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THE DIRICHLET PROBLEM FOR DEGENERATE ELLIPTIC
2-DIMENSIONAL MONGE-AMPERE EQUATION

KAZUO AMANO

We study the following Dirichlet problem for the degenerate elliptic Monge-Ampere equa-
tion: Given / 6 C" (n ) , / > 0 and g € C"+ 2 (n) , find a solution u 6 C (fi), t > 2,
satisfying «n H22 — wj2 = / in H and v = g on i9f2. Since / is nonnegative, we cannot,
apply any standard elliptic methods. In this paper, we use an iteration scheme of Nash-
Moser type and a priori estimates for degenerate elliptic operators, and solve the Dirichlet
problem for a certain class of / and g.

1. INTRODUCTION

There are vast references on elliptic Monge-Ampere equations (see [16]). However,
we find only a few papers concerned with degenerate elliptic Monge-Ampere equations.
Bakelman [3] and Rauch-Taylor [14] studied existence and uniqueness of weak solutions.
Lin [10] proved C" local solvability. Trudinger [15] and Chen [5] solved boundary value
problems in the function spaces C'1'1 and W2iCO respectively. Unfortunately, no one
has investigated the Dirichlet problem and its loss of derivatives in C classes. In this
paper we shall solve the following problem for a certain class of / and g.

PROBLEM. Given f € C"(n), / > 0 and g G C"+2(n), find a solution u G
(•'• (fl) satisfying

(1.1) t<.ll«22 — H-12 = / >n ^; u = 9 on dfl.

Here ft is a bounded open set in R2 with C<co boundary, 5, is a nonnegative
integer and <» is a function of s, satisfying t, —> oo as s, —> oo, Uij denotes the
derivative djdjii.

All the difficulties of the problem arise from the nonnegativity of / , In fact, since
/ ^ 0, standard elliptic methods (see [4], [7-0], [11-12]) do not work for higher deriva-
tive estimates. Furthermore, the following two examples (Examples 1.1 and 1.2) show
that we cannot always find a solution u of the problem for general / and g; this implies
that, we should place some restriction on / and g.

In order to illustrate the difficulties of the problem, we consider a radially symmetric
case and seek exact solutions. If S7 = B = {x : r < ! } , / = / ( f ) , 9 — 9(r)
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390 K. Amano [2]

u = u(r), where r = \/x\ + x\ , then we can transform (1.1) into an ordinary differential
equation

(1.1)' (ul)r = 2rf in B, u = g on dB.

It is easy to solve (1.1)'. In fact, direct computation gives

« = / [2 f tf(t)dt}^2dS + g(l).
J\ Jo

Hence, we have the following

E X A M P L E l . l : For / = r", u = 1,2,.. .

- l) +g(l)

is a solution of (1.1)'. If v is even and i//2 is odd, then

/ 6 C°°fB) and « ̂  C?+2(B).

EXAMPLE 1.2: For / = \r - \\V , v = 1, 2,. .. , we have

^fs l 1 " 1 ' 1 !* if

I r ? /•)(,,xiw±iif>.+ 1)r + W - ?1"+1 + I ^ D ' ^ i r ' l ' if H r < 1.
This implies

and u $ C2(B).

Examples 1.1 and 1.2 show that in the problem the function t, = <»(.?*), which
tends to oo as 3, —» oo, does not always exist, that is the smoothness of / and g does
not always imply the smoothness of u. Seeing Examples 1.1 and 1.2, it might seem to
be impossible to solve the problem. However, we can solve the problem for a certain
class of / and g (Theorems 1.3, 1.4 and 1.5).

Throughout this paper, K is a fixed sufficiently small positive number and sm is

an integer satisfying

(1.2) 5, ^ 14 + 4 K .

((1.2) is necessary for the convergence of our iteration scheme (see Section 2)). / G
C' (ft) is a nonnegative function and g G G"'+2d(£l), 0 < d < 1.

We set 5 = {x G fi: f(x) = 0 } . We use two kinds of norms |-|fc = |H|Cfc/n) anc^

ll'llfc = ll'llwfe(ft)- Unless otherwise specified, we use the same notation as in [6]. We

shall prove the following
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[3] Monge-Ampere equation 391

THEOREM 1.3. Assume that S is an isolated point in ft and guv > 0 on S tor

some vector u. If |det(<7;y) — f\ is sufficiently small, then there is a unique solution

u e CtT-- 2 - 2 " l (n) of the Dirichlet problem (1.1).

THEOREM 1.4. Assume that S is a compact line segment in ft and gTT > 0 for

a tangent vector T on S. If \det(gij) — / | is sufficiently small, then there exists a

unique solution u £ C ^ " 2 " 2 " ! (H) of the Dirichlet problem (1.1).

