Canad. Math. Bull. Vol. 60 (4), 2017 pp. 791-806 http://dx.doi.org/10.4153/CMB-2016-100-3 © Canadian Mathematical Society 2017

Reduction to Dimension Two of the Local Spectrum for an *AH* Algebra with the Ideal Property

Chunlan Jiang

Abstract. A C^* -algebra A has the ideal property if any ideal I of A is generated as a closed two-sided ideal by the projections inside the ideal. Suppose that the limit C^* -algebra A of inductive limit of direct sums of matrix algebras over spaces with uniformly bounded dimension has the ideal property. In this paper we will prove that A can be written as an inductive limit of certain very special subhomogeneous algebras, namely, direct sum of dimension-drop interval algebras and matrix algebras over 2-dimensional spaces with torsion H^2 groups.

1 Introduction

An *AH* algebra is a nuclear C^* -algebra of the form $A = \lim_{\to} (A_n, \phi_{n,m})$ with

$$A_n = \bigoplus_{i=1}^{t_n} P_{n,i} M_{[n,i]}(C(X_{n,i})) P_{n,i},$$

where $X_{n,i}$ are compact metric spaces, t_n , [n, i] are positive integers, $M_{[n,i]}(C(X_{n,i}))$ are algebras of $[n, i] \times [n, i]$ matrices with entries in $C(X_{n,i})$, the algebra of complexvalued functions on $X_{n,i}$, and finally, $P_{n,i} \in M_{[n,i]}(C(X_{n,i}))$ are projections (see [Bla]). If we further assume that $\sup_{n,i} \dim(X_{n,i}) < +\infty$ and A has the ideal property, *i.e.*, each ideal I of A is generated by the projections inside the ideal, then it is proved in [GJLP1, GJLP2] that A can be written as an inductive limit of

$$B_{n} = \bigoplus_{i=1}^{s_{n}} P'_{n,i} M_{[n,i]'}(C(Y_{n,i})) P'_{n,i}$$

In this paper, we will further reduce the dimension of local spectra (that is, the spectra of A_n or B_n above) to 2 (instead of 3). Namely, the above A can be written as an inductive limit of a direct sum of matrix algebras over the {pt}, [0,1], S^1 , $T_{II,k}$ (no $T_{III,k}$ and S^2) and $M_I(I_k)$, where I_k is the dimension-drop interval algebra

$$I_k = \left\{ f \in C([0,1], M_k(\mathbb{C})), f(0) = \lambda \mathbf{1}_k, f(1) = \mu \mathbf{1}_k, \lambda, \mu \in \mathbb{C} \right\}.$$

In this paper, we will also call $\bigoplus_{i=1}^{s} M_{l_i}(I_{k_i})$ a dimension-drop algebra.

Received by the editors September 14, 2016; revised October 18, 2016.

Published electronically April 13, 2017.

The author was supported by the National Natural Science Foundation of China (Grant No. 11231002, 11471904).

AMS subject classification: 46L35.

Keywords: AH algebra, reduction, local spectrum, ideal property.

This result unifies the theorems of [DG,EGS] (for the rank zero case) and [Li4] (for the simple case). Note that Li's reduction theorem was not used in the classification of simple *AH* algebra, and Li's proof depends on the classification of simple *AH* algebra (see [Li4, EGL1]). For our case, the reduction theorem is an important step toward the classification (see [GJL]). The proof is more difficult than Li's case. For example, in the case of an *AH* algebra with the ideal property, one cannot remove the space S^2 without introducing $M_I(I_k)$ (for the simple case, the space S^2 is removed from the list of spaces in [EGL1] without introducing dimension-drop algebras). Another point is that, in the simple *AH* algebras, one can assume each partial map $\phi_{n,m}^{i,j}$ is injective, but in *AH* algebras with the ideal property, we cannot make such an assumption. For the classification of real rank zero *AH* algebras, we refer the readers to [Ell1,EG1,EG2,G3-4, DG, D1, D2, G1, G2]. For the classification simple *AH* algebra, we refer the readers to [Ell2,Ell3,Li1,Li2,Li3,EGL1,EGL2,G5].

The paper is organized as follows. In Section 2, we will do some necessary preparation. In Section 3, we will prove our main theorem.

2 Preparation

We will adopt all the notation from [GJLP2, section 2]. For example, we refer the reader to [GJLP2] for the concepts of G- δ multiplicative maps (see Definition 2.2 there), spectral variation $SPV(\phi)$ of a homomorphism ϕ (see 2.12 there) weak variation $\omega(F)$ of a finite set $F \subset QM_N(C(X))Q$ (see 2.16 there).

As in [GJLP2, 2.17], we will use • to denote any possible integer.

2.1 In this article, without lose of generality we will assume the *AH* algebras *A* are inductive limit of

$$A = \lim \left(A_n = \bigoplus_{i=1}^{t_n} M_{[n,i]}(C(X_{n,i})), \phi_{n,m} \right),$$

where $X_{n,i}$ are the spaces of {pt}, [0,1], S^1 , $T_{II,k}$, $T_{III,k}$, and S^2 . (Note that by the main theorem of [GJLP2], all *AH* algebras with the ideal property and with no dimension growth are corner subalgebras of the above form (see also [GJLP2, 2.7]).)

2.2 Recall that a projection $P \in M_k(C(X))$ is called a *trivial projection* if it is unitarily equivalent to $\begin{pmatrix} 1_{k_1} & 0 \\ 0 & 0 \end{pmatrix}$ for $k_1 = \operatorname{rank}(P)$. If *P* is a trivial projection and $\operatorname{rank}(P) = k_1$, then

$$PM_k(C(X))P \cong M_{k_1}(C(X)).$$

2.3 Let *X* be a connected finite simplicial complex, $A = M_k(C(X))$. A unital * homomorphism $\phi: A \to M_l(A)$ is called a *(unital) simple embedding* if it is homotopic to the homomorphism id $\oplus \lambda$, where $\lambda: A \to M_{l-1}(A)$ is defined by

$$\lambda(f) = \operatorname{diag}(\underbrace{f(x_0), f(x_0), \dots, f(x_0)}_{l-1})$$

for a fixed base point $x_0 \in X$.

The following two lemmas are special cases of [EGS, Lemma 2.15] (see also [EGS, 2.12]).

Lemma 2.1 (cf. [EGS, 2.12 or case 2 of 2.15]) For any finite set $F \subset A = M_n(C(T_{III,k}))$ and $\varepsilon > 0$, there is a unital simple embedding $\phi: A \to M_1(A)$ (for l large enough) and $a C^*$ -algebra $B \subset A$, which is a direct sum of dimension-drop algebras and a finite dimensional C^* -algebra such that

$$dist(\phi(f), B) < \varepsilon, \quad \forall f \in F.$$

Lemma 2.2 (see [EGS, case 1 of 2.15]) For any finite set $F \subset M_n(C(S^2))$ and $\varepsilon > 0$, there is a unital simple embedding $\phi: A \to M_1(A)$ (for l large enough) and a C^* -algebra $B \subset A$, which is a finite dimensional C^* -algebra such that

$$\operatorname{dist}(\phi(f), B) < \varepsilon, \quad \forall f \in F.$$

The following lemma is well known.

