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Reduction to Dimension Two of the Local
Spectrum for an AH Algebra with the Ideal
Property

Chunlan Jiang

Abstract. A C∗-algebra Ahas the ideal property if any ideal I of A is generated as a closed two-sided
ideal by the projections inside the ideal. Suppose that the limit C∗-algebra A of inductive limit of di-
rect sums ofmatrix algebras over spaces with uniformly bounded dimension has the ideal property.
In this paper we will prove that A can be written as an inductive limit of certain very special subho-
mogeneous algebras, namely, direct sum of dimension-drop interval algebras and matrix algebras
over 2-dimensional spaces with torsion H2 groups.

1 Introduction

An AH algebra is a nuclear C∗-algebra of the form A = lim→(An , ϕn ,m) with

An =
tn
⊕
i=1

Pn , iM[n , i](C(Xn , i))Pn , i ,

where Xn , i are compactmetric spaces, tn , [n, i] arepositive integers,M[n , i](C(Xn , i))

are algebras of [n, i]×[n, i]matriceswith entries in C(Xn , i), the algebra of complex-
valued functions on Xn , i , and ûnally, Pn , i ∈ M[n , i](C(Xn , i)) are projections (see
[Bla]). Ifwe further assume that supn , i dim(Xn , i) < +∞ and Ahas the ideal property,
i.e., each ideal I of A is generated by the projections inside the ideal, then it is proved
in [GJLP1,GJLP2] that A can be written as an inductive limit of

Bn =
sn
⊕
i=1

P′n , iM[n , i]′(C(Yn , i))P′n , i .

In this paper, we will further reduce the dimension of local spectra (that is, the
spectra of An or Bn above) to 2 (instead of 3). Namely, the above A can be written as
an inductive limit of a direct sum ofmatrix algebras over the {pt}, [0, 1], S1 , TII ,k (no
TIII ,k and S2) and M l(Ik), where Ik is the dimension-drop interval algebra

Ik = { f ∈ C([0, 1],Mk(C)), f (0) = λ1k , f (1) = µ1k , λ, µ ∈ C} .

In this paper, we will also call⊕s
i=1 M l i (Ik i ) a dimension-drop algebra.
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_is result uniûes the theorems of [DG,EGS] (for the rank zero case) and [Li4] (for
the simple case). Note that Li’s reduction theoremwas not used in the classiûcation of
simple AH algebra, and Li’s proof depends on the classiûcation of simple AH algebra
(see [Li4, EGL1]). For our case, the reduction theorem is an important step toward
the classiûcation (see [GJL]). _e proof is more diõcult than Li’s case. For example,
in the case of an AH algebra with the ideal property, one cannot remove the space S2

without introducing M l(Ik) (for the simple case, the space S2 is removed from the list
of spaces in [EGL1] without introducing dimension-drop algebras). Another point is
that, in the simple AH algebras, one can assume each partial map ϕ i , j

n ,m is injective, but
in AH algebras with the ideal property, we cannot make such an assumption. For the
classiûcation of real rank zero AH algebras,we refer the readers to [Ell1,EG1,EG2,G3-
4, DG, D1, D2,G1,G2]. For the classiûcation simple AH algebra, we refer the readers
to [Ell2, Ell3,Li1,Li2,Li3, EGL1, EGL2,G5].

_e paper is organized as follows. In Section 2, we will do some necessary prepa-
ration. In Section 3, we will prove our main theorem.

2 Preparation

We will adopt all the notation from [GJLP2, section 2]. For example, we refer the
reader to [GJLP2] for the concepts of G-δ multiplicative maps (see Deûnition 2.2
there), spectral variation SPV(ϕ) of a homomorphism ϕ (see 2.12 there) weak varia-
tion ω(F) of a ûnite set F ⊂ QMN(C(X))Q (see 2.16 there).
As in [GJLP2, 2.17], we will use ● to denote any possible integer.

2.1 In this article, without lose of generality we will assume the AH algebras A are induc-
tive limit of

A = lim(An =
tn
⊕
i=1

M[n , i](C(Xn , i)), ϕn ,m) ,

where Xn , i are the spaces of {pt}, [0, 1], S1 , TII ,k , TIII ,k , and S2. (Note that by themain
theorem of [GJLP2], all AH algebras with the ideal property and with no dimension
growth are corner subalgebras of the above form (see also [GJLP2, 2.7]).)

2.2 Recall that a projection P ∈ Mk(C(X)) is called a trivial projection if it is unitarily
equivalent to (

1k1 0
0 0 ) for k1 = rank(P). If P is a trivial projection and rank(P) = k1,

then
PMk(C(X))P ≅ Mk1(C(X)).

2.3 Let X be a connected ûnite simplicial complex, A = Mk(C(X)). A unital ∗ homo-
morphism ϕ∶A → M l(A) is called a (unital) simple embedding if it is homotopic to
the homomorphism id⊕λ, where λ∶A→ M l−1(A) is deûned by

λ( f ) = diag( f (x0), f (x0), . . . , f (x0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

l−1

)

for a ûxed base point x0 ∈ X.
_e following two lemmas are special cases of [EGS, Lemma 2.15] (see also [EGS,

2.12]).
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Lemma 2.1 (cf. [EGS, 2.12or case 2of 2.15]) For anyûnite set F ⊂ A = Mn(C(TIII ,k))

and ε > 0, there is a unital simple embedding ϕ∶A → M l(A) ( for l large enough) and
a C∗-algebra B ⊂ A, which is a direct sum of dimension-drop algebras and a ûnite di-
mensional C∗-algebra such that

dist(ϕ( f ), B) < ε, ∀ f ∈ F .