THEOREM 1.5. Assume that S is a compact C°° submanifold of ft such that

ft \ 5 is connected and assume that there is a vector v satisfying gvv > 0 on S. If

\Aei{gij) — f\tt and |£>4^|0 are sufficiently small, then there exists a unique solution

u € C^-2-2K^Tl of the Dirichlet problem (1.1).

In each theorem the assumption concerned with S leads us to a priori estimates

and the assumption on / and g ensures the existence of approximating solutions (see

Section 2). The strange number 4f — 2 — 2/c comes from our technicalities; the author

is wondering whether or not c'"r~2~2/t' is a suitable class.

In Section 2 we prove a theorem of Nash-Moser type on the assumption that there
exists a sequence of good approximating solutions and a certain type of a priori estimates
for linearised operators. Section 3 is devoted to the study of a priori estimates for linear
degenerate elliptic operators. We prove Theorem 1.3 - 1.5 in Section 4.

2. AN ITERATION SCHEME OF NASH-MOSER TYPE

In the first place we shall give several fundamental inequalities which play impor-

tant roles in the proof of convergence of our iteration shceme. The inequalities

(2.2) I H I ^ ^ t . j . f c J H t t l l ^ l H l J ^ (i<j<k),

are well-known. (2.1) and (2.2) are Sobolev and interpolation inequalities respectively.
We define operators S& : W'(fi) -» W>(Sl) (0 ^ 1) by

SQu(x) = e2 / p(Q{x-y))u{y)dy,
Jn

where p € C£°(R2) is a nonnegative function satisfying J p[x)dx — 1. 5© are called
smoothing operators. It is easy to show that

(2.3) l l ( / ,
(2.4) \\SQU\U <€•({,])&-* \\u\\r
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Here, in particular, C(i,i) = 1.

Let F[w]: Wk+2(e) -> Wk{n)(k < s.) be a map defined by

F[u] =

We define the linearised operator L\u] and the modified linearised operator Lc[u] by

L[u]v - ali[u]vij = dtL[u + tv)\t=g

and
£e[tt]v = a*J [tijvjj = L[u]v + eMv

respectively, where M — a'Jd{dj is a second order linear elliptic operator with real
constant coefficients.

We shall prove fundamental properties of F[u], L[u] and £t[it]-

LEMMA 2.1. There is a constant. K ^ 0 such that

(2.5) \F[u) - F[v}\0 ^ K(\u\2 + \v\2) \u - v\2 ,

(2.6) \\dtL[u + tv]w\\. <K\J2 Nli+3+K\H\j+2 i E

><«/2

for 0 < s ^ a, - 2 mid 0 ^ /. s$ 1, and

(2.7) | |M«| | , ^K\\u\\.+2,

for O^s ^ 5* .

PROOF: (2.5) and (2.7) are clear. (2.6) follows from (2.1) and dtL[u + tv]w

vlHvij , where each v is the (k,l) - cofactor of the matrix (v, j) .

LEMMA 2.2. Lc[u] is a formally self-adjoint operator.

P R O O F : Since

Le[u]v =

and ocl] are constants, -ti[w] is formally self-adjoint.

LEMMA 2.3. If Mu ^ 1 , then for e = \F[u)\0

(2.8) det(oj'[«]) ^ f + e2det(<xij).
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[5] Monge-Ampere equation 393

PROOF: Direct computation gives

det(<#[•«]) > f + e(Mu - 1) + e2det(aij);

this proves the lemma. |

It is to be noted that the computation in the proofs of Lemmas 2.2 and 2.3 does

not remain valid in higher dimensional cases. This is why we have restricted ourselves

to two dimensions.

Now we shall construct a sequence which converges to a solution of the equation

F[u] — 0. The convergence requires several assumptions (Assumptions 2.4 - 2.6).

Assumption 2.4 (the existence of approximating solutions).

There is a constant K ^ 0 such that for any e 6 (0,1] there exist numbers

5 = 5(e) £ (0 ,1] , 6 = 6(e) > 1 and a function ue e Cs'+2-d(U) satisfying

(2.9) K | 2 ^ A ' , |u € | , < K6~" (O^s^s* + 2),

(2.10) |F[tt€]|0 < €0-' , \\F[ut]\\. ^ ee~" (0 < s ^ a.),

and

(2.11) Me|en = g.

We construct a sequence {ttn} as follows:

(2.12) w0 = 0, « n + i = u n + vn,

where vn 6 C 5 * + 2 ' d (n ) is a solution of the Dirichlet problem

(2.13) Ltn[u€ + un]vn = /„ in U, vn = 0 on dtt,

(2.14) en = \F[uc + un}\0,

(2.15) «„ = Snun,

(2.16) / 0 = -SoF[uc], /„ = 5n_!i?n_i - SnRn + Sn_,f[tte] - Snf[tt,],
n - l

(2.17) i?o=O,iZn = J^r,-,

(2.18) TV, = ( £ € i [tt, + uj) - LCj [u, + fij-]) t»j - e,-Af»j + Q> (0 ^ j < n - 1),

(2.19) Qj = F[ue+uj+1]-F[ut+uj]-L[u€+uj}vj ( 0 ^ j < n - l ) .