Lemma 2.3 (see [G5, 4.40]) For any C^* -algebra A and finite set $F \subset A$, $\varepsilon > 0$, there is a finite set $G \subset A$ and $\eta > 0$ such that if $\phi: A \to B$ is a homomorphism and $\psi: A \to B$ is a completely positive linear map, satisfying

$$\|\phi(g) - \psi(g)\| < \eta, \quad \forall g \in G,$$

then ψ is the *F*- ε multiplicative.

Lemma 2.4 Let $A = M_n(C(T_{III,k}))$ or $M_n(C(S^2))$, and let a finite set $F \subset A$ and $\varepsilon > 0$, there is a commutative diagram

with the following conditions:

- (i) ϕ is a simple embedding;
- (ii) if $A = M_n(C(S^2))$, then B is a finite dimensional C^{*}-algebra, and if $A = M_n(C(T_{III,k}))$, then B is a direct sum of dimension-drop C^{*}-algebras and a finite dimensional C^{*}-algebra, and ι is an inclusion;
- (iii) $\|\iota \circ \beta(f) \phi(f)\| < \varepsilon, \forall f \in F, and \beta is F-\varepsilon$ multiplicative.

Proof Let *G* and η be as Lemma 2.3 for *F* and ε . Apply Lemma 2.1 or Lemma 2.2 to *A*, $F \cup G \subset A$ and $\frac{1}{3} \min(\varepsilon, \eta)$. One can find a unital simple embedding $\phi: A \to M_l(A)$, and an sub-*C*^{*}-algebra $B \subset M_l(A)$ as required in condition (ii) such that

$$\operatorname{dist}(\phi(f), B) < \frac{1}{3}\min(\varepsilon, \eta), \quad \text{for all } f \in F.$$

Choose a finite $\widetilde{F} \subset B$ such that

dist
$$(\phi(f), \widetilde{F}) < \frac{1}{3} \min(\varepsilon, \eta)$$
, for all $f \in F$.

C. Jiang

Since *B* is a nuclear C^* -algebra, there are two completely positive linear maps

$$\lambda_1: B \longrightarrow M_N(\mathbb{C}) \quad \text{and} \quad \lambda_2: M_N(\mathbb{C}) \longrightarrow B$$

such that

$$\|\lambda_2 \circ \lambda_1(g) - g\| < \frac{1}{3}\min(\varepsilon, \eta), \text{ for all } g \in \widetilde{F}$$

Using Arveson's extension theorem, one can extend $\lambda_1: B \to M_N(\mathbb{C})$ to a map $\beta_1: M_l(A) \to M_N(\mathbb{C})$. Then it is straightforward to prove that

$$\beta = \lambda_2 \circ \beta_1 \circ \phi : A \longrightarrow B$$

is as desired.

The following is a modification of [GJLP2, Theorem 3.8].

Proposition 2.5 Let $\lim_{n\to\infty} (A_n = \bigoplus_{i=1}^{t_n} M_{[n,i]}(C(X_{n,i})), \phi_{n,m})$ be AH inductive limit with the ideal property, with $X_{n,i}$ being {pt}, [0,1], S^1 , $T_{II,k}$, $T_{III,k}$, or S^2 . Let $B = \bigoplus_{i=1}^{s} B^i$, where $B^i = M_{l_i}(C(Y_i))$, with Y_i being {pt}, [0,1], S^1 , or $T_{II,k}$, (no $T_{III,k}$ or S^2) or $B^i = M_{l_i}(I_{k_i})$ (a dimension-drop C^* -algebra). Suppose that

$$\widetilde{G}(= \bigoplus \widetilde{G}^i) \subset G(= \bigoplus G^i) \subset B(= \bigoplus B^i),$$

is a finite set, ε_1 is a positive number with $\omega(\widetilde{G}^i) < \varepsilon_1$, if $Y_i = T_{II,k}$, and L is any positive integer. Let $\alpha: B \to A_n$ be any homomorphism. Denote

$$\alpha(\mathbf{1}_B) := R(= \bigoplus R^i) \in A_n(= \bigoplus A_n^i)$$

Let $F \subset RA_nR$ be any finite set and let $\varepsilon < \varepsilon_1$ be any positive number. It follows that there are A_m , and mutually orthogonal projections $Q_0, Q_1, Q_2 \in A_m$ with

$$\phi_{n,m}(R) = Q_0 + Q_1 + Q_2,$$

a unital map $\theta_0 \in Map(RA_nR, Q_0A_mQ_0)_1$, two unital homomorphisms

$$\theta_1 \in \operatorname{Hom}(RA_nR, Q_1A_mQ_1)_1$$
 and $\xi \in \operatorname{Hom}(RA_nR, Q_2A_mQ_2)_1$

such that:

- (i) $\| \phi_{n,m}(f) (\theta_0(f) \oplus \theta_1(f) \oplus \xi(f)) \| < \varepsilon$, for all $f \in F$;
- (ii) there is a unital homomorphism

$$\alpha_1: B \longrightarrow (Q_0 + Q_1)A_m(Q_0 + Q_1),$$

such that

$$\| \alpha_1(g) - (\theta_0 + \theta_1) \circ \alpha(g) \| < 3\varepsilon_1 \quad \forall g \in G_i, \qquad \text{if } B^i \text{ is of form } M_{\bullet}(T_{II,k}), \\ \| \alpha_1(g) - (\theta_0 + \theta_1) \circ \alpha(g) \| < \varepsilon, \quad \forall g \in G^i, \quad \text{if } B^i \text{ is not of the form }_{\bullet}(T_{II,k});$$

(iii) θ_0 is *F*- ε multiplicative and θ_1 satisfies

$$\theta_1^{i,j}([e]) \ge L \cdot [\theta_0^{i,j}(R^i)].$$

(iv) ξ factors through a C^{*}-algebra C, which is a direct sum of matrix algebras over C[0,1], as

$$\xi: RA_n R \xrightarrow{\xi_1} C \xrightarrow{\xi_2} Q_2 A_m Q_2.$$

Reduction to Dimension Two of the Local Spectrum

~ .

Proposition 2.6 Let $\lim_{n\to\infty} (A_n = \bigoplus_{i=1}^{t_n} M_{[n,i]}(C(X_{n,i})), \phi_{n,m})$ be an AH inductive limit with the ideal property, with $X_{n,i}$ being {pt}, [0,1], S^1 , $T_{II,k}$, $T_{III,k}$, or S^2 . Let $B = \bigoplus_{i=1}^{s} B^i$, where $B^i = M_{l_i}(C(Y_i))$, with Y_i being {pt}, [0,1], S^1 , or $T_{II,k}$, (no $T_{III,k}$ or S^2) or $B^i = M_{l_i}(I_{k_i})$ (a dimension-drop C^* -algebra). Suppose that

$$\widetilde{G}(= \bigoplus \widetilde{G}^i) \subset G(= \bigoplus G^i) \subset B(= \bigoplus B^i),$$

is a finite set, ε_1 is a positive number with $\omega(\widetilde{G}^i) < \varepsilon_1$, if $Y_i = T_{II,k}$, and L > 0 is any positive integer. Let $\alpha : B \to A_n$ be any homomorphism. Let $F \subset A_n$ be any finite set and $\varepsilon < \varepsilon_1$ be any positive number. It follows that there are A_m and mutually orthogonal projections $P, Q \in A_m$ with $\phi_{n,m}(I_{A_n}) = P + Q$, a unital map $\theta \in Map(A_n, PA_mP)_1$, and a unital homomorphism $\xi \in Hom(A_n, QA_mQ)_1$ such that:

- (i) $\| \phi_{n,m}(f) (\theta(f) \oplus \xi(f)) \| < \varepsilon$, for all $f \in F$;
- (ii) there is a homomorphism $\alpha_1: B \to PA_mP$ such that

$$\| \alpha_1^{i,j}(g) - (\theta \circ \alpha)^{i,j}(g) \| < 3\varepsilon_1 \quad \forall g \in \widetilde{G}^i, \qquad \text{if } B^i \text{ is of the form } M_{\bullet}(C(T_{II,k})), \\ \| \alpha_1^{i,j}(g) - (\theta \circ \alpha)^{i,j}(g) \| < \varepsilon \quad \forall g \in G^i, \quad \text{if } B^i \text{ is not of the form } M_{\bullet}(C(T_{II,k}));$$

- (iii) $\omega(\theta(F)) < \varepsilon$ and θ is *F*- ε multiplicative;
- (iv) ξ factors through a C^{*}-algebra C, which is a direct sum of matrix algebras over C[0,1] or \mathbb{C} , as

$$\xi: A_n \xrightarrow{\xi_1} C \xrightarrow{\xi_2} QA_m Q.$$

The proof is similar to Proposition 2.5 and is omitted.

2.4 Let $\alpha: \mathbb{Z} \to \mathbb{Z}/k_1\mathbb{Z}$ be the group homomorphism defined by $\alpha(1) = [1]$, where the right-hand side is the equivalent class [1] of 1 in $\mathbb{Z}/k_1\mathbb{Z}$. Then it is well known from homological algebra that for the group $\mathbb{Z}/k\mathbb{Z}$, α induces a surjective map

$$\alpha_*: \operatorname{Ext}(\mathbb{Z}/k\mathbb{Z}, \mathbb{Z})(=\mathbb{Z}/k\mathbb{Z}) \longrightarrow \operatorname{Ext}(\mathbb{Z}/k\mathbb{Z}, \mathbb{Z}/k_1\mathbb{Z})(=\mathbb{Z}/(k, k_1)\mathbb{Z}),$$

where (k, k_1) is the greatest common factor of k and k_1 .

Recall, as in [DN], for two connected finite simplicial complexes X and Y, we use kk(Y, X) to denote the group of equivalent classes of homomorphisms from $C_0(X \setminus \{pt\})$ to $C_0(Y \setminus \{pt\}) \otimes \mathcal{K}(H)$. Please see [DN] for details.

Lemma 2.7 (i) *Any unital homomorphism*

$$\phi: C(T_{II,k}) \longrightarrow M_{\bullet}(C(T_{III,k_1})),$$

is homotopy equivalent to unital homomorphism ψ factor as

$$C(T_{II,k}) \xrightarrow{\psi_1} C(S^1) \xrightarrow{\psi_2} M_{\bullet}(C(T_{III,k_1}))$$

(ii) Any unital homomorphism $\phi: C(T_{II,k}) \to PM_{\bullet}(C(S^2))P$ is homotopy equivalent to unital homomorphism ψ factor as

$$C(T_{II,k}) \xrightarrow{\psi_1} \mathbb{C} \xrightarrow{\psi_2} PM_{\bullet}(C(S^2))P.$$

Proof Part (ii) is well known (see [EG2, chapter 3]). To prove part (i), we note that

$$KK(C_0(S^1\backslash\{1\}), C_0(T_{III,k_1}\backslash\{x_1\}) = kk(T_{III,k_1}, S^1) = \mathbb{Z}/k_1\mathbb{Z} = Hom(\mathbb{Z}, \mathbb{Z}/k_1\mathbb{Z}))$$

where $x_1 \in T_{III,k_1}$ is a base point. The map $\alpha: \mathbb{Z} \to \mathbb{Z}/k_1\mathbb{Z}$ in 2.4 can be induced by a homomorphism: $\psi_2: C(S^1) \to M_{\bullet}(C(T_{III,k}))$.

Let

$$[\phi] \in kk(T_{III,k_1} T_{II,k}) = Ext(K_0(C_0(T_{II,k} \setminus \{x_0\})), K_1(C_0(T_{III,k}))),$$

be the element induced by homomorphism ϕ , where $\{x_0\}$ is the base point. By 2.4,

 $[\phi] = \beta \times [\psi_2], \text{ for } \beta \in kk(S^1, T_{II,k}) = \text{Ext}(K_0(C(T_{II,k} \setminus \{x_0\})), K_1(C(S^1))),$

on the other hand β can be realized by unital homomorphism

$$\psi_1: C(T_{II,k}) \longrightarrow C(S^1)$$

(see [EG2, section 3]).

The following result is a modification of [GJLP2, Theorem 3.12].

Theorem 2.8 Let $B_1 = \bigoplus_{i=1}^{s} B_1^i$, each B^i is either matrix algebras over $\{pt\}, [0,1], S^1$ or $\{T_{II,k}\}_{k=2}^{\infty}$ or dimension-drop algebras. Let $\varepsilon_1 > 0$ and let

$$\widetilde{G}_1(=\bigoplus \widetilde{G}_1^i) \subset G_1(=\bigoplus G_1^i) \subset B_1(=\bigoplus B_1^i)$$

be a finite set with $\omega(G_1^i) < \varepsilon_1$ for $B_1^i = M_{\bullet}(C(T_{II,k}))$.

Let $A = M_N(C(X))$, where X is one of $\{pt\}, [0,1], S^1, \{T_{II,k}\}_{k=2}^{\infty}, \{T_{III,k}\}_{k=2}^{\infty}$, and S^2 . Let $\alpha_1: B_1 \to A$ be a homomorphism. Let $F_1 \subset A$ be a finite set and let $\varepsilon(<\varepsilon_1)$ and δ be any positive number. Then there exists a commutative diagram

where $A' = M_K(A)$, and B_2 is as follows.

- If $X = T_{III,k}$, then B_2 is a direct sum of a finite dimensional C^* -algebra and a dimension-drop algebra.
- If $X = S^2$, then B_2 is a finite dimensional algebra
- If Xi is one of {pt}, [0,1], S¹, and T_{II,k}, then B₂ = M_•(A).
 Furthermore, the diagram satisfies the following conditions:
- (i) ψ is a homomorphism, α_2 is a unital injective homomorphism, and ϕ is a unital simple embedding;
- (ii) $\beta \in Map(A, B_2)_1$ is F_1 - δ multiplicative;
- (iii) if B_1^i is of the form $M_{\bullet}(C(T_{II,k}))$, then

$$\| \psi(g) - \beta \circ \alpha_1(g) \| < 10\varepsilon_1, \quad \forall g \in \widetilde{G}_1^i;$$

Reduction to Dimension Two of the Local Spectrum

and if B_1^i is not of the form $M_{\bullet}(C(T_{II,k}))$, then

$$\| \psi(g) - \beta \circ \alpha_1(g) \| < \varepsilon, \quad \forall g \in G_1^i;$$

(iv) if $X = T_{II,k}$, then $\omega(\beta(F_1) \cup \psi(G_1)) < \varepsilon$.

(Note that we only require that the weak variation of finite sets in $M_{\bullet}(C(T_{II,k}))$ to be small. In particular, we do not need to introduce the concept of weak variation for a finite subset of a dimension-drop algebra.)

