=\operatorname{diag}(\underbrace{f\left(x_{0}\right), f\left(x_{0}\right), \ldots, f\left(x_{0}\right)}_{l-1})
$$

for a fixed base point $x_{0} \in X$.
The following two lemmas are special cases of [EGS, Lemma 2.15] (see also [EGS, 2.12]).

Lemma 2.1 (cf. [EGS, 2.12 or case 2 of 2.15]) For any finite set $F \subset A=M_{n}\left(C\left(T_{I I I, k}\right)\right)$ and $\varepsilon>0$, there is a unital simple embedding $\phi: A \rightarrow M_{l}(A)$ (for l large enough) and a C^{*}-algebra $B \subset A$, which is a direct sum of dimension-drop algebras and a finite dimensional C^{*}-algebra such that

$$
\operatorname{dist}(\phi(f), B)<\varepsilon, \quad \forall f \in F
$$

Lemma 2.2 (see [EGS, case 1 of 2.15]) For any finite set $F \subset M_{n}\left(C\left(S^{2}\right)\right)$ and $\varepsilon>0$, there is a unital simple embedding $\phi: A \rightarrow M_{l}(A)$ (for l large enough) and a C^{*}-algebra $B \subset A$, which is a finite dimensional C^{*}-algebra such that

$$
\operatorname{dist}(\phi(f), B)<\varepsilon, \quad \forall f \in F
$$

The following lemma is well known.
Lemma 2.3 (see [G5, 4.40]) For any C^{*}-algebra A and finite set $F \subset A, \varepsilon>0$, there is a finite set $G \subset A$ and $\eta>0$ such that if $\phi: A \rightarrow B$ is a homomorphism and $\psi: A \rightarrow B$ is a completely positive linear map, satisfying

$$
\|\phi(g)-\psi(g)\|<\eta, \quad \forall g \in G
$$

then ψ is the $F-\varepsilon$ multiplicative.
Lemma 2.4 Let $A=M_{n}\left(C\left(T_{I I I, k}\right)\right)$ or $M_{n}\left(C\left(S^{2}\right)\right)$, and let a finite set $F \subset A$ and $\varepsilon>0$, there is a commutative diagram

with the following conditions:
(i) ϕ is a simple embedding;
(ii) if $A=M_{n}\left(C\left(S^{2}\right)\right)$, then B is a finite dimensional C^{*}-algebra, and if $A=$ $M_{n}\left(C\left(T_{I I I, k}\right)\right)$, then B is a direct sum of dimension-drop C^{*}-algebras and a finite dimensional C^{*}-algebra, and ι is an inclusion;
(iii) $\|\iota \beta(f)-\phi(f)\|<\varepsilon, \forall f \in F$, and β is $F-\varepsilon$ multiplicative.

Proof Let G and η be as Lemma 2.3 for F and ε. Apply Lemma 2.1 or Lemma 2.2 to $A, F \cup G \subset A$ and $\frac{1}{3} \min (\varepsilon, \eta)$. One can find a unital simple embedding $\phi: A \rightarrow M_{l}(A)$, and an sub- C^{*}-algebra $B \subset M_{l}(A)$ as required in condition (ii) such that

$$
\operatorname{dist}(\phi(f), B)<\frac{1}{3} \min (\varepsilon, \eta), \quad \text { for all } f \in F
$$

Choose a finite $\widetilde{F} \subset B$ such that

$$
\operatorname{dist}(\phi(f), \widetilde{F})<\frac{1}{3} \min (\varepsilon, \eta), \quad \text { for all } f \in F
$$

Since B is a nuclear C^{*}-algebra, there are two completely positive linear maps

$$
\lambda_{1}: B \longrightarrow M_{N}(\mathbb{C}) \quad \text { and } \quad \lambda_{2}: M_{N}(\mathbb{C}) \longrightarrow B
$$

such that

$$
\left\|\lambda_{2} \circ \lambda_{1}(g)-g\right\|<\frac{1}{3} \min (\varepsilon, \eta), \quad \text { for all } g \in \widetilde{F}
$$

Using Arveson's extension theorem, one can extend $\lambda_{1}: B \rightarrow M_{N}(\mathbb{C})$ to a map $\beta_{1}: M_{l}(A) \rightarrow M_{N}(\mathbb{C})$. Then it is straightforward to prove that

$$
\beta=\lambda_{2} \circ \beta_{1} \circ \phi: A \longrightarrow B
$$

is as desired.
The following is a modification of [GJLP2, Theorem 3.8].
Proposition 2.5 Let $\lim _{n \rightarrow \infty}\left(A_{n}=\oplus_{i=1}^{t_{n}} M_{[n, i]}\left(C\left(X_{n, i}\right)\right), \phi_{n, m}\right)$ be AH inductive limit with the ideal property, with $X_{n, i}$ being $\{\mathrm{pt}\},[0,1], S^{1}, T_{I I, k}, T_{I I I, k}$, or S^{2}. Let $B=\oplus_{i=1}^{s} B^{i}$, where $B^{i}=M_{l_{i}}\left(C\left(Y_{i}\right)\right.$), with Y_{i} being $\{\mathrm{pt}\},[0,1], S^{1}$, or $T_{I I, k}$, (no $T_{I I I, k}$ or S^{2}) or $B^{i}=M_{l_{i}}\left(I_{k_{i}}\right)$ (a dimension-drop C^{*}-algebra). Suppose that

$$
\widetilde{G}\left(=\oplus \widetilde{G}^{i}\right) \subset G\left(=\oplus G^{i}\right) \subset B\left(=\oplus B^{i}\right)
$$

is a finite set, ε_{1} is a positive number with $\omega\left(\widetilde{G}^{i}\right)<\varepsilon_{1}$, if $Y_{i}=T_{I I, k}$, and L is any positive integer. Let $\alpha: B \rightarrow A_{n}$ be any homomorphism. Denote

$$
\alpha\left(1_{B}\right):=R\left(=\oplus R^{i}\right) \in A_{n}\left(=\oplus A_{n}^{i}\right) .
$$

Let $F \subset R A_{n} R$ be any finite set and let $\varepsilon<\varepsilon_{1}$ be any positive number. It follows that there are A_{m}, and mutually orthogonal projections $Q_{0}, Q_{1}, Q_{2} \in A_{m}$ with

$$
\phi_{n, m}(R)=Q_{0}+Q_{1}+Q_{2}
$$

a unital map $\theta_{0} \in \operatorname{Map}\left(R A_{n} R, Q_{0} A_{m} Q_{0}\right)_{1}$, two unital homomorphisms

$$
\theta_{1} \in \operatorname{Hom}\left(R A_{n} R, Q_{1} A_{m} Q_{1}\right)_{1} \quad \text { and } \quad \xi \in \operatorname{Hom}\left(R A_{n} R, Q_{2} A_{m} Q_{2}\right)_{1}
$$

such that:
(i) $\left\|\phi_{n, m}(f)-\left(\theta_{0}(f) \oplus \theta_{1}(f) \oplus \xi(f)\right)\right\|<\varepsilon$, for all $f \in F$;
(ii) there is a unital homomorphism

$$
\alpha_{1}: B \longrightarrow\left(Q_{0}+Q_{1}\right) A_{m}\left(Q_{0}+Q_{1}\right),
$$

such that

$$
\begin{array}{ll}
\left\|\alpha_{1}(g)-\left(\theta_{0}+\theta_{1}\right) \circ \alpha(g)\right\|<3 \varepsilon_{1} & \forall g \in \widetilde{G}_{i}, \quad \text { if } B^{i} \text { is ofform } M_{\bullet}\left(T_{I I, k}\right), \\
\left\|\alpha_{1}(g)-\left(\theta_{0}+\theta_{1}\right) \circ \alpha(g)\right\|<\varepsilon, \quad \forall g \in G^{i}, \quad \text { if } B^{i} \text { is not of the form } \bullet\left(T_{I I, k}\right) ;
\end{array}
$$

