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DECOMPOSITIONS OF SUBMEASURES
CECILIA H. BROOK

In [4] we showed that one can tell whether a submeasure on a Boolean
algebra has a control measurs or is pathological by comparing the
Fréchet-Nikodym topology it generates to the universal measure topology
of Graves. We then wondered if a submeasure could be decomposed into a
part with a control measure and a part which is pathological or zero. This
led to the problem of finding a Lebesgue decomposition for a submeasure
on an algebra of sets with respect to a Fréchet-Nikodym topology.

In [6] Drewnowski proved a Lebesgue decomposition theorem for
exhaustive submeasures with respect to “additivities” and a similar
theorem for exhaustive Fréchet-Nikodym topologies. He asked if an
exhaustive Fréchet-Nikodym topology could be decomposed with respect
to another Fréchet-Nikodym topology. In [12] Traynor showed that the
answer is “yes”.

Here we prove a Lebesgue decomposition theorem for exhaustive
submeasures with respect to Fréchet-Nikodym topologies generalizing
Drewnowski’s results and deriving Traynor’s theorem as a corollary. We
then discuss the control measure problem of Maharam. A special case of
our decomposition theorem, viewed in the light of [4], is a decomposition
of an exhaustive submeasure into a part with a control measure and a part
which is pathological or zero. We show that the part with a control
measure has a control measure it dominates. Finally we give a
counterexample to show that the hypothesis of exhaustivity is necessary.

1. Preliminaries. Let 7 be an algebra of subsets of a nonempty set X.
We assume that &/ separates points. A submeasure on &7 1s a map A/ —
[0, o) such that

() A®) =0,
(2) AA) = N(B) whenever 4 € B in &,
(3) AA4 U B) = XNA) + XB) for all A and B in «Z

Call A exhaustive if A(4,)) — 0 whenever (4,,) is a disjoint sequence in
.

A Fréchet-Nikodym (FN) topology on &7 is a topology making the map
(A, B) > A A B from &/ X &/ to & continuous and making the map
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A — A N B continuous at @ uniformly for B in «Z An FN topology on .«
makes &7 into a topological group in which intersection is uniformly
continuous. FN topologies were introduced by Drewnowski [5].

For submeasures A and p, say A = pif M(A) = w(4) for all 4 inZ Then
the set of all submeasures on /is a Dedekind-complete lattice. Let £ be a
nonempty family of submeasures. Then

Gy, M) = sup AA)
if E is bounded above, and

(AQLA)(A) = inf {}\](Al) +...t )\H(An)l

(A;)!_ is a finite partition of A4 and Ay, . . ., A, € E}.
In particular,

AV p)(A4) = max {AMA), W(A4) }
and

N A ) = il (NB) + wANB) ).

The set of all FN topologies on &/ ordered by inclusion, forms a
complete lattice, whose greatest element is the discrete topology D and
least element the indiscrete topology O. Let E be a nonempty family of
FN topologies on &7 Then oY, G is the usual supremum topology [13]

and
('/e\rG = v {H|H is an FN topology and H € G for all G € E}.
If A is a submeasure on &7, we may define a semimetric d\ on ./ by
d\(A, B) = N4 A B).
Then the semimetric topology Gy is an FN topology on &/

1.1. PRoPOSITION. The map N — Gy is a lattice homomorphism.
Proof. This is straightforward.

Drewnowski [5] has observed that every FN topology is generated by a
family of submeasures. We give the details for the sake of completeness.

1.2. THEOREM. Let G be an FN topology on o (1) For every
G-neighborhood U of @ there exist a submeasure A with Gy € G and § > 0
such that

https://doi.org/10.4153/CJM-1984-036-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1984-036-9

DECOMPOSITIONS OF SUBMEASURES 579

{4 € ZI\NA4) <8} C U
2)G = V{G}JG)\ C G}

Proof. (1) Let U be a G-neighborhood of #. Since G is a commutative
group topology there is a continuous invariant semimetric p on ./ with
p = 1 and § > O such that

(A € Z|p(A. ) < 8} C U.
For A4 in o/ put
AA) = sup p(B, 0).
BCA

Then it 1s easy to see that A is a submeasure on %/, G\ € G, and
{A € AINA) <8} C U
(2) follows immediately from (1).

