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Concordance of spatial graphs

Egor Lappo

Abstract. We define smooth notions of concordance and sliceness for spatial graphs. We prove that
sliceness of a spatial graph is equivalent to a condition on a set of linking numbers together with
sliceness of a link associated with the graph. This generalizes the result of Taniyama for θ-curves.

1 Introduction

Spatial graphs are commonly defined as embeddings of compact one-dimensional
CW-complexes into a 3-sphere. Spatial graphs having special abstract topology, such
as θ-curves, appear naturally in knot theory in the study of strongly invertible knots
[13], DNA replication [3, 12], and other topics.

Several isotopy invariants of spatial graphs were proposed, based, among others,
on combinatorics of planar diagrams [2, 6], the Alexander module [8], Heegaard
Floer homology [1], and instanton homology [7]. Many of them are extensions of
isotopy invariants for knots. Knot concordance is another equivalence relation on
the set of all knots. Two knots K and K′ are said to be smoothly concordant if
there is a smooth annular cobordism f ∶ K × I → S3 × I such that f (x , 0) = K and
f (x , 1) = K′. Slice knots are knots concordant to the unknot. A natural question then
is to extend the notion of concordance equivalence of knots to spatial graphs and
propose concordance invariants.

In this paper, we produce a way to reduce the question of whether a given
spatial graph is slice to sliceness of a certain link that can be obtained from the
graph. This work can be seen as an extension of Taniyama’s work [15] from sliceness
of θ-curves to general spatial graphs. We note that concordance equivalence of
knots is different depending on whether one is working with locally flat or smooth
maps. We work in the smooth category, while Taniyama worked in the locally flat
category. Analogues of our results could equally well be proven in the locally flat
setting.

We begin by defining a spatial graph as an injective map f ∶ �→ S3 from a finite
one-dimensional CW-complex to S3 such that f is smooth on 1-cells (edges) of �

and in the neighborhood of each 0-cell (vertex), the image has a fixed form, with all
edges lying in the same plane (Definition 2.1). The image of f is denoted by G = f (�).
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1092 E. Lappo

We proceed to define three equivalence relations on spatial graphs: isotopy, which
reflects the equivalence most widely used in the community, rigid isotopy, in which
a neighborhood of each vertex is preserved, and concordance, in which two spatial
graphs G and H are equivalent if there is an identity cobordism G × I in S3 ×H from
G to H (Definition 2.4). This cobordism is required to satisfy certain smoothness
conditions, being what we call a rigid embedding. By analogy with knots, we define
slice spatial graphs as spatial graphs that are concordant to a planar one, that is, to a
graph embedded in S2 ⊂ S3.

We proceed to define a framing Σ of a spatial graph G as an oriented surface that
deformation retracts onto G. Equivalences of graphs naturally extend to the framed
context (Definition 2.9). Constituent knots, which are simple cycles in G, can then
be “pushed-off ” in a positive direction with respect to the framing surface Σ. Linking
numbers of constituent knots obtained with the help of such push-offs are then shown
to be invariant under framed concordances of spatial graphs (Proposition 3.2) and
such linking numbers vanish for framed slice spatial graphs.

We then give an algebraic description of linking numbers of constituent knots
that allows us to tell whether a given spatial graph can be framed slice even when no
framing is given. More precisely, to each abstract graph topology �, we associate an
abelian group that encodes all possible framings across all embeddings of �, modulo
twists on edges. We call it the module of framings Fr(�). For each spatial graph G
having abstract topology �, we have an element K(G) ∈ Fr(�). We show the following
result.

Theorem 1.1 Let G and H be spatial graphs. If there is a concordance between G and
H, then K(G) = K(H).

This gives us a concrete algebraic condition on the framings that can be calculated
through linking numbers.

A collection of circles embedded in a framing surface Σ of G is called a link pattern.
For a special class of link patterns, called fundamental link patterns, we prove that as
long as the linking number condition vanishes, sliceness of a fundamental link pattern
is equivalent to sliceness of the spatial graph G.

Theorem 1.2 Let G be a spatial graph with abstract topology �. Let {K i} be its
constituent knots constructed from a maximal tree as in Section 3.2, and let Σ be an
arbitrary framing of G. Then, G being slice is equivalent to the combination of the
following two conditions:
(i) The images of push-offs of constituent knots are zero in the module of framings of

�, K(G) = 0 ∈ Fr(�).
(ii) If (i) is true, then there is a framing Σ0 such that for each push-off we have

[K+i ] = 0 ∈ H1(S3 −G). The second condition then is: a fundamental link pattern
in Σ0 is slice.

This generalizes the result of Taniyama [15] for θ-curves. In that case, condition (i)
is vacuous and we only have condition (ii).
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Concordance of spatial graphs 1093

Figure 1: The pair (D3 , Xn) from Definition 2.1, with Xn shown in blue. Notice that Xn lies in
a plane within B3 .

2 Definitions

In this section, we recall some topological preliminaries and introduce definitions for
spatial graphs and their concordance.

