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Abstract We study when certain properties of Banach algebras are stable under ultrapower construc-
tions. In particular, we consider when every ultrapower of A is Arens regular, and give some evidence that
this is so if and only if A is isomorphic to a closed subalgebra of operators on a super-reflexive Banach
space. We show that such ideas are closely related to whether one can sensibly define an ultrapower of a
dual Banach algebra. We study how tensor products of ultrapowers behave, and apply this to study the
question of when every ultrapower of A is amenable. We provide an abstract characterization in terms
of something like an approximate diagonal, and consider when every ultrapower of a C∗-algebra, or a
group L1-convolution algebra, is amenable.
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1. Introduction

Given a Banach space E and an ultrafilter U , we can form the ultrapower (E)U . This
construction has proved to be useful in Banach space theory, especially with regards to
local theory. Given a Banach algebra A, it is trivial that (A)U is a Banach algebra. Right
at the beginning of the study of ultrapowers, in [3], certain sequence spaces which are
Banach algebras were studied. As noted in [16], C∗-algebra techniques can be used to
show that the class of C(K) spaces is closed under ultrapower constructions. In [10,15,
17], ultrapowers of Banach algebras were used to study the Arens products on the bidual
of A. In [14], Ge and Hadwin study ultrapowers of C∗-algebras. Otherwise, the study
of ultrapowers of Banach algebras has been surprisingly sparse (see below for further
points).

For a property of Banach spaces (P), we say that a Banach space has super-(P) if
every ultrapower of E has (P). The best known example is that of a super-reflexive
Banach space (see [16, § 6]). We shall study some super properties of Banach algebras:
in particular, when ultrapowers of a Banach algebra are Arens regular, and when they
are amenable.

∗ Present address: School of Mathematics, University of Leeds, Leeds LS2 9JT, UK (matt.daws@
cantab.net).
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There seems to be a close relationship between a Banach algebra being super Arens
regular and the algebra being isomorphic to a closed subalgebra of operators on a super-
reflexive Banach space. We also show that the natural construction of an ultrapower of
a dual Banach algebra only works, in practice, for super Arens regular Banach algebras.

We say that a Banach algebra A is ultra-amenable if every ultrapower of A is amenable
(the term super-amenable is used for another meaning by Runde in [30]). We show
that ultra-amenability is strictly weaker than contractability (which is what Runde calls
super-amenable), and strictly stronger than amenability. Part of our motivation is that
it is generally easy to show that a Banach algebra is not contractible, while amenability
is a much harder property to settle (this applies in particular to B(E), the algebra of
operators on a Banach space E). We hope that perhaps the ultra-amenability of B(E)
can be more easily settled, although our current techniques do not allow this.

We provide an abstract characterization of ultra-amenability, similar to the concept of
an approximate diagonal (see [30, § 2.2]). To do this, we need to first study how tensor
products and ultrapowers interact. We present a counter-example, due to Charles Read
(personal communication), that ultrapowers and tensor products do not ‘commute’. We
settle when a C∗-algebra is ultra-amenable, and show for many locally compact groups
G that ultra-amenability is equivalent to being finite.

1.1. Notation and basic concepts

We generally follow [4] for notation and Banach algebra concepts. Let E be a Banach
space. We write E′ for the dual space of E, and for x ∈ E and µ ∈ E′, we write 〈µ, x〉
for µ(x). We occasionally use square brackets for inner products. Recall the canonical
map κE : E → E′′ defined by 〈κE(x), µ〉 = 〈µ, x〉 for x ∈ E and µ ∈ E′. When κE is an
isomorphism, we say that E is reflexive.

Recall the notions of filter and ultrafilter. Let U be a non-principal ultrafilter on a set
I and let E be a Banach space. We form the Banach space

�∞(E, I) =
{

(xi)i∈I ⊆ E : ‖(xi)‖ := sup
i∈I

‖xi‖ < ∞
}

,

and define the closed subspace

NU =
{

(xi)i∈I ∈ �∞(E, I) : lim
i→U

‖xi‖ = 0
}

.

Thus, we can form the quotient space, called the ultrapower of E with respect to U ,

(E)U := �∞(E, I)/NU .

In general, this space will depend on U , though many properties of (E)U turn out to be
independent of U , as long as U is sufficiently ‘large’ in some sense.

We can verify that if (xi)i∈I represents an equivalence class in (E)U , then

‖(xi)i∈I + NU‖ = lim
i→U

‖xi‖.
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We shall abuse notation and write (xi) for the equivalence class it represents; of course, it
can be checked that any definition we make is independent of the choice of representative
of the equivalence class. There is a canonical isometry E → (E)U given by sending x ∈ E

to the constant family (x). We again abuse notation and write x ∈ (E)U , identifying E

with a closed subspace of (E)U .

Definition 1.1. An ultrafilter U is countably incomplete when there exists a sequence
(Un)∞

n=1 in U such that U1 ⊇ U2 ⊇ U3 ⊇ · · · and such that
⋂

n Un = ∅.

Countably incomplete ultrafilters are useful, because they allow us to embed sequen-
tial convergence into convergence along the ultrafilter (see numerous examples of this
argument in [16]). We remark that if there exists a non-countably incomplete ultrafilter,
then there exists an uncountable measurable cardinal, and it is known that the existence
of such cardinals cannot be shown in ZFC (see [1, § 4.2] for further details). Notice that
any non-principal ultrafilter on a countable index set is certainly countably incomplete.

There is a canonical map (E′)U → (E)′
U given by

〈(µi), (xi)〉 = lim
i→U

〈µi, xi〉, (µi) ∈ (E′)U , (xi) ∈ (E)U .

This map is an isometry, and so we identify (E′)U with a closed subspace of (E)′
U . It is

shown in [16, Proposition 7.1] that when U is countably incomplete, (E)′
U = (E′)U if and

only if (E)U is reflexive. Furthermore, we define a Banach space E to be super-reflexive
if (E)U is reflexive for any ultrafilter U . As shown in [16, Proposition 6.4], this definition
is equivalent to the original one given by James (see [18]).

For Banach spaces E and F , we write B(E, F ) for the space of bounded linear operators
from E to F . Then there is a canonical isometric map (B(E, F ))U ↪→ B((E)U , (F )U ) given
by

T (x) = (Ti(xi)), T = (Ti) ∈ (B(E, F ))U , x = (xi) ∈ (E)U .

We shall often identify (B(E, F ))U with its image in B((E)U , (F )U ).

2. Basics of ultrapowers of Banach algebras

When A is a Banach algebra, (A)U becomes a Banach algebra under the pointwise
product. This follows, as it is easy to show that NU is a closed ideal in the Banach
algebra �∞(A, I).

In [14], Ge and Hadwin make a general study of ultrapowers of C∗-algebras. Much
of what they prove can easily be adapted to general Banach algebras. To give just one
example, the ideas of [14, § 3] will show that if A is a separable Banach algebra and U
and V are non-principal ultrafilters on N, then (A)U and (A)V are isomorphic as Banach
algebras, assuming the continuum hypothesis holds.

Proposition 2.1. For a Banach algebra A, an ultrapower (A)U is unital if and only
if A is unital.
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Proof. Clearly, if A is unital, then so is (A)U . Let e = (ei) ∈ (A)U be a unit for (A)U ,
and choose ei such that ‖ei‖ = ‖e‖ � 1 for each i. For ε > 0, for each i, let ai ∈ A be
such that ‖ai‖ = 1 and

‖ai − eiai‖ � sup{‖a − eia‖ : a ∈ A, ‖a‖ � 1} − ε.