Lemma 2.2 (see [EGS, case 1 of 2.15]) For any ûnite set F ⊂ Mn(C(S2)) and ε > 0,
there is a unital simple embedding ϕ∶A→ M l(A) ( for l large enough) and a C∗-algebra
B ⊂ A, which is a ûnite dimensional C∗-algebra such that

dist(ϕ( f ), B) < ε, ∀ f ∈ F .

_e following lemma is well known.

Lemma 2.3 (see [G5, 4.40]) For any C∗-algebra A and ûnite set F ⊂ A, ε > 0, there
is a ûnite set G ⊂ A and η > 0 such that if ϕ∶A→ B is a homomorphism and ψ∶A→ B
is a completely positive linear map, satisfying

∥ϕ(g) − ψ(g)∥ < η, ∀g ∈ G ,

then ψ is the F-ε multiplicative.

Lemma 2.4 Let A = Mn(C(TIII ,k)) or Mn(C(S2)), and let a ûnite set F ⊂ A and
ε > 0, there is a commutative diagram

A
ϕ //

β

!!

M l(A)

B

ι

OO

with the following conditions:
(i) ϕ is a simple embedding;
(ii) if A = Mn(C(S2)), then B is a ûnite dimensional C∗-algebra, and if A =

Mn(C(TIII ,k)), then B is a direct sumof dimension-drop C∗-algebras and a ûnite
dimensional C∗-algebra, and ι is an inclusion;

(iii) ∥ι ○ β( f ) − ϕ( f )∥ < ε, ∀ f ∈ F, and β is F-ε multiplicative.

Proof Let G and η be as Lemma 2.3 for F and ε. Apply Lemma 2.1 or Lemma 2.2 to
A, F∪G ⊂ A and 1

3 min(ε, η). One can ûnd a unital simple embedding ϕ∶A→ M l(A),
and an sub-C∗-algebra B ⊂ M l(A) as required in condition (ii) such that

dist(ϕ( f ), B) < 1
3 min(ε, η), for all f ∈ F .

Choose a ûnite F̃ ⊂ B such that

dist(ϕ( f ), F̃) < 1
3 min(ε, η), for all f ∈ F .

https://doi.org/10.4153/CMB-2016-100-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-100-3


794 C. Jiang

Since B is a nuclear C∗-algebra, there are two completely positive linear maps

λ1∶B Ð→ MN(C) and λ2∶MN(C)Ð→ B

such that
∥λ2 ○ λ1(g) − g∥ < 1

3 min(ε, η), for all g ∈ F̃ .
Using Arveson’s extension theorem, one can extend λ1∶B → MN(C) to a map
β1∶M l(A)→ MN(C). _en it is straightforward to prove that

β = λ2 ○ β1 ○ ϕ∶AÐ→ B

is as desired.

_e following is amodiûcation of [GJLP2,_eorem 3.8].

Proposition 2.5 Let limn→∞(An = ⊕
tn
i=1 M[n , i](C(Xn , i)), ϕn ,m) be AH inductive

limit with the ideal property, with Xn , i being {pt}, [0, 1], S1 , TII ,k , TIII ,k , or S2. Let
B =⊕s

i=1 B
i , where B i = M l i (C(Yi)), with Yi being {pt}, [0, 1], S1, or TII ,k , (no TIII ,k

or S2) or B i = M l i (Ik i ) (a dimension-drop C∗-algebra). Suppose that

G̃(=⊕ G̃ i
) ⊂ G(=⊕G i

) ⊂ B(=⊕B i
),

is a ûnite set, ε1 is a positive numberwith ω(G̃ i) < ε1, if Yi = TII ,k , and L is any positive
integer. Let α∶B → An be any homomorphism. Denote

α(1B) ∶= R(=⊕R i
) ∈ An(=⊕Ai

n).

Let F ⊂ RAnR be any ûnite set and let ε < ε1 be any positive number. It follows that
there are Am , andmutually orthogonal projections Q0 ,Q1 ,Q2 ∈ Am with

ϕn ,m(R) = Q0 + Q1 + Q2 ,

a unital map θ0 ∈ Map(RAnR,Q0AmQ0)1, two unital homomorphisms

θ1 ∈ Hom(RAnR,Q1AmQ1)1 and ξ ∈ Hom(RAnR,Q2AmQ2)1

such that:
(i) ∥ ϕn ,m( f ) − (θ0( f )⊕ θ1( f )⊕ ξ( f )) ∥< ε, for all f ∈ F;
(ii) there is a unital homomorphism

α1∶B Ð→ (Q0 + Q1)Am(Q0 + Q1),

such that

∥α1(g) − (θ0 + θ1) ○ α(g)∥ < 3ε1 ∀g ∈ G̃ i , if B i is of form M●(TII ,k),

∥α1(g) − (θ0 + θ1) ○ α(g)∥ < ε, ∀g ∈ G i , if B i is not of the form ●(TII ,k);

(iii) θ0 is F-ε multiplicative and θ1 satisûes

θ i , j
1 ([e]) ⩾ L ⋅ [θ i , j

0 (R i
)].