Here 5 n = 5«n and ^n = (^(e))n.

In order to solve the Dirichlet problem (2.13) in C°°(Q.) , we need the following
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394 K. Araano [6]

Assumption 2.5 (the ellipticity of modified linearised operators).

(2.20) M ( u e + u n ) > l .

By Lemma 2.3, (2.20) implies det(a'{[«£ + un\) > f + e2
n det(a'>) > 0.

The next assumption ensures the convergence of the sequence {un} .

Assumption 2.6(a priori estimates for modified linearised operators).

(2.2i) Kilo < Jr||/n|

(2.22) IKH, >tf{ | | / | |+ J2 (
o ,

J2

where A" = constant > 0 is independent of e and n.

In the remainder of this section we estimate vn , un , un — un , rn , fn and eTl, and

prove that un converges to a certain function Moo and that ue + UQO is the solution of

det(«ij) = / satisfying u \an= 9-

PROPOSITION 2.7. Under Assumptions 2.4 - 2.6, if

(2.23) 0 < e ^ {s.K2 + {st + 2)K}~2,

(2.24) e^l/^63,

(2.25) S,^4 + 2K,

(2.26) 5 + K < a < s»,

then

(2.27) I M I . s S ^ ' ~ < r ( 0 ^ 5 < 5 , ) >

(2.28) | | r o | | , < C l £ ^ - f f ( 0 < a < a . - a ) ,

wiiere C\ = constant ^ 0 depends only on a* and K.

PROPOSITION 2.8. Under Assumptions 2.4 - 2.6, if

(2.29) 0

wiiere

a = max < K I 2C2 + Y] (1 + K + C{i + 2)C(i + 3 + K, , a + K))

+

https://doi.org/10.1017/S0004972700027015 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027015


[7] Monge-Ampere equation 395

and
13 = {A'C(0)(2C(l + K, a, - 2) + I )}" 2 ,

(2.30) e

(2.31) s. > 14 + 4 K

(2.32) , 7 = ^ - 1 ,

(2.33) T = o- - 2,

tiien we have

(2.34); Ih-iM^ir (0OO.),

{ v/e if 5 < <j — fc,

/e if s ^ a - k,
(2.36); |K- - «;||, < C ' o ^ ; - " (0 ^ s < a,),

(2.37),- Ih-i lL < CjfflJZf (0 < s < 3. - 2),

(2.33); | | / ; | | 3 < C 2 c » ; - a (0 < 3 ^ s,),

(2.39); €j < C , V 7 ^ - ' ,

wiiere v_j = 0, r_! = 0 and constants C'i ^ 0 depend only on K, s» , a and K.

REMARK: By virtue of the interpolation inequality (2.2), (2.27) - (2.28) and (2.34);
- (2.39); remain valid for real a, if we modify the constants C'o - C3 appropriately.

Before proving Propositions 2.7 and 2.8, we shall prove the main theorem of this
section.

THEOREM 2.9. Under the same assumptions as Proposition 2.8, there exists a
function t(TO € W^-1"1^) such that

(2.40) det((ue +*too);;j = / in n, uc+uoo = g on dSl,

and

(2.41) I K O | | - L _ , _ K < y/l.

PROOF: By Proposition 2.8,

IK -^ l l -_ i_ . * ElKII^- , - . < ^ E («-")" - o,
i j
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396 K. Amano [8]

as i,j —» oo, i > j . Hence, there is a function xi^ £ Wr~i~K{Tl) satisfying •«„. —> u^

in W1r-1-K(n). Since W T - ' - ^ ) ._> C'2(n) , wTO £ C'2(ft) and wn -> W<X) in

On the other hand, direct computation gives, by (2.13) - (2.19),

(2.42) F[ut + «n+1] = (1 - Sn)F[ue] + (1 - 5n)i?n + rn.

Combining (2.42) with (2.3) and (2.37)j, we can show that F[uc + u,,} —> 0 in

W*r-X-K(n); this implies ^[w, + «„] -» 0 in C°(fi) , since VK^- 1 - 7 ^^) «-* C°(0) .

Therefore, u^, 6 W~z~~1~K(Q.) and jF[ue + ww] = 0. Since ue\gn = # and
n - l

•«n|en = YL vj\on = 0> w e l i a v e (we+«oo)|an = 5- By (2.35)j, ||MOO||^« _j_« =

lim, l_o o | | i i n | |^ ._i_ ( t ^ \/e • 1
P R O O F OF PROPOSITION 2.7: (2.21), (2.16), (2.4), (2.10) and s, ^ a give

We suppose that

(2.43) I K I I ^ ^

and estimate ||i>o||,- By (2.22), we have

(2.44) ||uo|L ^ 1

(2.16), (2.4) and s. + s ^ a give

(2.45) H/oll, ^ eO'-".