(iii) θ_{0} is $F-\varepsilon$ multiplicative and θ_{1} satisfies

$$
\theta_{1}^{i, j}([e]) \geqslant L \cdot\left[\theta_{0}^{i, j}\left(R^{i}\right)\right]
$$

(iv) ξ factors through a C^{*}-algebra C, which is a direct sum of matrix algebras over $C[0,1]$, as

$$
\xi: R A_{n} R \xrightarrow{\xi_{1}} C \xrightarrow{\xi_{2}} Q_{2} A_{m} Q_{2} .
$$

Proposition 2.6 Let $\lim _{n \rightarrow \infty}\left(A_{n}=\oplus_{i=1}^{t_{n}} M_{[n, i]}\left(C\left(X_{n, i}\right)\right), \phi_{n, m}\right)$ be an AH inductive limit with the ideal property, with $X_{n, i}$ being $\{\mathrm{pt}\},[0,1], S^{1}, T_{I I, k}, T_{I I I, k}$, or S^{2}. Let $B=\oplus_{i=1}^{s} B^{i}$, where $B^{i}=M_{l_{i}}\left(C\left(Y_{i}\right)\right)$, with Y_{i} being $\{\mathrm{pt}\},[0,1], S^{1}$, or $T_{I I, k},\left(\right.$ no $T_{I I I, k}$ or S^{2}) or $B^{i}=M_{l_{i}}\left(I_{k_{i}}\right)$ (a dimension-drop C^{*}-algebra). Suppose that

$$
\widetilde{G}\left(=\oplus \widetilde{G}^{i}\right) \subset G\left(=\oplus G^{i}\right) \subset B\left(=\oplus B^{i}\right)
$$

is a finite set, ε_{1} is a positive number with $\omega\left(\widetilde{G}^{i}\right)<\varepsilon_{1}$, if $Y_{i}=T_{I I, k}$, and $L>0$ is any positive integer. Let $\alpha: B \rightarrow A_{n}$ be any homomorphism. Let $F \subset A_{n}$ be any finite set and $\varepsilon<\varepsilon_{1}$ be any positive number. It follows that there are A_{m} and mutually orthogonal projections $P, Q \in A_{m}$ with $\phi_{n, m}\left(1_{A_{n}}\right)=P+Q$, a unital map $\theta \in \operatorname{Map}\left(A_{n}, P A_{m} P\right)_{1}$, and a unital homomorphism $\xi \in \operatorname{Hom}\left(A_{n}, Q A_{m} Q\right)_{1}$ such that:
(i) $\left\|\phi_{n, m}(f)-(\theta(f) \oplus \xi(f))\right\|<\varepsilon$, for all $f \in F$;
(ii) there is a homomorphism $\alpha_{1}: B \rightarrow P A_{m} P$ such that

$$
\begin{array}{ll}
\left\|\alpha_{1}^{i, j}(g)-(\theta \circ \alpha)^{i, j}(g)\right\|<3 \varepsilon_{1} & \forall g \in \widetilde{G}^{i}, \quad \text { if } B^{i} \text { is of the form } M_{\bullet}\left(C\left(T_{I I, k}\right)\right), \\
\left\|\alpha_{1}^{i, j}(g)-(\theta \circ \alpha)^{i, j}(g)\right\|<\varepsilon & \forall g \in G^{i}, \quad \text { if } B^{i} \text { is not of the form } M_{\bullet}\left(C\left(T_{I I, k}\right)\right) ;
\end{array}
$$

(iii) $\omega(\theta(F))<\varepsilon$ and θ is $F-\varepsilon$ multiplicative;
(iv) ξ factors through a C^{*}-algebra C, which is a direct sum of matrix algebras over $C[0,1]$ or \mathbb{C}, as

$$
\xi: A_{n} \xrightarrow{\xi_{1}} C \xrightarrow{\xi_{2}} Q A_{m} Q
$$

The proof is similar to Proposition 2.5 and is omitted.
2.4 Let $\alpha: \mathbb{Z} \rightarrow \mathbb{Z} / k_{1} \mathbb{Z}$ be the group homomorphism defined by $\alpha(1)=[1]$, where the right-hand side is the equivalent class [1] of 1 in $\mathbb{Z} / k_{1} \mathbb{Z}$. Then it is well known from homological algebra that for the group $\mathbb{Z} / k \mathbb{Z}, \alpha$ induces a surjective map

$$
\alpha_{*}: \operatorname{Ext}(\mathbb{Z} / k \mathbb{Z}, \mathbb{Z})(=\mathbb{Z} / k \mathbb{Z}) \longrightarrow \operatorname{Ext}\left(\mathbb{Z} / k \mathbb{Z}, \mathbb{Z} / k_{1} \mathbb{Z}\right)\left(=\mathbb{Z} /\left(k, k_{1}\right) \mathbb{Z}\right)
$$

where $\left(k, k_{1}\right)$ is the greatest common factor of k and k_{1}.
Recall, as in [DN], for two connected finite simplicial complexes X and Y, we use $k k(Y, X)$ to denote the group of equivalent classes of homomorphisms from $C_{0}(X \backslash\{\mathrm{pt}\})$ to $C_{0}(Y \backslash\{\mathrm{pt}\}) \otimes \mathscr{K}(H)$. Please see [DN] for details.

Lemma 2.7 (i) Any unital homomorphism

$$
\phi: C\left(T_{I I, k}\right) \longrightarrow M_{\bullet}\left(C\left(T_{I I I, k_{1}}\right)\right)
$$

is homotopy equivalent to unital homomorphism ψ factor as

$$
C\left(T_{I I, k}\right) \xrightarrow{\psi_{1}} C\left(S^{1}\right) \xrightarrow{\psi_{2}} M_{\bullet}\left(C\left(T_{I I I, k_{1}}\right)\right) .
$$

(ii) Any unital homomorphism $\phi: C\left(T_{I I, k}\right) \rightarrow P M_{\bullet}\left(C\left(S^{2}\right)\right) P$ is homotopy equivalent to unital homomorphism ψ factor as

$$
C\left(T_{I I, k}\right) \xrightarrow{\psi_{1}} \mathbb{C} \xrightarrow{\psi_{2}} P M_{\bullet}\left(C\left(S^{2}\right)\right) P .
$$

Proof Part (ii) is well known (see [EG2, chapter 3]). To prove part (i), we note that

$$
K K\left(C_{0}\left(S^{1} \backslash\{1\}\right), C_{0}\left(T_{I I I, k_{1}} \backslash\left\{x_{1}\right\}\right)=k k\left(T_{I I I, k_{1}}, S^{1}\right)=\mathbb{Z} / k_{1} \mathbb{Z}=\operatorname{Hom}\left(\mathbb{Z}, \mathbb{Z} / k_{1} \mathbb{Z}\right)\right)
$$

where $x_{1} \in T_{I I I, k_{1}}$ is a base point. The map $\alpha: \mathbb{Z} \rightarrow \mathbb{Z} / k_{1} \mathbb{Z}$ in 2.4 can be induced by a homomorphism: $\psi_{2}: C\left(S^{1}\right) \rightarrow M_{\bullet}\left(C\left(T_{I I I, k}\right)\right)$.