Of course, Gy € G just means that A is G-continuous on &7

For submeasures A and p on .« say that A is p-continuous if for every
€ > 0 there is 8 > 0 such that A(4) < € whenever u(4) < 6. Call A and p
equivalent and write A ~ p if A is p-continuous and pu is A-continuous. Say
that A and p are singular or topologically orthogonal and write A L p if for
every € > 0 there is 4 in &/such that \(4) < e and p(X\A4) < €. Then A is
p-continuous if and only if Gy € G, A ~ p if and only if Gy = G, and
A L pifandonlyif A A p = 0if and only if G\ A\ G, = O. Also note that
At p~Avap

We end this section with two useful results.

1.3. PROPOSITION. Let (N,)) be a sequence of submeasures which is bounded
above. Then

1

V G\, = G\, where A = 2 7

A,

Proof. This is straightforward.

1.4. THEOREM. Let G be an FN topology on o Then the set 1 of all FN
topologies H on #/such that G /\ H = O is a complete ideal in the lattice of
FN topologies.

Proof. It H, € H, and H, is in I, then clearly H, is in I.

Next notice that if A, A\; and A, are submeasures and A L A\jand A L A,
then A L A; v A,

Let E be a family in /; and put

T= Vv
HeE
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Suppose Gy € G A\ T. Then Gy € G,s0 Gy AN H = O forall Hin E. Let
e > 0. Since G, € T,

U={A4ecdNA) < ¢

is a T-neighborhood of @. By definition of the supremum topology there
are Hy, ..., H,in E and Uy, ..., U, such that, for 1 =/ = n, U, is an
H-neighborhood of # and

Uun..nuU, U

By 1.2 (1) there exist submeasures Ay, ..., A, and positive numbers
Oy, . .., 8, such that G\ € H; and

(A€ ANA)<8)}C Uforl =i=n.
Put
§ =mind,....8, and p=AV...VA,

IfwA) <é thendisinUy n...N U,soNA) <eButforl =i =
n,

Gy A Gy = 0,

soA L A, Then A L p. So there is C in 2/such that p(C) < § and A(X\C)
< e. Then A(C) < ¢, so

AX) = MC) + MY\ C) < 2e.

Then A = 0. By 1.2 (2), G AT = 0, so T is in [, Therefore, I is a
complete ideal.

2. A decomposition theorem. In this section we prove our main theorem,
a Lebesgue decomposition theorem for exhaustive submeasures with
respect to FN topologies.

A family E of submeasures on o is uniformly exhaustive if N(A,)) — 0
uniformly for A in E whenever (4,,) is a disjoint sequence in %/ We begin
with a key lemma, also proved by Drewnowski [Lemma 4.7. 7].

2.1. LEMMA. Let E be a nonempty uniformly exhaustive family of
submeasures on o7 Then for everv € > 0 there are a finite subset E' of E
and § > 0 such that NA) < € for all \ in E whenever N(A) < & for all
Nin E'.

Proof. Replace additive set functions by submeasures in the intricate
and ingenious proof of Lemma 1.4 [11].

2.2. LEMMA. Let E be a nonempry uniformly exhaustive family of
submeasures which is bounded above. Then there is a sequence (A\,,) in E such
that
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1
)\\E/[f A~ E ? }\”.

Proof. Set

By 2.1 for every kK = 1 there are a finite subset £, of £ and §, > 0 such
that

1
AA) < X for all A in E

whenever A(4) < &, for all A in E;. Put C = U E;. Write C = (A,).
Put

1
— A,
E2/1 n

Then v = p, so v is p-continuous.

Let € > 0. Find k such that 1/k < €. Put

1
n, = max {n!)\,, S E/‘} and 6 = ﬁ 8/(.

14

Suppose that »(4) < §. For each n = n;, we have
2”
24

MIA

S0

H

2
}\,,(A) < ﬁ 8/\ = 8/\.