(iv) ξ factors through a C∗-algebra C, which is a direct sum of matrix algebras over
C[0, 1], as

ξ∶RAnR
ξ1
Ð→ C

ξ2
Ð→ Q2AmQ2 .
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Proposition 2.6 Let limn→∞(An = ⊕
tn
i=1 M[n , i](C(Xn , i)), ϕn ,m) be an AH induc-

tive limit with the ideal property, with Xn , i being {pt}, [0, 1], S1 , TII ,k , TIII ,k , or S2. Let
B =⊕s

i=1 B
i , where B i = M l i (C(Yi)), with Yi being {pt}, [0, 1], S1, or TII ,k , (no TIII ,k

or S2) or B i = M l i (Ik i ) (a dimension-drop C∗-algebra). Suppose that

G̃(=⊕ G̃ i
) ⊂ G(=⊕G i

) ⊂ B(=⊕B i
),

is a ûnite set, ε1 is a positive number with ω(G̃ i) < ε1, if Yi = TII ,k , and L > 0 is any
positive integer. Let α∶B → An be any homomorphism. Let F ⊂ An be any ûnite set and
ε < ε1 be any positive number. It follows that there are Am and mutually orthogonal
projections P,Q ∈ Am with ϕn ,m(1An) = P + Q, a unital map θ ∈ Map(An , PAmP)1,
and a unital homomorphism ξ ∈ Hom(An ,QAmQ)1 such that:
(i) ∥ ϕn ,m( f ) − (θ( f )⊕ ξ( f )) ∥< ε, for all f ∈ F;
(ii) there is a homomorphism α1∶B → PAmP such that

∥α i , j
1 (g) − (θ ○ α)i , j

(g)∥ < 3ε1 ∀g ∈ G̃ i , if B i is of the form M●(C(TII ,k)),

∥α i , j
1 (g) − (θ ○ α)i , j

(g)∥ < ε ∀g ∈ G i , if B i is not of the form M●(C(TII ,k));

(iii) ω(θ(F)) < ε and θ is F-ε multiplicative;
(iv) ξ factors through a C∗-algebra C, which is a direct sum of matrix algebras over

C[0, 1] or C, as

ξ∶An
ξ1
Ð→ C

ξ2
Ð→ QAmQ .

_e proof is similar to Proposition 2.5 and is omitted.

2.4 Let α∶Z → Z/k1Z be the group homomorphism deûned by α(1) = [1], where the
right-hand side is the equivalent class [1] of 1 in Z/k1Z. _en it is well known from
homological algebra that for the group Z/kZ, α induces a surjectivemap

α∗∶Ext(Z/kZ,Z)(= Z/kZ)Ð→ Ext(Z/kZ,Z/k1Z)(= Z/(k, k1)Z),

where (k, k1) is the greatest common factor of k and k1.
Recall, as in [DN], for two connected ûnite simplicial complexes X and Y , we

use kk(Y , X) to denote the group of equivalent classes of homomorphisms from
C0(X/{pt}) to C0(Y/{pt})⊗K(H). Please see [DN] for details.

Lemma 2.7 (i) Any unital homomorphism

ϕ∶C(TII ,k)Ð→ M●(C(TIII ,k1)),

is homotopy equivalent to unital homomorphism ψ factor as

C(TII ,k)
ψ1
Ð→ C(S1

)
ψ2
Ð→ M●(C(TIII ,k1)).

(ii) Any unital homomorphism ϕ∶C(TII ,k) → PM●(C(S2))P is homotopy equiva-
lent to unital homomorphism ψ factor as

C(TII ,k)
ψ1
Ð→ C

ψ2
Ð→ PM●(C(S2

))P.
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Proof Part (ii) is well known (see [EG2, chapter 3]). To prove part (i), we note that

KK(C0(S1
/{1}),C0(TIII ,k1/{x1}) = kk(TIII ,k1 , S

1
) = Z/k1Z = Hom(Z,Z/k1Z)) ,

where x1 ∈ TIII ,k1 is a base point. _e map α∶Z → Z/k1Z in 2.4 can be induced by a
homomorphism: ψ2∶C(S1)→ M●(C(TIII ,k)).

Let

[ϕ] ∈ kk(TIII ,k1 TII ,k) = Ext(K0(C0(TII ,k/{x0})),K1(C0(TIII ,k))),

be the element induced by homomorphism ϕ, where {x0} is the base point. By 2.4,

[ϕ] = β × [ψ2], for β ∈ kk(S1 , TII ,k) = Ext(K0(C(TII ,k/{x0})),K1(C(S1
))) ,

on the other hand β can be realized by unital homomorphism

ψ1∶C(TII ,k)Ð→ C(S1
)

(see [EG2, section 3]).

_e following result is amodiûcation of [GJLP2,_eorem 3.12].

_eorem 2.8 Let B1 =⊕
s
i=1 B

i
1 , each B

i is either matrix algebras over {pt}, [0, 1], S1

or {TII ,k}
∞
k=2 or dimension-drop algebras. Let ε1 > 0 and let

G̃1(=⊕ G̃ i
1) ⊂ G1(=⊕G i

1) ⊂ B1(=⊕B i
1)

be a ûnite set with ω(G i
1) < ε1 for B

i
1 = M●(C(TII ,k)).

