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DECOMPOSITIONS OF SUBMEASURES 

CECILIA H. BROOK 

In [4] we showed that one can tell whether a submeasure on a Boolean 
algebra has a control measure or is pathological by comparing the 
Fréchet-Nikodym topology it generates to the universal measure topology 
of Graves. We then wondered if a submeasure could be decomposed into a 
part with a control measure and a part which is pathological or zero. This 
led to the problem of finding a Lebesgue decomposition for a submeasure 
on an algebra of sets with respect to a Fréchet-Nikodym topology. 

In [6] Drewnowski proved a Lebesgue decomposition theorem for 
exhaustive submeasures with respect to "additivities" and a similar 
theorem for exhaustive Fréchet-Nikodym topologies. He asked if an 
exhaustive Fréchet-Nikodym topology could be decomposed with respect 
to another Fréchet-Nikodym topology. In [12] Traynor showed that the 
answer is "yes". 

Here we prove a Lebesgue decomposition theorem for exhaustive 
submeasures with respect to Fréchet-Nikodym topologies generalizing 
Drewnowski's results and deriving Traynor's theorem as a corollary. We 
then discuss the control measure problem of Maharam. A special case of 
our decomposition theorem, viewed in the light of [4], is a decomposition 
of an exhaustive submeasure into a part with a control measure and a part 
which is pathological or zero. We show that the part with a control 
measure has a control measure it dominates. Finally we give a 
counterexample to show that the hypothesis of exhaustivity is necessary. 

1. Preliminaries. Let se be an algebra of subsets of a nonempty set X. 
We assume that s/separates points. A submeasure on j / i s a map \:stf^> 
[0, oo) such that 

(1) X(0) = 0, 

(2) X(A) g X(B) whenever A Q B in J < 

(3) \(A U B) â \(A) + \(B) for all A and B ins/. 

Call À exhaustive if \{An) —» 0 whenever (An) is a disjoint sequence in 
se. 

A Fréchet-Nikodym (FN) topology on s/is a topology making the map 
(A, B) —> A A B from s/ X s/to ^cont inuous and making the map 
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A —> A n B continuous at 0 uniformly for B in stf. An FN topology on stf 
makes J / into a topological group in which intersection is uniformly 
continuous. FN topologies were introduced by Drewnowski [5]. 

For submeasures A and ju, say A ^ \i if A(̂ 4 ) = jix(,4 ) for all A in stf. Then 
the set of all submeasures on j / i s a Dedekind-complete lattice. Let £ be a 
nonempty family of submeasures. Then 

( v X)(A) = sup X(A) 

if E is bounded above, and 

(A\)(A) = inf ( A ^ , ) + . . . + Xn(An) I 
A €E / : 

(>4/ ) / = i is a finite partition of A and Aj, . . . , A„ G E}. 

In particular, 

(A v ii)(A ) = max {A(^ ), [i(A ) } 

and 

(A A p)(A) = inf {X(B) + n(A\B) } . 
BQA 

The set of all FN topologies on J ^ ordered by inclusion, forms a 
complete lattice, whose greatest element is the discrete topology D and 
least element the indiscrete topology O. Let £ be a nonempty family of 
FN topologies on s/. Then v G is the usual supremum topology [13] 

G Ç= h 

and 

A G = v {H\H is an FN topology and H Q G for all G e £ } . 

If A is a submeasure on j ^ we may define a semimetric dx o n ^ b y 

dx(A, B) = X{A A B). 

Then the semimetric topology G\ is an FN topology on stf. 

1.1. PROPOSITION. The map X —> Gx /s « lattice homomorphism. 

Proof. This is straightforward. 

Drewnowski [5] has observed that every FN topology is generated by a 
family of submeasures. We give the details for the sake of completeness. 

1.2. THEOREM. Let G be an FN topology on s/. (1) For every 
G-neighborhood U of $ there exist a submeasure X with G\ Q G and 8 > 0 
such that 
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{A Gtf\\(A) <8) ç u. 

(2) G = v{Gx\Gx Q G}. 

Proof. (1) Let U be a G-neighborhood of 0. Since G is a commutative 
group topology there is a continuous invariant semimetric p on j / w i t h 
p = 1 and <5 > 0 such that 

{A G J^|p(/4, 0) < 0} ç tf. 

For A ins/, put 

A(^ ) = sup p(£, 0). 

Then it is easy to see that À is a submeasure on J ^ G\ Q G, and 

{A e s/\\(A) < 8} Q U. 