Let

$$
[\phi] \in k k\left(T_{I I I, k_{1}} T_{I I, k}\right)=\operatorname{Ext}\left(K_{0}\left(C_{0}\left(T_{I I, k} \backslash\left\{x_{0}\right\}\right)\right), K_{1}\left(C_{0}\left(T_{I I I, k}\right)\right)\right)
$$

be the element induced by homomorphism ϕ, where $\left\{x_{0}\right\}$ is the base point. By 2.4,

$$
[\phi]=\beta \times\left[\psi_{2}\right], \text { for } \beta \in k k\left(S^{1}, T_{I I, k}\right)=\operatorname{Ext}\left(K_{0}\left(C\left(T_{I I, k} \backslash\left\{x_{0}\right\}\right)\right), K_{1}\left(C\left(S^{1}\right)\right)\right)
$$

on the other hand β can be realized by unital homomorphism

$$
\psi_{1}: C\left(T_{I I, k}\right) \longrightarrow C\left(S^{1}\right)
$$

(see [EG2, section 3]).
The following result is a modification of [GJLP2, Theorem 3.12].
Theorem 2.8 Let $B_{1}=\oplus_{i=1}^{s} B_{1}^{i}$, each B^{i} is either matrix algebras over $\{\mathrm{pt}\},[0,1], S^{1}$ or $\left\{T_{I I, k}\right\}_{k=2}^{\infty}$ or dimension-drop algebras. Let $\varepsilon_{1}>0$ and let

$$
\widetilde{G}_{1}\left(=\oplus \widetilde{G}_{1}^{i}\right) \subset G_{1}\left(=\oplus G_{1}^{i}\right) \subset B_{1}\left(=\oplus B_{1}^{i}\right)
$$

be a finite set with $\omega\left(G_{1}^{i}\right)<\varepsilon_{1}$ for $B_{1}^{i}=M_{\bullet}\left(C\left(T_{I I, k}\right)\right)$.
Let $A=M_{N}(C(X))$, where X is one of $\{\mathrm{pt}\},[0,1], S^{1},\left\{T_{I I, k}\right\}_{k=2}^{\infty},\left\{T_{I I I, k}\right\}_{k=2}^{\infty}$, and S^{2}. Let $\alpha_{1}: B_{1} \rightarrow A$ be a homomorphism. Let $F_{1} \subset A$ be a finite set and let $\varepsilon\left(<\varepsilon_{1}\right)$ and δ be any positive number. Then there exists a commutative diagram

where $A^{\prime}=M_{K}(A)$, and B_{2} is as follows.

- If $X=T_{I I I, k}$, then B_{2} is a direct sum of a finite dimensional C^{*}-algebra and a dimen-sion-drop algebra.
- If $X=S^{2}$, then B_{2} is a finite dimensional algebra
- If $X i$ is one of $\{\mathrm{pt}\},[0,1], S^{1}$, and $T_{I I, k}$, then $B_{2}=M_{\bullet}(A)$.

Furthermore, the diagram satisfies the following conditions:
(i) $\quad \psi$ is a homomorphism, α_{2} is a unital injective homomorphism, and ϕ is a unital simple embedding;
(ii) $\beta \in \operatorname{Map}\left(A, B_{2}\right)_{1}$ is $F_{1}-\delta$ multiplicative;
(iii) if B_{1}^{i} is of the form $M_{\bullet}\left(C\left(T_{I I, k}\right)\right)$, then

$$
\left\|\psi(g)-\beta \circ \alpha_{1}(g)\right\|<10 \varepsilon_{1}, \quad \forall g \in \widetilde{G}_{1}^{i}
$$

and if B_{1}^{i} is not of the form $M_{\bullet}\left(C\left(T_{I I, k}\right)\right)$, then

$$
\left\|\psi(g)-\beta \circ \alpha_{1}(g)\right\|<\varepsilon, \quad \forall g \in G_{1}^{i}
$$

(iv) if $X=T_{I I, k}$, then $\omega\left(\beta\left(F_{1}\right) \cup \psi\left(G_{1}\right)\right)<\varepsilon$.
(Note that we only require that the weak variation of finite sets in $M_{\bullet}\left(C\left(T_{I I, k}\right)\right.$ to be small. In particular, we do not need to introduce the concept of weak variation for a finite subset of a dimension-drop algebra.)

Proof For $X=T_{I I, k},\{\mathrm{pt}\},[0,1]$ or S^{1}, one can choose $B_{2}=M_{K}(A)=A^{\prime}$ and let the homomorphism $\phi=\beta: A \rightarrow B_{2}$ be a simple embedding such that

$$
\left.\omega\left(\beta\left(F_{1}\right) \cup \alpha_{1}\left(G_{1}\right)\right)\right)<\varepsilon .
$$

This can be done by choosing K large enough. Choose $\psi=\beta \circ \alpha_{1}$, and $\alpha_{2}=\mathrm{id}: B_{2} \rightarrow A^{\prime}$.
For the case $X=T_{I I I, k}$, or S^{2}, requirement (iv) is an empty requirement.
We will deal with each block of B_{1} separately. For the block B_{1}^{i} other than $M_{\bullet}\left(C\left(T_{I I, k}\right)\right.$, the construction can be done easily by using Lemma 2.4, since B_{1}^{i} is stably generated, which implies that any sufficiently multiplicative map from B_{1}^{i} is close to a homomorphism. So we assume that $B_{1}^{i}=M_{\bullet}\left(C\left(T_{I I, k}\right)\right.$. Recall that we already assumed A is of the form $M_{\bullet}\left(C\left(T_{I I I, k}\right)\right)$ or $M_{\bullet}\left(C\left(S^{2}\right)\right.$. By Lemma 2.7, the homomorphism $\alpha_{1}: B_{1}^{i} \rightarrow A$ is a homotopy to $\alpha^{\prime}: B_{1}^{i} \rightarrow A$ with $\alpha^{\prime}\left(1_{B_{1}^{i}}\right)=\alpha_{1}\left(1_{B_{1}^{i}}\right)$ and α^{\prime} factor as

$$
B_{1}^{i} \xrightarrow{\xi_{1}} C \xrightarrow{\xi_{2}} A,
$$

where C is a finite dimensional C^{*}-algebra for the case $X=S^{2}$ or $C=M_{\bullet}\left(C\left(S^{1}\right)\right.$ for the case $X=T_{I I I, k}$ (note that $B_{1}^{i}=M_{\bullet}\left(C\left(T_{I I, k}\right)\right)$. Since C is stably generated, there is a finite set $E_{1} \subset A$ and $\delta_{1}>0$ such that if a complete positive map $\beta: A \rightarrow D$ (for any C^{*}-algebra $\left.D\right)$ is $E_{1}-\delta_{1}$ multiplicative, then the map $\beta \circ \xi_{2}: C \rightarrow D$ can be perturbed to a homomorphism $\widetilde{\xi}: C \rightarrow D$ such that

$$
\left\|\widetilde{\xi}(g)-\beta \circ \xi_{2}(g)\right\|<\varepsilon_{1}, \quad \text { for all } g \in \xi_{1}\left(\widetilde{G}_{1}^{i}\right) .
$$

Apply [G5, Theorem 1.6.9] to two homotopic homomorphism

$$
\alpha_{1}, \alpha^{\prime}: B_{1}^{i} \longrightarrow A, \quad \text { and } \quad G_{1}^{i} \subset B_{1}^{i}
$$

which is approximately constant to within ε_{1}, to obtain a finite set $E_{2} \subset A, \delta_{2}>0$ and positive integer $L^{\prime}>0$ (in places of G, δ and L in [G5, Theorem 1.6.9]). Apply Lemma 2.4 to the set $\widetilde{E}=E_{1} \cup E_{2} \cup F_{1}$ and $\widetilde{\delta}=\frac{1}{3} \min \left(\varepsilon, \delta, \delta_{1}, \delta_{2}\right)$ to obtain the commutative diagram

with β^{\prime} being $\widetilde{E}-\widetilde{\delta}$ multiplicative and

$$
\left\|\iota \circ \beta^{\prime}(f)-\phi^{\prime}(f)\right\|<\widetilde{\delta}, \quad \text { for all } f \in \widetilde{E}
$$

