Canad. Math. Bull. Vol. 40 (4), 1997 pp. 464470

ON THE SOLVABILITY OF A NEUMANN
BOUNDARY VALUE PROBLEM AT RESONANCE

CHUNG-CHENG KUO

ABsTRACT.  Westudy the existence of solutions of the semilinear equations (1) Au+
g(x,u) = h, % = 00on 0Q in which the non-linearity g may grow superlinearly inuin
one of directionsu — oo and u — —oo, and (2) —Au +g(x,u) = h, % =00nodQin
which the nonlinear term g may grow superlinearly in u as |u] — co. The purpose of
this paper is to obtain solvability theorems for (1) and (2) when the Landesman-L azer
condition does not hold. More precisely, we require that h may satisfy [ g’ (x)dx <
Sh(x)dx = 0 < Jgl(xX)dx, where~,§ are arbitrarily nonnegative constants, g} (x) =
limy o0 inf g(x, u)|u]” and @ () = limy_, o SUPg(X, u)|u|’ . The proofsare based upon
degree theoretic arguments.

1. Introduction. Let Q c RN(N > 2) be a smooth bounded domain. In this paper
we consider the Neumann problems

1.1 Au+g(x,u):hinQ,g—z:OonaQ
and

. ou
1.2 —Au+g(x,u):h|nQ,a—n:00naQ,

where A denotes the Laplacianon RN, h € LP(Q) (p > N/2) is given, % denotesthe
outward normal derivative on 0Q and g: Q x R — R is a Caratheodory function, that
is, g(x, u) is continuousin u € R for amost all x € Q, is measurablein x € Q for all
u € R and satisfiesfor eachr > 0 there exists a; € LP(Q) such that |g(x, u)| < a(X)
forae x € Qandall |u| <r. Thesolvability of the problem (1.1) has been extensively
studied when the nonlinearity g is assumed to have linear growth in u as |u| — oo (see
[2, 3,5, 8, 11]). When g is alowed to grow superlinearly in u in one of the directions
u— oo and u — —oo, and may grow sublinearly in the other, existence theorems for a
solution to (1.1) were proved in [6, 7] if either

(F1) forae. xe Qandal |u| >ro >0, g(x,u)u > 0and /Qh(x)dx =0

or
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g?(9) = lim supg(x,u), gi(x) = lim inf g(x, u)
and _/go,(x) dx < _/h(x)dx < ‘/gg(x) dx

holds. The solvability of (1.2) hasbeen extensively studied when g has no growth restric-
tioninuas |u — oo and (F,) is satisfied (see [4, 10]). The purpose of this paper is to
consider the prablem (1.1), and to extend the main result of Kuo [7] when either (F1) or
(F2) isnot satisfied, and improve the main result of Robinson and L andesman [11] where
it assumesthat g has at most linear growth and satisfiesthe following condition (G) with
b=7v=1ande=8&=0inLYQ):

(F2)

©) There exist constantsko, 7,6 > 0and e, & € LY(Q)
such that for ae. x € Qandu > kg

(1.3) g(x, uyu > e(x)|ul*7,
andforae x e Qandall u < —kg
(1.4) g(x, u)u > &x)[u**.

Moreover, we obtain some new existence theorems of (1.2) in which the nonlinearity
g(x, u) € O(lulP/P~1) as|u] — oo and (F») is not satisfied, and hence cannot be obtained
from Hirano [4], and McKennaand Rauch [10] in which g can have arbitrary growth in
u as |u| — oo and satisfies (F2). Concerning the growth condition of the nonlinear term
0, we assume that:

H) There exist constantsa, ko, ko, @, 3 > 0 and b, c,d € LP(Q)b > 0in Q
such that for ae. x € Q,u > ko.
1.5 c(x) < g(x,u) < ajul*+b(x),

andforae.er,ug—ﬁo

(1.6) —alul’ — b(x) < g(x, u) < d(x);
and h may satisfy
(Fa) /Q g (¥ dx < /Q h(x) dx = o</Qg1’dx,

where g’ (X) = limy_.—, supg(x, u)|ul’ and g}.(x) = lim,_, inf g(x, u)|u|’. Based on the
L eray-Schauder degreetheory (see[9]), we obtain solvability theoremsof (1.1) and (1.2)
under assumptionswith (F3) may be satisfied. Moreover, we combine either (F1) or (F2)
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with (F3) to obtain some new solvability conditionswhich are given in Theorem 2.6 of
Section 2. _

In the following we shall make use of the real Banach spaces LP(Q), C(Q), and the
Sobolev spacesW?P(Q). Thenormsof LP(Q), C(Q), W?P(Q) are denoted by ||ul|Ls, ||ul|c,
[|ullwee, respectively, the compact embedding W2P(Q) — Cc(Q), forp >N /2 has been
noted below. By a solution of (1.1) (or (1.2)), we mean afunction u € W2P(Q) satisfies
the differential equationin (1.1) for ae. x € Q.