(2) follows immediately from (1). 

Of course, G\ Q G just means that X is G-continuous on s/. 
For submeasures X and it on J ^ say that À is \i-continuous if for every 

€ > 0 there is 8 > 0 such that X(A ) < e whenever ^(.4 ) < <5. Call À and /x 
equivalent and write À — /x if X is ii-continuous and it is A-continuous. Say 
that X and \x are singular or topologically orthogonal and write À J_ /x if for 
every € > 0 there is A in j^such that X(A ) < c and /x(A\>4 ) < e. Then À is 
it-continuous if and only if G\ Q G^ X ~ it if and only if G\ = G^ and 
À _L it if and only if X A it = 0 if and only if G\ A G^ = (9. Also note that 
À + It — X V It. 

We end this section with two useful results. 

1.3. PROPOSITION. Let (Xn) be a sequence ojsubmeasures which is bounded 
above. Then 

v GXn = GA, where X = 2 — \ „ . 

Proof. This is straightforward. 

1.4. THEOREM. Let G be an FN topology on s/. Then the set IG of all FN 
topologies H on s/such that G A H = O is a complete ideal in the lattice of 
FN topologies. 

Proof. If Hx Q H2 and H2 is in IG, then clearly H\ is in IG. 
Next notice that if X, X\ and X2 are submeasures and X J_ X\ and X _L X2, 

then X _L Ai v X2. 
Let i: be a family in IG and put 

T = v H. 
H (ZE 

https://doi.org/10.4153/CJM-1984-036-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-036-9


580 CECILIA H. BROOK 

Suppose Gx Q G A T. Then Gx Q G, so Gx A H = O for all H in £. Let 
€ > 0. Since Gx Q T, 

U = {A e s/\X(A) < e} 

is a 7-neighborhood of 0. By definition of the supremum topology there 
are Hh . . . , Hn in £ and U\, . . . , Un such that, for 1 ^ / ^ /?, U, is an 
///-neighborhood of 0 and 

£// n . . . n t/„ ç u. 

By 1.2 (1) there exist submeasures A],.. . ,A,Z and positive numbers 
Si, . . . , 8n such that G\. Q Hl and 

{/* G s/\\i(A) < 8t} Q Uj for 1 ê / ^ n. 

Put 

8 = min 8\,..., 8W and /x = A] v . . . v \n. 

If /x(/l ) < 8, then /I is in [/, H . . . H [/„, so A(/l) < c. But for 1 ^ / ^ 

GX A GX. = 0, 

so À _L A,. Then À _L /i. So there is C in j^such that /x(C) < 8 and A(A\C) 
< e. Then A(C) < e, so 

X(X) ^ A(C) + A(A\C) < 2c. 

Then A = 0. By 1.2 (2), G A T = 0, so T is in 7C/. Therefore, 7r, is a 
complete ideal. 

2. A decomposition theorem. In this section we prove our main theorem, 
a Lebesgue decomposition theorem for exhaustive submeasures with 
respect to FN topologies. 

A family E of submeasures on j ^ i s uniformly exhaustive if A^,,) —» 0 
uniformly for A in E whenever (An) is a disjoint sequence in se. We begin 
with a key lemma, also proved by Drewnowski [Lemma 4.7. 7]. 

2.1. LEMMA. Let E be a nonempty uniformly exhaustive family of 
submeasures on s/. Then for every c > 0 there are a finite subset E' of E 
and 8 > 0 such that X(A ) < e for all X in E whenever X(A ) < 8 Jor all 
X in E'. 

Proof. Replace additive set functions by submeasures in the intricate 
and ingenious proof of Lemma 1.4 [11]. 

2.2. LEMMA. Let E be a nonempty uniformly exhaustive family of 
submeasures which is bounded above. Then there is a sequence (Xn) in E such 
that 

https://doi.org/10.4153/CJM-1984-036-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-036-9


DECOMPOSITIONS OF SUBMEASURES 581 

Proof. Set 

a = v A. 
r A G E £ 

By 2.1 for every k ^ 1 there are a finite subset Ek of E and fiA > 0 such 
that 

X{A) < - for all A in £ 
k 

whenever X(A) < Sk for ail A in Ek. Put C = U £A. Write C = (A,z). 
Put 

1 

2" 
2 ^ A». 

Then v = JU,, so v is jiz-continuous. 
Let € > 0. Find /c such that l//c < e. Put 

A?A = max {n\X„ e £ A } and 8 = — 8A.. 