Let $L=L^{\prime} \cdot \operatorname{rank}\left(\mathbf{1}_{A}\right)$ and let $\beta_{1}: A \rightarrow M_{L}\left(B^{\prime}\right)$ be any unital homomorphism defined by point evaluation. Then by [G5, Theorem 1.6.9], there is a unitary $u \in M_{L+1}(B)$ such that

$$
\left\|u\left(\left(\beta^{\prime} \oplus \beta_{1}\right) \circ \alpha^{\prime}(f)\right) u^{*}-\left(\beta^{\prime} \oplus \beta_{1}\right) \circ \alpha_{1}(f)\right\|<8 \varepsilon_{1}, \quad \forall f \in \widetilde{G}_{1}^{i}
$$

By the choice of E_{1}, there is a homomorphism $\widetilde{\xi}: C \rightarrow M_{L+1}\left(B^{\prime}\right)$, such that

$$
\left\|\widetilde{\xi}(f)-u\left(\left(\beta^{\prime} \oplus \beta\right) \circ \xi_{2}(f)\right) u^{*}\right\|<\varepsilon_{1}, \quad \text { for all } f \in \xi_{1}\left(\widetilde{G}_{1}^{i}\right)
$$

Define $B_{2}=M_{L+1}\left(B^{\prime}\right), K=L_{1}(L+1), A^{\prime}=M_{K}(A)=M_{L+1}\left(M_{L_{1}}(A)\right)$,

$$
\begin{array}{ll}
\psi: B_{1}^{i} \longrightarrow B_{2} & \text { by } \psi=\widetilde{\xi} \circ \xi_{1}: B_{1}^{i} \xrightarrow{\xi_{1}} C \xrightarrow{\widetilde{\xi}} B_{2}, \\
\beta: A \longrightarrow M_{L+1}\left(B^{\prime}\right) & \text { by } \beta=\beta^{\prime} \oplus \beta_{1}, \\
\phi: A \longrightarrow M_{L+1}\left(M_{L_{1}}(A)\right) & \text { by } \phi=\phi^{\prime} \oplus\left(\left(\iota \otimes i d_{L}\right) \circ \beta_{1}\right)
\end{array}
$$

(note that β_{1} is a homomorphism) to finish the proof.
2.5 Recall that for $A=\oplus_{i=1}^{t} M_{k_{i}}\left(C\left(X_{i}\right)\right)$, where X_{i} are path connected simplicial complexes, we use the notation $r(A)$ to denote $\oplus_{i=1}^{t} M_{k_{i}}(\mathbb{C})$, which could be considered to be the subalgebra consisting of all t-tuples of constant function from X_{i} to $M_{k_{i}}(\mathbb{C})$ $(i=1,2, \ldots, t)$. Fixed a base point $x_{i}^{0} \in X_{i}$ for each X_{i}, one defines a map $r: A \rightarrow r(A)$ by

$$
r\left(f_{1}, f_{2}, \ldots, f_{t}\right)=\left(f_{1}\left(x_{1}^{0}\right), f_{2}\left(x_{2}^{0}\right), \ldots, f_{t}\left(x_{t}^{0}\right)\right) \in r(A)
$$

We have the following corollary.
Corollary 2.9 Let $B_{1}=\oplus B_{1}^{j}$, where B_{1}^{j} is either of the form $M_{k(j)}\left(C\left(X_{j}\right)\right)$, with X_{j} being one of $\{\mathrm{pt}\},[0,1], S^{1},\left\{T_{I I, k}\right\}_{k=2}^{\infty}$ or $B_{1}^{j}=M_{k(j)}\left(I_{l(j)}\right)$. Let $\alpha_{1} ; B_{1} \rightarrow A$ be a homomorphism, where A is a direct sum of matrix algebras over $\{\mathrm{pt}\},[0,1], S^{1},\left\{T_{I I, k}\right\}_{k=2}^{\infty}$, $\left\{T_{I I I, k}\right\}_{k=2}^{\infty}$, and S^{2}. Let $\varepsilon_{1}>0$ and let

$$
\widetilde{E}\left(=\oplus \widetilde{E}^{i}\right) \subset E\left(=\oplus E^{i}\right) \subset B_{1}\left(=\oplus B_{1}^{i}\right)
$$

be two finite subsets with the condition

$$
\omega\left(\widetilde{E}^{i}\right)<\varepsilon_{1}, \text { if } B_{1}^{i}=M_{\bullet}\left(C\left(Y_{i}\right)\right) \text { with } Y_{i} \in\left\{T_{I I, k}\right\}_{k=2}^{\infty}
$$

Let $F \subset A$ be any finite set, $\varepsilon_{2}>0, \delta>0$. Then there exists a commutative diagram

where $A^{\prime}=M_{L}(A)$, and B_{2} is a direct sum of matrix algebras over spaces $\{\mathrm{pt}\},[0,1]$, $S^{1},\left\{T_{I I, k}\right\}_{k=2}^{\infty}$, and dimension-drop algebras, with the following properties:
(i) ψ is a homomorphism, α_{2} is a injective homomorphism, and ϕ is a unital simple embedding;
(ii) $\beta \in \operatorname{Map}\left(A, B_{2}\right)_{1}$ is $F_{1}-\delta$ multiplicative;
(iii) for $g \in \widetilde{E}^{i}$ with $B_{1}^{i}=M_{\bullet}\left(C\left(X_{i}\right)\right), X_{i} \in\left\{T_{I I, k}\right\}_{k=2}^{\infty}$, we have

$$
\left\|(\beta \oplus r)(g)-\left(\psi \oplus\left(r \circ \alpha_{1}\right)\right)(g)\right\| \leqslant 10 \varepsilon_{1}
$$

for $g \in E^{i}\left(\supset \widetilde{E}^{i}\right)$ where B_{1}^{i} is not of the form $M_{\bullet}\left(C\left(T_{I I, k}\right)\right)$, we have

$$
\left\|(\beta \oplus r)(g)-\left(\psi \oplus\left(r \circ \alpha_{1}\right)\right)(g)\right\|<\varepsilon_{1}
$$

and for $f \in F$, we have

$$
\left\|\left(\alpha_{2} \oplus i d\right) \circ(\beta \oplus r)(f)-(\phi \oplus r)(f)\right\|<\varepsilon_{1}
$$

(iv) for B_{2}^{i} of the form $M_{\bullet}\left(C\left(T_{I I, k}\right)\right)$,

$$
\omega\left(\pi_{i}(\beta(F) \cup \psi(E))\right)<\varepsilon_{2}
$$

where π_{i} is the canonical projection from B_{2} to B_{2}^{i}.

Remark In the application of this corollary, we will denote the map $\beta \oplus r$ by β and $\psi \oplus\left(r \circ \alpha_{1}\right)$ by ψ.

3 Proof of the Main Theorem

In this section, we prove the following main theorem.
Theorem 3.1 Suppose $\lim \left(A_{n}=\oplus_{i=1}^{t_{n}} M_{[n, i]}\left(C\left(X_{n, i}\right)\right), \phi_{n, m}\right)$ is an AH inductive limit with $X_{n, i}$ being among the spaces $\{\mathrm{pt}\},[0,1], S^{1},\left\{T_{I I, k}\right\}_{k=2}^{\infty}$, and $\left\{T_{I I I, k}\right\}_{k=2}^{\infty}$, such that the limit algebra A has the ideal property. Then there is another inductive system, $B_{n}=\oplus B_{n}^{i}, \psi_{n, m}$, with same limit algebra, where each B_{n}^{i} is either $M_{[n, i]^{\prime}}\left(C\left(Y_{n, i}\right)\right)$ with $Y_{n, i}$ being one of $\{\mathrm{pt}\},[0,1], S^{1},\left\{T_{I I, k}\right\}_{k=2}^{\infty}$ (but without $T_{I I I, k}$ and S^{2}), or B_{n}^{i} is the dimension-drop algebra $M_{[n, i]^{\prime}}\left(I_{k(n, i)}\right)$.