Let b = (ai) ∈ (A)U , so that b = eb = (eiai) ∈ (A)U , and hence

0 = lim
i→U

‖ai − eiai‖ � lim
i→U

sup{‖a − eia‖ : a ∈ A, ‖a‖ � 1} − ε.

As ε > 0 was arbitrary, we see that

lim
i→U

sup{‖a − eia‖ : a ∈ A, ‖a‖ � 1} = 0.

Analogously, we see that

lim
i→U

sup{‖a − aei‖ : a ∈ A, ‖a‖ � 1} = 0.

For ε > 0, let U = {i : ‖a − aei‖ + ‖a − eia‖ < ε (a ∈ A, ‖a‖ � 1)} ∈ U . Thus, for
i, j ∈ U ,

‖ei − ej‖ � ‖ei − eiej‖ + ‖ej − eiej‖ < 2ε‖e‖.

It is straightforward to extract a sequence from the family (ei) which will be Cauchy,
and hence converges to, say, eA ∈ A. It is then clear that eA will be a unit for A. �

The following is perhaps a little more surprising.

Proposition 2.2. For a Banach algebra A, an ultrapower (A)U has a bounded approx-
imate identity if and only if A does. The same statement holds for left- or right-bounded
approximate identities.

Proof. Suppose that A has a bounded approximate identity of bound M � 1. Let U be
an ultrafilter on an index set I, let a = (ai) ∈ (A)U and let ε > 0. Again, we may suppose
that ‖ai‖ = ‖a‖ for each i ∈ I. For each i ∈ I, we can find ui ∈ A with ‖ui‖ � M and
‖ai −uiai‖ < ε. Let u = (ui)i∈I ∈ (A)U , so that ‖a−ua‖ � ε. As a and ε were arbitrary,
we see that (A)U has bounded left approximate units. By [4, Corollary 2.9.15], we have
that (A)U has a bounded left approximate identity of bound M . By symmetry, (A)U has
a bounded right approximate identity of bounded M , and so by a result due to Dixon
(see [4, Proposition 2.9.3]) we have that (A)U has a bounded approximate identity of
bound 2M + M2.

Conversely, suppose that (A)U has a bounded approximate identity of bound M , but
that A does not have a bounded left approximate identity of bound less than or equal
to M . Hence, A does not have bounded left approximate units of bound less than or
equal to M . In particular, there exist a ∈ A and δ > 0 such that ‖a − ua‖ � δ for all
u ∈ A with ‖u‖ � M . However, we can find u = (ui) ∈ (A)U with ‖a − ua‖ < δ/2,
that is, limi→U ‖a − uia‖ < δ/2: a contradiction. So A has a bounded left approximate
identity of bound M , and thus by symmetry A has a bounded approximate identity. �
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Ultrapowers have been studied in the context of von Neumann algebras. However,
here the definition is different from ours: this is because, for example, if M = �∞ and
U is a non-principal ultrafilter on N, then (M)U is not a dual space, and hence not a
von Neumann algebra. Instead, a construction using traces is often used; however, it
can be shown that the predual of the von Neumann algebra ultrapower is precisely the
Banach space ultrapower of the predual (see, for example, [28, § 1]). We study such ideas
for dual Banach algebras below.

Ultrapowers of Banach spaces have been used in [2] to study representations of Banach
algebras and representations of groups; see also the similar ideas used in [7,31].

3. Arens regularity

Let A be a Banach algebra. We now recall the Arens products on A′′. First, we turn A′

into an A-bimodule in the usual fashion:

〈a · µ, b〉 = 〈µ, ba〉, 〈µ · a, b〉 = 〈µ, ab〉, a, b ∈ A, µ ∈ A′.

In a similar way, A′′ and so forth also become A-bimodules. Then we define bilinear
maps A′′ × A′, A′ × A′′ → A′ by

〈Φ · µ, a〉 = 〈Φ, µ · a〉, 〈µ · Φ, a〉 = 〈Φ, a · µ〉, Φ ∈ A′′, µ ∈ A′, a ∈ A.

Finally, we define bilinear maps �,♦ : A′′ × A′′ → A′′ by

〈Φ�Ψ, µ〉 = 〈Φ, Ψ · µ〉, 〈Φ♦Ψ, µ〉 = 〈Ψ, µ · Φ〉, Φ, Ψ ∈ A′′, µ ∈ A′.

These are associative products which extend the natural action of A on A′′, called the
first and second Arens products (see [4, § 3.3] or [22, § 1.4] for further details). Thus, �
and ♦ agree with the usual product on κA(A). When � and ♦ agree on all of A′′, we say
that A is Arens regular.

By Goldstine’s Theorem, we know that the unit ball of A is weak∗-dense in the unit
ball of A′′. This allows us to find an ultrafilter U such that, given Φ, Ψ ∈ A′′, we can find
bounded families (ai) and (bi) with (ai) tending to Φ weak∗ along U , and (bi) tending to
Ψ (see [16, Proposition 6.7] for further details). Then

〈Φ�Ψ, µ〉 = lim
j→U

lim
i→U

〈µ, aibj〉, 〈Φ♦Ψ, µ〉 = lim
i→U

lim
j→U

〈µ, aibj〉, µ ∈ A′.

In [10] we show that when A is Arens regular we can find a more ‘symmetric’ version of
these formulae.

We shall say that A is super Arens regular if every ultrapower of A is Arens regular.
As Arens regularity passes to subalgebras, clearly a super Arens regular Banach algebra
is Arens regular.

Proposition 3.1. Let A be a Banach algebra isomorphic to a closed subalgebra of
B(E) for a super-reflexive Banach space E. Then A is super Arens regular.
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Proof. It is shown in [7] that B(E) is Arens regular for any super-reflexive Banach
space E. Let U be an ultrafilter. As an ultrapower of an ultrapower is again an ultrapower
(see [16, p. 90]), we see that (E)U is super-reflexive. We identify (B(E))U as a closed
subalgebra of B((E)U ). Thus, (B(E))U is Arens regular, and hence so is (A)U , as required.

�

Note that if A is a Banach algebra whose underlying Banach space is super-reflexive,
then every ultrapower of A is reflexive, and hence certainly Arens regular. As noted in [7],
if A is a closed subalgebra of B(E) for a super-reflexive E (or A is super-reflexive), then
every even dual of A is Arens regular.

Let µ ∈ A′. We say that µ is weakly almost periodic if the map

Lµ : A → A′; a 
→ a · µ, a ∈ A,

is weakly compact, and write µ ∈ WAP(A′). Then A is Arens regular if and only if
WAP(A′) = A′ (see [5, § 3] for further details; and be aware that they write WAP(A)).
A useful characterization of WAP(A′), due originally to Pym (see [27, Theorem 4.3]), is
that µ ∈ WAP(A′) if and only if 〈Φ�Ψ, µ〉 = 〈Φ♦Ψ, µ〉 for all Φ, Ψ ∈ A′′. Combining
this fact with some careful arguments yields the following repeated limit criterion.