Suppose that v(A ) < fi. For each AI ^ A?A., we have 
yi 

— = 1, 

SO 

Then Xn(A) < 8k for all A,7 in Ek, so 

X(A ) < - for all A in £. 
k 

Then 

/x(/l) â ^ < e. 

Thus /x is ^-continuous. Therefore [i — v. 

2.3. THEOREM. Let E be a nonempty uniformly exhaustive family of 
submeasures which is bounded above. Then 

v Gx = G v A. 
AGE A AGE/: 
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Proof. Put 

a = V X. 

Clearly 

By 2.2 there is a sequence (Xn) in £ such that 

M ~ 2 - A„. 

By 1.3, 

G„ = v G\ Q v GA. 

Therefore 

Gw = v Gx. 
* AG/: A 

2.4. LEMMA. Le/ A /><? an exhaustive submeasure and G an FN topology on 
j ^ Put 

\\ = V {a\a is a submeasure, a ~ X and Ga Q G}, 

^2 = v {fi\P is a submeasure, ft = X and Gp A G = O). 

Then GX] = G\ A G and G\2 A G = O. 

Proof. Since X is exhaustive, {a\a ^ À and Ga Q G} and {/3|/3 ^ À 
and G^ A G = O} are nonempty, uniformly exhaustive, and bounded 
above. 

By 1.2 (2), 

GX A G = v { G ^ ç Gx and G^ ç G). 

Note that G^ Ç Gx if and only if GXA/A = G^ if a n d o n ly if ^v = ^« f° r 

some a ^ X. Then 

Gx A G = v ( G > ^ A and Ga Ç G}. 

By 2.3, GA A G = GÀ]. 
By 2.3 and 1.4, GXl A G = 0. 

We shall need an ordinary Lebesgue decomposition for exhaustive 
submeasures, due to Drewnowski. 
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2.5. THEOREM. Let X be an exhaustive submeasure and r\ a submeasure on 
s/. Then there are submeasures X\ and X2 on s/such that X\ = A, X2 = À, X\ is 
^-continuous, X2 _l_ r\, andX — X\ + X2 ~ X\ V A2. The submeasures X\ and 
X2 are unique up to equivalence. 

Proof. See 4.3 (2), [6]. 

2.6. THEOREM. Let X be an exhaustive submeasure and G an FN topology 
on s/. Then there are submeasures X\ and X2 on s/such that X\ = A, A2 = À, 
G\] Q G, G\2 A G = O, and X ~ X\ V A2. The submeasures X\ and X2 are 
unique up to equivalence. 

Proof. Define X\ and X2 as in 2.4. Then 

X, ^ A, A2 ^ A, GA] ç G, and GA2 A G = O. 

Since A, v A2 = À, 

^A,vA2 ^ G\. 

To show the reverse, we decompose A with respect to Aj v A2. By 2.5 
there are submeasures ot\ and a2 such that a\ ^ A, a2 = K a\ ls ^1 v 

A2-continuous, a2 _L X\ v A2, and A — a\ v a2. Then a2 _L A] and a2 _L A2. 
By 2.4, 

Gai AG = (Ga2 A Gx) A G = G.2 A (GA A G) 

= G«2 A GX, = O. 

So a2 ^ A2. Then a2 = 0. So A ~ <x\. Then 

G\ = Ga] Q G\]V\2 

Therefore A ~ A] v A2. 
Suppose that fi\ and fi2 are submeasures such that Gp] Q G, Gp2 A G = 

<9, and À - f t v £2. Then 

Gfil Q Gx A G = GAl. 

By 2.5 there are submeasures y\ and y2 such that y\ is /5] -continuous, 
y2 _L ySi, and A] — yi v y2. Then Gy2 Q GA] Q G, so 

Gy2 A G 2̂ = O. 

Then 

GY2 = G72 A GA = GY2 A (G>, v Gyg2) ^ O 

by 1.4. So y2 = 0. Then Aj ~ Yi> SO 

GAl = GYl ç Gfir 

Thus Aj ~ ySj. 
Again by 2.5 there are submeasures 8\ and S2 such that 8] is 
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\2-continuous, S2 J- A2, and fa ~ 8\ v 82. Since G^ A G 2̂ = 0, 

GA| A G«2 = G ,̂ A GSj = 0. 