Then A\, (4) < 6, for all A, in E. so
1 -
AA) < % for all A in E.
Then
4) = l < €
pAaA) = <e

Thus u is v-continuous. Therefore p ~ ».

2.3. THEOREM. Let E be a nonempty uniformly exhaustive family of
submeasures which is bounded above. Then

vV Gy, = .
rep A GA.\;/E}\
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Proof. Put
= )\\6/1:‘ A
Clearly
)\gl-j A c G“.

By 2.2 there is a sequence (A,) in £ such that

1

p, ~ 2 ? }\,,.
By 1.3,
= -
G, =VG, & )\\6/1{ G)y.
Therefore
O = NEE )

2.4. LEMMA. Let X\ be an exhaustive submeasure and G an FN topology on
& Put

A1 = v {ala is a submeasure, « = X\ and G, S G},
Ay = Vv {BIB is a submeasure, f = X and Gg N\ G = O}.

Then Gy, = G\ A G and Gy, \ G = O.

Proof. Since A is exhaustive, {ala = X and G, € G} and {BIB = A
and Gg /A G = O} are nonempty, uniformly exhaustive, and bounded
above.

By 1.2 (2),

Gy N G =V {GJG, € Gyand G, € G).

Note that G, © G, if and only if Gy», = G, if and only if G, = G, for
some a = A. Then

Gy A G =V {Gya = X and G, € G).

By 2.3, G)\ NG = G>\|'
By 2.3 and 1.4, G\, N G = 0.

We shall need an ordinary Lebesgue decomposition for exhaustive
submeasures, due to Drewnowski.
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2.5. THEOREM. Let A be an exhaustive submeasure and v a submeasure on
o/ Then there are submeasures Ny and \y on Zsuch that \y = X\, Ay = A\, A} is
n-continuous, \y L. m, and A ~ A\; + Ay ~ A\ V Ay. The submeasures \| and
Ay are unique up to equivalence.

Proof. See 4.3 (2), [6].

2.6. THEOREM. Let A be an exhaustive submeasure and G an FN topology
on o/ Then there are submeasures Ny and Ny on &/such that \} = N\, Ay = A,
G\, € G, G\, NG = 0,and X\ ~ A\ V \y. The submeasures \| and \; are

unique up to equivalence.
Proof. Define A; and A, as in 2.4. Then
M=EAMME=EANG, €6 and G, NG = 0.
Since A\ VA, = A,
Gy, & Gy

To show the reverse, we decompose A with respect to A} v A,. By 2.5
there are submeasures «; and a, such that a) = A, a3 = A, a; IS A\| v
Az-COH[il’lUOUS, 45} 1 >\1 \ Az, and A ~ o)V a. Then [45) 1 )\] and 4%} L >\2.
By 2.4,
Goy NG = (Gyy N G N G = Gy, N (G N G)
= Go, N\ Gy, = O.

So a; = Ay. Then @, = 0. So A ~ «;. Then
Gy = Gy S Gy,

Therefore A ~ A| v A,.
Suppose that B, and f3, are submeasures such that Gg, € G, Gg, \ G =
O, and A ~ B; v B,. Then

Gg, € G\ N\ G = Gy,

5

By 2.5 there are submeasures y; and y, such that y, is S;-continuous,
Y2 € ,81. and }\1 ~ Y1V Y2 Then GYI c G>\1 C G, so

Gy, N\ Gg, = 0.
Then

Gy, = Gy, \ Gy = Gy, N\ (Gg, v Gg)) = O
by 1.4. So vy, = 0. Then A\; ~ vy, so

Gy, = Gy, € G,

Thus A] ~ ,8].
Again by 2.5 there are submeasures &§; and &, such that &, is
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A»-continuous, 8; L Ay, and B, ~ &, v 8,. Since Gg, N\ Gg, = O,
Gy, N\ Gs, = Gg, N\ G5, = 0.
Then
Gs, = Gs, A\ Gy = Gs, A\ (G, V Gy) = 0
by 1.4. So 8, = 0. Then B, ~ &), so
Gg, = Gs, € Gy,
Similarly
Gy, € Gg,

Thus }\2 ~ ﬁz.

