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ON THE SOLVABILITY OF A NEUMANN
BOUNDARY VALUE PROBLEM AT RESONANCE

CHUNG-CHENG KUO

ABSTRACT. We study the existence of solutions of the semilinear equations (1)4u+
g(x, u) ≥ h, ∂u

∂n ≥ 0 on ∂Ω in which the non-linearity g may grow superlinearly in u in

one of directions u !1 and u ! �1, and (2) �4u + g(x, u) ≥ h, ∂u
∂n ≥ 0 on ∂Ω in

which the nonlinear term g may grow superlinearly in u as juj ! 1. The purpose of
this paper is to obtain solvability theorems for (1) and (2) when the Landesman-Lazer
condition does not hold. More precisely, we require that h may satisfy

R
gé
�

(x) dx Ú
R

h(x) dx ≥ 0 Ú
R

gç+(x) dx, where ç, é are arbitrarily nonnegative constants, gç+(x) ≥
limu!1 inf g(x, u)jujç and gé

�
(x) ≥ limu!�1 sup g(x, u)jujé . The proofs are based upon

degree theoretic arguments.

1. Introduction. Let Ω ² RN(N ½ 2) be a smooth bounded domain. In this paper
we consider the Neumann problems

(1. 1) 4u + g(x, u) ≥ h in Ω,
∂u
∂n

≥ 0 on ∂Ω

and

(1. 2) �4u + g(x, u) ≥ h in Ω,
∂u
∂n

≥ 0 on ∂Ω,

where 4 denotes the Laplacian on RN, h 2 Lp(Ω) ( p Ù NÛ2) is given, ∂
∂n denotes the

outward normal derivative on ∂Ω and g: Ω ð R ! R is a Caratheodory function, that
is, g(x, u) is continuous in u 2 R for almost all x 2 Ω, is measurable in x 2 Ω for all
u 2 R and satisfies for each r Ù 0 there exists ar 2 Lp(Ω) such that jg(x, u)j � ar(x)
for a.e. x 2 Ω and all juj � r. The solvability of the problem (1.1) has been extensively
studied when the nonlinearity g is assumed to have linear growth in u as juj ! 1 (see
[2, 3, 5, 8, 11]). When g is allowed to grow superlinearly in u in one of the directions
u ! 1 and u ! �1, and may grow sublinearly in the other, existence theorems for a
solution to (1.1) were proved in [6, 7] if either

(F1) for a.e. x 2 Ω and all juj ½ r0 ½ 0, g(x, u)u ½ 0 and
Z

Ω
h(x) dx ≥ 0;

or
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(F2)
g0
�(x) ≥ lim

u!�1
sup g(x, u), g0

+(x) ≥ lim
u!1

inf g(x, u)

and
Z

g0
�(x) dx Ú

Z
h(x) dx Ú

Z
g0

+(x) dx

holds. The solvability of (1.2) has been extensively studied when g has no growth restric-
tion in u as juj ! 1 and (F2) is satisfied (see [4, 10]). The purpose of this paper is to
consider the problem (1.1), and to extend the main result of Kuo [7] when either (F1) or
(F2) is not satisfied, and improve the main result of Robinson and Landesman [11] where
it assumes that g has at most linear growth and satisfies the following condition (G) with
é ≥ ç ≥ 1 and e ≥ ẽ ≥ 0 in L1(Ω):

(G) There exist constants k0, ç, é ½ 0 and e, ẽ 2 L1(Ω)

such that for a.e. x 2 Ω and u ½ k0

(1. 3) g(x, u)u ½ e(x)juj1�ç,

and for a.e. x 2 Ω and all u � �k0

(1. 4) g(x, u)u ½ ẽ(x)juj1�é .

Moreover, we obtain some new existence theorems of (1.2) in which the nonlinearity
g(x, u) 2 O(jujpÛp�1) as juj ! 1 and (F2) is not satisfied, and hence cannot be obtained
from Hirano [4], and McKenna and Rauch [10] in which g can have arbitrary growth in
u as juj ! 1 and satisfies (F2). Concerning the growth condition of the nonlinear term
g, we assume that:

(H) There exist constants a, k̃0, ˜̃k0,ã,å ½ 0 and b, c, d 2 Lp(Ω)b ½ 0 in Ω
such that for a.e. x 2 Ω, u ½ k̃0.