Let A = MN(C(X)), where X is one of {pt}, [0, 1], S1 , {TII ,k}
∞
k=2 , {TIII ,k}

∞
k=2, and

S2. Let α1∶B1 → A be a homomorphism. Let F1 ⊂ A be a ûnite set and let ε(< ε1) and δ
be any positive number. _en there exists a commutative diagram

A

β

  

ϕ // A′

B1

α1

OO

ψ // B2 ,

α2

OO

where A′ = MK(A), and B2 is as follows.
● If X = TIII ,k , then B2 is a direct sum of a ûnite dimensional C∗-algebra and a dimen-

sion-drop algebra.
● If X = S2, then B2 is a ûnite dimensional algebra
● If Xi is one of {pt}, [0, 1], S1 , andTII ,k , then B2 = M●(A).
Furthermore, the diagram satisûes the following conditions:

(i) ψ is a homomorphism, α2 is a unital injective homomorphism, and ϕ is a unital
simple embedding;

(ii) β ∈ Map(A, B2)1 is F1-δ multiplicative;
(iii) if B i

1 is of the form M●(C(TII ,k)), then

∥ ψ(g) − β ○ α1(g) ∥< 10ε1 , ∀g ∈ G̃ i
1 ;
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and if B i
1 is not of the form M●(C(TII ,k)), then

∥ ψ(g) − β ○ α1(g) ∥< ε, ∀g ∈ G i
1 ;

(iv) if X = TII ,k , then ω(β(F1) ∪ ψ(G1)) < ε.

(Note that we only require that the weak variation of ûnite sets in M●(C(TII ,k) to be
small. In particular, we do not need to introduce the concept of weak variation for a
ûnite subset of a dimension-drop algebra.)

Proof For X = TII ,k , {pt}, [0, 1] or S1, one can choose B2 = MK(A) = A′ and let the
homomorphism ϕ = β∶A→ B2 be a simple embedding such that

ω(β(F1) ∪ α1(G1))) < ε.

_is can be done by choosingK large enough. Chooseψ = β○α1, and α2 = id∶B2 → A′.
For the case X = TIII ,k , or S2, requirement (iv) is an empty requirement.
We will deal with each block of B1 separately. For the block B i

1 other than
M●(C(TII ,k), the construction can be done easily by using Lemma 2.4, since B i

1 is
stably generated, which implies that any suõciently multiplicative map from B i

1 is
close to a homomorphism. So we assume that B i

1 = M●(C(TII ,k). Recall that we
already assumed A is of the form M●(C(TIII ,k)) or M●(C(S2). By Lemma 2.7, the
homomorphism α1∶B i

1 → A is a homotopy to α′∶B i
1 → A with α′(1B i

1
) = α1(1B i

1
) and

α′ factor as

B i
1

ξ1
Ð→ C

ξ2
Ð→ A,

where C is a ûnite dimensional C∗-algebra for the case X = S2 or C = M●(C(S1) for
the case X = TIII ,k (note that B i

1 = M●(C(TII ,k)). Since C is stably generated, there is
a ûnite set E1 ⊂ A and δ1 > 0 such that if a complete positive map β∶A → D (for any
C∗-algebra D) is E1-δ1 multiplicative, then the map β ○ ξ2∶C → D can be perturbed
to a homomorphism ξ̃∶C → D such that

∥ξ̃(g) − β ○ ξ2(g)∥ < ε1 , for all g ∈ ξ1(G̃ i
1).

Apply [G5,_eorem 1.6.9] to two homotopic homomorphism

α1 , α′∶B i
1 Ð→ A, and G i

1 ⊂ B
i
1 ,

which is approximately constant to within ε1, to obtain a ûnite set E2 ⊂ A, δ2 > 0 and
positive integer L′ > 0 (in places ofG , δ and L in [G5,_eorem 1.6.9]). Apply Lemma
2.4 to the set Ẽ = E1 ∪ E2 ∪ F1 and δ̃ = 1

3 min(ε, δ, δ1 , δ2) to obtain the commutative
diagram

A
ϕ′ //

β′

!!

ML1(A)

B′

ι

OO
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with β′ being Ẽ-δ̃ multiplicative and

∥ ι ○ β′( f ) − ϕ′( f ) ∥< δ̃, for all f ∈ Ẽ .

Let L = L′ ⋅ rank(1A) and let β1∶A → ML(B′) be any unital homomorphism deûned
by point evaluation. _en by [G5,_eorem 1.6.9], there is a unitary u ∈ ML+1(B) such
that

∥u((β′ ⊕ β1) ○ α′( f ))u∗ − (β′ ⊕ β1) ○ α1( f )∥ < 8ε1 , ∀ f ∈ G̃ i
1 .

By the choice of E1, there is a homomorphism ξ̃∶C → ML+1(B′), such that

∥ ξ̃( f ) − u((β′ ⊕ β) ○ ξ2( f ))u∗∥ < ε1 , for all f ∈ ξ1(G̃ i
1).

Deûne B2 = ML+1(B′),K = L1(L + 1),A′ = MK(A) = ML+1(ML1(A)),

ψ∶B i
1 Ð→ B2 by ψ = ξ̃ ○ ξ1∶B i

1
ξ1
Ð→ C

ξ̃
Ð→ B2 ,

β∶AÐ→ ML+1(B′) by β = β′ ⊕ β1 ,

ϕ∶AÐ→ ML+1(ML1(A)) by ϕ = ϕ′ ⊕ ((ι ⊗ idL) ○ β1)

(note that β1 is a homomorphism) to ûnish the proof.

2.5 Recall that for A = ⊕
t
i=1 Mk i (C(X i)), where X i are path connected simplicial com-

plexes, we use the notation r(A) to denote⊕t
i=1 Mk i (C), which could be considered

to be the subalgebra consisting of all t-tuples of constant function from X i to Mk i (C)

(i = 1, 2, . . . , t). Fixed a base point x0i ∈ X i for each X i , one deûnes amap r∶A→ r(A)
by

r( f1 , f2 , . . . , ft) = ( f1(x01 ), f2(x
0
2), . . . , ft(x

0
t )) ∈ r(A).

We have the following corollary.