Proposition 3.2. Let A be a Banach algebra and let µ ∈ A′. Then µ is weakly almost
periodic if and only if, for bounded sequences (an) and (bm) in A, we have that

lim
n→∞

lim
m→∞

〈µ, anbm〉 = lim
m→∞

lim
n→∞

〈µ, anbm〉,

whenever all the iterated limits exist.

Proof. See [4, Theorem 2.6.17] or [5, § 3], for example. �

For an ultrapower (A)U , we generally do not fully understand the dual (A)′
U . However,

we have the norming subspace (A′)U , and so in particular, if (A)U is Arens regular, then
(A′)U ⊆ WAP((A)′

U ).

Lemma 3.3. Let A be a Banach algebra and let U be a countably incomplete ultra-
filter. An ultrapower (A)U is Arens regular if and only if (A′)U ⊆ WAP((A)′

U ).

Proof. We need only show the ‘if’ part. Let µ ∈ (A)′
U , and suppose that µ is not

weakly almost periodic. Thus, there exist bounded sequences (an) and (bm) in (A)U such
that the iterated limits of (〈µ, anbm〉) exist, but are not equal. Let E ⊆ (A)U be the
closed linear span of (anbm)n,m∈N, so that E is separable. As U is countably incomplete,
we can apply [16, Corollary 7.5] to see that there exists λ ∈ (A′)U such that 〈µ, anbm〉 =
〈λ, anbm〉 for all n and m. Thus, λ is not weakly almost periodic: a contradiction. �

For a Banach space E, let F(E) be the space of finite-rank operators on E and let
A(E) be the space of approximable operators, the norm closure of F(E) in B(E). See
below for further details, and for what it means for a Banach space E to have the approxi-
mation property. It is known that if E is a reflexive Banach space with the approximation
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property, then A(E) is Arens regular, and that A(E)′′ = B(E) as a Banach algebra (see,
for example, [21] or [22, § 1.7]). In general, A(E) is Arens regular if and only if E is
reflexive (see, for example, [4, Theorem 2.6.23]).

Proposition 3.4. Let E be a Banach space. The A(E) is super Arens regular if and
only if E is super-reflexive.

Proof. By the above, if E is super-reflexive, then A(E) is super Arens regular. If E

is not super-reflexive, then by the results of [16, § 6] there exists a countably incomplete
ultrafilter U on an index set I such that (E)U is not reflexive. By a result of James (see,
for example, [7, § 4]), we can find bounded sequences (x(n)) in (E)U and (µ(m)) in (E)′

U
such that

〈µ(m), x(n)〉 =

{
0, m > n,

1, m � n.

Let E be the closed linear span of the (x(n)), so that E is separable. As we only care
about the value of µ(m) on E, by [16, Corollary 7.5], we may suppose that µ(m) ∈ (E′)U .
Let x(n) = (x(n)

i ) and µ(n) = (µ(n)
i ) for each n.

Let λ ∈ E′ and x ∈ E be such that 〈λ, x〉 = 1. For each n � 1, define

Tn = µ(n) ⊗ x = (µ(n)
i ⊗ x) ∈ (A(E))U , Sn = λ ⊗ x(n) = (λ ⊗ x

(n)
i ) ∈ (A(E))U .

Define Λ ∈ (A(E))′
U by

〈Λ, R〉 = lim
i→U

〈λ, Ri(x)〉, R = (Ri) ∈ (A(E))U .

It is hence easy to see that

〈Λ, TnSm〉 = 〈µ(n), x(m)〉,

from which it follows that Λ is not weakly almost periodic, as required. �

Notice that in the above proof Λ is a member of A(E)′, where we naturally embed
A(E)′ into (A(E))′

U . Hence, when E is not super-reflexive, (A(E))U fails to be Arens
regular in this rather strong sense.

An alternative way to see the above is the following. For a Banach space E, we can
regard (A(E))U as a subalgebra of B((E)U ) in the usual way. It is then easy to see that
A((E)U ) is contained in (A(E))U , and so if (A(E))U is Arens regular, so is A((E)U ), and
hence, as mentioned above, (E)U must be reflexive.

Combining the above results, we might be tempted to make the following conjecture:
a Banach algebra A is super Arens regular if and only if A is isomorphic to a subalgebra
of B(E) for some super-reflexive Banach space E. In [34], Young showed that a Banach
algebra A is isomorphic to a subalgebra of B(E) for a reflexive E if and only if WAP(A′)
approximately norms A, that is, for some δ > 0,

‖a‖ � δ sup{|〈µ, a〉| : µ ∈ WAP(A′), ‖µ‖ � 1}, a ∈ A.
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In particular, Arens regular Banach algebras are even isometric to closed subalgebras
of B(E) for reflexive E. The key tool which Young uses is that of interpolation spaces,
although this was not recognized at the time (cf. Kaijser’s work in [19]). However, it is
not clear how interpolation spaces and ultrapowers interact; just because an ultrapower
(A)U is isomorphic to a subalgebra of B(E) does not seem to imply that E needs to be
ultrapower.

3.1. Ultrapowers of dual Banach algebras

Surprisingly, defining ultrapowers of dual Banach algebras is not as straightforward as
for von Neumann algebras: we have to take account of Arens regularity.

Recall that a dual Banach algebra is a Banach algebra A which is the dual of a Banach
space, say A = A′

∗, such that the product on A is separately weak∗-continuous. The
canonical example is a von Neumann algebra, in which case the predual A∗ is isometri-
cally unique. In general, there may be a choice of A∗, so we shall write (A,A∗) to indicate
the predual (see [9,29] for general further information).

By analogy with the von Neumann case, the natural way to define an ultrapower of
A is to form the Banach space ultrapower (A∗)U , and then to extend the product from
(A)U to the dual space (A∗)′

U .

Proposition 3.5. Let (A,A∗) be a dual Banach algebra and let U be an ultrafilter
on an index set I. Let A∗ = (A∗)U and A = A′

∗. The following are equivalent:

(i) there is a product on A extending the product on (A)U and turning (A,A∗) into a
dual Banach algebra;

(ii) if we identify (A∗)U with a subspace of (A)′
U , we have that (A∗)U ⊆ WAP((A)′

U ).

Proof. Notice that as (A)U is weak∗-dense in A, any product making (A,A∗) into a
dual Banach algebra, and which extends the product on (A)U , must be unique. If (i)
holds, then it is an easy calculation (see [9, § 2]) that A∗ ⊆ WAP(A′). Condition (ii) is
immediate from this.

Conversely, notice that A = (A∗)U is an (A)U -bimodule, and so A′ is also an (A)U -
bimodule. It is obvious that this bimodule structure extends the product on (A)U . We
can hence extend this bimodule structure to a bilinear map on A, either by extending
on the left, or on the right, by weak∗-continuity. Let us check that these give the same
result. Let a, b ∈ A so, by [16, § 7], there exist bounded nets (aα) and (bα) in (A)U ,
tending to a and b, respectively. For µ ∈ A∗, we see that

lim
α

〈aα · b, µ〉 = lim
α

〈b, µ · aα〉 = lim
α

lim
β

〈bβ , µ · aα〉 = lim
α

lim
β

〈aαbβ , µ〉

= lim
β

lim
α

〈aαbβ , µ〉 = lim
β

〈a · bβ , µ〉.