2.1 Spatial graphs

A graph � is a finite one-dimensional CW-complex. The 0-cells of � are called vertices,
and 1-cells are called edges. The number of edges adjacent to the vertex is called the
order of the vertex. In this paper, all graphs are assumed to have no vertices of order
1 or 2, except for the case of links, which we see as spatial graphs having connected
components with a single edge and a single vertex of order two.

An orientation of a graph � is a choice of a “direction” for each edge of �, and a
labeling of a graph is a map associating a unique label to each cell of �. In this paper,
all graphs are assumed to be oriented and labeled.

A spatial graph is usually taken to be a graph � together with an injective map
f ∶ �↪ S3 having some additional properties. The simplest example would be to
require f to be continuous or of class Ck on the edges of �, as in [4]. However, these
conditions are insufficient for our purposes, since pathological phenomena similar to
wild knots can occur in the neighborhood of a vertex. We give a definition of a spatial
graph in the context of smooth topology.

Definition 2.1 A spatial graph G = (�, f ) is an abstract graph � together with an
injective map f ∶ �↪ S3 such that:
(a) f is a smooth embedding on the 1-cells (edges) of �, and
(b) for every vertex v of �, there exists a neighborhood U of f (v) such that U ∩

f (�) is diffeomorphic to (D3 , Xn) with n ≥ 3, shown in Figure 1.
Here, Xn is a cone on n points spaced regularly on the unit circle in the plane.

Remark 2.2 In the literature, several additional conditions are often introduced on
spatial graphs, such as: no sources or sinks, so that each vertex is adjacent to both
incoming and outgoing edges; transverse orientation, so that at each vertex of G there
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is a small embedded disk Dε separating the incoming and outgoing edges; balanced
coloring, which is an assignment of a nonnegative integer to each edge such that at
each vertex the sum of integers on incoming edges is equal to the sum on outgoing
ones, and so on (see [1, 2, 18]). These conditions are usually required for algebraic
invariants to work, and here we do not make use of them.

The subtlety in Definition 2.1 is highlighted in the discussion of spatial graph
equivalences. While a multitude of equivalence relations on spatial graphs already
exists in the literature [16], here we provide new definitions that are suitable for the
study of four-dimensional phenomena in the smooth context. First, we give some
auxiliary definitions.

Definition 2.3 Let I = [0, 1], G = (�, g) and H = (�, h) be spatial graphs, and let f
be a map f ∶ � × I → S3 × I. We say that:
(a) f is from g to h if there exists ε > 0 such that f (x , t) = (g(x), t) for all t ∈ [0, ε)

and f (x , t) = (h(x), t) for all t ∈ (1 − ε, 1].
(b) f is level-preserving if for each t ∈ I there is a map ft ∶ �→ S3 such that f (g , t) =

( ft(g), t).
(c) f is a rigid embedding if every point of the image f (�) has a neighborhood

diffeomorphic to either (D4 , D2) or (D3 × (0, 1), Xn × (0, 1)).

Then, the equivalences are defined as follows.

Definition 2.4 (a) Let Conf n(S2) = {{x1 , . . . , xn} ⊂ S2 ∣ x i ≠ x j} be the configu-
ration space of n points on a sphere and γ ∶ I → Conf n(S2) be a smooth map.
We define Cγ to be the image of taking cones on γ(t), i.e.,

Cγ = ⋃
t ,u∈[0,1]

{t} × {u ⋅ γ(t)} ⊂ I × D3 .

Then, we say that G and H are isotopic if there exists a level-preserving map
f ∶ � × I → S3 × I smooth on the 2-cells of � × I and such that for all t ∈ (0, 1),
all v ∈ V(�), there exists a neighborhood U of f (v , t) and a level-preserving
diffeomorphism U → Cγ for some γ(t) as above.

(b) Two spatial graphs G and H are rigidly isotopic if there exists a level-preserving
rigid embedding f ∶ � × I → S3 × I from G to H.

(c) Two spatial graphs G and H are concordant if there exists a rigid embedding
� × I → S3 × I from G to H.

Intuitively, Definition 2.4(a) allows for arbitrary movement of edges at a vertex
during the isotopy, while restricting the behavior so that pathological phenomena
like wild knots or infinite braiding do not occur. Definition 2.4(b) restricts the isotopy
further, requiring that a small neighborhood of each vertex is fixed during the isotopy.

2.2 Planar projections

To each spatial graph, one can associate a planar projection consisting of a set of
vertices, arcs, and crossings. Planar projections of spatial graphs can be related via
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Figure 2: Reidemeister moves for spatial graphs.

a sequence of Reidemeister moves [6, 10], as presented in Figure 2. For the sake of
visual clarity, in the figures, the angles between the edges at a vertex are not drawn
equal.

The relationship between planar projections and our definitions in Section 2.1 is
contained in the following proposition.

Proposition 2.5 (a) Two spatial graphs are isotopic if and only if they possess planar
projections related to each other via a sequence of Reidemeister moves as in
Figure 2 .

