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SUMMARY

Data on the dynamics of malaria incidence, admissions and mortality and their best possible

description are very important to better forecast and assess the implementation of programmes

to register, monitor (e.g. by remote sensing) and control the disease, especially in endemic

zones. Semi-annual and seasonal cycles in malaria rates have been observed in various countries

and close similarity with cycles in the natural environment (temperature, heliogeophysical

activity, etc.), host immunity and/or virulence of the parasite suggested. This study aimed at

confirming previous results on malaria cyclicity by exploring whether trans-year and/or

multiannual cycles might exist. The exploration of underlying chronomes (time structures)

was done with raw data (without smoothing) by linear and nonlinear parametric regression

models, autocorrelation, spectral (Fourier) and periodogram regression analysis. The

strongest cyclical patterns of detrended malaria admissions were (i) annual period of 1.0 year

(12 months or seasonality) ; (ii) quasi-biennial cycle of about 2.25 years ; and (iii) infrannual,

circadecennial cycle of about 10.3 years. The seasonal maximum occurred in May with the

minimum in September. Notably, these cycles corresponded to similar cyclic components of

heliogeophysical activity such as sunspot seasonality and solar activity cyclicities and

well-known climate/weather oscillations. Further analyses are thus warranted to investigate such

similarities. In conclusion, multicomponent cyclical dynamics of cerebral malaria admissions in

Papua New Guinea were observed thus allowing more specific analyses and modelling as well as

correlations with environmental factors of similar cyclicity to be explored. Such further results

might also contribute to and provide more precise estimates for the forecasting and prevention, as

well as the better understanding, of the dynamics and aetiology of this vector-borne disease.
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INTRODUCTION

Previous studies of malaria incidence and hospital

admission (hereafter referred to as admission/s) rates

across different countries have suggested the existence

of annual and infrannual (multiannual) cycles [1, 2]

and some of these have been associated with the in-

fluence of cyclic factors from either the mosquito/

transmission patterns or natural environment, or

both [3–5]. Best available descriptions of malaria in-

cidence and admission dynamics are important in or-

der to better plan and evaluate the implementation of

programmes to remotely monitor (targeted and time-

fixed satellite observations) and control the disease,

especially in endemic zones. However, not all of

malaria time-series (beyond their underlying annual

cycle or seasonality) have clearly defined long-term

linear trends of incidence or admissions and, even if

they did have, these could not be easily forecast by

linear trend analysis only due to the presence of a high

level of variability or multicomponent volatility. It is

possible that the variations around such linear (mean

values) or nonlinear trends may show regular patterns

and potentially be exploited in modelling and fore-

casting by derivation of future estimates and their

95% confidence intervals. Therefore, due to its wide-

spread patterns, especially in some endemic zones,

malaria incidence and admissions and their temporal

occurrence is of great public health and socio-

economic importance. Better forecasting of temporal

variations of malaria and their peaks, leading to re-

commendations for better allocation of resources, are

invaluable for national health systems in such zones in

terms of early identification of increased risk and

potentially early treatment as well as exploration of

risk factors or triggers that may have contributed

to the appearance and clinical progression of this

vector-borne disease.

It should be noted that triggers for increases and/or

cyclical variations in malaria incidence and admis-

sions may include such factors of the natural en-

vironment as interrelated physico-chemical processes

and irradiations of climatic or cosmic (space/solar

or earth) origin, whereas their dynamics show clear

cyclical patterns, with fluctuations of their amplitudes

at various frequencies (from hours, days to months,

years and tenths of years). Such natural influences

may be denoted by the common term of ‘heliogeo-

physical activity’ (HGA) which is mainly represented

by various phenomena such as sunspot activity

and geomagnetic fluctuations. However, it may also

refer to a number of other photic or non-photic

events (e.g. solar UV radiation, solar wind, 10.7-cm

solar radio flux, earth-ionosphere cavity or Schumann

resonances [6], etc.) all of which are indicated or de-

scribed by quantitative parameters or indices (sunspot

Rz index, geomagnetic aa index, ozone concentration,

etc.). Most of these components or indices exhibit

an established seasonality (annual cyclicity) but their

chronomes are often multicomponent, with trans-

year (periods longer than 12 months but shorter than

24 months) or infrannual (multiannual) cycles such

as the 11-year cycle of the sunspot index (Rz index

or Wolf number) which has been a consistent obser-

vation over hundreds of years [5–8]. However,

whether or not such cyclical patterns in malaria inci-

dence or admissions and HGA are interconnected,

remains still to be confirmed.