We can swap the order of the limits, as µ ∈ WAP((A)′
U ). The construction of this product

is very similar to the construction of the Arens products, and checking that our product
on A is associative is similar to the analogous calculation for the Arens products.
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Finally, we show that (A,A∗) is a dual Banach algebra, for which it suffices to check
that A∗ is an A-submodule of A′. Let µ ∈ A∗ and a ∈ A, and suppose that a·µ �∈ A∗ ⊆ A′,
so there exists Φ ∈ A′′ annihilating A∗ and with 〈Φ, a ·µ〉 = 1. Let (bα) be a bounded net
in A tending to Φ weak∗ in A′′. For each α, let (cα,β) be a bounded net in (A)U tending to
bα weakly∗ in A. Let (cγ) be a bounded net in (A)U tending to a in the weak∗-topology
on A. Then we see that

1 = 〈Φ, a · µ〉 = lim
α

〈a · µ, bα〉 = lim
α

〈bαa, µ〉 = lim
α

lim
β

〈cα,βa, µ〉

= lim
α

lim
β

〈a, µ · cα,β〉 = lim
α

lim
β

lim
γ

〈cγ , µ · cα,β〉

= lim
α

lim
β

lim
γ

〈cα,βcγ , µ〉 = lim
γ

lim
α

lim
β

〈cα,βcγ , µ〉

= lim
γ

lim
α

〈bα, cγ · µ〉 = 0;

this is a contradiction. Again, we use the fact that µ ∈ WAP((A)′
U ) to allow us to swap

the order of limits. Hence, a · µ ∈ A∗ and, similarly, µ · a ∈ A∗, as required. �

Notice that if A is super Arens regular, then certainly condition (ii) above always
holds.

Proposition 3.6. Let (A,A∗) be a dual Banach algebra, and suppose that for all
ultrafilters U we have that (A∗)U ⊆ WAP((A)′

U ). Then every even dual of A is Arens
regular.

Proof. First, we show that A is Arens regular. Let µ ∈ A′ and let (an) and
(bm) be bounded sequences in A with the repeated limits limn limm〈µ, anbm〉 and
limm limn〈µ, anbm〉 existing. By [16, Proposition 6.7], for a suitable ultrafilter U , there
exists (µi) ∈ (A∗)U with

lim
i→U

〈a, µi〉 = 〈µ, a〉, a ∈ A.

As (A∗)U ⊆ WAP((A)′
U ), we have that (µi) ∈ WAP((A)′

U ), and so

lim
n

lim
m

〈µ, anbm〉 = lim
n

lim
m

lim
i→U

〈anbm, µi〉 = lim
n

lim
m

〈(an)(bm), (µi)〉

= lim
m

lim
n

〈(an)(bm), (µi)〉 = lim
m

lim
n

〈µ, anbm〉,

as required.
Let Λ ∈ A′′′ and let (Φn) and (Ψm) be bounded sequences in A′′ with the repeated

limits limn limm〈Λ, ΦnΨm〉 and limm limn〈Λ, ΦnΨm〉 existing. For an ultrapower (A)U ,
define a map σU : (A)U → A′′ by

〈σU (a), µ〉 = lim
i→U

〈µ, ai〉, a = (ai) ∈ (A)U .

As A is Arens regular, by the main result of [10], there exists an ultrafilter U on an index
set I, and a map K : A′′ → (A)U , such that σU ◦ K is the identity on A′′, and

〈σU (K(Φ)K(Ψ)), µ〉 = 〈Φ�Ψ, µ〉, µ ∈ A′, Φ, Ψ ∈ A′′.

There exists an ultrafilter V on an index set J such that σV : (A′)V → A′′′ is surjective.
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We define (see the end of [16, § 7]) the ultrafilter U × V on I × J by, for A ⊆ I × J ,
setting A ∈ U × V if and only if

{i ∈ I : {j ∈ J : (i, j) ∈ A} ∈ V} ∈ U .

Then, for a family (xi,j)i∈I,j∈J in a compact Hausdorff space X, we have that

lim
j→V

lim
i→U

xi,j = lim
(i,j)→U×V

xi,j .

For each n let K(Φn) = (a(n)
i ) ∈ (A)U and let K(Ψn) = (b(n)

i ) ∈ (A)U . Let (µj) ∈ (A′)V
be such that σV((µj)) = Λ. We then see that, as (µj) ∈ WAP((A)′

U×V),

lim
n

lim
m

〈Λ, ΦnΨm〉 = lim
n

lim
m

lim
j→V

〈ΦnΨm, µj〉 = lim
n

lim
m

lim
j→V

lim
i→U

〈µj , a
(n)
i b

(m)
i 〉

= lim
n

lim
m

lim
(i,j)→U×V

〈µj , a
(n)
i b

(m)
i 〉

= lim
m

lim
n

lim
(i,j)→U×V

〈µj , a
(n)
i b

(m)
i 〉 = lim

m
lim
n

〈Λ, ΦnΨm〉.

Hence, A′′ is Arens regular.
Repeating this argument allows us to show that every even dual of A is Arens regular,

as claimed. �

Again, it would be interesting to know whether A is super Arens regular when every
even dual of a Banach algebra A is Arens regular. In conclusion, we see that our approach
to ultrapowers of dual Banach algebras requires a rather strong condition on the under-
lying algebra; indeed, in practice, we need A to be a subalgebra of B(E) for a super-
reflexive Banach space E.

4. Tensor products of ultrapowers

We shall now sketch the basics of the theory of tensor products of Banach spaces. We
refer the reader to [12,32] for introductory treatments of this material, or [11] for further
information.

For Banach spaces E and F , let E ⊗ F be the algebraic tensor product of E and F .
We define the projective tensor norm by

‖τ‖π = inf
{ n∑

i=1

‖xi‖‖yi‖ : τ =
n∑

i=1

xi ⊗ yi

}
, τ ∈ E ⊗ F.

The completion of E ⊗ F with respect to ‖ · ‖π is E ⊗̂F , the projective tensor product of
E and F . E ⊗̂F has the universal property that if T : E × F → G is a bounded bilinear
map to a Banach space G, then there is a unique bounded linear map T̂ : E ⊗̂F → G

such that T̂ (x ⊗ y) = T (x, y) for x ∈ E and y ∈ F . Every member τ ∈ E ⊗̂F can be
written as an absolutely convergent sum τ =

∑∞
i=1 xi ⊗ yi, for some sequences (xi) ⊆ E

and (yi) ⊆ F .
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Let F(E, F ) be the space of finite-rank operators from E to F and let A(E, F ) be the
space of approximable operators from E to F , the norm closure of F(E, F ) in B(E, F ).
We can embed E ⊗ F into F(E′, F ) by

( n∑
i=1

xi ⊗ yi

)
: µ 
→

n∑
i=1

〈µ, xi〉yi, µ ∈ E′.

This induces the injective tensor norm ‖ · ‖ε on E ⊗ F , whose completion is E ⊗̌F . In
particular, we can identify A(E, F ) with E′ ⊗̌F .

We shall say that the norm ‖·‖ on E⊗F is a reasonable cross-norm when the following
hold:

(i) ‖x ⊗ y‖ = ‖x‖‖y‖ for x ∈ E and y ∈ F ;

(ii) for µ ∈ E′ and λ ∈ F ′, define µ ⊗ λ : E ⊗ F → C by 〈µ ⊗ λ, x ⊗ y〉 = 〈µ, x〉〈λ, y〉
and linearity; then the norm of µ ⊗ λ, with respect to ‖ · ‖, is ‖µ‖‖λ‖.