(b) Two spatial graphs are rigidly isotopic if and only if they possess planar projections
related to each other via a sequence of Reidemeister moves (I)–(V), not involving
the move (VI).

Statement (a) is widely known. Part (b) has a similar proof, which follows from an
observation that moves (I)–(V) leave a small neighborhood of each vertex invariant,
as required by Definition 2.4(b) (see Theorem 2.1 in [6] for the proof of part (a) for
trivalent graphs, and Section III of the same paper for the proof of (b) for 4-valent
graphs).
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2.3 Graph concordance

The main focus of this paper is concordance of spatial graphs, which we study in a
smooth context.

Definition 2.6 (a) A spatial graph with an embedding into a standard S2 ⊂ S3 is
called planar. Equivalently, a planar spatial graph is a spatial graph having a
planar projection with no crossings.

(b) A spatial graph concordant to a planar spatial graph is called slice.

Note that every abstract planar graph has a unique isotopy class of embeddings
into S3 [9].

Immediately, from Definition 2.6, we get the first obstruction to a spatial graph
being slice: the case when the abstract graph � does not have a planar embedding at
all. By Kuratowski’s theorem, this is true if and only if � contains a subgraph �′ ⊂ �

that is a subdivision of K5 (the complete graph on five vertices) or K3,3 (the complete
bipartite graph on six vertices).

A simple cycle in a spatial graph can be seen as a piecewise-smooth closed curve
in S3. Recalling that every piecewise smooth curve can be smoothed, we make the
following definition.

Definition 2.7 A knot obtained by smoothing a simple cycle in a spatial graph G is
called a constituent knot of G.

Every constituent knot of a planar graph is an unknot. To make the presentation
more straightforward, we assume that in a given (abstract) graph �, all of its con-
stituent knots K i are oriented and their orientation is fixed.

Using constituent knots it is possible to formulate the following condition on
sliceness of spatial graphs.

Proposition 2.8 Every constituent knot K of a slice spatial graph G is slice.

Proof Restricting the concordance of G to a simple cycle C ⊂ G gives a concor-
dance C × I from C to an unknotted planar spatial graph with n edges and n vertices.
We will show that K is slice by smoothing the concordance C × I.

The concordance C × I consists of n “sheets” of the form e × I, where e is an edge of
C, meeting at the “seams” v × I for v a vertex of v. Clearly, it is enough to only consider
a local picture around each seam. As C × I → S3 × I is a rigid embedding, we know
that for each point of the sheet e × (0, 1) we can find a neighborhood diffeomorphic
(as pairs) to (R4 , R2). Using such diffeomorphisms locally and a partition of unity
on a neighborhood of e × I it is possible to construct a nonvanishing vector field v
on a neighborhood U of e × (0, 1) such that v is normal to e × (0, 1) along it and v is
tangent to each of the two sheets adjacent to e × (0, 1).

Around each seam, the pair of vector fields constructed as above, one for each
sheet, defines a parametrization of a “corner”: a map P × I → S3 × I, where

P = {x ≥ 0, 0 ≤ y ≤ 1} ∪ {0 ≤ x ≤ 1, y ≥ 0} ⊂ R2 .
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The preimage of a small neighborhood of a seam is V = {x y = 0, x ≥ 0, y ≥ 0} ⊂ P × I.
In P × I, it can be smoothed by taking instead of V a curve V ′ = {x y = ε, x ≥ 0,
y ≥ 0}. Mapping V ′ back to S3 × I, we obtain a smoothing of a seam. Performing
this operation at each seam gives a smoothing of C × I to K × I, that is, a concordance
of K to the unknot. ∎

2.4 Framed concordance

The concordance invariants defined below require us to consider framed spatial
graphs. We define the framing of a spatial graph G to be an oriented surface Σ in which
G sits as a deformation retract, and denote a framed spatial graph by (G , Σ). 1 We call
two framings Σ and Σ′ of G equivalent if there is an ambient isotopy of S3 preserving
G and taking Σ to Σ′.

Given a framed spatial graph (G , Σ), there is a nonvanishing vector field on G that
always points out of the positive side of Σ. We call it a framing vector field. Then, given
a planar projection of a spatial graph G, we can define the blackboard framing of G
to be a surface Σ such that the vector field pointing orthogonally to the plane is the
framing vector field for Σ. Note that thanks to our definition of a rigid spatial graph,
all framing surfaces have a fixed structure near a vertex—namely the neighborhood
of the edges in the equatorial plane of the neighborhood on Figure 1.

With these definitions, we observe that the equivalence relations from
Definition 2.4 can be extended to the framed case.

Definition 2.9 Let � be a graph, G = (�, g) and H = (�, h) be spatial graphs, and
let ΣG , ΣH be framings of G and H, respectively. We say that:
(a) (G , ΣG) and (H, ΣH) are framed isotopic if there is an isotopy map f ∶ G × I →

S3 × I that extends to an isotopy f̃ ∶ ΣG × I → S3 × I such that for all t0 ∈ I we
have f̃ (x , t0) = ( ft0(x), t) for a framed spatial graph ft0 ∶ ΣG → S3.