Proof Let $\varepsilon_{1}>\varepsilon_{2}>\varepsilon_{3}>\cdots$ be a sequence of positive numbers with $\sum \varepsilon_{n}<+\infty$. We need to construct the intertwining commutative diagram

satisfying the following conditions.
(a) $\left(A_{s(n)}, \phi_{s(n), s(m)}\right)$ is a sub-inductive system of $\left(A_{n}, \phi_{n, m}\right),\left(B_{n}, \psi_{n, m}\right)$ is an inductive system of direct sum of matrix algebras over the spaces $\{\mathrm{pt}\},[0,1], S^{1}, T_{I I, k}$ and dimension drop algebra $M_{\bullet}\left(I_{k(n, i)}\right)$.
(b) Choose $\left\{a_{i, j}\right\}_{j=1}^{\infty} \subset A_{s(i)}$ and $\left\{b_{i, j}\right\}_{j=1}^{\infty} \subset B_{i}$ to be countable dense subsets of unit balls of $A_{s(i)}$ and B_{i}, respectively. F_{n} are subsets of unit balls of $A_{s(n)}$, and $\widetilde{E_{n}} \subset E_{n}$ are both subsets of unit balls of B_{n} satisfying

$$
\begin{aligned}
\phi_{s(n), s(n+1)}\left(F_{n}\right) \cup & \alpha_{n+1}\left(E_{n+1}\right) \cup \bigcup_{i=1}^{n+1} \phi_{s(i), s(n+1)}\left(\left\{a_{i 1}, a_{i 2}, \ldots, a_{i n+1}\right\}\right) \subset F_{n+1} \\
& \psi_{n, n+1}\left(E_{n}\right) \cup \beta_{n}\left(F_{n}\right) \subset \widetilde{E}_{n+1} \subset E_{n+1} \\
& \bigcup_{i=1}^{n+1} \psi_{i, n+1}\left(\left\{b_{i 1}, b_{i 2}, \ldots, b_{i n+1}\right\}\right) \subset E_{n+1} .
\end{aligned}
$$

(Here $\phi_{n, n}: A_{n} \rightarrow A_{n}$, and $\psi_{n, n}: B_{n} \rightarrow B_{n}$ are understood as identity maps.)
(c) β_{n} are $F_{n}-2 \varepsilon_{n}$ multiplicative and α_{n} are homomorphism.
(d) For all $g \in \widetilde{E}_{n}$,

$$
\left\|\psi_{n, n+1}(g)-\beta_{n} \circ \alpha_{n}(g)\right\|<14 \varepsilon_{n}
$$

and for all $f \in F_{n}$,

$$
\left\|\phi_{s(n), s(n+1)}(f)-\alpha_{n+1} \circ \beta_{n}(f)\right\|<14 \varepsilon_{n}
$$

(e) For any block B_{n}^{i} with spectrum $T_{I I, k}$, we have $\omega\left(\widetilde{E}_{n}^{i}\right)<\varepsilon_{n}$, where $\widetilde{E}_{n}^{i}=\pi_{i}\left(\widetilde{E}_{n}\right)$ for $\pi_{i}: B_{n} \rightarrow B_{n}^{i}$ the canonical projections.

The diagram will be constructed inductively. First, let $B_{1}=\{0\}, A_{s(1)}=A_{1}, \alpha_{1}=0$. Let $b_{1 j}=0 \in B_{1}$ for $j=1,2, \ldots$, and let $\left\{a_{1 j}\right\}_{j=1}^{\infty}$ be a countable dense subset of the unit ball of $A_{s(1)}$. And let $\widetilde{E}_{1}=E_{1}=\left\{b_{11}\right\}=B_{1}$ and $F_{1}=\oplus_{i=1}^{t_{1}} F_{1}^{i}$, where $F_{1}^{i}=$ $\pi_{i}\left(\left\{a_{11}\right\}\right) \subset A_{1}^{i}$.

As inductive assumption, assume that we already have the commutative diagram

and for each $i=1,2, \ldots, n$, we have dense subsets $\left\{a_{i j}\right\}_{j=1}^{\infty}$ of the unit ball of $A_{s(i)}$ and $\left\{b_{i j}\right\}_{j=1}^{\infty}$ of the unit ball of B_{i}, satisfying conditions (a)-(e) above. We have to construct the next piece of the diagram

to satisfy conditions (a)-(e).
Among the conditions for induction assumption, we will only use the conditions that α_{n} is a homomorphism and (e) above.

Step 1. We enlarge \widetilde{E}_{n} to $\oplus_{i} \pi_{i}\left(\widetilde{E}_{n}^{i}\right)$ and enlarge E_{n} to $\oplus_{i} \pi_{i}\left(E_{n}\right)$. Then we have $\widetilde{E}_{n}\left(=\oplus \widetilde{E}_{n}^{i}\right) \subset E_{n}\left(=\oplus E_{n}\right)$, and for each B_{n}^{i} with spectrum $T_{I I, k}$, we have $\omega\left(E_{n}^{i}\right)<\varepsilon_{n}$ from induction assumption (e). By Proposition 2.6 applied to $\alpha_{n}: B_{n} \rightarrow A_{s(n)}, \widetilde{E}_{n} \subset$ $E_{n} \subset B_{n}, F_{n} \subset A_{s(n)}$ and $\varepsilon_{n}>0$, there are $A_{m_{1}}\left(m_{1}>s(n)\right)$, two orthogonal projections $P_{0}, P_{1} \in A_{m_{1}}$ with $\phi_{s(n), m_{1}}\left(1_{A_{s(n)}}\right)=P_{0}+P_{1}$ and P_{0} trivial, a C^{*}-algebra C, that is, a direct sum of matrix algebras over $C[0,1]$ or \mathbb{C}, and a unital map $\theta \in \operatorname{Map}\left(A_{s(n)}, P_{0} A_{m_{1}} P_{0}\right)_{1}$, a unital homomorphism $\xi_{1} \in \operatorname{Hom}\left(A_{s(n)}, C\right)_{1}$, a unital homomorphism $\xi_{2} \in \operatorname{Hom}\left(C, P_{1} A_{m_{1}} P_{1}\right)_{1}$ such that
(1.1) $\left\|\phi_{s(n), m_{1}}(f)-\theta(f) \oplus\left(\xi_{2} \circ \xi_{1}\right)(f)\right\|<\varepsilon_{n}$ for all $f \in F_{n}$.
(1.2) θ is $F_{n}-\varepsilon$ multiplicative and $F:=\theta\left(F_{n}\right)$ satisfies $\omega(F)<\varepsilon_{n}$.
(1.3) $\left\|\alpha(g)-\theta \circ \alpha_{n}(g)\right\|<3 \varepsilon_{n}$ for all $g \in \widetilde{E}_{n}$.

Let all the blocks of C be parts of the C^{*}-algebra B_{n+1}. That is,

$$
B_{n+1}=C \oplus \text { (some other blocks). }
$$

The map $\beta_{n}: A_{s(n)} \rightarrow B_{n+1}$, and the homomorphism $\psi_{n, n+1}: B_{n} \rightarrow B_{n+1}$ are defined by $\beta_{n}=\xi_{1}: A_{s(n)} \rightarrow C\left(\subset B_{n+1}\right)$ and $\psi_{n, n+1}=\xi_{1} \circ \alpha_{n}: B_{n} \rightarrow C\left(\subset B_{n+1}\right)$ for the blocks of $C\left(\subset B_{n+1}\right)$. For this part, β_{n} is also a homomorphism.