Suppose that for each pair of Banach spaces (E, F ), we have an assignment of a reasonable
cross-norm ‖ · ‖ on E ⊗ F . Then this assignment is a uniform cross-norm when, given
pairs (E1, F1) and (E2, F2) of Banach spaces, for T ∈ B(E1, E2), S ∈ B(F1, F2), we have
that ‖T ⊗S‖ � ‖T‖‖S‖, where we treat T ⊗S as a linear map E1 ⊗̂F1 → E2 ⊗̂F2 given
by

(T ⊗ S)(x ⊗ y) = T (x) ⊗ S(y), x ⊗ y ∈ E1 ⊗ F1,

and linearity. Then ‖ · ‖π and ‖ · ‖ε are uniform cross-norms.
The projective tensor product is projective in the sense that if T and S are quotient

maps (also called metric surjections), then T ⊗ S : E1 ⊗̂F1 → E2 ⊗̂F2 is also a quo-
tient map. Similarly, the injective tensor product is injective in that, when T and S are
isometries, then T ⊗S : E1 ⊗̌F1 → E2 ⊗̌F2 is also an isometry. In general, the projective
tensor norm is not injective, and the injective tensor norm is not projective. A useful
exception to this is that the map κE ⊗ id : E ⊗̂F → E′′ ⊗̂F is always an isometry onto
its range.

We identify the dual of E ⊗̂F with B(E, F ′) by

〈T, x ⊗ y〉 = 〈T (x), y〉, T ∈ B(E, F ′), x ⊗ y ∈ E ⊗̂F,

and linearity and continuity. In particular, E′ ⊗̌F ′ = A(E, F ′) isometrically embeds into
(E ⊗̂F )′. When either E or F is finite dimensional, we have equality, (E ⊗̂F )′ = E′ ⊗̌F ′.

As the map E ⊗̂F → E ⊗̌F is norm-decreasing with dense range, we see that the
adjoint (E ⊗̌F )′ → (E ⊗̂F )′ = B(E, F ′) is norm-decreasing and injective. We hence
identify (E ⊗̌F )′ with a space of operators E → F ′, the integral operators I(E, F ′), and
we give I(E, F ′) the dual norm ‖ · ‖I , so that I(E, F ′) = (E ⊗̌F )′. We have a norm-
decreasing map E′ ⊗̂F ′ → I(E, F ′). It is quite a subtle issue as to when this map is
bounded below, an isometry, or when it is surjective (see [32] or [11, § 16] for further
details). However, if either E or F is finite dimensional, then (E ⊗̌F )′ = I(E, F ′) =
E′ ⊗̂F ′.
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We say that a Banach space E has the approximation property when the canonical
map E′ ⊗̂E → E′ ⊗̌E = A(E) is injective (see [32, Chapter 4] or [12, Chapter VIII] for
further details). For Banach spaces E and F with the approximation property, we can
hence identify E′ ⊗̂F as a space of operators from E to F , called the nuclear operators,
N (E, F ). In general, N (E, F ) is merely a quotient of E′ ⊗̂F , and we always give N (E, F )
the quotient norm.

4.1. Ultrapowers

Let M be a finite-dimensional Banach space and let U be an ultrafilter. By taking a
basis, it is easy to see that (M)U = M . It is shown in [16, Lemma 7.4] that

(M ⊗̌E)U = M ⊗̌(E)U , (M ⊗̂E)U = M ⊗̂(E)U

for every Banach space E, and every finite-dimensional M , with equality of norms.
For infinite-dimensional Banach spaces, these equalities are no longer necessarily true.

However, we can make some useful statements.
Let E and F be Banach spaces. There is a canonical map

ψ0 : (E)U ⊗̂(F )U → (E ⊗̂F )U ,

defined using the tensorial property of ⊗̂. First, we define ψ0 : (E)U × (F )U → (E ⊗̂F )U
by

ψ0(x, y) = (xi ⊗ yi), x = (xi) ∈ (E)U , y = (yi) ∈ (F )U .

Then we have

‖(xi ⊗ yi)‖ = lim
i→U

‖xi ⊗ yi‖π = lim
i→U

‖xi‖‖yi‖ =
(

lim
i→U

‖xi‖
)(

lim
i→U

‖yi‖
)

= ‖x‖‖y‖,

so that ψ0 is well defined, and is a norm-decreasing bilinear map. Thus, ψ0 extends to
a norm-decreasing map ψ0 : (E)U ⊗̂(F )U → (E ⊗̂F )U . For τ ∈ (E)U ⊗ (F )U , choose a
representative τ =

∑n
k=1 xk ⊗ yk. Let, for each k, xk = (x(k)

i ) ∈ (E)U and yk = (y(k)
i ) ∈

(E)U . Then we see that

ψ0(τ) =
( n∑

k=1

x
(k)
i ⊗ y

(k)
i

)
i∈I

∈ (E ⊗̂F )U .

Proposition 4.1. Let E and F be Banach spaces, let U be an ultrafilter on an index
set I and let τ ∈ (E ⊗̂F )U . Then the following are equivalent.

(i) For some sequence (αn) of positive reals with
∑

n αn < ∞, τ = (τi) admits a
representation of the form

τi =
∞∑

k=1

x
(i)
k ⊗ y

(i)
k ∈ E ⊗̂F, i ∈ I,

where, for each i and k, we have that ‖x
(i)
k ‖‖y

(i)
k ‖ � αk.

(ii) τ lies in the image of ψ0.
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Proof. Suppose that (i) holds. By rescaling, we may suppose that ‖x
(i)
k ‖ = ‖y

(i)
k ‖ �

α
1/2
k for each i ∈ I and k � 1. For each k � 1, let

xk = (x(i)
k ) ∈ (E)U , yk = (y(i)

k ) ∈ (F )U ,

so that ‖xk‖ � α
1/2
k and ‖yk‖ � α

1/2
k . We can hence let

σ =
∞∑

k=1

xk ⊗ yk ∈ (E)U ⊗̂(F )U ,

with π(σ) �
∑

k αk. Let σn =
∑n

k=1 xk ⊗ yk so that σn → σ in (E)U ⊗̂(F )U . Then

lim
n→∞

‖ψ0(σn) − τ‖ = lim
n→∞

lim
i→U

∥∥∥∥
n∑

k=1

x
(i)
k ⊗ y

(i)
k − τi

∥∥∥∥
π

� lim
n→∞

lim
i→U

∞∑
k=n+1

‖x
(i)
k ‖‖y

(i)
k ‖

� lim
n→∞

∞∑
k=n+1

αk = 0,

so that ψ0(σ) = τ , as required.
Conversely, suppose that τ = ψ0(σ) for

σ =
∞∑

k=1

xk ⊗ yk ∈ (E)U ⊗̂(F )U ,

with
∑∞

k=1 ‖xk‖‖yk‖ < ∞. Then we let αk = ‖xk‖‖yk‖ and pick representatives

xk = (x(i)
k ) ∈ (E)U and yk = (y(i)

k ) ∈ (E)U ,

with ‖xk‖ = ‖x
(i)
k ‖ and ‖yk‖ = ‖y

(i)
k ‖ for each k and i. For each i ∈ I, let

τi =
∞∑

k=1

x
(i)
k ⊗ y

(i)
k .