(b) (G , ΣG) and (H, ΣH) are framed concordant if there is an (unframed) concor-
dance map f ∶ � × I → S3 × I that extends to a smooth embedding f̃ ∶ ΣG × I →
S3 × I.

(c) In particular, (G , Σ) is framed slice if it is framed concordant to a planar graph
(P, ΣP) where ΣP is the blackboard framing.

The relationship between framed and unframed concordance is summarised in the
following proposition.

Proposition 2.10 Given a framed spatial graph (G , ΣG) and an (unframed) concor-
dance from G to H, there exists a framing ΣH of H and a framed concordance from
(G , ΣG) to (H, ΣH).

Proof Considering G × {0} ⊂ S3, we define a set of nonvanishing vector fields
{v0 , . . . , vn}, where n is the number of edges of G, as follows. First, the vector field v0
is chosen on G × {0} such that it is normal to ΣG . Then, v1 , . . . , vn are defined on a

1Note that some authors [2, 17] do not require the framing surface to be orientable.
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neighborhood of each edge e i so that each vi is tangent to both edges adjacent to e i ,
as well as tangent to the surface ΣG . Then, these n + 1 vector fields can be extended to
the whole concordance, to obtain nonvanishing vector fields {ṽ0 , . . . , ṽn} such that:
(a) ṽ0 is defined on G× I, and given a neighborhood (U , G∩U) of v × t0 ∈V(G) × I

diffeomorphic to W = (D3 × (0, 1), Xn × (0, 1)), the image of ṽ0 in W is normal
to the plane containing Xn × t for each t ∈ (0, 1).

(b) For i > 0, the vector field ṽi defined on a neighborhood of e i × (0, 1) as in the
proof of Proposition 2.8: ṽi is normal to the sheet e i × (0, 1) and tangent to
adjacent sheets. Additionally, the image of ṽi under the diffeomorphism U →W
from (a) is tangent to the plane containing Xn × t for each t ∈ (0, 1).

These conditions first define a fixed extension of the vector fields {v1 , . . . , vn} to a
neighborhood of G × {0} ∪ V(G) × I. With these definitions, we observe that the
equivalence relations. Finally, we find a framing ΣG × I of G × I by finding integral
surfaces of ṽi for all i > 0 that are normal to ṽ0 for each t ∈ I. ∎

3 Linking numbers

In this section, we describe a way to associate a set of linking numbers to a framed
spatial graph, and an invariant of framed concordance arising from it.

To achieve this, first observe that for a framed spatial graph (G , Σ), a framing
vector field of Σ allows us to define a push-off of any subgraph of G in the direction
of the vector field. Then, for any constituent knot K ⊂ (G , Σ), we can define K+ to be
such a push-off of K. This leads to the following definition.

Definition 3.1 Given a framed spatial graph (G , Σ) and two constituent knots K1,
K2, we define their linking number as lkΣ(K1 , K2) = lk(K1 , K+2 ).

It is easy to check that lkΣ(K1 , K2) = lkΣ(K2 , K1).

Proposition 3.2 For all constituent knots Ki , K j ⊂ G, the linking numbers lkΣ(K i , K j)
are invariant under concordances of (G , Σ).

Before discussing the proof, let us state an important corollary.

Corollary 3.3 Given a slice spatial graph G, there exists a framing Σ of G such that for
all constituent knots K i ⊂ G, we have lkΣ(K i , K j) = 0.

Proof This follows from Proposition 2.10 by extending the concordance from the
planar graph with its blackboard framing to G. ∎

In Section 3.2, we will show that this corollary allows us to apply the criterion in
Proposition 3.2 to spatial graphs G without explicitly using framings.

Proof of Proposition 3.2 The proof mirrors the proof of Theorem 3 in [5]. Just
as with links, using Morse theory one can view concordances of spatial graphs as
sequences of diagram moves of the following types:
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Figure 3: (a) A planar graph P, shown in blue, with a blackboard framing Σ0 shown in black.
(b) The same planar graph P with a framing obtained from Σ0 by introducing some twists on
edges. (c) The same graph P with a framing obtained from Σ0 by applying a half-twist to each
edge of an edge cut of P.

(a) introducing a disjoint unknot to the diagram;
(b) contracting a disjoint unknot component;
(c) introducing a band between either two points on the same edge of the graph, or

between an edge and an unknot component.
Introducing or removing unknots to the diagrams does not affect the linking

numbers. Moreover, when a band is introduced to the diagram, the new crossings
always appear in pairs with opposite signs, such that the total linking of constituent
knots is not affected. ∎

Remark 3.4 In [19], a notion of spatial graph concordance is introduced in which
bands could be attached between points on different edges of a graph. This definition
is not equivalent to ours, as it allows for concordances which are not embeddings of
� × I into S3 × I.