(1. 5) c(x) � g(x, u) � ajujã + b(x),

and for a.e. x 2 Ω, u � � ˜̃k0

(1. 6) �ajujå � b(x) � g(x, u) � d(x);

and h may satisfy

(F3)
Z

Ω
gé�(x) dx Ú

Z
Ω

h(x) dx ≥ 0 Ú
Z

Ω
gç+ dx,

where gç�(x) ≥ limu!�1 sup g(x, u)jujé and gç+(x) ≥ limu!1 inf g(x, u)jujç. Based on the
Leray-Schauder degree theory (see [9]), we obtain solvability theorems of (1.1) and (1.2)
under assumptions with (F3) may be satisfied. Moreover, we combine either (F1) or (F2)
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with (F3) to obtain some new solvability conditions which are given in Theorem 2.6 of
Section 2.

In the following we shall make use of the real Banach spaces Lp(Ω), C(Ω̄), and the
Sobolev spaces W2,p(Ω). The norms of Lp(Ω), C(Ω̄), W2,p(Ω) are denoted by kukLp, kukC,
kukW2,p, respectively, the compact embedding W2,p(Ω) ! C(Ω̄), for p Ù NÛ2 has been
noted below. By a solution of (1.1) (or (1.2)), we mean a function u 2 W2,p(Ω) satisfies
the differential equation in (1.1) for a.e. x 2 Ω.

Finally we note that (see [1]) for each p Ù 1, there exists K( p) Ù 0 such that for all
u 2 W2,p(Ω), ∂u

∂n ≥ 0 on ∂Ω

(1. 7) ku� PukW2,p � K( p)k4ukLp ,

and there exists K Ù 0 such that for all u 2 W2,2(Ω), ∂u
∂n ≥ 0 on ∂Ω

(1. 8) ku� Puk2
L2 � Kh�4u, ui,

where P: L2(Ω) ! L2(Ω), Pu ≥
R

uÛjΩj for u 2 L2(Ω).

2. Existence theorems. The following Theorem 1 is an existence theorem for a
solution of (1.1) when p Ù NÛ2 (N ½ 2), h satisfies (F3) and g satisfies (G), (H) with
ã( p�1)+å

p � 1 and å Ú 1.

THEOREM 1. Let p Ù NÛ2, g: Ω ð R ! R be a Caratheodory function satisfying
(G) and (H) with ã( p�1)+å

p � 1 and å Ú 1, then the problem (1.1) is solvable for any
h 2 Lp(Ω) provided that (F3) holds.

PROOF. We may assume that k0 ≥ k̃0 ≥
˜̃k0, the Lebesgue measure jΩj ≥ 1 and let

f : R ! R be a continuous function defined by

f (u) ≥

8<
: u if juj � 1

u
juj if juj Ù 1.

We consider the boundary value problems

(2.1)
4u + (1 � t) f

�Z
u
�

+ tg(x, u) ≥ th in Ω,

∂u
∂n

≥ 0 on ∂Ω

for 0 � t � 1. The problem (2.1) has only a trivial solution when t ≥ 0, and becomes
the original problem (1.1) when t ≥ 1. To apply the Leray-Schauder degree theory, it
suffices to show that there exists R0 Ù 0 such that for all 0 Ú t Ú 1, kukC Ú R0 for all
possible solutions u of (2.1). We note first that there exist ˜̃e 2 Lp(Ω) and Caratheodory
functions g1, g2: Ω ð R ! R (see Kuo [7]) such that g ≥ g1 + g2, 0 � g1(x, u) � ajujã,
jg2(x, u)j � ajujå+ ˜̃e(x) for a.e. x 2 Ω and all u 2 R, and there exist constants C0, C1 ½ 0
such that for 0 Ú t Ú 1 and all possible solutions u of (2.1)