Let

σn =
n∑

k=1

xk ⊗ yk,

so that τ = limn→∞ ψ0(σn). Thus, for each n,

‖(τi) − ψ0(σn)‖ = lim
i→U

∥∥∥∥τi −
n∑

k=1

x
(i)
k ⊗ y

(i)
k

∥∥∥∥
π

� lim
i→U

∞∑
k=n+1

‖x
(i)
k ‖‖y

(i)
k ‖ =

∞∑
k=n+1

αk.

Hence, letting n → ∞, (τi) = τ , as required. �
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Let A be a Banach algebra and let E be a left-A-module. Then an ultrapower (E)U
becomes a left-A-module in the obvious way. When F is a right-A-module, we have that
E ⊗̂F is an A-bimodule for the module actions

a · (x ⊗ y) = a · x ⊗ y, (x ⊗ y) · a = x ⊗ y · a, a ∈ A, x ⊗ y ∈ E ⊗̂F.

Hence, an ultrapower (E ⊗̂F )U is also an A-bimodule. Similarly, (E)U ⊗̂(F )U is an A-
bimodule. It is a simple check to see that ψ0 is an A-bimodule homomorphism.

Similarly, it is easily checked that (E)U is a left-(A)U -module, (F )U is a right-(A)U -
module and both (E ⊗̂F )U and (E)U ⊗̂(F )U are (A)U -bimodules. We can check that ψ0

is also an (A)U -bimodule homomorphism.
In general, it seems that ψ0 is rarely, if ever, surjective when E and F are infinite

dimensional. We now present an argument for Hilbert spaces that is motivated by a
counter-example communicated to us by Charles Read. We first recall the Schmidt rep-
resentation theorem (see, for example, the treatment given in [26]).

Theorem 4.2. Let H and K be Hilbert spaces and let T ∈ A(H, K). Then there
exist orthonormal sequences (hn) and (kn) in H and K, respectively, and a sequence of
positive numbers (sn) ∈ c0(N) with s1 � s2 � · · · such that

T (x) =
∞∑

n=1

sn[x, hn]kn, x ∈ H,

where [·, ·] is the inner product on H.

Here and henceforth, we allow orthonormal sequences to be eventually zero.
For a Hilbert space H and x ∈ H, we define a linear functional x∗ on H by y 
→ [y, x].

The Riesz Theorem shows that every linear functional arises in this way. It is clear
that if the sequence (sn) above satisfies

∑
n sn < ∞, then T will be nuclear, and hence

identified with a member of H ⊗̂K (as H and K have the approximation property) with
‖T‖π �

∑
n sn.

Lemma 4.3. If T ∈ H ⊗̂K, then the sequence (sn) arising from the Schmidt repre-
sentation of T satisfies ‖T‖π =

∑
n sn.

Proof. For ε > 0, let T =
∑

n u∗
n ⊗ vn with

∑
n ‖un‖‖vn‖ < ‖T‖π + ε. Then, by the

Schmidt representation, we have also that T =
∑

n snh∗
n ⊗ kn, say. Then∑

n

sn =
∑

n

[T (hn), kn]

=
∑

n

∑
m

[hn, um][vm, kn]

�
∑
m

( ∑
n

|[hn, um]|2
)1/2( ∑

n

|[vm, kn]|2
)1/2

�
∑
m

‖um‖‖vm‖ < ‖T‖π + ε,

as (hn) and (kn) are orthonormal sequences. As ε > 0 was arbitrary, we are done. �
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Notice that this proof shows that, for T ∈ H ⊗̂K, we have that

‖T‖π = sup
{ ∑

n

|[T (en), fn]| : (en) and (fn) are orthonormal sequences in H and K

}
.

We now recall the notion (see [26, Chapter 11]) of approximation numbers. Let E and
F be Banach spaces and let T ∈ B(E, F ). The nth approximation number of T , for n � 1,
is

an(T ) = inf{‖T − S‖ : S ∈ F(E, F ), rank(S) < n}.

Proposition 4.4. Let H and K be Hilbert spaces and let T ∈ A(H, K) have a Schmidt
representation T =

∑
n snh∗

n ⊗ kn. Then, if s1 � s2 � · · · , then sn = an(T ) for each
n � 1.

Proof. See [26, § 11.3]. �

Proposition 4.5. Let H and K be Hilbert spaces and let U be a ultrafilter on an
index set I. Then each τ ∈ (H ⊗̂K)U in the image of ψ0 admits a representation of the
form τ = (τi) with

τi =
∑

n

snh∗
n,i ⊗ kn,i ∈ H ⊗̂K, i ∈ I,

where (sn) is a sequence of positive reals with
∑

n sn < ∞ and, for each i, (hn,i) and
(kn,i) are orthonormal sequences in H and K, respectively.

Proof. Let τ = ψ0(σ), where

σ =
∑

n

sne∗
n ⊗ fn,

and (en) and (fn) are orthonormal sequences in (H)U and (K)U respectively. Pick rep-
resentatives en = (en,i)i∈I and fn = (fn,i)i∈I so that

δn,m = lim
i→U

[en,i, em,i] = lim
i→U

[fn,i, fm,i], n, m � 1.

For each i, apply the Gram–Schmidt orthonormalization process to (en,i) to yield (hn,i),
where we allow hn,i to be zero for sufficiently large n; do the same to (fn,i) to yield (kn,i).
For each n � 1, as hn,i depends only upon {em,i : m � n} and {[em,i, er,i] : m, r � n},
we can verify that

lim
i→U

‖hn,i − en,i‖ = 0, n � 1,

and similarly for fn,i. Let hn = (hn,i)i∈I ∈ (H)U and kn = (kn,i)i∈I ∈ (H)U so that hn =
en and kn = fn. Thus,

τ = ψ0(σ) =
( ∑

n

snh∗
n,i ⊗ kn,i

)
i∈I

∈ (H ⊗̂K)U ,

as required. �
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Theorem 4.6. Let H and K be Hilbert spaces and let U be a countably incomplete
ultrafilter on an index set I. Then ψ0 : (H)U ⊗̂(K)U → (H ⊗̂K)U does not have dense
range.

Proof. We first consider the case when I = N and U is a non-principal ultrafilter on
N. Let (en) and (fn) be orthonormal sequences in H and K, respectively. For each n � 1,
let

τn = n−1
n∑

j=1

e∗
j ⊗ fj ∈ H ⊗̂K,

and let τ = (τn) ∈ (H ⊗̂K)U . Let σ ∈ (H ⊗̂K)U be in the image of ψ0, so that σ has a
representation as above:

σ = (σk) =
( ∑

n

snh∗
n,k ⊗ kn,k

)
k∈N

∈ (H ⊗̂K)U .

Pick ε > 0, and choose N such that
∑

n>N sn < ε. Then

lim
k→U

π(τk − σk) > lim
k→U

π

(
τk −

N∑
n=1

snh∗
n,k ⊗ kn,k

)
− ε

� lim
k→U

inf{π(τk − υ) : υ ∈ F(H, K), rank(υ) � N} − ε

= lim
k→U

inf
{ ∑

m�1

am(τk − υ) : υ ∈ F(H, K), rank(υ) � N

}
− ε,

by an application of Proposition 4.4. Now, for υ ∈ F(H, K) with rank(υ) � N , it is clear
that am(τk − υ) � aN+m(τk), so that

lim
k→U

π(τk − σk) > lim
k→U

(k − N)k−1 − ε = 1 − ε.