(2.24) implies

(2.46) 1 < y/e6l (0 < i ^ s ) .

By (2.9) and (2.24), we have

(2-47) |ue| i+2
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[9] Monge-Ampere equation 397

Combining (2.43) - (2.47), we obtain

this implies, by (2.23),

Thus (2.27) is proved by induction.

Next we prove (2.28). (2.18) gives

(2.48) r0 = -£0Mv0 + Q0.

(2.7, (2.14), (2.10) and a» ^ 2 show that

(2.49) ||eoMvo||3 < -Ked'~a.

Since

Qo = / { dsL[uc + svo]vods > dt,
Jo (Jo )

we have, by (2.6), s, > 4 + 2n and <r ^ 5 + K ,

(2.50) ||Qo|

Combining (2.48) - (2.50), we obtain (2.28). H

P R O O F OF PROPOSITION 2.8: (2.34)n - (2.39)n. (2.34)0 - (2.37)0 are clear.
(2.16), (2.4), (2.10) and 5. + s ^ a show (2.38)0- (2.39)0 follows from (2.14), (2.10)
and s, + s ^ cr.

(2.34) ,<„ - (2.39) ,•<„ =» (2.34)n4-i • (2.21), (2.38)n and (2.29) give

We suppose that

and estimate ||vn||a • By (2.22), we have

(2.52) IKIK/v i||rn||3+ Y, (i + K + ^ M l K H ,

https://doi.org/10.1017/S0004972700027015 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027015
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Combining (2.52) with (2.38) „ , (2.46), (2.47), (2.1), (2.4), (2.35) „ and (2.51), we
obtain

rv ^ 2C2 + y (1 + K + C'(t + 2)C'(i + 3 -t- /c, c

this imphes by (2.29),

Thus (2.34) n + 1 is proved.

(2.34),•<„ - (2.39)j<:n =» (2.35)n4-1. Since wn + 1 = y)" = 0 v,-, we have, by (2.34) n + 1 ,

Direct computation giv-es, by (2.30),

(2.34) j.<;,, - (2.39)j<r» =» (2.36) ^4-i It follows immediately from (2.3), (2.4) and
(2.34)M+i that

| | u n + 1 - u n + i | | , ^ <

So we have only to take

C'o = m a x m a x C(s, a + K),2\ .
L ^ J

(2.34)v<r,. - (2.39) ,-<„ ^- (2.37)CT4.i. Since

( i t j t f + «n] ~ ien[«e + itn])vn = / dtLCn[lCe + Un + t(un - Un)}vndt,

Jo

we have, by (2.6), 5, > 4 + 2K and CT ̂  5 + K ,
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[11] Monge-Ampere equation 399

(2.7), (2.39)n and (2.33) give

(2.54) \\enMvn\ ±\,

Since

Qn = I d,L\ut + un + svj]vjds > dt,

we obtain, by (2.6, s, ^ 4 + 2K and a ^ 5 + K ,

(2.55) ||Qnj|. < i (

By (2.18), (2.53) - (2.55) imply

where

C, = i (s . + l)AC0 + /TC, +
2 2 4

(2.34)j<;ra - (2.39)_,-.<„ =» (2.38)n,4-1 . We note that, by (2.16),

(2.56) fn+1 = SnRn - Sn+1Rn+1 + SnF[ut] - Sn+1F[ue]

(2.4), (2.37),-<n) (2.32) and « > 21 / ' give

(2.57) | | 5 n ^ n | | , < 2(7,0(3, s . - 2 ) ^ ; ; ^ ,

(2.58) ||5n+1iZn+1||, < CiC{s, 3. - 2 ) e ^ .

(2.4), (2.10) and s. + 3 > a show that

(2.59) l | s n *K] | | , < c(s, ^ ; ; j ,

(2.60) ||5n+1F[tt,]||, < C ( a , ( r X ^ .

Combining (2.56) - (2.60), we obtain

where

C2 = 3C1! max C(s, s, - 2) + 2 max C(s, a).
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f2.34) •<„ - (2 .39)^ , , =» (2.39) „+, • (2.14) and (2.42) give

e n + 1 ^ | ( / - Sn)F[ue] |0 + | ( / - Sn)Rn\0

(2.61) + |rn | 0 + \F[uc + ttn] - F[ue + « n ] | 0 .