(2. 2) tkg1(x, u)kLP � C1

�
kuk

ã( p�1)
p

C + kuk
ã( p�1)+å

p

C

�
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and

(2. 3)
k4ukLp ≥ kth� tg(x, u)� (1 � t) f

�Z
u
�
kLp

� C0

�
1 + kuk

ã( p�1)
p

C + kuk
ã( p�1)+å

p

C + kukåC
�

hold. Next we shall show that solutions of (2.1) for all 0 Ú t Ú 1 have an a priori bound in
C(Ω̄). If this is not true, then there exist a sequence fung in W2,p(Ω) and a corresponding
sequence ftng in (0, 1) such that un satisfies (2.1) with t ≥ tn and kunkC ½ n for all n.
Let vn ≥ unÛkunkC, then kvnkC ≥ 1 and by (2.3), we have

(2. 4) k4vnkLp � C0

�
1 + kunk

ã( p�1)
p

C + kunk
ã( p�1)+å

p

C + kunk
å
C

�
ÛkunkC.

By hypothesis ã( p�1)+å
p � 1 and å Ú 1, the right hand side of (2.4) is bounded by

a constant independent of n. Hence fvn � Pvng has a subsequence convergent in C(Ω̄).
Becausef

R
vng is bounded in R, we may assume without loss of generality that fvng con-

verges to w weakly in W2,p(Ω) and strongly in C(Ω̄) for some w Â� 0 because kvnkC ≥
1. By (2.2), the sequence tng1(x, un)ÛkunkC has a subsequence convergent weakly in
Lp(Ω), we say to m. Clearly jtnh � tng2(x, un) � (1 � tn) f (

R
un)jÛkunkC ! 0

in Lp(Ω) as n ! 1, and m(x) ½ 0 for a.e. x 2 Ω. We may assume that
[(1 � tn) f (

R
un) + tng(x, un) � tnh]ÛkunkC ! m weakly in Lp(Ω). Since 4: D(4) ²

W2,p(Ω) ! Lp(Ω) is also weakly closed, it follows that w 2 W2,p(Ω) and

(2. 5) 4w + m ≥ 0 in Ω,
∂w
∂n

≥ 0 on ∂Ω.

By (2.5) we have
R

m ≥ 0, so that m(x) ≥ 0 for a.e. x 2 Ω. Consequently, w � 1 or
w � �1. We consider only the case w � 1, for the case w � �1 can be treated similarly.
By the properties of N(4) that there exists an n0 2 N such that vn(x) ½ 1

2 ½
k0
n in Ω̄ for

all n ½ n0, and hence un(x) ! 1 for each x 2 Ω. Integrating (2.1) when u ≥ un and
t ≥ tn, we have

(2. 6) tn
Z

g(x, un) Ú (1 � tn) f
�Z

un

�
+ tn

Z
g(x, un) ≥ tn

Z
h ≥ 0.

Since tn Â≥ 0, using (1.3) and the fact that k0
n � 1

2 � vn(x) � 1 for all n ½ n0 and x 2 Ω̄,
we have

kunkçCg(x, un) ≥
g(x, un)un

junj1�ç
jvnj�ç(2. 7)

½ ejvnj�ç

½ �jej2ç

for all n ½ n0 and x 2 Ω̄ with un(x) Â≥ 0.
Applying the Fatou lemma to the inequality

(2. 8) kunkçC
Z

g(x, un) Ú 0,
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we have

(2. 9)
Z

gç+(x) dx � 0,

which contradicts the second inequality of (F3), and the proof is complete.
By slightly modifying the proof and the solvability condition of Theorem 1, we obtain

the following theorem.

THEOREM 2. Under assumptions of Theorem 1, the problem (1.1) is solvable for
any h 2 Lp(Ω) provided that either

(F4)
Z

gé�(x) dx Ú 0 ≥
Z

h(x) dx �
Z

c(x) dx

or

(F5)
Z

d(x) dx �
Z

h(x) dx ≥ 0 Ú
Z

gç+(x) dx

holds.

THEOREM 3. Let p Ù NÛ2 (N ½ 2), p ½ 2, g: Ω ð R ! R be a Caratheodory
function satisfying (G) and (H) with ã,å � p

p�1 , then the problem (1.2) is solvable
provided that one of Fj, j ≥ 3, 4, 5 holds.