Then 

Gs2 = G8l A GA = Gh A (GX] v GAJ = 0 

by 1.4. So 82 = 0. Then /32 — Ôi, so 

^ 2 = Gfi, Q G\r 

Similarly 

Gx2 Q Gfiy 

Thus X2 ~ fa. 
As a corollary we obtain a theorem of Traynor [Theorem 4.2, 12]. Say 

that an FN topology G is exhaustive if yl„ —» 0 with respect to G whenever 
(An) is a disjoint sequence in J ^ 

2.7. COROLLARY. Ler G be an exhaustive FN topology and H an FN 

topology on jtf Then there are unique FN topologies G\ and G2 on s/such that 
G, Q H,-G2 A H = 0, and G = G{ v G2. Moreover, G, = G A //. 

Proo/. Put 

G, = v {GA|GA Ç G and GA ç / / } , 

G2 = v {GA|GA ç G and GA A H = O}. 

Then 

G! = v {GA|GA <ZGAH} = GAH 

by 1.2 (2). Clearly Gj ç // . By 1.4, G2 A H = 0. Clearly G , v G 2 Ç G. 
Suppose GA Q G. By 2.6 there are submeasures X] and \ 2

 s u c h t n a t 

GAl ç // , GXl A H = 0 , and À — X\ v X2. 

Then 

GA = GAl v GXl c G , v G2. 

By 1.2 (2), G ç G} v G2. Therefore G = Gxv G2. 
Suppose that 7^ and T2 are FN topologies such that T\ Q H, T2 A H = 

0, and G = Tj v T2. Then 

7, Ç G A / / = G,. 

If GA ç r2 , then GA ç G and GA A H = 0 , so GA ç G2. Then T2 Q G2 by 
1.2(2). 

To show the reverse inclusions is a little harder. Suppose GA Q G. By 2.6 
there are submeasures a and /3 such that 
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Ga Q Th Gp A Tx = 0, and X - a v 0. 

Again by 2.6 there are submeasures y and S such that 

Gy ç T2, G« A T2 = 0, and 0 - y v 8. 

Since Ĝ  Q Gp, Gg A 7^ = O. Then 

G5 = G8 A G = G5 A (T} v T2) = O 

by 1.4. So G^ = Gy ç T2. Now if also G\' ^ //", then since G^ Q T2 and 
T2 A if = O, Gp = O. Then Gx = Ga Q Th On the other hand, if 
Gx A H = O, then since Ga Q Tx Q H, Ga = O. Then GA = Gp Q T2. 
Thus G) Ç 7i and G2 ç T2. Therefore G\ = T\ and G2 = T2. 

3. Applications to the control measure problem. In this section we apply 
2.6 to split an exhaustive submeasure on a Boolean algebra into a part 
which has a control measure and a part which is pathological or zero. To 
do this, we use the universal measure topology of Graves [9]. 

Let s/ be an algebra of sets and S(s/) the vector space of all 
complex-valued j^simple functions. A finitely additive map <J> from s/to a 
locally convex space Wis strongly bounded if <j>(An) —» 0 whenever (An) is a 
disjoint sequence in s/, and strongly countably additive if it is strongly 
bounded and countably additive. Each finitely additive <> from s& to W 
induces a linear map <j> from S(sZ) to W defined by 

Mf) = f fd*. 
Let T be the weakest topology on S(s/) making <f> continuous for every 
strongly countably additive cj> from stf to W for every locally convex W. 
Then T is a locally convex topology, called the universal measure topology. 
The restriction of r to (the image of) j / i s an exhaustive FN topology. The 
universal measure space J£(s#) is the T-completion of S(s/). For 
information about «^ ( J^ ) , see [2], [3], and [9]. 

Let ba(j/) denote the Banach space of complex-valued bounded 
additive maps on JZ? and SCSL(S/) the closed subspace of complex-valued 
strongly countably additive maps ons/. Let ba(j^)+ and sca(j^) + denote 
the sets of nonnegative elements in ba(j/) and sca(j/) respectively. 

In [4] we considered submeasures X for which G\ Q r. All results in 
section 2 of [4] remain true if ^(the algebra of clopen subsets of a compact 
T2 totally disconnected space) is replaced by an algebra of sets stf. We 
record one theorem here. 

3.1. THEOREM. Let X be a submeasure on J& Then G\ Q r on J^if and only 
if there is fi in sea Ç%?) + such that X ~ /A. 

A simpler description of the topology T on ^follows. 
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3.2. COROLLARY. On J^ T = v {G^ii e sea (s/) }. 

Proof. For each /x in sca(j/) + , G^ ç T. NOW use 1.2 (2) and 3.1. 

