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STABILITY FOR SOME EQUATIONS OF
MATHEMATICAL BIOLOGY AND MONOTONE FLOWS

IGOR V. FOMENKO

The theory of monotone flows and operators is applied to study stable equilibria
of autonomous cooperative systems and stable periodic solutions of periodic per-
turbations of these systems. The connection between analyticity and the property
of asymptotic stability is established.

The purpose of this paper is to apply the theory of monotone flows and operators
recently developed in [5, 9, 2] to some systems of mathematical biology. We shall study
the existence of (asymptotically) stable equilibria for cooperative autonomous systems
and the existence of (asymptotically) stable periodic solutions for their perturbations.

Before describing these systems we present one result for strongly monotone flows,
which gives an answer to the following question.

On the one hand, it is well known [9, 2] that the result on the existence of a stable
fixed point of a strongly monotone operator in an order interval may be extended to
the existence of an asymptotically stable fixed point under the additional assumption
of analyticity of this operator. On the other hand, the existence of stable equilibria in
attractors of strongly monotone flows was obtained in [5]. What is the connection of
existence of an asymptotically stable equilibrium and analyticity for strongly monotone
flows?

1. ASYMPTOTICALLY STABLE EQUILIBRIA IN STRONGLY MONOTONE FLOWS

We use notations and definitions of [5]. Let ^ be a strongly monotone flow in
fi C R". The set fi is open and if pi,p2 C f2, pi < pi then

It follows from [5] that every attractor K for this flow contains a stable equilibrium.

THEOREM 1 . Let the flow <f> be analytic. If there exists an attractor K then the
flow <j> has at least one asymptotically stable equilibrium.
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2. MODELS

Many mathematical models in the biological sciences lead to the study of systems
of differential equations

which have special properties.

We consider the following hypotheses.

HI. System (1) is dissipative (see [3]).
H2. System (1) is cooperative. This means

dFi . . w „ ,
- — $ : 0 ( i / j ; « , ; = l n ) ( i e int R").

We also require that the Jacobian matrix [(dFi)/(dxj)] is irreducible for x G int R"
(see [5]).

H3. System (1) is a uniformly persistent system (see [1]).
H4. The functions Ft are analytic in irit R".

THEOREM 2 . Suppose (H1)-(H3) hold. Then system (1) has at least one stable
equilibrium in int R™. If in addition the assumption H4 holds then system (1) has at
least one asymptotically stable equilibrium x» G int R™.

Let

(2) ^-=xi(Fi(x)+e<Pi(t,x))> (xeRl)

be the periodic perturbed system for the system (1).

H5. The vector-function (p(t,x) — (<pi(t,x),<p2(ttx),... ,<pn(t,x)) is smooth,

periodic in t of period w

<p{t +u,x) = (p{t,x).

Instead of hypothesis H2 we consider a stronger condition.

We also consider

H7. The vector-function <p(t, x) is analytic.

THEOREM 3 . Suppose HI, H3, H5, H6. Then there exists e0 > 0 such that for

e G (0,£0] system (2) has at least one stable v-periodic solution x(t,e) G in<R".

THEOREM 4 . Suppose HI, (H3)-(H6) hold. Let z» G intRIJ. be an asymptoti-
cally stable equilibrum of system (1), which exists by Theorem 1. Then for each 6 > 0
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there exists e(6) > 0 such that for each e G (0,e(6)] system (2) has a stable u-periodic

solution x(t ,e) and the inequality

(3) ||*(*,e)-*.||<*

holds.

THEOREM 5 . Let the conditions of Theorem 4 and H7 hold. Then for each 6 > 0
there exists e(S) > 0 such that for each e € (Q,e(6)] system (2) has an asymptotically
stable w-periodic solution x{t, e) and the inequality (3) holds.