As a corollary we obtain a theorem of Traynor [Theorem 4.2, 12]. Say
that an FN topology G is exhaustive if A, — @ with respect to G whenever
(A,,) 1s a disjoint sequence in &/

2.7. CoROLLARY. Let G be an exhaustive FN topology and H an FN
topology on o/ Then there are unique FN topologies G| and G, on «/such that
G, € H, Gy /\NH=0,and G = G, Vv G,. Moreover, G| = G /\ H.

Proof. Put
G =V {G,\|G}\ C G and G\ © H},
G, =V {GA|G}\ C G and Gy, AN H = 0}.

G =V{GIG\S GAHY =GANH

by 1.2 (2). Clearly G; € H. By 1.4, G, A\ H = O. Clearly G, v G, € G.
Suppose Gy € G. By 2.6 there are submeasures A; and A, such that

G)\l c H.G)\l/\H = 0,and>x~)\|v}\2.
Then
Gy = G\, vV Gy, € GV G

By 1.2 (2), G € G, v G;,. Therefore G = G| v G>.
Suppose that T and 7, are FN topologies such that T) € H, T, N\ H =
O,and G = T, v T,. Then

T, C GAH=G,.

If Gy € T),then Gy, € Gand Gy, A\ H = O,s0 Gy € G,. Then T, € G, by
1.2 (2).

To show the reverse inclusions is a little harder. Suppose Gy € G. By 2.6
there are submeasures a and £ such that
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Gy €T,,Gg ANTy = 0,and A\ ~aV p.
Again by 2.6 there are submeasures y and & such that
G, €Ty, Gs\NTy=0,and B ~y V3.

Since Gs € Gg, Gs A\ Ty = O. Then
Gs =Gs NG =Gs \N(T)vT)=0

by 1.4.So Gg = G, € T,. Now if also G\ € H, then since Gg < T, and
Ty NH = 0, Gg = 0. Then Gy, = G, € T). On the other hand, if

= O, then since G, € T} € H, G, = O. Then G\ = Gg € T>.
Thus G, € T, and G, € T,. Therefore G; = T, and G, = T>.

3. Applications to the control measure problem. In this section we apply
2.6 to split an exhaustive submeasure on a Boolean algebra into a part
which has a control measure and a part which is pathological or zero. To
do this, we use the universal measure topology of Graves [9].

Let &/ be an algebra of sets and S(#/) the vector space of all
complex-valued .2~simple functions. A finitely additive map ¢ from 2/to a
locally convex space W is strongly bounded if ¢(A, ) — 0 whenever (4,,) is a
disjoint sequence in &/ and strongly countably additive if it is strongly
bounded and countably additive. Each finitely additive ¢ from &/ to W
induces a linear map ¢ from S(/) to W defined by

50— [ ao
Let 7 be the weakest topology on S(#7) making ¢ continuous for every
strongly countably additive ¢ from 2/ to W for every locally convex W.
Then 7 is a locally convex topology, called the universal measure topology.
The restriction of 7 to (the image of) #/is an exhaustive FN topology. The
universal measure space L(&/) is the t-completion of S(&/). For
information about £ (27), see [2], [3], and [9].

Let ba(#/) denote the Banach space of complex-valued bounded
additive maps on &/ and sca(%/) the closed subspace of complex-valued
strongly countably additive maps on .«Z Let ba(«/)" and sca(+)" denote
the sets of nonnegative elements in ba(%/) and sca(«/) respectively.

In [4] we considered submeasures A for which Gy, C 7. All results in
section 2 of [4] remain true if % (the algebra of clopen subsets of a compact
T, totally disconnected space) is replaced by an algebra of sets &Z We
record one theorem here.

3.1. THEOREM. Let A be a submeasure on o/ Then G\ S 1 on «if and only
if there is w in sca ()" such that A ~ p.

A simpler description of the topology 7 on 2 follows.
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3.2. CoROLLARY. On .o/ 7 = V {G|pn € sca (/)" }.
Proof. For each p in sca(«/) ™, G, € 7. Now use 1.2 (2) and 3.1.