Proof For $X = T_{II,k}$, {pt}, [0,1] or S^1 , one can choose $B_2 = M_K(A) = A'$ and let the homomorphism $\phi = \beta : A \to B_2$ be a simple embedding such that

$$\omega(\beta(F_1)\cup\alpha_1(G_1)))<\varepsilon.$$

This can be done by choosing *K* large enough. Choose $\psi = \beta \circ \alpha_1$, and $\alpha_2 = \text{id}: B_2 \to A'$.

For the case $X = T_{III,k}$, or S^2 , requirement (iv) is an empty requirement.

We will deal with each block of B_1 separately. For the block B_1^i other than $M_{\bullet}(C(T_{II,k}))$, the construction can be done easily by using Lemma 2.4, since B_1^i is stably generated, which implies that any sufficiently multiplicative map from B_1^i is close to a homomorphism. So we assume that $B_1^i = M_{\bullet}(C(T_{II,k}))$. Recall that we already assumed A is of the form $M_{\bullet}(C(T_{III,k}))$ or $M_{\bullet}(C(S^2))$. By Lemma 2.7, the homomorphism $\alpha_1: B_1^i \to A$ is a homotopy to $\alpha': B_1^i \to A$ with $\alpha'(1_{B_1^i}) = \alpha_1(1_{B_1^i})$ and α' factor as

$$B_1^i \xrightarrow{\xi_1} C \xrightarrow{\xi_2} A,$$

where *C* is a finite dimensional C^* -algebra for the case $X = S^2$ or $C = M_{\bullet}(C(S^1))$ for the case $X = T_{III,k}$ (note that $B_1^i = M_{\bullet}(C(T_{II,k}))$). Since *C* is stably generated, there is a finite set $E_1 \subset A$ and $\delta_1 > 0$ such that if a complete positive map $\beta: A \to D$ (for any C^* -algebra *D*) is E_1 - δ_1 multiplicative, then the map $\beta \circ \xi_2: C \to D$ can be perturbed to a homomorphism $\tilde{\xi}: C \to D$ such that

$$\|\xi(g) - \beta \circ \xi_2(g)\| < \varepsilon_1$$
, for all $g \in \xi_1(\widetilde{G}_1^i)$.

Apply [G5, Theorem 1.6.9] to two homotopic homomorphism

$$\alpha_1, \alpha' : B_1^i \longrightarrow A$$
, and $G_1^i \subset B_1^i$

which is approximately constant to within ε_1 , to obtain a finite set $E_2 \subset A$, $\delta_2 > 0$ and positive integer L' > 0 (in places of G, δ and L in [G5, Theorem 1.6.9]). Apply Lemma 2.4 to the set $\tilde{E} = E_1 \cup E_2 \cup F_1$ and $\tilde{\delta} = \frac{1}{3} \min(\varepsilon, \delta, \delta_1, \delta_2)$ to obtain the commutative diagram

C. Jiang

with β' being \widetilde{E} - $\widetilde{\delta}$ multiplicative and

$$\| \iota \circ \beta'(f) - \phi'(f) \| < \widetilde{\delta}, \text{ for all } f \in \widetilde{E}.$$

Let $L = L' \cdot \operatorname{rank}(\mathbf{1}_A)$ and let $\beta_1: A \to M_L(B')$ be any unital homomorphism defined by point evaluation. Then by [G5, Theorem 1.6.9], there is a unitary $u \in M_{L+1}(B)$ such that

$$\left\| u((\beta'\oplus\beta_1)\circ\alpha'(f))u^*-(\beta'\oplus\beta_1)\circ\alpha_1(f)\right\|<8\varepsilon_1,\quad\forall f\in\widetilde{G}_1^i$$

By the choice of E_1 , there is a homomorphism $\tilde{\xi}: C \to M_{L+1}(B')$, such that

 $\|\widetilde{\xi}(f) - u((\beta' \oplus \beta) \circ \xi_2(f))u^*\| < \varepsilon_1, \quad \text{for all } f \in \xi_1(\widetilde{G}_1^i).$

Define $B_2 = M_{L+1}(B'), K = L_1(L+1), A' = M_K(A) = M_{L+1}(M_{L_1}(A)),$

$$\begin{split} \psi : B_1^i &\longrightarrow B_2 & \text{by } \psi = \widetilde{\xi} \circ \xi_1 : B_1^i \xrightarrow{\xi_1} C \xrightarrow{\widetilde{\xi}} B_2, \\ \beta : A &\longrightarrow M_{L+1}(B') & \text{by } \beta = \beta' \oplus \beta_1, \\ \phi : A &\longrightarrow M_{L+1}(M_{L_1}(A)) & \text{by } \phi = \phi' \oplus ((\iota \otimes id_L) \circ \beta_1) \end{split}$$

(note that β_1 is a homomorphism) to finish the proof.

- -
- **2.5** Recall that for $A = \bigoplus_{i=1}^{t} M_{k_i}(C(X_i))$, where X_i are path connected simplicial complexes, we use the notation r(A) to denote $\bigoplus_{i=1}^{t} M_{k_i}(\mathbb{C})$, which could be considered to be the subalgebra consisting of all t-tuples of constant function from X_i to $M_{k_i}(\mathbb{C})$ (i = 1, 2, ..., t). Fixed a base point $x_i^0 \in X_i$ for each X_i , one defines a map $r: A \to r(A)$ by

$$r(f_1, f_2, \ldots, f_t) = (f_1(x_1^0), f_2(x_2^0), \ldots, f_t(x_t^0)) \in r(A).$$

We have the following corollary.

Corollary 2.9 Let $B_1 = \bigoplus B_1^j$, where B_1^j is either of the form $M_{k(j)}(C(X_j))$, with X_j being one of {pt}, [0,1], S^1 , $\{T_{II,k}\}_{k=2}^{\infty}$ or $B_1^j = M_{k(j)}(I_{l(j)})$. Let $\alpha_1; B_1 \to A$ be a homomorphism, where A is a direct sum of matrix algebras over {pt}, [0,1], S^1 , $\{T_{II,k}\}_{k=2}^{\infty}$, $\{T_{III,k}\}_{k=2}^{\infty}$, and S^2 . Let $\varepsilon_1 > 0$ and let

$$\widetilde{E}(=\bigoplus \widetilde{E}^i) \subset E(=\bigoplus E^i) \subset B_1(=\bigoplus B_1^i)$$

be two finite subsets with the condition

$$\omega(\widetilde{E}^i) < \varepsilon_1, \text{ if } B_1^i = M_{\bullet}(C(Y_i)) \text{ with } Y_i \in \{T_{II,k}\}_{k=2}^{\infty}$$

Let $F \subset A$ *be any finite set,* $\varepsilon_2 > 0$ *,* $\delta > 0$ *. Then there exists a commutative diagram*

where $A' = M_L(A)$, and B_2 is a direct sum of matrix algebras over spaces {pt}, [0,1], S^1 , $\{T_{II,k}\}_{k=2}^{\infty}$, and dimension-drop algebras, with the following properties:

- (i) ψ is a homomorphism, α_2 is a injective homomorphism, and ϕ is a unital simple embedding;
- (ii) $\beta \in Map(A, B_2)_1$ is F_1 - δ multiplicative;
- (iii) for $g \in \widetilde{E}^i$ with $B_1^i = M_{\bullet}(C(X_i))$, $X_i \in \{T_{II,k}\}_{k=2}^{\infty}$, we have

$$\|(\beta \oplus r)(g) - (\psi \oplus (r \circ \alpha_1))(g)\| \leq 10\varepsilon_1,$$

for $g \in E^i(\supset \widetilde{E}^i)$ where B_1^i is not of the form $M_{\bullet}(C(T_{II,k}))$, we have

$$\|(\beta \oplus r)(g) - (\psi \oplus (r \circ \alpha_1))(g)\| < \varepsilon_1$$

and for $f \in F$, we have

$$\|(\alpha_2 \oplus id) \circ (\beta \oplus r)(f) - (\phi \oplus r)(f)\| < \varepsilon_1;$$

(iv) for B_2^i of the form $M_{\bullet}(C(T_{II,k}))$,

$$\omega(\pi_i(\beta(F)\cup\psi(E)))<\varepsilon_2,$$

where π_i is the canonical projection from B_2 to B_2^i .