3. PROOFS

We consider K™ as the semiordered space with cone R" (see [7]). We use the
terminology of semiordered spaces

x^y&x-ye R , x » y < ^

For points x_ >C a;+ the set

[*-,*+] = {p\ x- ^ p

is called the order interval.
The operator A is a strongly monotone operator if for every two points x\ ̂  X2

belonging to its domain the inequality

x\ > x2

implies Axi 3> Ax^.

DEFINITION: Let x» be a fixed point of the operator A. Let the operator A be
defined in some neighbourhood of the point x«. The point x» is called a stable fixed
point of the operator A if for each e > 0 there exists a 6 > 0 such that the inequality
|x — x*| < 6 implies the inequality ||.Anx — x*|| < e (n = 1,2,...). If in addition

| |A n x-z» | | ->0 (n->+oo)

for points x from some neighbourhood of the point x» then the point x» is called an
asymptotically stable fixed point.

Proofs of Theorems 1-5 are based on the following statements, which are simple
corollaries of results in [9, 2].
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THEOREM 6. Let the strongly monotone operator A be defined in the order
interval [x-,x+]. Let the inequalities

Ax- > x_, Ax+ < x+

hold. Then the operator A has at least one stable fixed point x* £ [x_,z+].

THEOREM 7. Let the conditions of Theorem 6 hold. Let the operator A be
analytic in some neighbourhood of all its fixed points. Then there exists at least one
asymptotically stable fixed point x* £ [z_,a;+].

PROOF OF THEOREM 1: Let the conditions of Theorem 1 hold. Let Ko be the set
of non-wandering points which belong to K. The set KQ is nonempty. Fix z £ Ko •
There exists a maximal element p\ £ Ko, a minimal element "pi £ Ko, pi ~£ P2- It
follows from [5] that the point pi is an asymptotically upper stable equilibrium and the
point j>2 is an asymptotically lower stable equilibrium. If pi = p2 then the point p\
is an asymptotically stable equilibrium. Suppose pj ^ P2 • Then pi <C P2 because the
flow <f> is strongly monotone. By [5], there exist y2 "C P2, Pi -C yi {yi,V2 £ O) such
that yi(t) —» Pi, yi(t) —* Vi- So there exists T > 0 such that the following inequalities
hold

yi < <f>(T)Vl < P l < p2 < <f>(T)y2 < y2.

Since the operator A = 4>(T) is analytic [8], by Theorem 7, it has an asymptotically
stable fixed point a;» £ [1/1,3/2]- Hence the point x» belongs to the asymptotically stable
periodic solution of system (1). But it is well known [4] that this solution has to be an
equilibrium. Theorem 1 has been proved. U

PROOF OF THEOREM 2: Theorem 2 follows from [5, Theorem 4.1] and Theorem
1 for the attractor

(4) K= j

where A+(x) is the omega limit set of the orbit through x. D

PROOF OF THEOREM 3: Let the maximal element p\ £ Ko and the minimal
element p2 £ Ko, PT. ^ Pi be as in the proof of the Theorem 3. The points pi and p2

are asymptotically upper and lower stable equilibria, respectively.

LEMMA 1. Tiere exist two points x-,x+ £ intR" such that the inequality

(5) x- < <j>(u)x- < p2 < Pi

holds.
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PROOF OF LEMMA 1: We prove the existence of an element x+ such that the
inequality

(6) P l < 4>{w)x+ < x+

holds.

Let O(6o,pi) = {p | | | p ~ Pi| | < ^o} for some So > 0 be a neighbourhood of the
point pi such that for each x G O(S0,Pi) the condition

(7) <f>(t)x - » P l

holds. Krasnoselskii's Theorem about eigenvectors [7] implies the existence of the point
z + G O(S0,pi) n (pi + intR^) such that

<j>{u)x+ = A(x+ - pi) + pi,

where A > 0.
Suppose A ^ 1. Then <j>(w)x+ ^ x+. Since ^(w) is a strongly monotone operator

we have <f>(nw)x+ ^ x+ (n = 1,2,...). This inequality contradicts the condition (7).
Hence the inequality (6) holds.