Next we describe the control measure problem, or Maharam submeas-
ure problem, raised by Maharam in [10]. Let À be a submeasure on a 
Boolean algebra 36. Say X has a control measure if there is a nonnegative 
bounded additive fi on 36 such that X ~ /x. Say À is pathological if A T̂  0 but 
X dominates no nonzero nonnegative bounded additive fi on 36. These 
statements are equivalent: 

(1) If À is an exhaustive submeasure on a Boolean algebra 38 then À has a 
control measure. 

(2) If X is an exhaustive submeasure on a Boolean algebra 36, then À is 
not pathological. 

See [8] for a long list of equivalent statements, including (1) and (2). 
Whether these statements are true is still an open question. 

Let 36 be a Boolean algebra and fé7 the algebra of clopen subsets of its 
Stone space. Then submeasures on 36 are in one to one correspondence 
with submeasures on fé7. 

3.3. THEOREM. Let X be a nonzero submeasure on & 
(1) X has a control measure if and only if G\ Q r on & 
(2) X is pathological if and only if G\ A r = O on & 

Proof. See 2.8 and 3.1 of [4]. 

Now 3.3 gives meaning to a special case of 2.6. 

3.4. THEOREM. Let X be an exhaustive submeasure on M Then there are 
submeasures X\ and X2 on & such that X\ ^ À, X2 = A, X\ has a control 
measure, X2 is pathological or zero, andX ~ X\ V X2. The submeasures X\ and 
X2 are unique up to equivalence. 

Proof Use 2.6 with G = r on ^ a n d 3.3. 

Of course, if every exhaustive submeasure has a control measure, 3.4 
says nothing. But we can say more about the submeasure X\ in 3.4. To do 
this, we need a lemma of Aleksyuk [Lemma 1.2, 1], for which we give a 
short proof. 

3.5. LEMMA. Let X be an exhaustive submeasure on & If 

X ~ v {/* e ba(^) + |/x ^ À}, 

then there is v in b a ( ^ ) + such that v = X and X — v. 

Proof. Set 

E = {jii <= b a C ^ + l/x ^ X} and a = v /i. 
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Then a ~ X and E is nonempty, uniformly exhaustive, and bounded 
above. By 2.2 there is a sequence (/A,7) in E such that 

a ~ 2 — / v 

Put 

* = 2 - M«. 

Then v is in £ and \ ~ v. 

3.6. THEOREM. Le/ X be a submeasure on & The following are 
equivalent: 

(1) Gx Q T on tf 
(2) X is exhaustive and X ~ v (ju, G ba(^) + |/x ^ À } . 
(3) 77/ere /'s v in b a ( ^ ) 4 swc/z //z#/ v ^ X and X ~ v. 

Proof. (1) implies (2): Suppose G\ Q r. Then X is exhaustive. Put 

a = v {/x G ba(^) + |/x ^ A}. 

Then a ^ À. By 2.5 there are submeasures /?j and /?2 such that j3\ î=k À, /?2 

^ À, ŷ ! is «-continuous, /?2 _L a, and À ~ fî\ v /?2. Suppose that jti is in 
b a ( ^ ) + and JU, ^ /?2. Then ft ^ À so JU ^ a. Then /?2 _L jU, so ju = 0. Then 
/?2 is pathological or zero. By 3.3 (2), 

Gp2 A r = O. 

But 

Then /?2 = 0. It follows that X ~ a. 
By 3.5, (2) implies (3), and (3) implies (1) is clear. 

3.7. COROLLARY. Let À, X\ and X2 be as in 3.4. Then X\ has a control 
measure v such that v = X. 

Proof By construction G\] Q r o n ^ . Now use 3.6. 

4. A counterexample. In this section we show that if s? is an infinite 
algebra, then the universal measure topology T onj^/has no complement in 
the lattice of FN topologies. Thus 2.6 and 2.7 are false without the 
hypothesis of exhaustivity. 

Let j ^ b e an algebra and G and G' FN topologies on stf. Say that G' is a 
complement for G if G A G' = O and Gv G' = D, where D is the discrete 
topology. 
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4.1. PROPOSITION. Let G and H be FN topologies on s/such that G Q II 
and H is exhaustive. If H has a complement, then so does G. 

Proof. Suppose that H' is a complement for H. By 2.7 there are unique 
FN topologies H\ and H2 such that 

Hx Q G, H2 A G = 0 , and H = Hxv H2. 