Remark In the application of this corollary, we will denote the map $\beta \oplus r$ by β and $\psi \oplus (r \circ \alpha_1)$ by ψ .

3 Proof of the Main Theorem

In this section, we prove the following main theorem.

Theorem 3.1 Suppose $\lim(A_n = \bigoplus_{i=1}^{t_n} M_{[n,i]}(C(X_{n,i})), \phi_{n,m})$ is an AH inductive limit with $X_{n,i}$ being among the spaces {pt}, [0,1], S¹, { $T_{II,k}$ } $_{k=2}^{\infty}$, and { $T_{III,k}$ } $_{k=2}^{\infty}$, such that the limit algebra A has the ideal property. Then there is another inductive system, $B_n = \bigoplus B_n^i, \psi_{n,m}$, with same limit algebra, where each B_n^i is either $M_{[n,i]'}(C(Y_{n,i}))$ with $Y_{n,i}$ being one of {pt}, [0,1], S¹, { $T_{II,k}$ } $_{k=2}^{\infty}$ (but without $T_{III,k}$ and S²), or B_n^i is the dimension-drop algebra $M_{[n,i]'}(I_{k(n,i)})$.

Proof Let $\varepsilon_1 > \varepsilon_2 > \varepsilon_3 > \cdots$ be a sequence of positive numbers with $\sum \varepsilon_n < +\infty$. We need to construct the intertwining commutative diagram

satisfying the following conditions.

(a) $(A_{s(n)}, \phi_{s(n),s(m)})$ is a sub-inductive system of $(A_n, \phi_{n,m}), (B_n, \psi_{n,m})$ is an inductive system of direct sum of matrix algebras over the spaces {pt}, [0,1], S¹, $T_{II,k}$ and dimension drop algebra $M_{\bullet}(I_{k(n,i)})$.

(b) Choose $\{a_{i,j}\}_{j=1}^{\infty} \subset A_{s(i)}$ and $\{b_{i,j}\}_{j=1}^{\infty} \subset B_i$ to be countable dense subsets of unit balls of $A_{s(i)}$ and B_i , respectively. F_n are subsets of unit balls of $A_{s(n)}$, and $\widetilde{E_n} \subset E_n$ are both subsets of unit balls of B_n satisfying

$$\phi_{s(n),s(n+1)}(F_n) \cup \alpha_{n+1}(E_{n+1}) \cup \bigcup_{i=1}^{n+1} \phi_{s(i),s(n+1)}(\{a_{i1}, a_{i2}, \dots, a_{in+1}\}) \subset F_{n+1},$$

$$\psi_{n,n+1}(E_n) \cup \beta_n(F_n) \subset \widetilde{E}_{n+1} \subset E_{n+1},$$

$$\bigcup_{i=1}^{n+1} \psi_{i,n+1}(\{b_{i1}, b_{i2}, \dots, b_{in+1}\}) \subset E_{n+1}.$$

(Here $\phi_{n,n}: A_n \to A_n$, and $\psi_{n,n}: B_n \to B_n$ are understood as identity maps.)

(c) β_n are F_n -2 ε_n multiplicative and α_n are homomorphism.

(d) For all $g \in \widetilde{E}_n$,

$$\|\psi_{n,n+1}(g) - \beta_n \circ \alpha_n(g)\| < 14\varepsilon_n,$$

and for all $f \in F_n$,

$$\|\phi_{s(n),s(n+1)}(f) - \alpha_{n+1} \circ \beta_n(f)\| < 14\varepsilon_n$$

(e) For any block B_n^i with spectrum $T_{II,k}$, we have $\omega(\widetilde{E}_n^i) < \varepsilon_n$, where $\widetilde{E}_n^i = \pi_i(\widetilde{E}_n)$ for $\pi_i: B_n \to B_n^i$ the canonical projections.

The diagram will be constructed inductively. First, let $B_1 = \{0\}$, $A_{s(1)} = A_1$, $\alpha_1 = 0$. Let $b_{1j} = 0 \in B_1$ for j = 1, 2, ..., and let $\{a_{1j}\}_{j=1}^{\infty}$ be a countable dense subset of the unit ball of $A_{s(1)}$. And let $\widetilde{E}_1 = E_1 = \{b_{11}\} = B_1$ and $F_1 = \bigoplus_{i=1}^{t_1} F_i^i$, where $F_1^i = \pi_i(\{a_{11}\}) \subset A_1^i$. As inductive assumption, assume that we already have the commutative diagram

and for each i = 1, 2, ..., n, we have dense subsets $\{a_{ij}\}_{j=1}^{\infty}$ of the unit ball of $A_{s(i)}$ and $\{b_{ij}\}_{j=1}^{\infty}$ of the unit ball of B_i , satisfying conditions (a)–(e) above. We have to construct the next piece of the diagram

to satisfy conditions (a)-(e).

Among the conditions for induction assumption, we will only use the conditions that α_n is a homomorphism and (e) above.

Step 1. We enlarge \widetilde{E}_n to $\bigoplus_i \pi_i(\widetilde{E}_n^i)$ and enlarge E_n to $\bigoplus_i \pi_i(E_n)$. Then we have $\widetilde{E}_n(=\bigoplus \widetilde{E}_n^i) \subset E_n(=\bigoplus E_n)$, and for each B_n^i with spectrum $T_{II,k}$, we have $\omega(E_n^i) < \varepsilon_n$ from induction assumption (e). By Proposition 2.6 applied to $\alpha_n: B_n \to A_{s(n)}, \widetilde{E}_n \subset E_n \subset B_n, F_n \subset A_{s(n)}$ and $\varepsilon_n > 0$, there are $A_{m_1}(m_1 > s(n))$, two orthogonal projections $P_0, P_1 \in A_{m_1}$ with $\phi_{s(n),m_1}(\mathbf{1}_{A_{s(n)}}) = P_0 + P_1$ and P_0 trivial, a C^* -algebra C, that is, a direct sum of matrix algebras over C[0,1] or \mathbb{C} , and a unital map $\theta \in \operatorname{Map}(A_{s(n)}, P_0A_{m_1}P_0)_1$, a unital homomorphism $\xi_1 \in \operatorname{Hom}(A_{s(n)}, C)_1$, a unital homomorphism $\xi_2 \in \operatorname{Hom}(C, P_1A_{m_1}P_1)_1$ such that