Corollary 2.9 Let B1 =⊕B
j
1 , where B j

1 is either of the form Mk( j)(C(X j)), with X j

being one of {pt}, [0, 1], S1, {TII ,k}
∞
k=2 or B j

1 = Mk( j)(I l( j)). Let α1;B1 → Abe a homo-
morphism, where A is a direct sum of matrix algebras over {pt}, [0, 1], S1 , {TII ,k}

∞
k=2,

{TIII ,k}
∞
k=2, and S2. Let ε1 > 0 and let

Ẽ(=⊕ Ẽ i
) ⊂ E(=⊕ E i

) ⊂ B1(=⊕B i
1)

be two ûnite subsets with the condition

ω(Ẽ i
) < ε1 , if B i

1 = M●(C(Yi)) with Yi ∈ {TII ,k}
∞
k=2 .

Let F ⊂ A be any ûnite set, ε2 > 0, δ > 0. _en there exists a commutative diagram

A

β⊕r

""

ϕ⊕r // A′ ⊕ r(A)

B1

α1

OO

ψ⊕(r○α1) // B2 ⊕ r(A),

α2⊕id

OO
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where A′ = ML(A), and B2 is a direct sum of matrix algebras over spaces {pt}, [0, 1],
S1, {TII ,k}

∞
k=2, and dimension-drop algebras, with the following properties:

(i) ψ is a homomorphism, α2 is a injective homomorphism, and ϕ is a unital simple
embedding;

(ii) β ∈ Map(A, B2)1 is F1-δ multiplicative;
(iii) for g ∈ Ẽ i with B i

1 = M●(C(X i)), X i ∈ {TII ,k}
∞
k=2, we have

∥(β ⊕ r)(g) − (ψ ⊕ (r ○ α1))(g)∥ ⩽ 10ε1 ,

for g ∈ E i(⊃ Ẽ i) where B i
1 is not of the form M●(C(TII ,k)), we have

∥(β ⊕ r)(g) − (ψ ⊕ (r ○ α1))(g)∥ < ε1 ,

and for f ∈ F, we have

∥(α2 ⊕ id) ○ (β ⊕ r)( f ) − (ϕ ⊕ r)( f )∥ < ε1;

(iv) for B i
2 of the form M●(C(TII ,k)),

ω(π i(β(F) ∪ ψ(E))) < ε2 ,

where π i is the canonical projection from B2 to B i
2.

Remark In the application of this corollary, we will denote themap β⊕ r by β and
ψ ⊕ (r ○ α1) by ψ.

3 Proof of the Main Theorem

In this section, we prove the following main theorem.

_eorem 3.1 Suppose lim(An = ⊕
tn
i=1 M[n , i](C(Xn , i)), ϕn ,m) is an AH inductive

limitwith Xn , i being among the spaces {pt}, [0, 1], S1 , {TII ,k}
∞
k=2, and {TIII ,k}

∞
k=2, such

that the limit algebra A has the ideal property. _en there is another inductive system,
Bn = ⊕B i

n ,ψn ,m , with same limit algebra, where each B i
n is either M[n , i]′(C(Yn , i))

with Yn , i being one of {pt}, [0, 1], S1 , {TII ,k}
∞
k=2 (but without TIII ,k and S2), or B i

n is
the dimension-drop algebraM[n , i]′(Ik(n , i)).

Proof Let ε1 > ε2 > ε3 > ⋅ ⋅ ⋅ be a sequence of positive numberswith∑ εn < +∞. We
need to construct the intertwining commutative diagram
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F1 F2 Fn Fn+1

⋂ ⋂ ⋂ ⋂

As(1)
β1

''

ϕs(1),s(2) // As(2)
β2

''

ϕs(2),s(3) // ⋅ ⋅ ⋅ // As(n)
βn

((

ϕs(n),s(n+1)// As(n+1) //

''

⋅ ⋅ ⋅

B1
ψ1,2 //

α1
OO

B2

α2
OO

ψ2,3 // ⋅ ⋅ ⋅ // Bn
ψn ,n+1 //

αn
OO

Bn+1

αn+1
OO

// ⋅ ⋅ ⋅

⋃ ⋃ ⋃ ⋃

E1 E2 En En+1

⋃ ⋃ ⋃ ⋃

Ẽ1 Ẽ2 Ẽn Ẽn+1

satisfying the following conditions.
(a) (As(n) , ϕs(n),s(m)) is a sub-inductive system of (An , ϕn ,m), (Bn ,ψn ,m) is an

inductive system of direct sum ofmatrix algebras over the spaces {pt}, [0, 1], S1 , TII ,k
and dimension drop algebra M●(Ik(n , i)).

(b) Choose {a i , j}
∞
j=1 ⊂ As(i) and {b i , j}

∞
j=1 ⊂ B i to be countable dense subsets

of unit balls of As(i) and B i , respectively. Fn are subsets of unit balls of As(n), and
Ẽn ⊂ En are both subsets of unit balls of Bn satisfying

ϕs(n),s(n+1)(Fn) ∪ αn+1(En+1) ∪
n+1
⋃
i=1

ϕs(i),s(n+1)({a i1 , a i2 , . . . , a in+1}) ⊂ Fn+1 ,

ψn ,n+1(En) ∪ βn(Fn) ⊂ Ẽn+1 ⊂ En+1 ,
n+1
⋃
i=1

ψ i ,n+1({b i1 , b i2 , . . . , b in+1}) ⊂ En+1 .