By (2.1), (2.3), (2.10), a, ^ a and r > l + « , w e have

(2.62) | ( / - Sn)F[uc}\0 ^ C'(O)C'(1 + «, 5 , ) £ ^ ; r

By (2.1), (2.3), (2.37) j ^ n , (2.32), 9>2ll° and r ^ 1 + K, we obtain

(2.63) |(7 - Sn)Rn\0 < 2CiC(0)C(l + K, a. - 2)c«; ;J .

(2.1), Proposition 2.7 and T ^ 1 + K give

(2.64) | r o | o < C 1 C ( O H r - ' T .

(2.1), (2 .37)n + i and T ^ f + 1 + « show that

(2.65) |rn |0 < CjC(0)ctf;;J (n > 1).

From (2.5), (2.1), (2.9), (2.35) n+1 , 3 + K < cr - K , (2.36) n + 1 and T ^ 3 + At

(2.66) \F[uc + un+1] - F[uc + u n + 1 ] | 0 < 2

follows. Combining (2.61) - (2.66), we obtain

where

C3 = C(0)C(l + A', 5,) + i d + 2AX'0C(2)(A- + C(2)).

Here we used (2.29), in other words, y/i ^ {KC(0)(2C(l + K, s* - 2) + I )}" 1 .
In order to determine the constants C\ , C'2 and C'3 explicitly, we have only to

regard the three equations which define C\ , C'2 and C'3 as simultaneous algebraic
equations with respect to C\ , G'2 and C'3 and solve them. H

3. A Priori ESTIMATES FOR LINEAR OPERATORS

Let L be a degenerate elliptic operator of the form

L = aijdidj
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[13] Monge-Ampere equation 401

with real coefficients aij = aji 6 C°°(n). Here "degenerate elliptic" means aij(x)(^j
> 0 for any (x, £) € ft x R2 . For simplicity we use the following notation: A(x) is a
continuous function defined in ft satisfying

iirf aij(x)U(j > A ( x ) ^ 0 ,

5 denotes the set of all zero points of A(.T) in ft,

Afc = max II>fca'J'I

and

A(k) = max < max |a*-'|, ,inf A(x), 1 > .

Unless otherwise specified, C , C , C'j and C'J denote nonnegative constants indepen-
dent of L.

First we shall give four fundamental lemmas. For t ^ 1 and $ S C'°°(ft) satisfying
{x e H : $(z) = 0} ̂  0 and I>$ ^ 0, we put

LEMMA 3.1. Assume that i is formally self-a.djoint. Then there is a constant C
independent of L, $ and t such th&t

(3.1) t2 I (aij$i$j)u2dx ^C\ [ \Lu • u\ dx + t f \aij$ij\u2dx\

(ueC°°(W{¥~i)),u\giniit)=o).

PROOF: For u S C'°°(U($,t)) satisfying u |a(/(*,t6)= 0, we put

v = (T - el4")~\i, T = constant > 2e.

Direct computation gives

(3.2) Lu={T- ,- - e

)

1*

Hence, integrating (T — e'*) Lu • v by parts, we obtain

f (T - e1*)'1 Lu • vdx

= - Iat'viVjdx + i f a]^v2dx - 2 f aij{teli(T - e1*)'1 $

-t2 j el* (T - e'*) " ' {a'lt&jydz - t J el* {T - e") ~' (oy*«)»2^-
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402 K. Amano [14]

Since a'l = 0 and

\r>aiHieti (T — pt*\$i)\$> I < /2c21* (T — pl*)~2 (a':'$<f> )v2 4- nijv» •

we have

(3.3) f (T - e1*)'2 Lu • udx < -t2 f el*[T -2et*)(T - et*)~*(ai>$&J)u
2dx

-i f

Here we note that, e " 1 < e '* ^ e , T - 2e ̂  T - 2e '* ^ T - le'1 and (T - e'1)'1 ^

(Tc*) ^ ( ^ ' ^ e ) ~ 1 ' n f ( ' ^ j * ) - Combining (3.3) with these inequalities, we obtain

(3.1) . H

For c > 0 we define a set Se by

Se = {.T G Tl : dist (K, 5 ) > e } .

LEMMA 3.2. Assume that L is formally self-adjoint, S is a compact. C°° sub-

manifold of fl and ft\ S is connected. Then there exists a function /.i 6 i°°(fi) such

that /.t = 0 on 5 , iiiff2\s<: M > ^ ^ o r a l l7 sufficiently small £ > 0 and

(3.4) f ,.m2dx + j X \Du\2 dx < C \\Lu\\0 ||«||0 (u e C°°(n), « | 8 n = 0).

PROOF: Since L is formally self-adjoint, it will suffice to prove

(3.5) I i*u2dx < C / X \Du\2 dx {u £ C<oo(fi), u \gn= 0).