In fact / / , = G A H = G. Put G' = H2 v 77'. Since G c //, G A 77' = 0. 
By 1.4, G A G' = 0. Also 

G v G' = G v (//2 v 77') = (H] v 772) v 77' = 77 v 77' = 7). 

Therefore G' is a complement for G. 

4.2. LEMMA. L^/ JU be in sca(j/) + . 7/ G^ has a complement, then it has a 
complement of the form G\, where X is a submeasure on s£ 

Proof. Let G' be a complement for G .̂ Then G^\i G' = 7). Since {0} is a 
^-neighborhood of 0 there exist a G^-neighborhood U of 0 and a 
G'-neighborhood V of 0 such that [/ n K = {0}. By 1.2 (1) there are a 
submeasure X such that G\ Q G', 8 > 0 and 6 > 0 such that 

{A G j/|iu(v4) < 6} ç {/and {̂4 G S/\\(A) < 8} Q V. 

Put r = min {<5, €}. Then 

{^ G j3f|(X v ju)(,4) < r} = {0}. 

So 

G\ v G^ = GxVfX = 7). 

Since G\ Q G' and G^ A G' = 0 , 

GA A G^ = 0. 

Thus G\ is a complement for G .̂ 

Now we consider two cases. Since J/separates points, an atom in jtfis 
just a singleton. 

4.3. LEMMA. If JZ? contains a sequence of distinct atoms, then T has no 
complement. 

Proof. Let ( {xn} ) be a sequence of distinct atoms. Set 

M = 2 - «*„, 

where <5A. is the unit mass at xn. Then /x is in sca(j/) + , so G^ Q T. 
Suppose that G^ has a complement of the form G\. Since 
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there is c > 0 such that 

{A G ^ I ( À V ^ ) < 6} = {0}. 

Put r = min {c, - } . If A is nonempty, then \(A) = r or /A(/4) = r. 

Since 

GAA^ = G\ A G^ = O, 

À _L /x. Then there is C in j / such that X(C) < r and /x(A\C) < r. 
Let k be the smallest positive integer such that \/2k < r. Since 

r ^ - , k ^ 2. If n â Ac, then 
2 

M {*«} ) = ^ = ^ < ^ 

so À( {xfl} ) = r. Then x„ is in X\C. For each N ^ k, 

N 1 
/x(X\C) ^ / * ( { x A , . . . , ^ } ) = 2 - . 

Then 

oo j 1 

By 4.2, this contradiction shows that G^ has no complement. 
By 4.1, T has no complement. 

4.4. LEMMA. Ifs/is infinite but contains at most finitely many atoms, then 
T has no complement. 

Proof If j / h a s no atoms, set B = X. If j / h a s atoms {x\}, . . . , {x,J, 
set 

B = X\{xu...,x„). 

Then B is infinite. Find /x in sca(j/)+ such that [i(B) = [i(X) = 1. Then G^ 
Q T. 

Suppose that G^ has a complement of the form G\. As in the proof of 4.3 
there is € > 0 such that 

{A e j / | ( À v n)(A) < e} = {0}. 

Put r = min (e, 1}. If A is nonempty, then X(A ) = r or JU(T4 ) ^ r. Again as 
in the proof of 4.3 there is C in J /such that A(C) < r and ii(X\C) < r. 

Since n(X\B) = 0, 
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li(X\(B n C)) ^ n(X\B) + ti(X\C) < r, 

while 

X(B n C) ^ X(C) < r. 

Since r ^ ti(X), B n C is nonempty. Since 5 H C contains no atom, there 
is a strictly decreasing sequence (C„) in stf such that C) = 5 H C. For 
« = 1, put An = C/7\C„ + i. Then (yl„) is a disjoint sequence of nonempty 
subsets of B n C. Since jit is strongly bounded, ix(An) —> 0. Then /A(/1 v ) < f* 
for some N. Since ,4^ is nonempty, X(AN) = r. But then X(B n C) = r. By 
4.2, this contradiction shows that G^ has no complement. 

By 4.1, T has no complement. 

4.5. THEOREM. If A is an infinite algebra, then r has no complement. 

If j / i s an infinite algebra, then se must contain a disjoint sequence of 
nonempty sets. Define the discrete submeasure Xj on j / b y X</(0) = 0 and 
Aj(,4) = 1 if A is nonempty. Then G\d = Z) and neither Xj nor £> is 
exhaustive. Thus 4.5 shows that exhaustivity is necessary in 2.6 and 2.7. 

The author thanks the referee for several helpful suggestions. 
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