(Here ϕn ,n ∶An → An , and ψn ,n ∶Bn → Bn are understood as identity maps.)
(c) βn are Fn-2εn multiplicative and αn are homomorphism.
(d) For all g ∈ Ẽn ,

∥ψn ,n+1(g) − βn ○ αn(g)∥ < 14εn ,

and for all f ∈ Fn ,

∥ϕs(n),s(n+1)( f ) − αn+1 ○ βn( f )∥ < 14εn .

(e) For any block B i
n with spectrumTII ,k ,wehaveω(Ẽ i

n) < εn ,where Ẽ i
n = π i(Ẽn)

for π i ∶Bn → B i
n the canonical projections.

_e diagram will be constructed inductively. First, let B1 = {0},As(1) = A1 , α1 = 0.
Let b1 j = 0 ∈ B1 for j = 1, 2, . . . , and let {a1 j}∞j=1 be a countable dense subset of
the unit ball of As(1). And let Ẽ1 = E1 = {b11} = B1 and F1 = ⊕

t1
i=1 F

i
1 , where F i

1 =

π i({a11}) ⊂ Ai
1.
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As inductive assumption, assume that we already have the commutative diagram

F1 F2 Fn

⋂ ⋂ ⋂

As(1)
β1

))

ϕs(1),s(2) // As(2)
β2

))

ϕs(2),s(3) // ⋅ ⋅ ⋅ //
βn−1

))

As(n)

B1
ψ1,2 //

α1
OO

B2

α2
OO

ψ2,3 // ⋅ ⋅ ⋅ // Bn

αn
OO

⋃ ⋃ ⋃

E1 E2 En

⋃ ⋃ ⋃

Ẽ1 Ẽ2 Ẽn

and for each i = 1, 2, . . . , n, we have dense subsets {a i j}
∞
j=1 of the unit ball of As(i)

and {b i j}
∞
j=1 of the unit ball of B i , satisfying conditions (a)–(e) above. We have to

construct the next piece of the diagram

Fn ⊂ As(n)
ϕs(n),s(n+1) //

βn

%%

As(n+1) ⊃ Fn+1

Ẽn ⊂ En ⊂ Bn

αn

OO

ψn ,n+1
// Bn+1 ⊃ En+1 ⊃ Ẽn+1

αn+1

OO

to satisfy conditions (a)–(e).
Among the conditions for induction assumption, we will only use the conditions

that αn is a homomorphism and (e) above.

Step 1. We enlarge Ẽn to ⊕i π i(Ẽ i
n) and enlarge En to ⊕i π i(En). _en we have

Ẽn(=⊕ Ẽ i
n) ⊂ En(=⊕ En), and for each B i

n with spectrum TII ,k ,we haveω(E i
n) < εn

from induction assumption (e). By Proposition 2.6 applied to αn ∶Bn → As(n) , Ẽn ⊂

En ⊂ Bn , Fn ⊂ As(n) and εn > 0, there are Am1(m1 > s(n)), two orthogonal pro-
jections P0 , P1 ∈ Am1 with ϕs(n),m1(1As(n)) = P0 + P1 and P0 trivial, a C∗-algebra
C, that is, a direct sum of matrix algebras over C[0, 1] or C, and a unital map
θ ∈ Map(As(n) , P0Am1P0)1, a unital homomorphism ξ1 ∈ Hom(As(n) ,C)1, a unital
homomorphism ξ2 ∈ Hom(C , P1Am1P1)1 such that
(1.1) ∥ϕs(n),m1( f ) − θ( f )⊕ (ξ2 ○ ξ1)( f )∥ < εn for all f ∈ Fn .
(1.2) θ is Fn-ε multiplicative and F ∶= θ(Fn) satisûes ω(F) < εn .
(1.3) ∥α(g) − θ ○ αn(g)∥ < 3εn for all g ∈ Ẽn .

Let all the blocks of C be parts of the C∗-algebra Bn+1. _at is,

Bn+1 = C ⊕ (some other blocks).
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_e map βn ∶As(n) → Bn+1, and the homomorphism ψn ,n+1∶Bn → Bn+1 are deûned
by βn = ξ1∶As(n) → C(⊂ Bn+1) and ψn ,n+1 = ξ1 ○ αn ∶Bn → C(⊂ Bn+1) for the blocks
of C(⊂ Bn+1). For this part, βn is also a homomorphism.

Step 2. Let A = P0Am1P0 , F = θ(Fn). Since P0 is a trivial projection,

A ≅⊕M l i (C(Xm1 , i)).

Let r(A) ∶= ⊕M l i (C) and r∶A → r(A) be as in 2.13. Applying Corollary 2.9 and its
remark to α∶Bn → A, Ẽn ⊂ En ⊂ Bn and F ⊂ A, we obtain the commutative diagram

A
ϕ⊕r //

β

##

ML(A)⊕ r(A)

Bn
ψ //

α

OO

B

α′

OO

such that
(2.1) B is a direct sum of matrix algebras over {pt}, [0, 1], S1 , TII ,k and dimension-

drop algebras;
(2.2) α′ is an injective homomorphism and β is F-εn multiplicative;
(2.3) ϕ∶A→ ML(A) is a unital simple embedding and r∶A→ r(A) is as in 2.13;
(2.4) ∥β ○ α(g) − ψ(g)∥ < 10εn for all g ∈ Ẽn and ∥(ϕ ⊕ r)( f ) − α′ ○ β( f )∥ < εn for

all f ∈ F(∶= θ(Fn));
(2.5) ω(π i(ψ(En))∪ β(F)) < εn+1 (note that β(F) = β ○ θ(Fn)), for B i

n being of the
form M●(C(X)) with X ∈ {TII ,k}

∞
k=2.