First, we fix a point p £ fi \ 5 arbitrarily. By virtue of the fundamental

theorems of ordinary differential equations, we can construct a family of curves

c(i;x) £ C°°([O,TP} x Up) s u c h t h a t c ( 0 ; x ) = x,c(t;x) $ S for 0 < t < Tp w h e n

x G fi \ 5 , c(Tp;a;) ^ 0 , |c(<; .-c)| = 1, C(t;-) is a local Crco diffeomorphism defined in

Up for any fixed t, and such that sup l E t , p Tj. < co , where Up is a sufficiently small

open neighbourhood of p, Tp is a positive constant, and rT = inf{/ ^ 0: c{1;r) (f- n } .

We define a function f.(p(x) by

(3.6) np(x) --, inf{A(c(/;.T)): 0 $ / <: TX}

for .r e Uv. For ii 6 C>co(fi) satisfying II \sn— 0, since

u{x)u{c(0;x)) - U(C(TX;X)) = - / Du(c(i\x)) • b(t;x)dt
•Jo
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we have

(3.7) \u{x)\2 ^C [ ' \Du(c(t;x))\2dt.
Jo

By multiplying (3.7) by /.ip{x) and using (3.6), we obtain

HP(x) \u(x)\2 ^ C r X(c(t; x)) \Du(c(t; x))\2 dt;
Jo

this implies

/ fj.pu
2dx ^ C I A \Du\ dx.

Jup Jn

Secondly, we note that the above argument ensures the existence of a finite number
N

of points PI,...,PN such that f2 \ 5 C |J UPi and
t=i

/ fj.p.u
2dx < C [ X \Du\2 dx.

Juv: ' Ju

Therefore, we have only to define ^i(x) by

f miii-Op. (a ) : x £ [ f p . , H « < " } , if 3 G fl \ 5

\ o, if x e s.

(3.5) is proved.

LEMMA 3.3.

(3.8) £ \\[dk, L)u\\2
0 < CA2 (HIull , Hull, + A2 \\u\\\) (u G C0~(n)) .

k

LEMMA 3.4. For a fixed x G C°°(U) satisfying supp\D\\ C ft

(3.9) | |[X, L}u\\l < CA0(| |Xiu| |0 |H|0 + 4 ( 2 ) | | u | | j ) (u G C

Here [<?&, L]« = d^Lxi — Ld^u and [\, L]« = \ £ » — L \ u .

P R O O F OF LEMMA 3.3: It is well-known that

2

k I
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for any u £ C"£°(ft) (see [13]; Lemma 1.7.1 and also [2]; Lemma 1.3). This gives

[0fc, L]uf0 ^ CA2

k i

Integrating by parts carefully, we have

\\[dk, L]u\\2
0 < CA2 (\\Lu\\, ||«||, + £ ||[3fc, L]u\\0 | |u| |0 + A2 \\u\A.

k \ k /

This completes the proof. I

PROOF OF LEMMA 3.4: Let us consider a cut-off function x £ Co°(^) satisfying

0 < x ^ 1 a n ( l &iX CC x for any i. We define an operator L = a'^didj by L =

\L. Since [x, L]u = [,\, L\u and £"• ^ ll-^"llo' ^' w ' ^ suffice to prove a modified

inequahty which we get by substituting L into L in (3.9). It is easy to prove

(see [13]; Corollary of Lemma 1.7.1 and also [2]; Lemma 1.2); this shows

II - II2 ( f •• 2\
\\[X, L]u\\ s$ CA0 I / al3UiUjdx + AQ \\U\\Q ) .

Therefore, integrating / a'iuiUjdx by parts, we obtain

(3.9) is proved. |

Now we give the main theorem of this section which follows from Lemmas 3.2 - 3.4.

THEOREM 3.5. Assume that L is formally self-adjoint, S is a compact C'°° sub-

mnnifold of Q and £l\S is connected. Then for any nonnegative integer s there is a

constant C'3IA , which depends on s and A(x) but does not depend on L, such that

(3.10) ||u||0 < C'0,A ||£u||0 (u G C°°{Ti), u | a n = 0),

(3.11) Hull, < C.MWLuW, + ||«||0) (u G C~(n) , ti | a n = 0)

and

(3.12)
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provided that there is an open neighbourhood U of S in ft such that

(3.13) |H|0^A-||Itt| |0 (ueCS°(U)),

0 < KA2 << 1 and A(2) ^ 1.

Here Y, means £ , "<< 1" means "to be sufficiently small". The

i + 2<max(t,2)

fact that the constants C'S|A depend on A(x) but do not depend on L is very important
(see Assumption 2.5 and Section 4). Theorem 3.5 says that if you want to prove a priori
extimates (3.10) - (3.12), you have only to prove a simple L2 estimate (3.13) near 5
where L is degenerating. The key estimates of Assumption 2.6 will follow from Lemma
3.1 and Theorem 3.5 (compare Section 4).

The proof of Theorem 3.5 requires the following four lemmas.

LEMMA 3.6.