As ε > 0 and σ were arbitrary, we see that τ is distance 1 (as π(τ) = 1) from the
image of ψ0.

A standard argument allows us to adapt this proof to the case when U is an arbi-
trary countably incomplete ultrafilter on an index set I (cf. proofs of Theorem 6.3 or
Proposition 7.1 in [16]). �

The above seems to rely very heavily upon certain special features of Hilbert spaces,
as did the original counter-example due to Charles Read. It would be interesting to know
how (E)U ⊗̂(F )U and (E ⊗̂F )U relate for other classes of Banach spaces.

For the following, we refer the reader to [16, § 9], where Heinrich gives a description
of when (E)U has the approximation property. In particular, the following are equiva-
lent: (E)U has the approximation property for all U ; E has the uniform approximation
property ; (E)U has the approximation property for some non-principal U on a countable
index set. Notice that, by [16, Theorem 3.3], (Lp(ν))U has the approximation property
for any measure ν, 1 � p � ∞, and any U .
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Proposition 4.7. Let E and F be Banach spaces such that F is super-reflexive.
Let U be an ultrafilter such that (F )U has the approximation property. Then ψ0 :
(E)U ⊗̂(F )U → (E ⊗̂F )U is an isometry onto its range.

Proof. As (F )U is reflexive and (F )U has the approximation property, we have

A((E)U , (F ′)U )′ = ((E)′
U ⊗̌(F ′)U )′ = I((E)′

U , (F )U ) = (E)′′
U ⊗̂(F )U

(see [32, § 5.3] for details). As the map

κ(E)U ⊗ id : (E)U ⊗̂(F )U → (E)′′
U ⊗̂(F )U

is an isometry onto its range, we see that

‖τ‖π = sup{|〈τ, S〉| : S ∈ F((E)U , (F ′)U ), ‖S‖ � 1}, τ ∈ (E)U ⊗̂(F )U .

In the following, for a Banach space X, we write FIN(X) for the collection of finite-
dimensional subspaces of X. Fix τ ∈ (E)U ⊗ (F )U . Let

τ =
n∑

k=1

y(k) ⊗ z(k)

and let
N = lin{y(k) : 1 � k � n} ∈ FIN((E)U ).

For each k, let y(k) = (y(k)
i ) and z(k) = (z(k)

i ), where ‖y(k)‖ = ‖y
(k)
i ‖ and ‖z(k)‖ = ‖z

(k)
i ‖

for each i. Thus,

ψ0(τ) = (τi) =
( n∑

k=1

y
(k)
i ⊗ z

(k)
i

)
i∈I

∈ (E ⊗̂F )U .

Choose ε > 0 and let S ∈ F((E)U , (F ′)U ) be such that ‖S‖ � 1 and |〈τ, S〉| > ‖τ‖π −ε.
Let M = S((E)U ) ∈ FIN((F ′)U ) have a basis {x(1), . . . , x(m)}, where x(k) = (x(k)

i ) ∈
(E)′

U = (E′)U for each k. Following the proof of [16, Proposition 6.2], let Mi = lin{x
(k)
i :

1 � k � m} ∈ FIN(F ′) and let Ti : M → Mi be defined by Ti(x(k)) = x
(k)
i . Then, for

some I0 ∈ U , Ti is a (1 + ε)-isomorphism for each i ∈ I0.
We can write S =

∑m
k=1 µ(k) ⊗ x(k) for some (µ(k))m

k=1 ⊆ (E)′
U . Let P = lin{µ(k) : 1 �

k � m} ∈ FIN((E)′
U ). By [16, Theorem 7.3], there exists a (1 + ε)-isomorphism onto its

range T : P → (E′)U such that

〈T (µ(k)), z〉 = 〈µ(k), z〉, 1 � k � m, z ∈ N.

For each k, let T (µ(k)) = (µ(k)
i ) ∈ (E′)U . Then let Q = T (P ), let Qi = lin{µ

(k)
i : 1 � k �

m} ∈ FIN(E′) and let Ri : Q → Qi be given by Ri(T (µ(k))) = µ
(k)
i . Again, there exists

I1 ∈ U such that Ri is a (1 + ε)-isomorphism for each i ∈ I1.
For each i ∈ I0 ∩ I1 ∈ U , let

Si =
m∑

k=1

RiT (µ(k)) ⊗ Ti(x(k)) = (RiT ⊗ Ti)S ∈ F ′ ⊗ E′ = F(F, E′),
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so that ‖Si‖ � ‖Ri‖‖T‖‖Ti‖‖S‖ � (1 + ε)3. Then we have

〈τ, S〉 =
n∑

j=1

〈S(y(j)), z(j)〉 =
n∑

j=1

m∑
k=1

〈µ(k), y(j)〉〈x(k), z(j)〉

=
n∑

j=1

m∑
k=1

〈T (µ(k)), y(j)〉〈x(k), z(j)〉 =
n∑

j=1

m∑
k=1

lim
i→U

〈µ(k)
i , y

(j)
i 〉〈x(k)

i , z
(j)
i 〉

= lim
i→U

n∑
j=1

m∑
k=1

〈RiT (µ(k)), y(j)
i 〉〈Ti(x(k)), z(j)

i 〉 = lim
i→U

〈Si, τi〉.

As ψ0 is norm-decreasing, we conclude that

‖τ‖π − ε < lim
i→U

|〈Si, τi〉| � lim
i→U

‖Si‖π(τi) � (1 + ε)3‖ψ0(τ)‖ � (1 + ε)3‖τ‖π.

As ε > 0 was arbitrary, we conclude that ψ0 is an isometry onto its range. �

5. Ultra-amenability

Let A be a Banach algebra and E be a Banach A-bimodule. Then a derivation d : A → E

is a linear map such that d(ab) = a·d(b)+d(a)·b for a, b ∈ A. All the derivations which we
shall consider will be continuous. Let x ∈ E and define δx : A → E by δx(a) = a ·x−x ·a.
Then δx is a derivation, termed an inner derivation.

A Banach algebra A is contractible or super-amenable if every derivation from A to a
Banach A-bimodule is inner. A contractible Banach algebra is unital, and it is conjectured
that a Banach algebra A is contractible only when A is finite dimensional. This is true
for C∗-algebras (indeed, for closed subalgebras of B(H) for a Hilbert space H, see [25])
and for B(E) when E has, for example, the approximation property (see [30, § 4.1]).

A Banach algebra A is amenable if every derivation from A to a dual Banach A-
bimodule is inner. For example, commutative, unital C∗-algebras (that is, C(K) spaces
with pointwise product) are amenable; group algebras L1(G) are amenable if and only if
the locally compact group G is amenable (see [30] for these and further results).

Let A be a Banach algebra, and turn A ⊗̂ A into a Banach A-bimodule by

a · (b ⊗ c) = ab ⊗ c, (b ⊗ c) · a = b ⊗ ca, a ∈ A, b ⊗ c ∈ A ⊗̂ A,

and linearity and continuity. Define the product map ∆A : A ⊗̂ A → A by ∆A(a⊗b) = ab.
The following result, due to Johnson, can be found in [30, § 2.2].