Let all the blocks B be also part of Bn+1, that is,

Bn+1 = C ⊕ B ⊕ (some other blocks).

_emaps βn ∶As(n) → Bn+1 ,ψn ,n+1∶Bn → Bn+1 are deûned by

βn ∶= β ○ θ∶As(n)
θ
Ð→ A

β
Ð→ B(⊂ Bn+1),

ψn ,n+1 ∶= ψ∶Bn → B(⊂ Bn+1),

for the blocks of B(⊂ Bn+1). _is part of βn is Fn-2εn multiplicative, since θ is Fn-εn
multiplicative, β is F-εn multiplicative, and F = θ(Fn).

Step 3. By [GJLP2, Lemma 3.15] applied to ϕ⊕ r∶A→ ML(A)⊕ r(A), there is an Am2

and there is a unital homomorphism

λ∶ML(A)⊕ r(A)Ð→ RAm2R,
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where R = ϕm1 ,m2(P0) (write R as⊕ j R j ∈⊕ j A
j
m) such that the diagram

A(= P0AmP0)
ϕm1 ,m2 //

ϕ⊕r

&&

RAm2R

ML(A)⊕ r(A)

λ

OO

satisûes the following condition:
(3.1) λ ○ (ϕ ⊕ r) is homotopy equivalent to ϕ′ ∶= ϕm1 ,m2 ∣A.

Step 4. Applying [G5,_eorem 1.6.9] to ûnite set F ⊂ A (with ω(F) < εn) and to two
homotopic homomorphisms ϕ′ and λ ○ (ϕ ⊕ r)∶A → RAm2R (with RAm2R in place
of C in [G5, _eorem 1.6.9]), we obtain a ûnite set F′ ⊂ RAm2R, δ > 0 and L > 0 as
in _eorem 3.1.

Let G = ⊕ π i(ψ(En) ∪ β(F)) = ⊕G i . _en by (2.5), we have ω(G i) < εn+1, if B i

is of the form M●(C(TII ,k)). By Proposition 2.5 applied to RAm2R and

λ ○ α′∶B Ð→ RAm2R,

ûnite set G ⊂ B, F′ ∪ (ϕm1m2 ∣A (F)) ∈ RAm2R, min(εn , δ) > 0 (in place of ε) and
L > 0, there are As(n+1), mutually orthogonal projections Q0 ,Q1 ,Q2 ∈ As(n+1) with
ϕm2 ,s(n+1)(R) = Q0 ⊕ Q1 ⊕ Q2, a C∗-algebra D,a direct sum of matrix algebras over
C[0,1] or C, a unital map θ0 ∈ Map(RAm2R,Q0As(n+1)Q0), and four unital homo-
morphisms

θ1 ∈ Hom(RAm2R,Q1As(n+1)Q1)1 , ξ3 ∈ Hom(RAm2R,D)1 ,

ξ4 ∈ Hom(D,Q2As(n+1)Q2)1 , α′′ ∈ Hom(B, (Q0 + Q1)As(n+1)(Q0 + Q1))1

such that the following are true:
(4.1) ∥ϕm2 ,s(n+1)( f )−((θ0+θ1)⊕ξ4○ξ3)( f )∥ < εn , for all f ∈ ϕm1 ,m2 ∣A(F) ⊂ RAm2R.
(4.2) ∥α′′(g) − (θ0 + θ1) ○ λ ○ α′(g)∥ < 3εn+1 < 3εn , ∀ g ∈ G.
(4.3) θ0 is F′-min(εn , δ) multiplicative and θ1 satisûes that

θ i , j
1 ([q]) > L ⋅ [θ i , j

0 (R i
)],

for any non zero projection q ∈ R iAm1R
i .

By [G5, _eorem 1.6.9], there is a unitary u ∈ (Q0 ⊕ Q1)As(n+1)(Q0 + Q1) such
that

∥(θ0 + θ1) ○ ϕ′( f ) −Adu ○ (θ0 + θ1) ○ λ ○ (ϕ ⊕ r)( f )∥ < 8εn ,
for all f ∈ F.
Combining with the second inequality of (2.4), we have

(4.4) ∥(θ0 + θ1) ○ ϕ′( f ) −Adu ○ (θ0 + θ1) ○ λ ○ α′ ○ β( f )∥ < 9εn for all f ∈ F.

Step 5. Finally let all blocks of D be the rest of Bn+1. Namely, let

Bn+1 = C ⊕ B ⊕ D,
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where C is from Step 1, B is from Step 2, and D is from Step 4.
We already have the deûnition of βn ∶As(n) → Bn+1 andψn ,n+1∶Bn → Bn+1 for those

blocks of C ⊕ B ⊂ Bn+1 (from Step 1 and Step 2). _e deûnition of βn and ψn ,n+1 for
blocks of D and the homomorphism αn+1∶C ⊕ B ⊕ D → As(n+1) will be given below.

_e part of βn ∶As(n) → D(⊂ Bn+1) is deûned by

βn = ξ3 ○ ϕ′ ○ θ∶As(n)
θ
ÐÐ→ A

ϕ
ÐÐ→ RAm2R

ξ3
ÐÐ→ D.