PROOF. We may assume that ã ≥ å ½ 1
p�1 and consider the boundary value prob-

lems

(2. 10) �4u + (1 � t) f
�Z

u
�

+ tg(x, u) ≥ th in Ω,
∂u
∂n

≥ 0 on Ω

for 0 � t � 1, where f is defined as in the proof of Theorem 1. To show that all possible
solutions of (2.10) and 0 Ú t Ú 1 have an a priori bound in C(Ω̄), it suffices to show
that there exists a constant C0

0 Ù 0 such that for all possible solutions u of (2.10) and
0 Ú t Ú 1

(2. 11)
k4ukLp ≥

th� tg(x, u)� (1� t) f
�Z

u
�

Lp

� C0
0(1 + kuk

ã( p�1)
p

C )

hold. We may then use (2.11) as (2.3) to show the existence kukC Ú R0 for some constant
R0 Ù 0 independent of u. We note first that there exist Caratheodory functions g1, g2: Ωð
R ! R and ˜̃e 2 Lp(Ω) such that for a.e. x 2 Ω and all u 2 R

(2. 12) 0 � jg1(x, u)j � ajujã, 0 � g1(x, u)u, jg2(x, u)j � ˜̃e(x) and g ≥ g1 + g2.

This may be done by defining ˜̃e(x) ≥ maxfjc(x)j, jd(x)j, b(x), ak0 (x)g,

(2. 13) g1(x, u) ≥
(

minfg(x, u) + ˜̃e(x), ajujãgí(u)
maxfg(x, u)� ˜̃e(x),�ajujãgí(u)
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and g2 ≥ g � g1, where í: R ! R is a continuous function such that for u 2 R, 0 �
í(u) � 1, í(u) ≥ 0 for juj � k0 and í(u) ≥ 1 for juj ½ 2k0. Taking the inner product
of (2.10) with u in L2(Ω), we have

(2. 14)

�
Z

(4u)u � �
Z

(4u)u + (1� t) f
�Z

u
� Z

u + t
Z

g1(x, u)u

≥ t
Z h

h� g2(x, u)
i
u

�
�
khkL1 + k ˜̃ekL1

�
kukC.

Similarly we also have

t
Z

g1(x, u)u �
h
khkL1 + k ˜̃ekL1

i
kukC.

Hence by (1.8) and (2.14), we have

ku� Puk2
L2 � C0

1kukC

and

(2. 15)

tp
Z
jg1(x, u)jp � t

Z
jg1(x, u)j jg1(x, u)jp�1

� t
Z
jg1(x, u)j(ajujã)p�1

� kukã( p�1)�1
C ap�1C0

1kukC

� C0
2kukã( p�1)

C

for some constants C0
1, C0

2 ½ 0 independent of u. It follows from (2.15) that

(2. 16) ktg1(x, u)kLp � C0
3kuk

ã( p�1)
p

C

for some constant C0
3 Ù 0 independent of u. Therefore, by (1.7), (2.14) and (2.16) that

there exists a constant C0
0 Ù 0 such that (2.11) holds for all possible solutions u of (2.15)

and 0 Ú t Ú 1, and the proof is complete.

THEOREM 4. Let p Ù NÛ2 (N ½ 2), p ½ 2 and g: Ω ð R ! R be a Caratheodory
function satisfying (G) and (H) with ã,å � p

p�1 . Then the problem (1.2) is solvable for
any h 2 Lp(Ω) provided that

(F6)
Z

d(x) �
Z

h(x) �
Z

c(x)

holds.

COROLLARY 5. Let p Ù NÛ2 (N ½ 2), p ½ 2 and g: ΩðR ! R be a Caratheodory
function satisfying (G) and (H) with ã,å � p

p�1 . Then the problem (1.2) is solvable for
any h 2 Lp(Ω) provided that (F1) holds.

If either é ≥ 0 or ç ≥ 0, then conditions (F4) and (F5) can be respectively replaced
by

(F7)
Z

g0
�(x) dx Ú

Z
h(x) dx �

Z
c(x) dx
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and

(F8)
Z

d(x) dx �
Z

h(x) dx Ú
Z

g0
+(x) dx.

THEOREM 6. Under assumptions of Theorem 4, the problem (1.2) is solvable for any
h 2 Lp(Ω) provided that either (F7) or (F8) holds.
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