Step 2. Let $A=P_{0} A_{m_{1}} P_{0}, F=\theta\left(F_{n}\right)$. Since P_{0} is a trivial projection,

$$
A \cong \oplus M_{l_{i}}\left(C\left(X_{m_{1}, i}\right)\right)
$$

Let $r(A):=\oplus M_{l_{i}}(\mathbb{C})$ and $r: A \rightarrow r(A)$ be as in 2.13. Applying Corollary 2.9 and its remark to $\alpha: B_{n} \rightarrow A, \widetilde{E}_{n} \subset E_{n} \subset B_{n}$ and $F \subset A$, we obtain the commutative diagram

such that
(2.1) B is a direct sum of matrix algebras over $\{\mathrm{pt}\},[0,1], S^{1}, T_{I I, k}$ and dimensiondrop algebras;
(2.2) α^{\prime} is an injective homomorphism and β is $F-\varepsilon_{n}$ multiplicative;
(2.3) $\phi: A \rightarrow M_{L}(A)$ is a unital simple embedding and $r: A \rightarrow r(A)$ is as in 2.13;
(2.4) $\|\beta \circ \alpha(g)-\psi(g)\|<10 \varepsilon_{n}$ for all $g \in \widetilde{E}_{n}$ and $\left\|(\phi \oplus r)(f)-\alpha^{\prime} \circ \beta(f)\right\|<\varepsilon_{n}$ for all $f \in F\left(:=\theta\left(F_{n}\right)\right)$;
(2.5) $\omega\left(\pi_{i}\left(\psi\left(E_{n}\right)\right) \cup \beta(F)\right)<\varepsilon_{n+1}$ (note that $\beta(F)=\beta \circ \theta\left(F_{n}\right)$), for B_{n}^{i} being of the form $M_{\bullet}(C(X))$ with $X \in\left\{T_{I I, k}\right\}_{k=2}^{\infty}$.
Let all the blocks B be also part of B_{n+1}, that is,

$$
B_{n+1}=C \oplus B \oplus \text { (some other blocks). }
$$

The maps $\beta_{n}: A_{s(n)} \rightarrow B_{n+1}, \psi_{n, n+1}: B_{n} \rightarrow B_{n+1}$ are defined by

$$
\begin{aligned}
\beta_{n} & :=\beta \circ \theta: A_{s(n)} \xrightarrow{\theta} A \xrightarrow{\beta} B\left(\subset B_{n+1}\right), \\
\psi_{n, n+1} & :=\psi: B_{n} \rightarrow B\left(\subset B_{n+1}\right),
\end{aligned}
$$

for the blocks of $B\left(\subset B_{n+1}\right)$. This part of β_{n} is $F_{n}-2 \varepsilon_{n}$ multiplicative, since θ is $F_{n}-\varepsilon_{n}$ multiplicative, β is $F-\varepsilon_{n}$ multiplicative, and $F=\theta\left(F_{n}\right)$.

Step 3. By [GJLP2, Lemma 3.15] applied to $\phi \oplus r: A \rightarrow M_{L}(A) \oplus r(A)$, there is an $A_{m_{2}}$ and there is a unital homomorphism

$$
\lambda: M_{L}(A) \oplus r(A) \longrightarrow R A_{m_{2}} R,
$$

where $R=\phi_{m_{1}, m_{2}}\left(P_{0}\right)$ (write R as $\oplus_{j} R^{j} \in \oplus_{j} A_{m}^{j}$) such that the diagram

satisfies the following condition:
(3.1) $\lambda \circ(\phi \oplus r)$ is homotopy equivalent to $\phi^{\prime}:=\left.\phi_{m_{1}, m_{2}}\right|_{A}$.

Step 4. Applying [G5, Theorem 1.6.9] to finite set $F \subset A$ (with $\omega(F)<\varepsilon_{n}$) and to two homotopic homomorphisms ϕ^{\prime} and $\lambda \circ(\phi \oplus r): A \rightarrow R A_{m_{2}} R$ (with $R A_{m_{2}} R$ in place of C in [G5, Theorem 1.6.9]), we obtain a finite set $F^{\prime} \subset R A_{m_{2}} R, \delta>0$ and $L>0$ as in Theorem 3.1.

Let $G=\oplus \pi_{i}\left(\psi\left(E_{n}\right) \cup \beta(F)\right)=\oplus G^{i}$. Then by (2.5), we have $\omega\left(G^{i}\right)<\varepsilon_{n+1}$, if B^{i} is of the form $M_{\bullet}\left(C\left(T_{I I, k}\right)\right)$. By Proposition 2.5 applied to $R A_{m_{2}} R$ and

$$
\lambda \circ \alpha^{\prime}: B \longrightarrow R A_{m_{2}} R
$$

finite set $G \subset B, F^{\prime} \cup\left(\left.\phi_{m_{1} m_{2}}\right|_{A}(F)\right) \in R A_{m_{2}} R, \min \left(\varepsilon_{n}, \delta\right)>0$ (in place of ε) and $L>0$, there are $A_{s(n+1)}$, mutually orthogonal projections $Q_{0}, Q_{1}, Q_{2} \in A_{s(n+1)}$ with $\phi_{m_{2}, s(n+1)}(R)=Q_{0} \oplus Q_{1} \oplus Q_{2}$, a C^{*}-algebra D, a direct sum of matrix algebras over $\mathrm{C}[0,1]$ or \mathbb{C}, a unital map $\theta_{0} \in \operatorname{Map}\left(R A_{m_{2}} R, Q_{0} A_{s(n+1)} Q_{0}\right)$, and four unital homomorphisms

$$
\begin{array}{ll}
\theta_{1} \in \operatorname{Hom}\left(R A_{m_{2}} R, Q_{1} A_{s(n+1)} Q_{1}\right)_{1}, & \xi_{3} \in \operatorname{Hom}\left(R A_{m_{2}} R, D\right)_{1} \\
\xi_{4} \in \operatorname{Hom}\left(D, Q_{2} A_{s(n+1)} Q_{2}\right)_{1}, & \alpha^{\prime \prime} \in \operatorname{Hom}\left(B,\left(Q_{0}+Q_{1}\right) A_{s(n+1)}\left(Q_{0}+Q_{1}\right)\right)_{1}
\end{array}
$$

such that the following are true:
(4.1) $\left\|\phi_{m_{2}, s(n+1)}(f)-\left(\left(\theta_{0}+\theta_{1}\right) \oplus \xi_{4} \circ \xi_{3}\right)(f)\right\|<\varepsilon_{n}$, for all $\left.f \in \phi_{m_{1}, m_{2}}\right|_{A}(F) \subset R A_{m_{2}} R$.
(4.2) $\left\|\alpha^{\prime \prime}(g)-\left(\theta_{0}+\theta_{1}\right) \circ \lambda \circ \alpha^{\prime}(g)\right\|<3 \varepsilon_{n+1}<3 \varepsilon_{n}, \forall g \in G$.
(4.3) θ_{0} is $F^{\prime}-\min \left(\varepsilon_{n}, \delta\right)$ multiplicative and θ_{1} satisfies that

$$
\theta_{1}^{i, j}([q])>L \cdot\left[\theta_{0}^{i, j}\left(R^{i}\right)\right]
$$

for any non zero projection $q \in R^{i} A_{m_{1}} R^{i}$.
By [G5, Theorem 1.6.9], there is a unitary $u \in\left(Q_{0} \oplus Q_{1}\right) A_{s(n+1)}\left(Q_{0}+Q_{1}\right)$ such that

$$
\left\|\left(\theta_{0}+\theta_{1}\right) \circ \phi^{\prime}(f)-\operatorname{Ad} u \circ\left(\theta_{0}+\theta_{1}\right) \circ \lambda \circ(\phi \oplus r)(f)\right\|<8 \varepsilon_{n}
$$

for all $f \in F$.
Combining with the second inequality of (2.4), we have
(4.4) $\left\|\left(\theta_{0}+\theta_{1}\right) \circ \phi^{\prime}(f)-\operatorname{Ad} u \circ\left(\theta_{0}+\theta_{1}\right) \circ \lambda \circ \alpha^{\prime} \circ \beta(f)\right\|<9 \varepsilon_{n}$ for all $f \in F$.