(Recall that A = P0Am2P0 and ϕ′ = ϕm1 ,m2 ∣A.) Since θ is Fn-εn multiplicative, and ϕ′

and ξ3 are homomorphism, we know this part of βn is Fn-εn multiplicative.
_e part of ψn ,n+1∶Bn → D(⊂ Bn+1) is deûned by

ψn ,n+1 = ξ3 ○ ϕ′ ○ α∶Bn
α
ÐÐ→ A

ϕ′
ÐÐ→ RAmR

ξ3
ÐÐ→ D,

which is a homomorphism.
_e homomorphism αn+1∶C ⊕ B ⊕ D → As(n+1) is deûned as follows.
Let ϕ′′ = ϕm1 ,s(n+1)∣P1Am1 P1 ∶ P1Am1P1 → ϕm1 ,s(n+1)(P1)As(n+1)ϕm1 ,s(n+1)(P1),where

P1 is from Step 1. Deûne

αn+1∣C = ϕ′′ ○ ξ2∶C
ξ2
ÐÐ→ P1Am1P1

ϕ′′
ÐÐ→ ϕm1 ,s(n+1)(P1)As(n+1)ϕm1 ,s(n+1)(P1),

where ξ2 is from Step 1, and deûne

αn+1∣B = Adu○α′′∶B
α′′
ÐÐ→ (Q0⊕Q1)As(n+1)(Q0+Q1)

Adu
ÐÐ→ (Q0⊕Q1)As(n+1)(Q0+Q1)

where α′′ is from Step 4, and deûne

αn+1∣D = ξ4∶D → Q2As(n+1)Q2 .

Finally choose {an+1, j}
∞
j=1 ⊂ As(n+1) and {bn+1, j}

∞
j=1 ⊂ Bn+1 to be countable dense

subsets of the unit balls of As(n+1) and Bn+1, respectively, and choose

F′n+1 = ϕs(n),s(n+1)(Fn) ∪ αn+1(En+1) ∪
n+1
⋃
i=1

ϕs(i),s(n+1)({a i1 , a i2 , . . . , a in+1}),

E′n+1 = ψn ,n+1(En) ∪ βn(Fn) ∪
n+1
⋃
i=1

ψ i ,n+1({b i1 , b i2 , . . . , b in+1}),

Ẽn+1
′
= ψn ,n+1(En) ∪ βn(Fn) ⊂ En+1

′ .

Deûne F i
n+1 = π i(Fn+1

′) and Fn+1 = ⊕i F i
n+1, E

i
n+1 = π i(E′n+1) and En+1 = ⊕i E i

n+1.
For those blocks B i

n+1 inside the algebra B deûne Ẽ i
n+1 = π i(Ẽn+1). For those blocks

insideC andD, deûne Ẽ i
n+1 = E

i
n+1. And ûnally let En+1 =⊕i Ẽ i

n+1. Note all the blocks
with spectrum TII ,k are in B, and (2.5) tells us that for those blocks ω(Ẽ i

n+1) < εn+1.
_us we obtain the commutative diagram

Fn ⊂ As(n)
ϕs(n),s(n+1) //

βn

%%

As(n+1) ⊃ Fn+1

Ẽn ⊂ En ⊂ Bn

αn

OO

ψn ,n+1
// Bn ⊃ En+1 ⊃ Ẽn+1 .

αn+1

OO
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Step 6. Now we need to verify conditions (a)–(e) for the above diagram.
From the end of Step 5,we know that (e) holds; (a)–(b) hold from the construction

(see the construction of B,C ,D in Steps 1, 2 and 4, and Ẽn+1 ⊂ En+1 , Fn+1 is the end of
Step 5); (c) follows from the end of Step 1, the end of Step 2 and the part of deûnition
of βn for D from Step 5.

So we only need to verify (d).
Combining (1.1) with (4.1), we have

∥ϕs(n),s(n+1)( f ) − [(ϕ′′ ○ ξ2 ○ ξ1)⊕ (θ0 + θ1) ○ ϕ′ ○ θ ⊕ (ξ4 ○ ξ3 ○ ϕ′ ○ θ)( f )]( f )∥
< εn + εn = 2εn

for all f ∈ Fn (recall that ϕ′′ = ϕm1 ,s(n+1)∣P1Am1 P1 , ϕ
′ ∶= ϕm1 ,m2 ∣P0Am1 Po ).

Combinedwith (4.2), (4.4), and the deûnitions of βn and αn+1, the above inequality
yields

∥ϕs(n),s(n+1)( f ) − (αn+1 ○ βn+1)( f )∥ < 9εn + 3εn + 2εn = 14εn , ∀ f ∈ Fn .

Combining (1.3), the ûrst inequality of (2.4), and the deûnition of βn and ψn ,n+1, we
have

∥ψn ,n+1(g) − (βn ○ αn)(g)∥ < 10εn + 3εn < 14εn , ∀ g ∈ Ẽn .
So we obtain (d). _e theorem follows from [GJLP2, Proposition 4.1].

Note that if q ∈ M l(Ik), then qMk(Ik)q isomorphic to M l1(Ik). Combining with
themain theoremof [GJLP2] (see [GJLP2,_eorem4.2, and 2.7])we have the follow-
ing theorem.

_eorem 3.2 Suppose that A = lim(An =⊕ Pn , iM[n , i](C(Xn , i))Pn , i) is an AH in-
ductive limitwith dim(Xn , i) ⩽ M for a ûxed positive integerM such that limit algebra A
has the ideal property. _en A can be rewrite as inductive limit lim(Bn =⊕B i

n ,ψn ,m),
where either B i

n = Qn , iM[n , i]′(C(Yn , i))Qn , i with Yn , i being one of the spaces {pt},
[0, 1], S1, {TII ,k}

∞
k=2, or B

i
n = M[n , i]′(I l(n , i)) a dimension-drop algebra.
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