Cerebral malaria (CM) is the most important

course of Plasmodium falciparum infection (malaria)

which complicates in about 2% of cases, with mor-

tality rates of up to 50%. For instance, an estimated

243 million cases of malaria in 2009 led to about

863 000 deaths throughout the world, 80% of which,

as estimated by the World Health Organization, were

in infants and young children. Severe P. falciparum

infections typically present two distinct clinical mani-

festations: severe malarial anaemia (SMA) or CM.

Although parasitaemia and CM appear correlated,

no causal relationship between degree of parasitaemia

and CM has been firmly established. Many studies

point to erythrocyte sequestration in the brain as im-

portant, although this has not been observed in all

cases. However, the presence of infected red blood

cells (RBCs) in retinal capillaries is strongly as-

sociated with CM, and fatalities putatively due to

CM, but without erythrocyte sequestration, can be

attributed to other infection-related causes. Cerebral

clinical manifestations may arise from RBC rosettes

cytoadhering to endothelium, clogging blood flow to

and within the brain. Platelets may play a significant

role in the attachment of infected RBCs to brain

endothelium [9].

In this sense, a major advance in recent years

has been the recognition that severe malaria, pre-

dominantly caused by P. falciparum, is a complex

multi-system disorder presenting with a range of

clinical features. Some surviving patients have an in-

creased risk of neurological and cognitive deficits,

behavioural difficulties and epilepsy, making CM a

leading cause of childhood neurodisability in the

malaria transmission area. In the current absence of
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a vaccine, rapid diagnosis of the disease, efficient

treatment, correct management and nursing care

are the only weapons to control mortality due to

P. falciparum [10]. In particular, this is a rapidly fatal

disease characterized by headache, seizures, and

coma, with diffuse cerebral oedema and only very

rarely by focal features such as hemiplegia, aphasia,

hemianopia, or cerebellar ataxia. Cerebral capillaries

and venules are packed with parasitized erythrocytes

and the brain is dotted with small foci of necrosis

surrounded by glia (the so-called ‘Durck nodes’).

These findings have been the basis of several hypoth-

eses (one of which attributes the cerebral symptoms

to mechanical obstruction of the vessels), but no

hypothesis is entirely satisfactory. Moreover, it

appears unlikely that a disorder of immune mechan-

isms is directly involved in this pathogenesis. Usually

the neurological symptoms appear during weeks 2–3

of the infection, but they may be the initial manifes-

tation. It should be noted that children in hyper-

endemic regions are those most susceptible to

CM. Among adults, only pregnant women and non-

immune individuals who discontinue prophylactic

medication are liable to involvement of the central

nervous system. Useful laboratory findings are anae-

mia and parasitized RBCs. Cerebrospinal fluid may

be under increased pressure and occasionally contain

a few white blood cells, while the glucose content is

normal. With Plasmodium vivax infections, there may

be drowsiness, confusion, and seizures without in-

vasion of the brain by the parasite. The clinical cri-

teria for CM diagnosis consists of unarousable coma,

exclusion of other encephalopathies and confirmation

of a P. falciparum infection. Besides unarousable

coma, in up to 80% of CM cases epileptic seizures are

also observed. Other organs are frequently involved,

with parallel dysfunction.