Next we describe the control measure problem, or Maharam submeas-
ure problem, raised by Maharam in [10]. Let A be a submeasure on a
Boolean algebra %. Say A has a control measure if there is a nonnegative
bounded additive p on & such that A ~ p. Say A is pathological if X # 0 but
A dominates no nonzero nonnegative bounded additive p on %. These
statements are equivalent:

(1) If A'is an exhaustive submeasure on a Boolean algebra % then A has a
control measure.

(2) If A is an exhaustive submeasure on a Boolean algebra %, then A is
not pathological.

See [8] for a long list of equivalent statements, including (1) and (2).
Whether these statements are true is still an open question.

Let % be a Boolean algebra and % the algebra of clopen subsets of its
Stone space. Then submeasures on % are in one to one correspondence
with submeasures on €.

3.3. THEOREM. Let A be a nonzero submeasure on %

(1) X has a control measure if and only if Gy S ton &
(2) A is pathological if and only if Gy N7 = O on &

Proof. See 2.8 and 3.1 of [4].
Now 3.3 gives meaning to a special case of 2.6.

3.4. THEOREM. Let A be an exhaustive submeasure on & Then there are
submeasures Ny and Ay on & such that \y = X\, Ay = A, \| has a control
measure, N, is pathological or zero, and A ~ A\ V Ay. The submeasures N\ and
A are unique up to equivalence.

Proof. Use 2.6 with G = 7 on %and 3.3.

Of course, if every exhaustive submeasure has a control measure, 3.4
says nothing. But we can say more about the submeasure A in 3.4. To do
this, we need a lemma of Aleksyuk [Lemma 1.2, 1], for which we give a
short proof.

3.5. LEMMA. Let A be an exhaustive submeasure on & If
A~V {p € ba®)"|u = A},
then there is v in ba(%) " such that v = X and A ~ .

Proof. Set

E={peba(¥)|u=2A}and a = v,
13 =
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Then a« ~ A and E is nonempty, uniformly exhaustive, and bounded
above. By 2.2 there is a sequence (g, ) in E such that

1
a"'ziﬂlr

Put

1
VZE?.MH-

Then visin E and A ~ ».

3.6. THEOREM. Let N\ be a submeasure on % The following are
equivalent:

(H Gy S 1on &

(2) A is exhaustive and X\ ~ v {p € ba(€) " |p = A}

(3) There is v in ba(€)" such that v = X\ and X ~ .

Proof. (1) implies (2): Suppose G\ € 7. Then A is exhaustive. Put
a=vV{p € ba®) |p = A}

Then a = A. By 2.5 there are submeasures £, and 8, such that 8; = A, 5,
= A, By is a-continuous, 8 1 «, and A ~ B, v B,. Suppose that p is in
ba(é)" andp = B,. Then p = Asop = a. Then B, L p, sop = 0. Then
B, is pathological or zero. By 3.3 (2),

GB7/\’T:O.

But
Gg, € Gy & 7.

Then B8, = 0. It follows that A ~ a.
By 3.5, (2) implies (3), and (3) implies (1) is clear.

3.7. COROLLARY. Let A, A| and A\, be as in 3.4. Then \| has a control
measure v such that v = \.

Proof. By construction Gy, & 7 on %. Now use 3.6.

4. A counterexample. In this section we show that if &/ is an infinite
algebra, then the universal measure topology 7 on «/has no complement in
the lattice of FN topologies. Thus 2.6 and 2.7 are false without the
hypothesis of exhaustivity.

Let «/be an algebra and G and G’ FN topologies on & Say that G’ is a
complement for Gif G A\ G’ = O and GV G’ = D, where D is the discrete

topology.
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4.1. PROPOSITION. Let G and H be FN topologies on «/such that G < H
and H is exhaustive. If H has a complement, then so does G.

Proof. Suppose that H' is a complement for H. By 2.7 there are unique
FN topologies H, and H; such that

ngG,Hz/\G:QandH:Hlsz.