Step 5. Finally let all blocks of D be the rest of B_{n+1}. Namely, let

$$
B_{n+1}=C \oplus B \oplus D,
$$

where C is from Step $1, B$ is from Step 2 , and D is from Step 4.
We already have the definition of $\beta_{n}: A_{s(n)} \rightarrow B_{n+1}$ and $\psi_{n, n+1}: B_{n} \rightarrow B_{n+1}$ for those blocks of $C \oplus B \subset B_{n+1}$ (from Step 1 and Step 2). The definition of β_{n} and $\psi_{n, n+1}$ for blocks of D and the homomorphism $\alpha_{n+1}: C \oplus B \oplus D \rightarrow A_{s(n+1)}$ will be given below.

The part of $\beta_{n}: A_{s(n)} \rightarrow D\left(\subset B_{n+1}\right)$ is defined by

$$
\beta_{n}=\xi_{3} \circ \phi^{\prime} \circ \theta: A_{s(n)} \xrightarrow{\theta} A \xrightarrow{\phi} R A_{m_{2}} R \xrightarrow{\xi_{3}} D .
$$

(Recall that $A=P_{0} A_{m_{2}} P_{0}$ and $\phi^{\prime}=\left.\phi_{m_{1}, m_{2}}\right|_{A}$.) Since θ is $F_{n}-\varepsilon_{n}$ multiplicative, and ϕ^{\prime} and ξ_{3} are homomorphism, we know this part of β_{n} is $F_{n}-\varepsilon_{n}$ multiplicative.

The part of $\psi_{n, n+1}: B_{n} \rightarrow D\left(\subset B_{n+1}\right)$ is defined by

$$
\psi_{n, n+1}=\xi_{3} \circ \phi^{\prime} \circ \alpha: B_{n} \xrightarrow{\alpha} A \xrightarrow{\phi^{\prime}} R A_{m} R \xrightarrow{\xi_{3}} D,
$$

which is a homomorphism.
The homomorphism $\alpha_{n+1}: C \oplus B \oplus D \rightarrow A_{s(n+1)}$ is defined as follows.
Let $\phi^{\prime \prime}=\left.\phi_{m_{1}, s(n+1)}\right|_{P_{1} A_{m_{1}} P_{1}}: P_{1} A_{m_{1}} P_{1} \rightarrow \phi_{m_{1}, s(n+1)}\left(P_{1}\right) A_{s(n+1)} \phi_{m_{1}, s(n+1)}\left(P_{1}\right)$, where P_{1} is from Step 1. Define

$$
\left.\alpha_{n+1}\right|_{C}=\phi^{\prime \prime} \circ \xi_{2}: C \xrightarrow{\xi_{2}} P_{1} A_{m_{1}} P_{1} \xrightarrow{\phi^{\prime \prime}} \phi_{m_{1}, s(n+1)}\left(P_{1}\right) A_{s(n+1)} \phi_{m_{1}, s(n+1)}\left(P_{1}\right),
$$

where ξ_{2} is from Step 1, and define
$\left.\alpha_{n+1}\right|_{B}=\operatorname{Ad} u \circ \alpha^{\prime \prime}: B \xrightarrow{\alpha^{\prime \prime}}\left(Q_{0} \oplus Q_{1}\right) A_{s(n+1)}\left(Q_{0}+Q_{1}\right) \xrightarrow{A d u}\left(Q_{0} \oplus Q_{1}\right) A_{s(n+1)}\left(Q_{0}+Q_{1}\right)$ where $\alpha^{\prime \prime}$ is from Step 4 , and define

$$
\left.\alpha_{n+1}\right|_{D}=\xi_{4}: D \rightarrow Q_{2} A_{s(n+1)} Q_{2}
$$

Finally choose $\left\{a_{n+1, j}\right\}_{j=1}^{\infty} \subset A_{s(n+1)}$ and $\left\{b_{n+1, j}\right\}_{j=1}^{\infty} \subset B_{n+1}$ to be countable dense subsets of the unit balls of $A_{s(n+1)}$ and B_{n+1}, respectively, and choose

$$
\begin{aligned}
& {F^{\prime}}_{n+1}=\phi_{s(n), s(n+1)}\left(F_{n}\right) \cup \alpha_{n+1}\left(E_{n+1}\right) \cup \bigcup_{i=1}^{n+1} \phi_{s(i), s(n+1)}\left(\left\{a_{i 1}, a_{i 2}, \ldots, a_{i n+1}\right\}\right), \\
& E_{n+1}^{\prime}=\psi_{n, n+1}\left(E_{n}\right) \cup \beta_{n}\left(F_{n}\right) \cup \bigcup_{i=1}^{n+1} \psi_{i, n+1}\left(\left\{b_{i 1}, b_{i 2}, \ldots, b_{i n+1}\right\}\right), \\
& \widetilde{E}_{n+1}{ }^{\prime}=\psi_{n, n+1}\left(E_{n}\right) \cup \beta_{n}\left(F_{n}\right) \subset E_{n+1}^{\prime} .
\end{aligned}
$$

Define $F_{n+1}^{i}=\pi_{i}\left(F_{n+1}{ }^{\prime}\right)$ and $F_{n+1}=\oplus_{i} F_{n+1}^{i}, E_{n+1}^{i}=\pi_{i}\left(E_{n+1}^{\prime}\right)$ and $E_{n+1}=\oplus_{i} E_{n+1}^{i}$. For those blocks B_{n+1}^{i} inside the algebra B define $\widetilde{E}_{n+1}^{i}=\pi_{i}\left(\widetilde{E}_{n+1}\right)$. For those blocks inside C and D, define $\widetilde{E}_{n+1}^{i}=E_{n+1}^{i}$. And finally let $E_{n+1}=\oplus_{i} \widetilde{E}_{n+1}^{i}$. Note all the blocks with spectrum $T_{I I, k}$ are in B, and (2.5) tells us that for those blocks $\omega\left(\widetilde{E}_{n+1}^{i}\right)<\varepsilon_{n+1}$. Thus we obtain the commutative diagram

Step 6. Now we need to verify conditions (a)-(e) for the above diagram.
From the end of Step 5, we know that (e) holds; (a)-(b) hold from the construction (see the construction of B, C, D in Steps 1,2 and 4 , and $\widetilde{E}_{n+1} \subset E_{n+1}, F_{n+1}$ is the end of Step 5); (c) follows from the end of Step 1, the end of Step 2 and the part of definition of β_{n} for D from Step 5 .

So we only need to verify (d).
Combining (1.1) with (4.1), we have

$$
\begin{array}{r}
\left\|\phi_{s(n), s(n+1)}(f)-\left[\left(\phi^{\prime \prime} \circ \xi_{2} \circ \xi_{1}\right) \oplus\left(\theta_{0}+\theta_{1}\right) \circ \phi^{\prime} \circ \theta \oplus\left(\xi_{4} \circ \xi_{3} \circ \phi^{\prime} \circ \theta\right)(f)\right](f)\right\| \\
<\varepsilon_{n}+\varepsilon_{n}=2 \varepsilon_{n}
\end{array}
$$

for all $f \in F_{n}$ (recall that $\phi^{\prime \prime}=\phi_{m_{1}, s(n+1)}\left|P_{P_{1} A_{m_{1}} P_{1}}, \phi^{\prime}:=\phi_{m_{1}, m_{2}}\right| P_{P_{0} A_{m_{1}} P_{o}}$).
Combined with (4.2), (4.4), and the definitions of β_{n} and α_{n+1}, the above inequality yields

$$
\left\|\phi_{s(n), s(n+1)}(f)-\left(\alpha_{n+1} \circ \beta_{n+1}\right)(f)\right\|<9 \varepsilon_{n}+3 \varepsilon_{n}+2 \varepsilon_{n}=14 \varepsilon_{n}, \quad \forall f \in F_{n}
$$

Combining (1.3), the first inequality of (2.4), and the definition of β_{n} and $\psi_{n, n+1}$, we have

$$
\left\|\psi_{n, n+1}(g)-\left(\beta_{n} \circ \alpha_{n}\right)(g)\right\|<10 \varepsilon_{n}+3 \varepsilon_{n}<14 \varepsilon_{n}, \quad \forall g \in \widetilde{E}_{n}
$$

So we obtain (d). The theorem follows from [GJLP2, Proposition 4.1].
Note that if $q \in M_{l}\left(I_{k}\right)$, then $q M_{k}\left(I_{k}\right) q$ isomorphic to $M_{l_{1}}\left(I_{k}\right)$. Combining with the main theorem of [GJLP2] (see [GJLP2, Theorem 4.2, and 2.7]) we have the following theorem.