Interestingly, a report by Cibulskis and colleagues

[11] on monthly data from Papua New Guinea

(1987–1996, latitude 6xS) presented data showing an

increasing trend in the number of total CM admis-

sions as well as admissions to selected health facilities

(hereafter referred to as facilities) (Fig. 1). But neither

trend nor any periodic oscillations were described by

these authors. Owing to environmental interactions, it

is likely that seasonal variations of malaria admis-

sions (e.g. 12-month cycle) as well as trans-year or

infrannual (multiannual) cyclicity might also be pres-

ent and eventually be described over this interval of

120 months. Indeed, our own preliminary analysis

[12] on monthly malaria incidence from Burundi

indicated that beyond the 6-month cyclicity (and,

eventually, seasonality), a multicomponent, infra-

nnual cyclic pattern with period T>12 months

(e.g. 17.5–18.0, 27.5, 65.0–65.5 months, all at P<
0.05) might exist over the interval 1997–2003

(n=60 months).

Beyond the particular approach in these previous

studies on CM admissions in Papua New Guinea

[11, 12], other more specific and accurate quantitative

approaches in analysing and modelling the number

of malaria admissions are needed [13–17]. Malaria

dynamics and climate forcing may play complemen-

tary and interacting roles at different temporal scales.

Thus, these mechanisms and temporal relationships

should not be viewed only as an alternative
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Fig. 1. Cerebral malaria admissions in Papua New Guinea from January 1987 to December 1996.
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forecasting approach – their interactions should be

integrated into the development of all future predic-

tive models. Such additional, appropriate methods,

with minimal requirements for a specific algorithm

and 95% confidence intervals for the derived esti-

mates and statistical parameters [13–16], as in the

case of malaria admission data exploited here, should

be the following: (1) Description, analysis and de-

composition of the temporal dynamics; linear and

nonlinear regression modelling as well as regression

modelling of periodic modes over time and wavelet

approach [17, 18], with, finally, a reconstruction

and derivation of cyclical estimates for modelling

of the time-series. (2) Possibly linear and nonlinear

regression modelling to independent variables

(e.g. HGA) with deterministic patterns (seasonality,

cyclicity, etc.). Currently, the relationship of HGA

cycles to malaria dynamics is of increasing im-

portance in the view of the last 11-year solar cycle

No. 24 started in 2008 (www.physorg.com/news

119271347.html).

Study objective

The aims of this study were (i) to describe the dy-

namics and reveal eventual trans-year or infrannual

(multiannual) cycles and their relationships with

underlying seasonality (annual cycle) in monthly CM

admissions in Papua New Guinea (1987–1996) ; and

(ii) to consider malaria admissions cyclicity for simi-

larities to and associations with main heliogeophysi-

cal cycles.

MATERIALS AND METHODS

Sources and description of time-series datasets

The time-series dataset consisted of monthly CM

admissions (ICD-9-CM, Dx:084.9) in Papua New

Guinea as obtained from Cibulskis et al. (Fig. 2 in

[11]) as originally provided by the Ministry of Health,

Papua New Guinea. For this study, the absolute

numbers of total CM admissions, as well as those

from selected facilities, were considered. The data

are presented as observed numbers and covered

the period from January 1987 to December 1996

(120 months or 10 years, Fig. 1).

Statistical analyses

Different statistical methods for time-series analyses

and modelling were used, according to a previously

described algorithm used to detect cyclicity in similar

monthly malaria time-series [18]. Initially, descriptive

statistics with linear and nonlinear regression model-

ling over time were applied (Figs 1–3). As a second

step, spectral (Fourier) and autocorrelation functions

were applied to examine the cyclical variations from

the trend (regression line) (Figs 4, 5) after the under-

lying trend was removed. The estimated error of the

autocorrelation coefficients were computed by the

Bartlett equation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1+2r21+2r22+ � � �+2r2m)=n

q
with m<k,

where k is the lag (months) and n the number of

admissions (Fig. 5). As a third step, a periodogram
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Fig. 2. Strong correlation between the total number of cerebral malaria admissions and cerebral malaria admissions in
selected facilities in Papua New Guinea (1987–1996).
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regression analysis (PRA) for estimation of the

period of existing cycles (period T) was applied

[12–14, 19] as well as wavelet transforms (WTs) (for

more details see [18]) to study the evolution of vari-

ability, i.e. change over time of the revealed cyclicities

(Figs 6, 7).