3.1 Space of all framings of a spatial graph

To proceed, we need to describe the space of all framings of a given spatial graph G. For
the sake of presentation, let us restrict ourselves to a connected planar spatial graph
P with its planar embedding. Let ΣP be the blackboard framing of P. The surface ΣP
consists of a disk for each vertex of G and a band for each edge, all lying in the plane.
Any other framing of P can be isotoped to be represented by a disk in the plane for
each vertex of P, and a band with some number of twists on it for each edge of P. As
with arcs of a knot, we distinguish between a full twist and a half-twist. Examples of
framings for a planar θ-curve are presented in Figure 3.

To state and prove the main claim of the section, we need the following definition.

Definition 3.5 Given a connected abstract graph �, an edge cut C ⊂ E(�) is a set
of edges such that � − C is disconnected, and for any e ∈ C, the graph (� − C) ∪ e is
connected.

With this, we obtain the following result connecting any two framings of P.
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Proposition 3.6 Any framing Σ′ of a planar spatial graph P can be obtained from the
blackboard framing ΣP by repeatedly applying the following operations to it:
(a) introducing a full twist on ΣP to an edge of P;
(b) introducing a half-twist of the same orientation (positive or negative) to each edge

of an edge cut of P.

Proof First of all, applying each of these operations yields an orientable surface:
this is clear for operation (a), and for operation (b) this follows from the fact that after
applying it, every cycle of P has an even number of half-twists on it (if a cycle passes an
edge in an edge cut, then it has to pass through another edge in the same cut, always
picking up half-twists in pairs.)

Then, we need to show that given an arbitrary framing Σ′ of P, we can turn it
into ΣP by applying operations (a) and (b). First, we reduce to the case of Σ′ having
either no twists or a single positive half-twist on each edge by applying operation (a)
as necessary. Let C ∈ E(P) be the set of edges of P on which Σ′ has a half-twist. We
finish the proof by showing that C is a union of edge cuts.

First, P − C is disconnected: if it were connected, then choose e ∈ C and complete
it to a cycle with edges in P − C. This cycle has only one half-twist and therefore Σ′
contains a Möbius band, which is a contradiction. Therefore, C has to contain an edge
cut C1. Consider the set C′ = C − C1. If C′ is empty, we are done, and if not, P − C′
is again disconnected and therefore contains another edge cut, so we can repeat the
argument. As C has a finite number of elements, we eventually find a presentation
C = C1 ∪⋯∪ Ck of C as a union of edge cuts. ∎

Proposition 3.6 is true for all spatial graphs, and the planarity was only used to
obtain a distinguished (blackboard) framing for the ease of presentation.

3.2 A homological perspective

Let us examine Corollary 3.3 further. We will use Proposition 3.6 to suggest the way
it can be applied. Let G = (�, f ) be a spatial graph with k edges and b1(G) = n, and
let P = (�, p) be a planar embedding of �.

For a fixed maximal tree T ⊂ G, we let {K1 . . . , Kn} be a set of constituent knots
of G, defined as follows: for each edge e i ∈ E(G) − E(T), let K i be e i ∪ T ′, where
T ′ ⊂ T is the unique path graph connecting the endpoints of e i through T. Then, by
Alexander duality, H1(G) ≅ H1(S3 −G) ≅ Zn , with the basis given by the meridians
around each e i .

To any framing Σ of G, we can associate push-offs K+i of constituent knots, each
of which represents a homology class in H1(S3 −G). These homology classes are
determined by linking numbers between constituent knots.

For a planar graph P with a blackboard framing, all linking numbers are zero. Then,
Proposition 3.2 implies that the homology classes of push-offs of constituent knots
are preserved under (framed) concordance, and Corollary 3.3 says that if G is slice
(concordant to P), there is a framing Σ of G with [K+i ] = 0 ∈ H1(S3 −G) for all i.

Now, consider a spatial graph G and an arbitrary framing Σ of G. Applying a full
twist to an edge e j of G changes the framing, and therefore changes the homology
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classes of constituent knots [K+i ] by an element t(i)
j ∈ H1(S3 −G). In particular, t(i)

j
is a meridian of an edge e j if e j ∈ K i , and zero otherwise. Similarly, applying a half-
twist to an edge cut C ⊂ E(G) changes the homology of constituent knots [K+i ] by an
element c(i)

j ∈ H1(S3 −G). We again have c(i)
j = 0 if K i ∩ C = ∅.

The information about all of the constituent knots can be put together by consid-
ering an element

([K+1 ], . . . , [K+n ]) ∈ H1(S3 −G)n ≅ Zn2
(3.1)

of the direct sum of first homology groups of the complement. Furthermore, we
can view elements of Z

n2
as n-by-n matrices {a i j}, where the element a i j is

the linking number between K+i and K j . As the linking numbers are symmetric,
([K+1 ], . . . , [K+n ]) is a symmetric matrix. To account for this, let S(G) be the quotient
of H1(S3 −G)n ≅ Zn2

by a subgroup of differences of the off-diagonal elements. That
is, if the generators of the jth copy of H(S3 −G) in H1(S3 −G)n are denoted by x j

i ,
then

S(G) = ⟨x 1
1 , x 1

2 , . . . , xn
n−1 , xn

n ⟩
⟨x j

i − x i
j for 1 ≤ i < j ≤ n⟩

.(3.2)

We define K̃(G , Σ) ∈ S(G) to be the image of ([K+1 ], . . . , [K+n ]) in the symmetric
quotient.