Finally we note that (see [1]) for each p > 1, there exists K(p) > 0 such that for all
u € W(Q), ¥ = 00onoQ

(1.7) [u—Pullwee < K(p)[|AU[|Le,

and there exists K > 0 such that for all u € W22(Q), & = 00ndQ
(1.8) lu—Pul|Z < K(=Au,u),

where P: L2(Q) — L%(Q), Pu= Su/|Q| for u € L%(Q).

2. Existence theorems. The following Theorem 1 is an existence theorem for a
solution of (1.1) whenp > N/2 (N > 2), h satisfies (F3) and g satisfies (G), (H) with
Ao < 1andp < 1.

THEOREM 1. Letp > N/2,9:Q x R — R be a Caratheodory function satisfying
(G) and (H) with w < landg < 1, then the problem (1.1) is solvable for any
h € LP(Q) provided that (F3) holds.

ProOF. We may assumethat kg = ko = ﬁo the Lebesgue measure |Q| = 1 and let
f:R — R be acontinuous function defined by

u ifju <1
f(”):{i if ju| > 1.

[l

We consider the boundary value problems

2.1) Au+(1—t)f</u) +1g(x, u) = thin Q,

% =00noQ
on

for 0 <t < 1. The problem (2.1) has only atrivial solution whent = 0, and becomes
the original problem (1.1) whent = 1. To apply the Leray-Schauder degree theory, it
suffices to show that there exists Ry > O such that for all 0 <t < 1, ||ul|c < R for all
possible solutions u of (2.1). We note first that there exist & € LP(Q) and Caratheodory
functionsgs, g2: Q X R — R (seeKuo [7]) suchthat g = g1 + g2, 0 < ga(x, u) < alu|?,
lg2(x, u)] < ajul’+&x) fora.e.x € Qandall u € R, and there exist constants Co, C; > 0
such that for 0 < t < 1 and all possible solutionsu of (2.1)

alp=1) alp-13
Jullc

2.2) 106 W) r < Ca Hule’ )
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and

|Aulle = Jith—tgx u) = @ = O ()

a(p—1)
p

(2- 3) a(p-1) o(p-1)+3 3
< Co(L+lullc™ +llulle ™ +Ilulle)

hold. Next weshall show that solutionsof (2.1) for all 0 <t < Lhaveanapriori boundin
C(Q). If thisis not true, then there exist asequence {un } in W2P(Q) and a corresponding
sequence {t,} in (0, 1) such that uy satisfies (2.1) with t = t, and ||uy||c > nfor al n.
Let Vh = Un/||Un||c, then ||vn||c = 1 and by (2.3), we have

o(p—-1) o p—1)+3 8
(2.4) [ Avnl|e < CO(l"' [unllc® +llunllc * + HUan)/HUnHC-

By hypothesis 20 < 1 and 3 < 1, the right hand side of (2.4) is bounded by
a constant independent of n. Hence {v, — Pv,} has a subsequence convergentin C(C_z).
Because{/ v} isboundedin R, we may assumewithout loss of generality that {v,} con-
verges to w weakly in W2P(Q) and strongly in C(Q) for some w % 0 because [IVallc =
1. By (2.2), the sequence thg1(X, Un) /||un||c has a subsequence convergent weakly in
LP(Q), we say to m. Clearly |tnh - tngz(X, Un) - (1 - tn)f(fun)l/HuﬂHC — 0
in LP(Q) asn — oo, and mx) > O for ae. x € Q. We may assume that
[(X — ta) f(Sun) + tag(X, un) — tah] /|lunl|c — mweakly in LP(Q). Since A:D(A) C
W2P(Q) — LP(Q) is also weakly closed, it follows that w € W2P(Q) and

(2.5) Aw+m:0inQ,Zan:OonaQ.

By (2.5) we have fm = 0, so that m(x) = O for ae. x € Q. Consequently, w = 1 or
w = —1. We consider only the casew = 1, for the casew = —1 can betreated similarly.
By the properties of N(A) that there existsan no € N such that va(x) > 2 > % in Q for
al n > ng, and hence u,(X) — oo for each x € Q. Integrating (2.1) when u = u, and
t = t,, we have

(2.6) tn [ gx un) < (1 - tn)f(‘/ un> +t [gu) =t [h=0.