In particular, PRA was successfully applied earlier

in studies on helioepidemiology of various types of

cancer and infectious diseases as described previously

in more detail elsewhere [13, 18–21]. A range (spec-

trum) of the linear coefficients of correlation R

was constructed against each of the tested periods T

(months) representing the so-called ‘periodogram’

(e.g. ‘regression correlogram’) of the time-series,

i.e. power in the period domain (Fig. 6). The PRA,

whether using basic (original), detrended or decycled

time-series can be used for decomposing, modelling

and reconstructing estimates by trigonometric ap-

proximation and produces model and forecast

estimates [16, 20, 22]. At the same time, the two-

dimensional continuous WTs were calculated to rep-

resent the change of spectral power (time-frequency

distribution of variations) and describe structures of

different time scales by the application of a Morlet

mother wavelet. This function is symmetric and very

useful in identifying regions of maximum/minimum

curvature [18, 23] (Fig. 7). In particular, this was

used for all possible period lengths ranging from 3

to 60 months (y-axis). The time-series was first de-

trended by a fourth-order polynomial to better reveal

any underlying periodicities. For instance, the wavelet

scale is equal to a Fourier period using here v0=6.2

in the mother wavelet. However, the Fourier ap-

proach allows mainly an analysis of strongly periodic

processes while in such cases of quasi-periodic

variations it represents only an average spectrum

over time. In addition to the Fourier spectrum, the

WTs provide information on both the periodicities

and the time intervals in which these periodicities

are most likely to occur. Statistica software was

used for most computations as well as a specialized

package ‘6D-STAT’ (http://www.astro.bas.bg/

ykomitov/dataproc.htm) provided by B. Komitov

(Bulgaria).

RESULTS

Descriptive (exploratory) statistics – trends and

correlations

Descriptive analyses have shown that CM in Papua

New Guinea increased from 88 to 486 cases per

month (facilities, mean¡S.D. 230¡80) ; moreover, the

total number also increased from 247 to 932 cases per

month (mean¡S.D. 466¡167), i.e. almost four- to

five-fold. It should be noted that both time-series are

very similar and are closely related as seen in Figure 2

(linear coefficient of correlation R=0.94) ; therefore,

only the results for the total number of cases will be

further presented and discussed.

In particular, this relationship can be described

by the regression equation of linear type Y(total)=
2.017*X(facilities). As shown by Cibulskis et al. [11],

an increasing linear trend of CM can be observed

(r=0.76) ; however, this trend only explains about

57.8% of the variations over time. The best approxi-

mation is a quadratic (parabola) function with a

minimum in year 1989 (r=0.86) (Fig. 3).
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Fig. 3. Best trend approximation of total admission dynamics for cerebral malaria in Papua New Guinea (1987–1996).
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Cyclical patterns – seasonality and infrannual cyclicity

To further study the variations, we detrended the

time-series data (removed the trend) of total malaria

admissions and applied spectral (Fourier) and auto-

correlation analyses (Figs 4 and 5).

A 12-month cyclical pattern (seasonality) with

high amplitude was observed. Further, an infrannual

cyclicity of about 30 months (2.5 years or far-quasi-

biennial) is described as well as a longer cycle of

96–120 months (8–10 years, data not shown); how-

ever, the latter tended to be similar to the time-

series length (sample size). We analysed the above

multicomponent cyclic patterns in greater detail by

experimentally dividing the whole time-series of

120 months into two equal time sub-intervals of

60 months (5 years) : sub-interval A (1987–1991)

(Fig. 4a) and sub-interval B (1992–1996) (Fig. 4b) and

the above tendencies were clearly illustrated. By this

method the stability of the seasonal cycle (12 months)

and specific dynamics of the far-quasi-biennial cycle

(30 months) were suspected (see further the results

from the WTs). Furthermore, in parallel, the auto-

correlation clearly indicated a statistical significance

for the 12-month cycle (seasonal, 1-year, P<0.05)

(Fig. 5).
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It should be noted that the results for the variations

of CM admissions in the selected facilities only (data

not shown) are very similar to the results of the total

number of admissions. It is interesting that the am-

plitude of the infrannual cycle is lower than the

amplitude of the annual cycle (seasonality) indicating

that the number of admissions is very high at a

maximum of such a cycle while seasonal variations

are very strong. However, to further quantify and

more exactly describe the above cyclical patterns,
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a PRA was applied (Fig. 6; see Materials and

Methods section for more detail).