Infact Hy =GN H =G.PutG'=H,vH . Since G € H,.G/\H' = 0.
By 1.4, G N\ G’ = O. Also

GvG =GVv(H,vH) = (HvH)VH = HvVvH = D.
Therefore G’ is a complement for G.

4.2. LEMMA. Let p be in sca(Z) " . If G, has a complement, then it has a
complement of the form Gy, where X is a submeasure on

Proof. Let G’ be a complement for G,. Then G, v G’ = D. Since {#} is a
D-neighborhood of @ there exist a G,-neighborhood U of # and a
G’-neighborhood V of @ such that U N V' = {@#}. By 1.2 (1) there are a
submeasure A such that G, € G’, 8 > 0 and € > 0 such that

{4 € ZwA) <e} € Uand {4 € HINA) <8} C V.
Put r = min {0, €}. Then
{Aedl(AvpAd) <r} = {0).
So
G\V G, = Gy, = D.
Since G\ € G’ and G, N\ G" = O,
G\ N\ G, = 0.
Thus Gy is a complement for G,

Now we consider two cases. Since .7 separates points, an atom in &/ 1s
just a singleton.

4.3. LEMMA. If &7 contains a sequence of distinct atoms, then T has no
complement.

Proof. Let ( {x,} ) be a sequence of distinct atoms. Set

1
8y

po= 2? X

where 8, is the unit mass at x,. Then p is in sca(«) ", so G, &
Suppose that G, has a complement of the form G,. Since

Gap = G\ V G, = D,
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there is € > 0 such that
(A4 el AvpA) <) = {B).
1
Put r = min {e, 5} If A4 is nonempty, then A(4) = r or w(4) = r.
Since
Gypp = G\ N G, = 0,

A L p. Then there is C in .« such that A(C) < r and w(X\C) < r.
Let k be the smallest positive integer such that 1/2* < r. Since

1
r=—-,k=21Ifn =k, then

1 1
“({Xn}):?§?<r’

so A({x,}) = r. Then x,, is in X\C. For each N = &,

N
1
pOXNC) Z p({xp .. X)) = % o

Then

v
~

<1 1
MXNC) = X 5 = o=
n=k 2" 2

By 4.2, this contradiction shows that G, has no complement.
By 4.1, 7 has no complement.

4.4. LEMMA. If is infinite but contains at most finitely many atoms, then
7 has no complement.

Proof. 1If o has no atoms, set B = X. If &7 has atoms {x,},.... {x,},
set
B = X\{x,...,x,}.
Then B is infinite. Find p in sca(%/) " such that w(B) = w(X) = 1. Then G,
c T

Suppose that G, has a complement of the form G. As in the proof of 4.3
there is € > 0 such that

(4 € AV pA) < ) = (h).

Put r = min {e, 1}. If 4 is nonempty, then A\(4) = r or p(4) = r. Again as
in the proof of 4.3 there is C in &/ such that A(C) < r and W(X\C) < r.
Since wW(X\B) = 0,
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WXN(B N C)) = WX\B) + w(X\C) <r,
while
ABNC)y=NC)<r

Since r = w(X), B N Cis nonempty. Since B N C contains no atom, there
is a strictly decreasing sequence (C,) in &/ such that C;, = B N C. For
n =1, putd, = C\C,,. Then (4,) is a disjoint sequence of nonempty
subsets of B N C. Since p is strongly bounded, (4,,) = 0. Then w(4y) < r
for some N. Since Ay is nonempty, A(Ay) = r. But then A(B N C) = r. By
4.2, this contradiction shows that G, has no complement.

By 4.1, 7 has no complement.

4.5. THEOREM. If A is an infinite algebra, then 1 has no complement.

If «7is an infinite algebra, then .« must contain a disjoint sequence of
nonempty sets. Define the discrete submeasure Ay on </ by Ay (8) = 0 and
Ay(A) = 1if A is nonempty. Then G), = D and neither A; nor D is
exhaustive. Thus 4.5 shows that exhaustivity is necessary in 2.6 and 2.7.

The author thanks the referee for several helpful suggestions.
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