Sincet, # 0, using (1.3) and the fact that % < % <vp(X) <1foradln>ngandx e Q,

we have
y g(Xv u )U =
(2.7) unlleg0% un) = Tzt il
n
> elvn|™"
> —le2’

for all n > ng and x € Q with up(X) # O.
Applying the Fatou lemmato the inequality

(2.8) Juallz [ atx,un) <,
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we have

(2.9) Jgdx<o,

which contradicts the second inequality of (F3), and the proof is complete.
By dlightly modifying the proof and the solvability condition of Theorem 1, we obtain
the following theorem.

THEOREM 2. Under assumptions of Theorem 1, the problem (1.1) is solvable for
any h € LP(Q) provided that either

(Fs) [d-0dx<0= [hpydx< [ e dx
or

(Fs) / d(x) dx < / h(x)dx = 0 < / gl (x) dx
holds.

THEOREM 3. Letp > N/2(N > 2),p > 2,9:Q x R — R be a Caratheodory
function satisfying (G) and (H) with o, 8 < prl, then the problem (1.2) is solvable
provided that one of Fj, j = 3,4, 5 holds.

PrROOF. We may assumethat o« = 3 > p%l and consider the boundary value prob-
lems

. ou
(2.10) —Au+(1—t)f(/u)+tg(x,u):th|nQ,%:00nQ

for 0 <t <1, wheref isdefined asin the proof of Theorem 1. To show that all possible
solutions of (2.10) and 0 < t < 1 have an a priori bound in C(Q), it suffices to show
that there exists a constant C;; > 0 such that for all possible solutions u of (2.10) and
o<t<1

| aule = fih—tgexw) — @~ 0f( [u)],

o(p—1)

< Co(@+|lullc ™)

(2.12)

hold. We may then use (2.11) as(2.3) to show the existence ||u||c < Ro for some constant
Ro > 0independent of u. We notefirst that there exist Caratheodory functions gz, g»: Q x
R — Rand e LP(Q) suchthat forae. x € Qandal u e R

(212) 0<|m(x ) <auf”, 0<@mxuy, |gxu)l <& andg=gi+g.
This may be done by defining &x) = max{|c(x)|, |d(X)|, b(X), a, (X)},

[ min{g(x, u) + &), a|u|* }6(u)
(2.13) gi(x u) = max{g(x, u) — &x), —a|u[* }4(u)
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and g, = g — 01, where 9: R — R is a continuous function such that for u € R, 0 <
6(u) < 1,6(u) = O0for |u] < koandd(u) = 1for |ul > 2ko. Taking the inner product
of (2.10) with uin L%(Q), we have
—/(Au)u < —/(Au)u+(1—t)f(/u) /u+t/gl(x,u)u
(2.14) =t /[h — Ga(x,u)|u
< (Il + 181w llulle.
Similarly we also have
t [ a0 wu < [[Infes + 180 Jlullc.
Henceby (1.8) and (2.14), we have
lu—PullZ: < Cijlulc
and
[l P <t [ ot w)l g0 wlP
oy p—1
215 <t [ ol wl@u)
< &P b el lulle
< Cyllu ™Y

for some constants C;, C,, > 0 independent of u. It follows from (2.15) that

ao(p=1)
p

(2.16) lItga(x, U)l|e < Chlullc®

for some constant C; > 0 independent of u. Therefore, by (1.7), (2.14) and (2.16) that
there existsaconstant C, > 0 such that (2.11) holdsfor all possible solutionsu of (2.15)
and 0 < t < 1, and the proof is complete.

THEOREM 4. Letp > N/2(N > 2),p > 2and g:Q x R — R bea Caratheodory
function satisfying (G) and (H) with o, 8 < prl. Then the problem (1.2) is solvable for
any h € LP(Q) provided that

(Fe) [deo < [he) < [ e
holds.

COROLLARY 5. Letp>N/2(N >2),p>2andg: Q x R — R bea Caratheodory
function satisfying (G) and (H) with o, 8 < prl. Then the problem (1.2) is solvable for
any h € LP(Q) provided that (F1) holds.

If either 6 = 0 ory = 0, then conditions (F4) and (Fs) can be respectively replaced
by

(F7) JMdx < [hpx)dx < [ c(dx
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and

(Fs) ‘ / dcx < / h(x) dx < / (%) dx.

THEOREM 6. Under assumptionsof Theorem4, the problem(1.2) is solvablefor any
h € LP(Q) provided that either (F7) or (Fs) holds.
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