(3.14) ]T HP*' £HI- < C.IA2 \\LU\\,+1 + £ A\+2 \\u\\) ) , (u £ C~(ft)).
k \ t+j<a+l /

LEMMA 3.7. For a fixed \ € C°°{ft) satisfying supp\D\\ C ft

(3.15) ||[X, L)u\\3 ^ C, I A(2) \\Lu\\. | |«||. + f^ A^% + 2) HUH> ) ' (« G C°°W)-

LEMMA 3.8. Assume that

\\u\\0<K\\Lu\\0,(ueCS°(ft)).

Then for any nonnegative integer s there exists a constant C, independent of L and
K such that

(3.16)

By induction with respect to s, Lemmas 3.6, 3.7 and 3.8 follow from Lemmas 3.3,
3.4 and 3.6.

LEMMA 3.9. Assume that L is uniformly elliptic in ft, that is

alHx)ti£j ^ ^o l£|2 ! -̂ o = constant > 0.
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Then there is a constant C ^ 0 such th&t

(3.17) Hud, ^ C(X-'A(0) \\Lu\\0 + \-2A2(0)A(2) \\u\\Q), (u e C ~ ( n ) , u \Bn= 0)

and

(3-1 8) I i+i<—i
><—i

( u G C l O O ( n ) , w | e n = 0 , a > 2).

It is easy to prove (3.17). In fact, we have only to apply the standard techniques
for the linear elliptic operator L and calculate several constants exactly, and use the in-
equalities A(k) ^ max(Ao, 1). By induction with respect to s and patient calculation,
(3.18) follows from (3.17).

PROOF OF THEOREM 3.5: Let us consider the following cut-off functions: x £

C'o°> X,i £ C0°°(fi \ 5 ) , 0 < x>Xii < 1, X = 1 in a neighbourhood of 5 in U and

diX CC x CC X ^or a n y J- Since ||«||3 < ||(1 — x)wll, llxull,! ^ w i ^ suffice to estimate

IK1 - x)u\\. and llx«l|. respectively. H

PROOF OF (3.12): By (3.18) and (3.15), we have

(3.19)

Here we note that C,,\ is independent of the coefficients of L but depends on
inf \{x). (3.13) and (3.16) give

supp(i-x)

(3.20) | M | . < C.K \\Lv\\, + \\\x,L)u\\. + Y Ai+2 \\u\\. C',KA2\\u\\s,

where C'x is independent of x,X a n d X- Since[x, L]u = [x>(x^)](xw) a n d
, (3.15) shows that

\

(3.21) ||[x, L]u\\, < C. | ||Xu||. + E Mi + 2) IMI; + ^(2) ||x"«|L
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By (3.18), (3.15) and A(2) < 1, we have

(3-22) ||.\WIL ^ G'<x

\

where C,t\ is independent of the coefficients of L but depends on inf A.
supp<

Combining (3.20) - (3.22), we obtain

(3.23) | | x « | | , < C.,A \\Lu\\, + > A(i + 2) | |«| | , + C'.KA2 \\u\\s .

Since KA2 > 0 is sufficiently small, (3.19) and (2.23) complete the proof of (3.12). II

PROOF OF (3.11): By (3.17), (3.15) and A(2) < 1, we have

(3-24) ||(1 - x)«||j < C?liA(||i«||0 + |HJ0).

(3.13), (3.16), [x,L]u = [.\,(x^)](x:M.), x l (^w) = \Lu, (3.15) and A(2) ^ 1 show that

(3.25) \\xu\\, < CjA'dllttH, + pull,) + C[KA2 \\u\\, ,

where C[ is independent of ,\, x anc^ \ • (3-17), (3.15) and A(2) ^ 1 give

(3-26) | |£«||a < C , , A ( | | I « | | 0 + | H | 0 ) .

Since KA2 ^ 0 is sufficiently small, by combining (3.24) - (3.26), we obtain (3.11). ^

P R O O F OF (3.10): (3.4) gives

(3-27) | | ( l - X ) u | | 0
2 ^ C ' 0 , A | | £ t t | | 0 | H | 0 .

(3.13) implies

(3.28)

Since [x,L)u = [x,(xL)){^u), xL(h>) = X^u and A(2) ^ 1, (3.9) shows that

(3-29)

By (3.4), we have

(3-30) \\iu\\l ^ CO,A |

Combining (3.27) - (3.30), we obtain (3.10).
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4. P R O O F OF THEOREMS 1.3 - 1.5

In this section, we use the notation introduced in Sections 1 and 2. According to

Theorem 2.9 and Sobolev's embedding theorem I f T - 2 - 2 « ( | } ) <_> C l ^ - 2 - 2 " ! ^ ) , it

will suffice for the existence of a solution to find a good approximating solution us and a

suitable elliptic operator M which satisfy Assumption 2.4, 2.5 and 2.6. The uniqueness

of the solution follows immediately from the maximum principle (see [1]). Crudely

speaking, Assumptions 2.4 and 2.5 are easy but Assumption 2.6 is tough. Fortunately,

by virtue of Theorem 3.5 we can overcome this difficulty.