Then, the discussion of the effect of edge twists above implies that, given two
framings Σ and Σ′ of G, we have

K̃(G , Σ) − K̃(G , Σ′) = ∑
e j∈E(G)

a jTj + ∑
edge cuts S j

b jC j(3.3)

with a j , b j ∈ Z and

Tj = ⊕
constituent knots K i

t(i)
j ,

C j = ⊕
constituent knots K i

c(i)
j .

Using this, we define a module of framings

Fr(�) = S(G)
⟨T1 , . . . , Tk , C1 , . . . , Cr⟩

,

where k is the number of edges of G and r is the number of edge cuts. Note that we
write Fr(�) because the module is independent of a particular embedding of �: an
isomorphism H1(S3 −G) ≅ H1(S3 −H) for any two spatial graphs G, H with the same
abstract topology � implies that S(G) = S(H) and therefore Fr(�) depends only on
the abstract topology of the spatial graph. Below we will also write S(�) to reflect this,
however, this group still needs to be computed using a concrete spatial embedding.

Finally, we let K(G) to be the image of K̃(G , Σ) in the quotient Fr(�). With this
notation, the following consequence of Corollary 3.3 is true.
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Figure 4: Edge labels and orientations for a planar θ-curve. The maximal tree is a single edge
shown in blue.

Theorem 1.1 Let G and H be spatial graphs. If there is a concordance between G and
H, then K(G) = K(H).

Proof Choosing an arbitrary framing ΣG on G, we can obtain a framed
concordance from (G , ΣG) to (H, ΣH) by applying Proposition 2.10. Then,
Proposition 3.2 says that linking numbers between constituent knots are preserved.
Therefore, K̃(G , ΣG) = K̃(H, ΣH) and hence K(G) = K(H). ∎

Corollary 3.7 If a spatial graph G is slice, then K(G) = 0.

Proof By Theorem 1.1, K(G) = K(P), where P is a planar spatial graph. By
choosing ΣP to be the blackboard framing of P, we see that K̃(P, ΣP) = 0
and hence K(P) = 0. ∎

Example 3.8 Consider the following examples. Let Θ be a θ-curve with edge labels
and orientations as in Figure 4. A planar embedding P of Θ is shown, and we will use
it to calculate Fr(Θ). There are two constituent knots K1 = v1 ∪ v0, K2 = v2 ∪ v0, and
four operations on framings: a full twist on each edge v i or a half-twist on an edge
cut {v0 , v1 , v2}. Let x be the meridian of v1 and y be the meridian of v2 in a copy of
H1(S3 − P) associated with K1, and let z and w be meridians of v1 and v2 for a copy of
H1(S3 − P) associated with K2. Using this, we can compute Fr(Θ):

Fr(Θ) = S(Θ)
⟨t0 , t1 , t2 , c1⟩

=
⟨x , y, z, w ∣ y − z⟩

⟨x + y + z +w , x , w , x + z +w⟩
= 0.(3.4)

Therefore, for any spatial θ-curve G, we can find a framing such that all linking
numbers lkΣ(K i , K j) are zero. This fact is well known in the literature on concordance
of θ-curves [15].

Example 3.9 For spatial graphs having a more complex topology, the invariant is
nonzero. As a natural extension of θ-curves, consider a family of spatial graphs Θn ,
such that Θn is homeomorphic to an (unreduced) suspension on n + 1 points. Then,
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spatial embeddings of Θ1 are knots, and spatial embeddings of Θ = Θ2 are the usual θ-
curves discussed above in Example 3.8. Using edge labels analogous to those in Figure
4 and letting x i

j to be the meridian of v j associated with the constituent knot K i , it is
possible to calculate

Fr(Θn) =
S(Θn)

⟨t0 , . . . , tn , c1⟩

=
⟨x 1

1 , x 1
2 , . . . , x2

1 , . . . , xn
n ∣ x

j
i − x i

j for 1 ≤ i < j ≤ n⟩

⟨∑i , j x j
i , x 1

1 , x2
2 , . . . , xn

n ,∑n
i=1∑

i
j=1 x i

j⟩
.(3.5)

For n > 2, there are more generators than relations in the abelian group Fr(Θn), so it is
nontrivial. By considering the Smith normal form of the matrix representing Fr(Θn),
we see that the module of framings for Θn is free,

Fr(Θn) ≅ Z
1
2 n(n−1)−2 .(3.6)

We will see an example of a spatial Θ3-graph in Example 5.3.

4 General link patterns

In this section, we extend our consideration of linking numbers to a more general
context of links “in the neighborhood” of a spatial graph G. In particular, we adapt
Theorem 5 of [15] to general spatial graphs.