Theorem 3.2 Suppose that $A=\lim \left(A_{n}=\oplus P_{n, i} M_{[n, i]}\left(C\left(X_{n, i}\right)\right) P_{n, i}\right)$ is an AH inductive limit with $\operatorname{dim}\left(X_{n, i}\right) \leqslant M$ for a fixed positive integer M such that limit algebra A has the ideal property. Then A can be rewrite as inductive limit $\lim \left(B_{n}=\oplus B_{n}^{i}, \psi_{n, m}\right)$, where either $B_{n}^{i}=Q_{n, i} M_{[n, i]^{\prime}}\left(C\left(Y_{n, i}\right)\right) Q_{n, i}$ with $Y_{n, i}$ being one of the spaces $\{\mathrm{pt}\}$, $[0,1], S^{1},\left\{T_{I I, k}\right\}_{k=2}^{\infty}$, or $B_{n}^{i}=M_{[n, i]^{\prime}}\left(I_{l_{(n, i)}}\right)$ a dimension-drop algebra.

References

[Bla] B. Blackadar, Matricial and ultra-matricial topology. In: Operator algebras, mathematical physics, and low-dimensional topology (Istanbul, 1991), Res. Notes Math., 54, A K Peter, Wellesley, MA, 1993, pp. 11-38
[D1] M. Dadarlat, Approximately unitarily equivalent, morphisms and inductive limit C^{*}-algebras. K-theory 9(1995), 117-137. http://dx.doi.org/10.1007/BF00961456
[D2] , Reduction to dimension three of local spectra of Real rank zero C^{*}-algebras. J. Reine Angew. Math. 460(1995), 189-212. http://dx.doi.org/10.1515/crll.1995.460.189
[DG] M. Dadarlat and G. Gong, A classification result for approximately homogeneous C^{*}-algebras of real rank zero. Geom. Funct. Anal. 7(1997), no. 4, 646-711. http://dx.doi.org/10.1007/s000390050023
[DN] M. Dadarlat and A. Némethi, Sharp theory and (connective) K-theory. J. Operator Theory 23(1990), no. 2, 207-291.
[Ell1] G. A. Elliott, On the classification of C^{*}-algebras of real rank zero. J. Reine Angew. Math. 443(1993), 179-219. http://dx.doi.org/10.1515/crll.1993.443.179
[El12] , A classification of certain simple C^{*}-algebras. In: Quantum and non-commutative analysis (Kyoto, 1992), Math. Phys. Stud., 16, Kluwer, Dordrecht, 1993, pp. 373-385.
[Ell3] , A classification of certain simple C^{*}-algebras. II. J. Ramanujan Math. Soc. 12(1997), no. 1, 97-134.
[EG1] G. A. Elliott and G. Gong, On the inductive limits of matrix algebras over two-tori. Amer. J. Math 118(1996), no. 2, 263-290.
[EG2] , On the classification of C^{*}-algebras of real rank zero. II. Ann. of Math 144(1996), no. 3, 497-610. http://dx.doi.org/10.2307/2118565
[EGL1] G. A. Elliott, G. Gong, and L. Li, On the classification of simple inductive limit C^{*}-algebras. II. The isomorphism theorem. Invent. Math. 168(2007), no. 2, 249-320. http://dx.doi.org/10.1007/s00222-006-0033-y
[EGL2] , Injectivity of the connecting maps in AH inductive limit systems. C. R. Math. Acad. Sci. Soc. R. Can. 26(2004), no. 1, 4-10.
[EGS] G. A. Elliott, G. Gong, and H. Su, On the classification of C^{*}-algebras of real rank zero. IV. Reduction to local spectrum of dimension two. In: Operator algebras and their applications, II (Waterloo, ON, 1994/1995), Fields Inst. Commun., 20, American Mathematical Society, Providence, RI, 1998, pp. 73-95.
[G1] G. Gong, Approximation by dimension drop C^{*}-algebras and classification. C. R. Math. Rep. Acad. Sci Can. 16(1994), no. 1, 40-44.
[G2] , Classification of C^{*}-algebras of real rank zero and unsuspended E-equivalence types. J. Funct. Anal. 152(1998), 281-329. http://dx.doi.org/10.1006/jfan.1997.3165,
[G3-4] G. Gong, On inductive limit of matrix algebras over higher dimension spaces, Part I, II, Math Scand. 80(1997) 45-60, 61-100
[G5] \longrightarrow On the classification of simple inductive limit C^{*}-algebras. I. The reduction theorem. Doc. Math. 7(2002), 255-461.
[GJL] G. Gong, C. Jiang, and L. Li, A classification of inductive limit C^{*}-algebras with ideal property. arxiv:1607.07581
[GJLP1] G. Gong, C. Jiang, L. Li, and C. Pasnicu, AT structure of AH algebras with the ideal property and torsion free K-theory. J. Funct. Anal. 58(2010), no. 6, 2119-2143. http://dx.doi.org/10.1016/j.jfa.2009.11.016
[GJLP2] , A Reduction theorem for AH algebras with ideal property. arxiv:1607.07575
[Ji-Jiang] K. Ji and C. Jiang, A complete classification of AI algebra with the ideal property. Canad. J. Math. 63(2011), no. 2, 381-412. http://dx.doi.org/10.4153/CJM-2011-005-9
[Jiang] C. Jiang, A classification of non simple C^{*}-algebras of tracial rank one: inductive limit of finite direct sums of simple TAI C ${ }^{*}$-algebras. J. Topol. Anal. 3(2011), no. 3, 385-404. http://dx.doi.org/10.1142/S1793525311000593
[Li1] L. Li, On the classification of simple C^{*}-algebras: inductive limit of matrix algebras trees. Mem. Amer. Math. Soc. 127(1997), no. 605. http://dx.doi.org/10.1090/memo/0605
[Li2] , Simple inductive limit C^{*}-algebras: spectra and approximation by interval algebras. J. Reine Angew Math 507(1999), 57-79. http://dx.doi.org/10.1515/crll.1999.019
[Li3] , Classification of simple C^{*}-algebras: inductive limit of matrix algebras over one-dimensional spaces. J. Funct. Anal. 192(2002), no. 1, 1-51. http://dx.doi.org/10.1006/jfan.2002.3895
[Li4] , Reduction to dimension two of local spectrum for simple AH algebras. J. Ramanujan Math. Soc. 21(2006), no. 4, 365-390.
[Pasnicul] C. Pasnicu, On inductive limit of certain C^{*}-algebras of the form $C(x) \otimes F$. Trans. Amer. Math. Soc. 310(1988), no. 2, 703-714. http://dx.doi.org/10.2307/2000987
[Pasnicu2] , hape equivalence, nonstable K-theory and AH algebras. Pacific J. Math 192(2000), no. 1, 159-182. http://dx.doi.org/10.2140/pjm.2000.192.159

Department of Mathematics, Hebei Normal University, Shijiazhuang, China
e-mail: cljiang@hebtu.edu.cn

[^0]: Received by the editors September 14, 2016; revised October 18, 2016.
 Published electronically April 13, 2017.
 The author was supported by the National Natural Science Foundation of China (Grant No. 11231002, 11471904).

 AMS subject classification: 46L35.
 Keywords: AH algebra, reduction, local spectrum, ideal property.