(1.1) $\|\phi_{s(n),m_1}(f) - \theta(f) \oplus (\xi_2 \circ \xi_1)(f)\| < \varepsilon_n \text{ for all } f \in F_n.$ (1.2) θ is $F_n \cdot \varepsilon$ multiplicative and $F := \theta(F_n)$ satisfies $\omega(F) < \varepsilon_n.$

(1.3) $\|\alpha(g) - \theta \circ \alpha_n(g)\| < 3\varepsilon_n \text{ for all } g \in \widetilde{E}_n.$

Let all the blocks of C be parts of the C^* -algebra B_{n+1} . That is,

$$B_{n+1} = C \oplus$$
 (some other blocks).

https://doi.org/10.4153/CMB-2016-100-3 Published online by Cambridge University Press

The map $\beta_n: A_{s(n)} \to B_{n+1}$, and the homomorphism $\psi_{n,n+1}: B_n \to B_{n+1}$ are defined by $\beta_n = \xi_1: A_{s(n)} \to C(\subset B_{n+1})$ and $\psi_{n,n+1} = \xi_1 \circ \alpha_n: B_n \to C(\subset B_{n+1})$ for the blocks of $C(\subset B_{n+1})$. For this part, β_n is also a homomorphism.

Step 2. Let $A = P_0 A_{m_1} P_0$, $F = \theta(F_n)$. Since P_0 is a trivial projection,

$$A \cong \bigoplus M_{l_i}(C(X_{m_1,i})).$$

Let $r(A) := \bigoplus M_{l_i}(\mathbb{C})$ and $r: A \to r(A)$ be as in 2.13. Applying Corollary 2.9 and its remark to $\alpha: B_n \to A$, $\widetilde{E}_n \subset E_n \subset B_n$ and $F \subset A$, we obtain the commutative diagram

such that

- (2.1) *B* is a direct sum of matrix algebras over {pt}, [0,1], S¹, T_{II,k} and dimension-drop algebras;
- (2.2) α' is an injective homomorphism and β is $F \varepsilon_n$ multiplicative;
- (2.3) $\phi: A \to M_L(A)$ is a unital simple embedding and $r: A \to r(A)$ is as in 2.13;
- (2.4) $\|\beta \circ \alpha(g) \psi(g)\| < 10\varepsilon_n \text{ for all } g \in \widetilde{E}_n \text{ and } \|(\phi \oplus r)(f) \alpha' \circ \beta(f)\| < \varepsilon_n \text{ for all } f \in F (:= \theta(F_n));$
- (2.5) $\omega(\pi_i(\psi(E_n)) \cup \beta(F)) < \varepsilon_{n+1} \text{ (note that } \beta(F) = \beta \circ \theta(F_n) \text{), for } B_n^i \text{ being of the form } M_{\bullet}(C(X)) \text{ with } X \in \{T_{II,k}\}_{k=2}^{\infty}.$

Let all the blocks *B* be also part of B_{n+1} , that is,

$$B_{n+1} = C \oplus B \oplus$$
 (some other blocks).

The maps $\beta_n: A_{s(n)} \to B_{n+1}, \psi_{n,n+1}: B_n \to B_{n+1}$ are defined by

$$\beta_n := \beta \circ \theta \colon A_{s(n)} \xrightarrow{\theta} A \xrightarrow{\beta} B(\subset B_{n+1}),$$

$$\psi_{n,n+1} := \psi \colon B_n \to B(\subset B_{n+1}),$$

for the blocks of $B(\subset B_{n+1})$. This part of β_n is $F_n - 2\varepsilon_n$ multiplicative, since θ is $F_n - \varepsilon_n$ multiplicative, β is $F - \varepsilon_n$ multiplicative, and $F = \theta(F_n)$.

Step 3. By [GJLP2, Lemma 3.15] applied to $\phi \oplus r: A \to M_L(A) \oplus r(A)$, there is an A_{m_2} and there is a unital homomorphism

$$\lambda: M_L(A) \oplus r(A) \longrightarrow RA_{m_2}R,$$

Reduction to Dimension Two of the Local Spectrum

where $R = \phi_{m_1,m_2}(P_0)$ (write R as $\bigoplus_j R^j \in \bigoplus_j A_m^j$) such that the diagram

satisfies the following condition:

(3.1) $\lambda \circ (\phi \oplus r)$ is homotopy equivalent to $\phi' := \phi_{m_1,m_2}|_A$.

Step 4. Applying [G5, Theorem 1.6.9] to finite set $F \subset A$ (with $\omega(F) < \varepsilon_n$) and to two homotopic homomorphisms ϕ' and $\lambda \circ (\phi \oplus r): A \to RA_m, R$ (with RA_m, R in place of *C* in [G5, Theorem 1.6.9]), we obtain a finite set $F' \subset RA_m, R, \ \delta > 0$ and L > 0 as in Theorem 3.1.

Let $G = \bigoplus \pi_i(\psi(E_n) \cup \beta(F)) = \bigoplus G^i$. Then by (2.5), we have $\omega(G^i) < \varepsilon_{n+1}$, if B^i is of the form $M_{\bullet}(C(T_{II,k}))$. By Proposition 2.5 applied to $RA_{m_2}R$ and

$$\lambda \circ \alpha' \colon B \longrightarrow RA_{m_2}R,$$

finite set $G \subset B$, $F' \cup (\phi_{m_1m_2} \mid_A (F)) \in RA_{m_2}R$, $\min(\varepsilon_n, \delta) > 0$ (in place of ε) and L > 0, there are $A_{s(n+1)}$, mutually orthogonal projections $Q_0, Q_1, Q_2 \in A_{s(n+1)}$ with $\phi_{m_2,s(n+1)}(R) = Q_0 \oplus Q_1 \oplus Q_2$, a C^{*}-algebra D,a direct sum of matrix algebras over C[0,1] or \mathbb{C} , a unital map $\theta_0 \in Map(RA_{m_2}R, Q_0A_{s(n+1)}Q_0)$, and four unital homomorphisms

$$\begin{aligned} \theta_{1} \in \operatorname{Hom}(RA_{m_{2}}R, Q_{1}A_{s(n+1)}Q_{1})_{1}, & \xi_{3} \in \operatorname{Hom}(RA_{m_{2}}R, D)_{1}, \\ \xi_{4} \in \operatorname{Hom}(D, Q_{2}A_{s(n+1)}Q_{2})_{1}, & \alpha'' \in \operatorname{Hom}(B, (Q_{0} + Q_{1})A_{s(n+1)}(Q_{0} + Q_{1}))_{1} \end{aligned}$$

such that the following are true:

 $(4.1) \quad \|\phi_{m_2,s(n+1)}(f) - ((\theta_0 + \theta_1) \oplus \xi_4 \circ \xi_3)(f)\| < \varepsilon_n, \text{ for all } f \in \phi_{m_1,m_2}|_A(F) \subset RA_{m_2}R.$ $(4.2) \|\alpha''(g) - (\theta_0 + \theta_1) \circ \lambda \circ \alpha'(g)\| < 3\varepsilon_{n+1} < 3\varepsilon_n, \forall g \in G.$

(4.3) θ_0 is F'-min (ε_n, δ) multiplicative and θ_1 satisfies that

$$\theta_1^{i,j}([q]) > L \cdot [\theta_0^{i,j}(R^i)],$$

for any non zero projection $q \in R^i A_{m_1} R^i$.