Definition 4.1 Given a framed spatial graph (G , Σ), a link pattern is a collection of
disjoint simple closed curves {L1 , . . . , Ln} in Σ.

Viewed as a submanifold of S3, a link pattern defines a link. Recall that a link is
called (strongly) slice if it bounds a collection of disjoint disks smoothly embedded in
B4. The link given by a link pattern can be used to give a condition on sliceness of G.

Theorem 4.2 If (G , Σ) is framed slice, then any link pattern {L1 , . . . , Lk} in Σ is slice
viewed as a link in S3.

Proof This follows quickly from observing that as (G , Σ) is concordant to (P, Σ0)
with Σ0 ⊂ S2 ⊂ S3, we can restrict the framed graph concordance to the link pattern to
obtain a strong link concordance to a collection of unlinked circles in S2 ⊂ S3, which
is clearly slice. ∎

For a specific link pattern, it is possible to obtain a converse result. We begin with
some necessary graph-theoretic definitions.

Definition 4.3 Given a graph G, a cycle basis is a set of simple cycles forming a basis
of H1(G ,Z2). A cycle basis is called fundamental if it is obtained from a maximal tree
T ⊂ G by associating with each edge in e ∈ E(G − T) a cycle e ∪ P(e), where P(e) ⊂ P
is the unique path between endpoints of e through T.

We have already encountered this notion in Section 3.2. It is known that a given
cycle basis being fundamental is equivalent to each element of a basis possessing an
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edge not in any other elements [14, Theorem 1]. We also observe that any fundamental
link pattern must consist of k = b1(G) connected components. With this, we are able
to make the definition of a fundamental link pattern for a framed spatial graph.

Definition 4.4 Let Σ be a framing surface for some spatial graph G. A fundamental
link pattern {L1 , . . . , Lk} is defined to be a link pattern such that:
(a) Each component L i maps to a simple cycle of G under the deformation retrac-

tion of Σ to G.
(b) Viewed as cycles, its components form a cycle basis with each element possess-

ing an edge not belonging to other cycles.

Theorem 4.5 Let (G , Σ) be a framed spatial graph. Then (G , Σ) is framed slice if and
only if a fundamental link pattern {L1 , . . . , Lk} in Σ is slice.

Proof The “only if ” direction a restatement of Theorem 4.2. To show the opposite
direction, we will construct a concordance for G from a known concordance of the
fundamental link pattern (L1 ∪⋯∪ Lk) × I. In this process, we will utilize the framing
surface Σ, but will construct an unframed concordance for G. The outline is as follows:
(i) For 0 ≤ t ≤ 1/4, the concordance is simply the identity on G and Σ.
(ii) For 1/4 ≤ t ≤ 1/2, the surface Σ is still kept constant, and k − 1 bands are attached

to edges of G such that:
• All bands and components of a graph lie inside Σ.
• After all k − 1 bands are attached, the graph has k − 1 components

S1 , . . . , Sk−1 homeomorphic to S1 and one component homeomorphic to
G, which we call the graph-component G′.

• As curves within Σ, S i is isotopic (in Σ) to L i —the ith component of the
fundamental link pattern, and the graph-component G′ can be isotoped to
be located inside a small neighborhood of Lk and is not contractible in Σ.

(iii) For 1/2 ≤ t ≤ 3/4, the concordance of the fundamental link pattern is executed
in a straightforward way on the first k − 1 “circle” components, and with a
modification accounting for additional trivial arcs on the graph-component.

(iv) Finally, for 3/4 ≤ t ≤ 1, the resulting k − 1 disjoint circles are capped off with 2-
disks such that only the planar embedding of G remains. We have shown that
G is slice.

To finish the proof, we need to describe the band attachment process and the
modification to the link concordance.

Given a fundamental link pattern, we get a fundamental cycle basis of G and hence
a maximal tree T ⊂ G (the intersections of all those cycles). Then, the goal is to attach
bands to edges not in T. The bands are to be attached in small neighborhoods of the
vertices and should closely follow the maximal tree. The process is illustrated with an
example in Figure 5. When G has vertices of higher valence, the bands are attached
first to the edges most adjacent to T outward (Figure 6).

We claim that after attaching k − 1 bands and some necessary isotopies, the graph
now looks exactly as described in step (ii) above. This is clear after we realize that
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Figure 5: An example process of attaching bands for stage (ii) of the concordance in the proof
of Theorem 4.5. (a) Initial graph G. The surface Σ is just a neighborhood of G in the plane, and
the maximal tree (determined by the fundamental cycle basis) is shown in blue. (b) The first
band (shown in red) is attached. (c) A final picture after all bands are attached.

Figure 6: Attaching bands to G around a vertex of valence five. (a) Spatial graph G before the
band attachment, with an edge belonging to a maximal tree T ⊂ G shown in blue. (b) The first
two bands are attached to edges adjacent to the edge in the maximal tree. (c) A final picture
after all bands are attached.

attaching bands as described in Figures 5 and 6 corresponds exactly to producing a
fundamental cycle given a maximal tree.