PRA of the cyclical variations

Once cyclical variations in the number of CM admis-

sions are suspected, in order to better analyse their

dynamical patterns we constructed periodograms

(i.e. spectra of correlation coefficients R or the so-

called ‘regression correlograms’) (Fig. 6). By using

PRA on the detrended time-series, we confirmed sea-

sonality (period T=12 months) and a multi-

component, infrannual cyclic pattern with periods

T=27 months (2.25 years) and T=123 months

(B10.3 years) in the total CM admissions in Papua

New Guinea. The infrannual cycle of 10.3 years may

be associated with the increasing long-term nonlinear

(quadratic) trend; however, it should be interpreted

with caution.

To further define the dynamics patterns of main

cyclic variations, we further analysed in greater

detail the underlying seasonal characteristics and

the eventual dynamics (change) of such cycles.

In particular, the results from the computation

of characteristics of the main annual cycle of

12 months (seasonality) indicated that the maximum

period is in May–June while the minimum is in

September–October (Fig. 7a). The application of

WT analysis confirmed the stability of the annual,

12-month cycle over the whole interval – although the

amplitude increases during the second interval, its

period remains stable over the whole interval (Fig. 7b,

lower horizontal black line). Second, of note, the

quasi-biennial cycle with an average period of

27 months practically appears in 1990 and its dur-

ation actually decreases from 30 to 26 months

(Fig. 7b, upper horizontal black line).

In conclusion, we can summarize that the chron-

ome (temporal structure) of the number of monthly

CM admissions in Papua New Guinea during the

years 1987–1996 (n=120 months) is mostly charac-

terized by a multicomponent cyclicity with expressed,

stable seasonal pattern against the background of an

increasing nonlinear (quadratic) trend.
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Fig. 7. Dynamics in cyclic variations of admissions for cerebral malaria (CM) in Papua New Guinea (1987–1996). (a) Mean
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removed) – see text for more details.
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DISCUSSION

Descriptive and regression analyses of data for

malaria in Papua New Guinea (1987–1996, n=120

months) have confirmed that the sample of monthly

CM admissions in selected facilities is representative

of the total number of admissions [11] correlating

very strongly between them and showing similar

temporal patterns in terms of both trends and varia-

tions. Spectral, autocorrelation and periodogram re-

gression analyses have described, for the first time,

multicomponent cyclic patterns in the variations

of monthly admissions for malaria in Papua New

Guinea. Initially, we found that although using ex-

tensive analysis and modelling, the usual linear model

for trend only explained up to 58% of time-series

variations (the best nonlinear, quadratic model

explained up to 74%). The other 42% of total varia-

tions remained unexplained; moreover, these re-

maining variations are most likely to appear in cycles,

as confirmed by the quadratic (parabola) model. It

should be emphasized that all analyses were per-

formed with raw data, without smoothing which

strengthen the obtained results. Notably, the pre-

dominant cycles in malaria admission variations are

for periods of 12 months (1.00 year), 27–30 months

(2.25–2.50 years) and 123 months (10.3 years). This is

of interest since a recent study [24] has shown that in

the background of strong annual (1-year, season-

ality), biennial (2-year, P. vivax) and triennial (3-year

P. falciparum) cycles, variations in incidence of

malaria in Peru (1994–2006, n=12 years) have been

observed, which are similar in range to our 2.25-year

cycle in CM admissions in Papua New Guinea.