By [G5, Theorem 1.6.9], there is a unitary $u \in (Q_0 \oplus Q_1)A_{s(n+1)}(Q_0 + Q_1)$ such that

$$\|(\theta_0+\theta_1)\circ\phi'(f)-\operatorname{Ad} u\circ(\theta_0+\theta_1)\circ\lambda\circ(\phi\oplus r)(f)\|<8\varepsilon_n,$$

for all $f \in F$.

Combining with the second inequality of (2.4), we have

$$(4.4) \ \left\| (\theta_0 + \theta_1) \circ \phi'(f) - \operatorname{Ad} u \circ (\theta_0 + \theta_1) \circ \lambda \circ \alpha' \circ \beta(f) \right\| < 9\varepsilon_n \text{ for all } f \in F.$$

Step 5. Finally let all blocks of *D* be the rest of B_{n+1} . Namely, let

$$B_{n+1} = C \oplus B \oplus D,$$

C. Jiang

where C is from Step 1, B is from Step 2, and D is from Step 4.

We already have the definition of $\beta_n: A_{s(n)} \to B_{n+1}$ and $\psi_{n,n+1}: B_n \to B_{n+1}$ for those blocks of $C \oplus B \subset B_{n+1}$ (from Step 1 and Step 2). The definition of β_n and $\psi_{n,n+1}$ for blocks of D and the homomorphism $\alpha_{n+1}: C \oplus B \oplus D \to A_{s(n+1)}$ will be given below.

The part of $\beta_n: A_{s(n)} \to D(\subset B_{n+1})$ is defined by

$$\beta_n = \xi_3 \circ \phi' \circ \theta \colon A_{s(n)} \xrightarrow{\theta} A \xrightarrow{\phi} RA_{m_2}R \xrightarrow{\xi_3} D.$$

(Recall that $A = P_0 A_{m_2} P_0$ and $\phi' = \phi_{m_1,m_2}|_{A}$.) Since θ is $F_n - \varepsilon_n$ multiplicative, and ϕ' and ξ_3 are homomorphism, we know this part of β_n is $F_n - \varepsilon_n$ multiplicative.

The part of $\psi_{n,n+1}: B_n \to D(\subset B_{n+1})$ is defined by

$$\psi_{n,n+1} = \xi_3 \circ \phi' \circ \alpha : B_n \xrightarrow{\alpha} A \xrightarrow{\phi'} RA_m R \xrightarrow{\xi_3} D,$$

which is a homomorphism.

The homomorphism α_{n+1} : $C \oplus B \oplus D \to A_{s(n+1)}$ is defined as follows.

Let $\phi'' = \phi_{m_1,s(n+1)}|_{P_1A_{m_1}P_1} \colon P_1A_{m_1}P_1 \to \phi_{m_1,s(n+1)}(P_1)A_{s(n+1)}\phi_{m_1,s(n+1)}(P_1)$, where P_1 is from Step 1. Define

$$\alpha_{n+1}|_C = \phi'' \circ \xi_2 \colon C \xrightarrow{\xi_2} P_1 A_{m_1} P_1 \xrightarrow{\phi''} \phi_{m_1,s(n+1)}(P_1) A_{s(n+1)} \phi_{m_1,s(n+1)}(P_1),$$

where ξ_2 is from Step 1, and define

$$\alpha_{n+1}|_B = \operatorname{Ad} u \circ \alpha'' \colon B \xrightarrow{\alpha''} (Q_0 \oplus Q_1) A_{s(n+1)}(Q_0 + Q_1) \xrightarrow{Adu} (Q_0 \oplus Q_1) A_{s(n+1)}(Q_0 + Q_1)$$

where α'' is from Step 4 and define

where α'' is from Step 4, and define

$$\alpha_{n+1}|_D = \xi_4 \colon D \to Q_2 A_{s(n+1)} Q_2.$$

Finally choose $\{a_{n+1,j}\}_{j=1}^{\infty} \subset A_{s(n+1)}$ and $\{b_{n+1,j}\}_{j=1}^{\infty} \subset B_{n+1}$ to be countable dense subsets of the unit balls of $A_{s(n+1)}$ and B_{n+1} , respectively, and choose

$$F'_{n+1} = \phi_{s(n),s(n+1)}(F_n) \cup \alpha_{n+1}(E_{n+1}) \cup \bigcup_{i=1}^{n+1} \phi_{s(i),s(n+1)}(\{a_{i1}, a_{i2}, \dots, a_{in+1}\}),$$

$$E'_{n+1} = \psi_{n,n+1}(E_n) \cup \beta_n(F_n) \cup \bigcup_{i=1}^{n+1} \psi_{i,n+1}(\{b_{i1}, b_{i2}, \dots, b_{in+1}\}),$$

$$\widetilde{E}_{n+1}' = \psi_{n,n+1}(E_n) \cup \beta_n(F_n) \subset E_{n+1}'.$$

Define $F_{n+1}^i = \pi_i(F_{n+1}')$ and $F_{n+1} = \bigoplus_i F_{n+1}^i$, $E_{n+1}^i = \pi_i(E'_{n+1})$ and $E_{n+1} = \bigoplus_i E_{n+1}^i$. For those blocks B_{n+1}^i inside the algebra *B* define $\widetilde{E}_{n+1}^i = \pi_i(\widetilde{E}_{n+1})$. For those blocks inside *C* and *D*, define $\widetilde{E}_{n+1}^i = E_{n+1}^i$. And finally let $E_{n+1} = \bigoplus_i \widetilde{E}_{n+1}^i$. Note all the blocks with spectrum $T_{II,k}$ are in *B*, and (2.5) tells us that for those blocks $\omega(\widetilde{E}_{n+1}^i) < \varepsilon_{n+1}$. Thus we obtain the commutative diagram

Step 6. Now we need to verify conditions (a)–(e) for the above diagram.

From the end of Step 5, we know that (e) holds; (a)–(b) hold from the construction (see the construction of *B*, *C*, *D* in Steps 1, 2 and 4, and $\tilde{E}_{n+1} \subset E_{n+1}$, F_{n+1} is the end of Step 5); (c) follows from the end of Step 1, the end of Step 2 and the part of definition of β_n for *D* from Step 5.

So we only need to verify (d).

Combining (1.1) with (4.1), we have

$$\|\phi_{s(n),s(n+1)}(f) - [(\phi'' \circ \xi_2 \circ \xi_1) \oplus (\theta_0 + \theta_1) \circ \phi' \circ \theta \oplus (\xi_4 \circ \xi_3 \circ \phi' \circ \theta)(f)](f)\| < \varepsilon_n + \varepsilon_n = 2\varepsilon_n$$

for all $f \in F_n$ (recall that $\phi'' = \phi_{m_1,s(n+1)}|_{P_1A_{m_1}P_1}, \phi' := \phi_{m_1,m_2}|_{P_0A_{m_1}P_o}$).

Combined with (4.2), (4.4), and the definitions of β_n and α_{n+1} , the above inequality yields

$$\left\|\phi_{s(n),s(n+1)}(f)-(\alpha_{n+1}\circ\beta_{n+1})(f)\right\|<9\varepsilon_n+3\varepsilon_n+2\varepsilon_n=14\varepsilon_n,\quad\forall f\in F_n.$$

Combining (1.3), the first inequality of (2.4), and the definition of β_n and $\psi_{n,n+1}$, we have

$$\|\psi_{n,n+1}(g) - (\beta_n \circ \alpha_n)(g)\| < 10\varepsilon_n + 3\varepsilon_n < 14\varepsilon_n, \quad \forall \ g \in E_n.$$

So we obtain (d). The theorem follows from [GJLP2, Proposition 4.1].