Finally, given the graph in the form described above at t = 1/2, the concordance
of the link pattern can be “applied”: graph concordance follows the link concordance
for L1 , . . . , Lk1 . For a component of a fundamental link pattern homeomorphic to the
graph, the concordance Lk × I can be extended to a tubular neighborhood Lk × D2 × I
and hence to a graph G′ that lies in a neighborhood of Lk by construction.

At this point, we have found a concordance from G to some planar spatial graph
P. As G is framed, we can extend the framing to the whole concordance G × I using
Proposition 2.10 to finish the proof. ∎

5 Main Theorem

Bringing together the results in Sections 3 and 4, we are able to reduce sliceness of
spatial graphs to a statement about framings together with sliceness of links.

Theorem 1.2 Let G be a spatial graph with abstract topology �, let {K i} be its
constituent knots constructed from a maximal tree as in Section 3.2, and let Σ be an
arbitrary framing of G. Then, G being slice is equivalent to the combination of the
following two conditions:
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Figure 7: A handcuff spatial graph H.

(i) The images of push-offs of constituent knots are zero in the module of framings of
G, K(G) = 0 ∈ Fr(�).

(ii) If (i) is true, then there is a framing Σ0 such that for each push-off we have
[K+i ] = 0 ∈ H1(S3 −G). The second condition then is: a fundamental link pattern
in Σ0 is slice.

Proof If G is slice, Corollary 3.7 gives condition (i). Using Proposition 2.10 to frame
the concordance from G to a planar graph P with its blackboard framing, we see that
Theorem 4.2 gives condition (ii).

Conversely, condition (i) on constituent knots allows us apply Proposition 3.6
to find a sequence of operations by which any framing Σ can be turned into Σ0,
making all linking numbers identically zero. Condition (ii) gives the hypothesis for
Theorem 4.5, and that theorem finishes the proof in the opposite direction. ∎

As the θ-curve in Example 3.8 shows, for some graph topologies condition (i) is
always satisfied, and concordance of a graph is determined by concordance of a certain
link.

Example 5.1 Let H be a spatial graph in Figure 7, having an abstract topology Φ
which we call a “handcuff.” The homology of the complement of H is H1(S3 −H) ≅ Z2

as there are two constituent knots formed by edges v1 and v2. The bridging edge v0
forms a single possible edge cut, but as v0 does not intersect with any of the constituent
knots, this edge cut does not affect the linking numbers. If x i are meridians of v i in
the first copy of H1(S3 −H) and y i are meridians of v i in the second copy, we have

Fr(Φ) = ⟨x1 , x2 , y1 , y2 ∣ x2 − y1⟩
⟨x1 , y2⟩

= ⟨y1⟩ = Z.

As the two constituent knots are meridians of each other, we have K(H) = (y1) ≠ 0 ∈
Fr(Φ), so H is not slice. Indeed, sliceness of H would imply sliceness of the Hopf link,
which is false.

Example 5.2 Let us consider θ-curves once again. As we have seen in Example
3.9, the linking number invariant vanishes for these spatial graphs. Theorem 4.5 was
shown for θ-curves by Taniyama in [15]. As an illustration, consider the spatial graph
G in Figure 8a which is commonly labeled as 51 [11]. We see that every constituent knot
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a b

Figure 8: (a) A θ-curve G with five crossings. (b) A fundamental link pattern in the framing Σ0
of G.

Figure 9: (a) A spatial graph H with abstract topology Θ3 . (b) A fundamental link pattern in
the framing Σ0 of H.

of G is an unknot, and that there exists a framing Σ0 of G making all linking numbers
lkΣ(K i , K j) zero (such framing is blackboard except for a negative half-twist on the
central vertical edge). Figure 8b shows a fundamental linking pattern L in Σ0. The link
L has signature −1, therefore it is not slice, therefore G is not slice.

Example 5.3 As a converse example in which a fundamental link pattern can prove
sliceness of a spatial graph, we consider a graph H in Figure 9a having an abstract
topology of Θ3. The group Fr(Θ3) ≅ Z is no longer trivial, but luckily the invariant
K(H) can be computed to be zero using a blackboard framing Σ0 of H. A fundamental
link pattern L in Σ is shown in Figure 9b, and it can be seen that L is isotopic to a trivial
link. Theorem 4.5 then implies that H is slice.

Remark 5.4 Theorem 1.2 allows us to import concordance invariants of knots to
obstruct sliceness of spatial graphs. For example, if the fundamental link pattern fails
the Fox–Milnor condition on the Alexander polynomial, then the spatial graph is not
slice. By contrast, there is a version of the Alexander polynomial for spatial graphs
which can be defined, for example, through the fundamental group of the graph
complement [10]. The Alexander polynomial for slice spatial graphs does not need
to satisfy the Fox–Milnor condition, as the example in Figure 4 of [10] shows.
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