By the same reasoning the existence of the element x_ may be obtained. D

Let
G { # ) | * 6 [*-,

The set G is compact and G C int R" . Choose a compact set Go C int R.™ such that
G C Go. Choose £i > 0 such that inequalities

>0 (o < ^ ^. « e G, t

hold. Such an ei > 0 exists due to H6.
By the theorem of continuation of solutions [4], there exists £2 G (0,£i] such that

p{i,x,e) G Go (x e [x_,x+], e G (0,ea], * e [0,w]),

where p(t,j!,e) is the solution of system (2), p(0,x,e) = x. Let U(w,e) be the operator
of translation along trajectories of system (2)

U(u,e)x = p{w,x,e) (x G [x-,x+], e E (0,e2], < G [0,w]).

The operator U(w,e) is a strongly monotone operator in [z_,s:+] (see [6]). It
follows from (5) and the theorem of continuation of solutions [4] that there exists an
£0 G (0,£2] for which the inequality

x- < U(u,e)x- < p2 < t^(o;,£)x+ < x+ (EG (0,£0])
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holds. Applying Theorem 6 to [a;_,a;+] and A = U(w,e) (e € (0,eo]) we obtain the
existence of a stable fixed point for the operator U(u,e) (e 6 (O,eo]) in [x— >*+]• This
proves Theorem 3. D

PROOF OF THEOREMS 4, 5: Let the conditions of Theorem 4 hold. Let z» be an
asymptotically stable equilibrium of system (1), which exists by Theorem 2.

LEMMA 2. For each 6-neighbourhood 0(6,z») = {p | | | p - z , | | < 6} (6 > 0)

there exist points p-,p+ G 0(6,a;*) such that the inequality

(8) p- <C <j>(u)p- < x» < 4>(w)p+ < p+

holds.

PROOF OF LEMMA 2: The reasoning is the same as in the proof of Lemma 1. U

Due to H6 we may choose ei > 0, 6 > 0 such that for e 6 (0,£i] and for the
functions

$i(x,t) = Xi(Fi(x!,... ,xn) + e<pi(t,x)), (i = l,... ,n)

the inequalities

~ > 0 (xeO(6uxt), i^j, i,j = l,... ,n)
OXj

hold.

LEMMA 3 . TAere exist e2 E (0,ei], 62 € (0,^] such that the solution p(t,x,e)

of system (2) (p(0,x,e) = x, e G (0,^2] > * G 0(82,1*)) is defined for all t 6 [0,a>] and

P(t, x, e) e O(6t, x,) (x e 0(^2 ,*.))•

PROOF OF LEMMA 3: Since the point x* is an equihbrium of system (1), this

statement follows from the Theorem of continuation of solutions [4]. D

Now consider the operator U(v,e), which is defined by the formula

U(u,e)x = P(w,x,e) (x <E O(62,xt)).

It follows from [6] that this operator is a strongly monotone operator in O(62,x*)-

LEMMA 4 . Let the numbers e2 > 0, 62 > 0 be choosen according to Lemma

3. For each 6 6 (0,62) we may choose e(8) € (0, e2] such that in the neighbourhood

O(6,x») there exist two points x-,x+ for which the following condition

x- < U(w,e)x- < x+ < U(u,e)x+ < x+

https://doi.org/10.1017/S0004972700015653 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015653


[7] Mathematical biology 207

holds.

PROOF OF LEMMA 4: For each 8 £ (0,£2) we choose points p-,p+ such that

(8) holds. Let x_ = p _ , x+ = p+. Lemma 4 follows from the inequality (8) and the

theorem of continuation of solutions [4].

Theorem 4 follows from Lemma 4 and Theorem 6. If H7 holds then the operator

{/(w,e) is analytic [8]. So Theorem 5 follows from Lemma 4 and Theorem 7. D
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