Possibly, the seasonal and biennial cycles in the vari-

ations of CM admissions may be linked to regional

(local) factors (environmental temperature, rainfall,

etc.) with similar cyclical patterns that influence both

the blood parasite density [24] or the immune system,

or both, and this must be important, but is beyond the

scope the current study.

Last, such infrannual (circadecennial) cyclicity of

8–10 years in malaria admissions in endemic areas

such as Papua New Guinea may correspond to or be

associated with known environmental cyclicity in

the range of 8–11 years in heliophysical activity or

climate/weather conditions (e.g. sunspots, solar wind,

solar magnetic activity, surface temperature, etc.)

[25–28]. For instance, there is a cyclicity of 17 years in

the change in the sun’s orbital angular momentum

(L), defined by the torque T=dL/dt, and derived

from the irregular oscillations of the sun around the

centre of mass of the solar system. It has been shown

that this cycle in the sun’s motion, together with the

11-year sunspot cycle, are so closely connected with

climatic phenomena that forecasts of droughts and

floods, strong anomalies (negative and positive) in

global temperature, and even El Niño and La Niña

can be based on this relationship (see [25, p. 675]). The

corresponding cycle constituted by the absolute rate

of change |dL/dt| in the sun’s orbital angular mo-

mentum has a mean length of 8.60 years (very similar

to the varying infrannual cyclicity of about 8–10 years

as suggested in the present study). Special phases in

the cycles of dL/dt and |dL/dt| are characterized by

accumulations of energetic solar eruptions, which

seem to have an impact on the weather and climate

because of their ability to modulate the strength of

galactic cosmic rays that may have an effect on cloud

cover, specifically cloud seeding by ionized secondary

particles (see [25, p. 675]). At the same time, wavelet

analysis has revealed an 8-year infrannual oscillation

of the sea surface temperature in both the eastern and

western equatorial Pacific [26].

Even if such influences as the abovementioned en-

vironmental cycles on, or synchronization with, CM

admission cycles in Papua New Guinea may be pos-

tulated, most of the underlying mechanisms remain

unclear. However, some earlier studies have suggested

interesting patterns of cyclical appearance of malaria

incidence (peaks at specific points) along the 11-year

sunspot cycle (Rz index) in the early to mid-20th

century [5]. These studies described malaria peaks

occurring in synchronization with the solar maxima

during the years 1920–1950. If we assume that one of

the main cyclic patterns in CM admissions in Papua

New Guinea is an oscillation of 1.0–2.25–2.50 years,

any other hierarchy of such infrannual cyclicity

(o8–10 years) may be considered as a ‘repetition’

of this principal, common period. Indeed, for a given

region, if CM admissions are able to oscillate in

several biennial waves contemporaneously but in

different phases, it is theoretically possible that after

a defined number of cycles (years) the annual peak

(within the particular year) may reach the highest

possible level when the other close, biennial

2.25–2.50 year cycle coincides. Such phase-locked

temporal occurrences [5] are likely to give rise to

higher numbers of CM admissions, i.e. an appearance

of a cumulative, absolute increase in its amplitude,

possibly being expressed as a major peak of a longer,

infrannual cycle with a period of 8–10 years.
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Unfortunately, within the above conjectures we can-

not conclude on likely HGA-related aetiological

mechanisms of CM peaks; however, if we consider

several minor consecutive increases, a role may be

postulated for a global HGA-associated or regional

(local) factors that clearly fluctuate with similar cy-

clicity [26–28]. Being novel historically [29], and also

more recently [30, 31], very important temporal

analyses and correlations between disease incidence

and meteorological factors have been shown to be

very useful in generating hypotheses and predictive

models for malaria, as well as for other infectious

diseases, e.g. cholera [32]. However, to what extent

seasonal and multicomponent infrannual (biennial)

or, eventually, shorter, trans-year cyclicity in the vari-

ations of CM admissions in Papua New Guinea are

related or may interact with similar cycles of solar

activity or other climate/weather oscillations remains

largely unknown and represents an interesting ques-

tion to be addressed in future research studies.
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