Note that if $q \in M_l(I_k)$, then $qM_k(I_k)q$ isomorphic to $M_{l_1}(I_k)$. Combining with the main theorem of [GJLP2] (see [GJLP2, Theorem 4.2, and 2.7]) we have the following theorem.

Theorem 3.2 Suppose that $A = \lim(A_n = \bigoplus P_{n,i}M_{[n,i]}(C(X_{n,i}))P_{n,i})$ is an AH inductive limit with $\dim(X_{n,i}) \leq M$ for a fixed positive integer M such that limit algebra A has the ideal property. Then A can be rewrite as inductive limit $\lim(B_n = \bigoplus B_n^i, \psi_{n,m})$, where either $B_n^i = Q_{n,i}M_{[n,i]'}(C(Y_{n,i}))Q_{n,i}$ with $Y_{n,i}$ being one of the spaces {pt}, $[0,1], S^1, \{T_{II,k}\}_{k=2}^{\infty}$, or $B_n^i = M_{[n,i]'}(I_{(l_{(n,i)})})$ a dimension-drop algebra.

References

- [Bla] B. Blackadar, Matricial and ultra-matricial topology. In: Operator algebras, mathematical physics, and low-dimensional topology (Istanbul, 1991), Res. Notes Math., 54, A K Peter, Wellesley, MA, 1993, pp. 11–38
- [D1] M. Dadarlat, Approximately unitarily equivalent, morphisms and inductive limit C*-algebras. K-theory 9(1995), 117–137. http://dx.doi.org/10.1007/BF00961456
- [D2] _____, Reduction to dimension three of local spectra of Real rank zero C*-algebras. J. Reine Angew. Math. 460(1995), 189–212. http://dx.doi.org/10.1515/crll.1995.460.189
- [DG] M. Dadarlat and G. Gong, A classification result for approximately homogeneous C*-algebras of real rank zero. Geom. Funct. Anal. 7(1997), no. 4, 646–711. http://dx.doi.org/10.1007/s000390050023
- [DN] M. Dadarlat and A. Némethi, Sharp theory and (connective) K-theory. J. Operator Theory 23(1990), no. 2, 207–291.
- [Ell1] G. A. Elliott, On the classification of C*-algebras of real rank zero. J. Reine Angew. Math. 443(1993), 179–219. http://dx.doi.org/10.1515/crll.1993.443.179
- [Ell2] _____, A classification of certain simple C*-algebras. In: Quantum and non-commutative analysis (Kyoto, 1992), Math. Phys. Stud., 16, Kluwer, Dordrecht, 1993, pp. 373–385.
- [Ell3] _____, A classification of certain simple C*-algebras. II. J. Ramanujan Math. Soc. 12(1997), no. 1, 97–134.

- [EG1] G. A. Elliott and G. Gong, On the inductive limits of matrix algebras over two-tori. Amer. J. Math 118(1996), no. 2, 263–290.
- [EG2] _____, On the classification of C*-algebras of real rank zero. II. Ann. of Math 144(1996), no. 3, 497–610. http://dx.doi.org/10.2307/2118565
- [EGL1] G. A. Elliott, G. Gong, and L. Li, On the classification of simple inductive limit C*-algebras. II. The isomorphism theorem. Invent. Math. 168(2007), no. 2, 249–320. http://dx.doi.org/10.1007/s00222-006-0033-y
- [EGL2] _____, Injectivity of the connecting maps in AH inductive limit systems. C. R. Math. Acad. Sci. Soc. R. Can. 26(2004), no. 1, 4–10.
- [EGS] G. A. Elliott, G. Gong, and H. Su, On the classification of C*-algebras of real rank zero. IV. Reduction to local spectrum of dimension two. In: Operator algebras and their applications, II (Waterloo, ON, 1994/1995), Fields Inst. Commun., 20, American Mathematical Society, Providence, RI, 1998, pp. 73–95.
- [G1] G. Gong, Approximation by dimension drop C*-algebras and classification. C. R. Math. Rep. Acad. Sci Can. 16(1994), no. 1, 40–44.
- [G2] _____, Classification of C*-algebras of real rank zero and unsuspended E-equivalence types. J. Funct. Anal. 152(1998), 281–329. http://dx.doi.org/10.1006/jfan.1997.3165,
- [G3-4] G. Gong, On inductive limit of matrix algebras over higher dimension spaces, Part I, II, Math Scand. 80(1997) 45-60, 61-100
- [G5] _____, On the classification of simple inductive limit C*-algebras. I. The reduction theorem. Doc. Math. 7(2002), 255–461.
- [GJL] G. Gong, C. Jiang, and L. Li, A classification of inductive limit C*-algebras with ideal property. arxiv:1607.07581
- [GJLP1] G. Gong, C. Jiang, L. Li, and C. Pasnicu, AT structure of AH algebras with the ideal property and torsion free K-theory. J. Funct. Anal. 58(2010), no. 6, 2119–2143. http://dx.doi.org/10.1016/j.jfa.2009.11.016
- [GJLP2] _____, A Reduction theorem for AH algebras with ideal property. arxiv:1607.07575
- [Ji-Jiang] K. Ji and C. Jiang, A complete classification of AI algebra with the ideal property. Canad. J. Math. 63(2011), no. 2, 381–412. http://dx.doi.org/10.4153/CJM-2011-005-9
- [Jiang] C. Jiang, A classification of non simple C*-algebras of tracial rank one: inductive limit of finite direct sums of simple TAI C*-algebras. J. Topol. Anal. 3(2011), no. 3, 385–404. http://dx.doi.org/10.1142/S1793525311000593
- [Li1] L. Li, On the classification of simple C*-algebras: inductive limit of matrix algebras trees. Mem. Amer. Math. Soc. 127(1997), no. 605. http://dx.doi.org/10.1090/memo/0605
- [Li2] _____, Simple inductive limit C*-algebras: spectra and approximation by interval algebras. J. Reine Angew Math 507(1999), 57–79. http://dx.doi.org/10.1515/crll.1999.019
- [Li3] _____, Classification of simple C*-algebras: inductive limit of matrix algebras over one-dimensional spaces. J. Funct. Anal. 192(2002), no. 1, 1–51. http://dx.doi.org/10.1006/jfan.2002.3895
- [Li4] _____, Reduction to dimension two of local spectrum for simple AH algebras. J. Ramanujan Math. Soc. 21(2006), no. 4, 365–390.
- [Pasnicu1] C. Pasnicu, On inductive limit of certain C^* -algebras of the form $C(x) \otimes F$. Trans. Amer. Math. Soc. **310**(1988), no. 2, 703–714. http://dx.doi.org/10.2307/2000987
- [Pasnicu2] _____, hape equivalence, nonstable K-theory and AH algebras. Pacific J. Math 192(2000), no. 1, 159–182. http://dx.doi.org/10.2140/pjm.2000.192.159

Department of Mathematics, Hebei Normal University, Shijiazhuang, China e-mail: cljiang@hebtu.edu.cn