PROOF OF THEOREM 1.3: Without loss of generality, we may assume that

(4.1) \g\4 < \ , \\F[g}\\.' > 0-

In fact, since the Dirichlet problem

j ~2f in ft, v = (2 ly^)" 1 ^ on <9ft

is equivalent to (1.1), \g\4 ^ 1/2 is no actual restriction, and further, if H-F^llla* = 0,

then the statement of Theorem 1.3 turns out to be trivial.

We put

(4.2) e = {m*x(\F[g)\o , \\F[g}\\3. ) } ^ , 6 = 1,0 = ^ , ut = g.

Then it is easy to verify that Assumption 2.4 is satisfied.

By the assumption of Theorem 1.3, gvv > 0 in a neighbourhood V of 5 in ft and
det(gij) > 0 in ft \ V. Hence, there is a linear elliptic operator M = a'Widj with real
constant coefficients satisfying

(4.3) Mg > 2 in ft.

By virtue of (4.3), we can construct a sequence {«„} as in Section 2. In fact, if we
already have u0, ( t 1 ; . . . , u n satisfying (2.20) - (2.22), (2.27) - (2.28) and (2.34)^, , -
( 2 . 3 9 ) i < n , then, by (4.2), (4.3), (2.4) and (2.35) n , M(ue + un) > 2-Ky/e; this implies
that Assumption 2.5 is satisfied when s > 0 is sufficiently small. Therefore, we can find
a solution vn £ C°°(ft) of the Dirichlet problem (2.13) and obtain ttn+i = «„ + i'n .

Let us take an auxiliary function <J?(x) = 9-(z — p), where u — (i/j, P2) = ( —"2j u\)
and S = {p} • Then Lemma 3.1 shows that

t2 / (<J
B[«e + un]PiPj)u2dx ^ K / \LCn[uc + un]u • u\ dx

(4.4) J J
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for all t ^ 1, where K = constant ^ 0, independent of LCn[ue + un] and U($, t).

Direct computation gives

(4.5) o-'/n[ue + un}0iUj ^ gvv - \u\2 |wn|2 - en(a'jUiPj) \g + un\2 .

By (2.1), (2.4), (2.35)n and (2.39)n , |i/|2 |wn|2 + en(a
ijUiVj) \g + un\2 is sufficiently

close to zero, while the assumption of Theorem 1.3 says that gvv is strictly positive.

Thus, (4.4) implies that

(4.6) ||it||0 ^ t~2C \\LCn[uc + un}u\\0 (u G C0°°(tf(*, <)))

for all t ^ 1. By (4.1), (2.35)„ and (2.39)n, we easily have

(4.7) | < [ « « + « n ] | 2 ^ l -

According to Theorem 3.5, (2.21) and (2.22) of Assumption 2.6 follow from (4.6) and

(4-7). R

PROOF OF THEOREM 1.4: The proof of Theorem 1.4 is almost the same as that
of Theorem 1.3. In fact, we have only to take an auxiliary function $(x) = f • (x — p)

instead of v • (x — p), where f = (— r2, TJ) and p is a fixed point on 5 . |

PROOF OF THEOREM 1.5: Without loss of generality, we may assume (4.1). We

take e,8,0 and uc as in (4.2). Then, as in the proof of Theorem 1.3, it is easy to

verify that Assumptions 2.3 and 2.4 are satisfied and also, to construct the sequence

{it,,} satisfying (2.27) - (2.28) and (2.34)_, - (2.39),-.

We take an auxiliary function $(x) = at? • (x — p), where a is a positive constant,

i? = (pi, Pz) = (—"2) "i) and p is a fixed point on S. Lemma 3.1 gives

/
(o*^[itt + un)Oi9j)u2dx < K I \LCn[ue + un]u • u\ dx

J

where K = constant > 0 is independent of LCn[ue + un] and £/($, 1). Here we take
a > 0 sufficiently small so that S C f/($, 1). Direct computation shows (4.5), so we
have, by (2.1), (2.4), (2.35) n and (2.39),,,

(4.9) ||u||0 «S C||L,B[u« + in]«||0 (u 6 C'o°°($, 1)).

0 < c « l , \D4g\Q « 1,(4.1), (2.35) „ and (2.39) „ give

(4.10) | £ > 2 a ' > K + « n ] | 0 « l

and

(4.11) KJ
B[«« + i in] | 2 < l .

By Theorem 3.5, (4.9) - (4.11) imply (2.21) and (2.22) of Assumption 2.6. fl
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