Theorem 5.1. Let A be a Banach algebra. Then A is contractible if and only if there
exists a diagonal τ ∈ A ⊗̂ A; that is, a · τ = τ · a and ∆A(τ)a = a for each a ∈ A.

Similarly, A is amenable if and only if, for some C > 0, for each ε > 0 and a1, . . . , an ∈
A, there exists τ ∈ A ⊗̂ A such that ‖τ‖π � C, ‖ai ·τ −τ ·ai‖π < ε and ‖∆A(τ)ai−ai‖ < ε

for 1 � i � n.

We shall say that A is C-amenable if the above holds for the constant C > 0.
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We define a Banach algebra A to be ultra-amenable if every ultrapower of A is
amenable. It would be more natural, in light of terms like ‘super-reflexive’, to call this
super-amenable, but this term is already used by Runde in [30] for contractible alge-
bras (as ‘contractible’ has multiple meanings as well!). We see immediately that unital,
commutative C∗-algebras are ultra-amenable.

Proposition 5.2. Let A be a Banach algebra and let I be a closed ideal in A. When
A is ultra-amenable, A/I is ultra-amenable. If I and A/I are ultra-amenable, then so
is A. Furthermore, when A is ultra-amenable, I is ultra-amenable if and only if I has a
bounded approximate identity.

Proof. Let U be an ultrafilter. Then the quotient map A → A/I induces a quotient
map (A)U → (A/I)U , and so (A/I)U is amenable by [30, Corollary 2.3.2]. Indeed, as in
the Banach space case (cf. [16, Proposition 6.5]), we can identify (A/I)U with (A)U/(I)U .
Hence, if (A/I)U and (I)U are both amenable, then so is (A)U by [30, Theorem 2.3.10].

As (A)U is amenable and (I)U is an ideal in (A)U , by [30, Theorem 2.3.7], (I)U is
amenable if and only if it has a bounded approximate identity. By Proposition 2.2, this
is equivalent to I having a bounded approximate identity, as required. �

5.1. Diagonal-like constructions

Instead of working with the definition of amenability, it is common to work with
approximate or virtual diagonals (see [30, Chapter 2] and Theorem 5.1 above). In this
section, we provide a similar characterization of ultra-amenability.

Definition 5.3. Let A be a Banach algebra and let n � 1. Let Sn(A) be the collection
of subsets of size n of the unit sphere of A.

Let C > 0, ε > 0 and n � 1. For A ⊆ Sn(A), we say that A ∈ Dn(A, C, ε) when there
exists a sequence of positive reals (αk) with

∑
k αk � C, and such that for each F ∈ A,

we have that there exists

τ =
∞∑

k=1

ak ⊗ bk ∈ A ⊗̂ A

with
‖a · τ − τ · a‖π � ε, ‖∆A(τ)a − a‖ � ε, a ∈ F,

and with ‖ak‖‖bk‖ � αk for each k.

Proposition 5.4. Let A be a Banach algebra, let U be an ultrafilter on an index set
I and let C > 0 be a constant. Then the following are equivalent.

(i) (A)U is C-amenable.

(ii) For each n � 1, each ε > 0, and each map γ : I → Sn(A), there exists a sequence
of positive reals (αj), with

∑
j αj � C, and there exists B ∈ U such that for each

i ∈ B, there exists τ =
∑∞

j=1 bj ⊗ cj ∈ A ⊗̂ A with

‖a · τ − τ · a‖π < ε, ‖∆A(τ)a − a‖ < ε, a ∈ γ(i),

and with ‖bj‖‖cj‖ � αj for j � 1.
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(iii) For each n � 1, each ε > 0, and each map γ : I → Sn(A), there exists A ∈
Dn(A, C, ε) with γ−1(A) ∈ U .

Proof. By definition, (A)U is amenable if and only if there exists C > 0 such that,
for each ε > 0 and each a(1), . . . , a(n) ∈ (A)U , there exists τ ∈ (A)U ⊗̂(A)U such that

‖a(k) · τ − τ · a(k)‖π < ε, ‖∆(A)U (τ)a(k) − a(k)‖ < ε, 1 � k � n,

and with ‖τ‖π � C. Now, we may suppose that the a(k) are distinct, and, by a perturba-
tion argument, that a

(j)
i �= a

(k)
i for each i ∈ I and j �= k, while ‖a

(k)
i ‖ = ‖a(k)‖ for each

i ∈ I. As we are free to vary ε > 0, it is sufficient to consider the case when ‖a(k)‖ = 1
for each k. Thus, the choice of the family {a(k) : 1 � k � n} corresponds to a choice of a
map γ : I → Sn(A), together with some ordering.

As explained previously, ψ0 : (A)U ⊗̂(A)U → (A ⊗̂ A)U is both an A-bimodule homo-
morphism and an (A)U -bimodule homomorphism. Furthermore, the following diagram
commutes:

(A)U ⊗̂(A)U
∆(A)U ��

ψ0

��

(A)U

(A ⊗̂ A)U

(∆A)
������������

Thus, let ψ0(τ) = (τi)i∈I , so that our conditions upon τ imply that

lim
i→U

‖a
(k)
i · τi − τi · a

(k)
i ‖π < ε, lim

i→U
‖∆A(τi)a

(k)
i − a

(k)
i ‖ < ε, 1 � k � n.

By definition, this is so if and only if there exists B ∈ U with

‖a · τi − τi · a‖π < ε, ‖∆A(τi)a − a‖ < ε, i ∈ B, a ∈ γ(i).

With reference to Proposition 4.1, we have that (i) implies (ii).
Conversely, we simply apply Proposition 4.1 to build τ ∈ (A)U ⊗̂(A)U out of the family

(τi), where the condition upon the (τi) implies that we can work in the image of ψ0.
Finally, it is easy to see that (ii) and (iii) are equivalent. �

Corollary 5.5. Let A be a Banach algebra. If A is contractible, then A is ultra-
amenable. If A is ultra-amenable, A is amenable.

By considering commutative C∗-algebras, we see that being contractible is strictly
stronger than being ultra-amenable. We shall see below that being ultra-amenable is also
strictly stronger than being amenable.

Theorem 5.6. Let A be a Banach algebra. The following are equivalent.

(i) A is ultra-amenable.

(ii) There exists a constant C > 0 such that, for every n � 1 and ε > 0, there exists a
finite partition Sn(A) = A1 ∪ · · · ∪ Ak with each Ai ∈ Dn(A, C, ε).
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Proof. Suppose that (ii) holds. We shall verify condition (iii) of Proposition 5.4, which
will show that (i) holds. If U is an ultrafilter on an index set I and γ : I → Sn(A) is a
map, then it is easily checked that

γ∗(U) := {A ⊆ Sn(A) : γ−1(A) ∈ U}

is an ultrafilter on Sn(A). Thus, there exists some k with Ak ∈ γ∗(U), that is, γ−1(Ak) ∈
U , as required.

Suppose that (i) holds. We first introduce a little notation. For an ultrafilter U on an
index set I, for a property p of elements of I, we write

∀U i, p(i) ⇐⇒ {i ∈ I : p(i) holds} ∈ U .

For each n � 1, let Un be an ultrafilter on Sn(A). For each n, define an arbitrary
injection ιn : Sn(A) → Sn+1(A). Let I be the collection of sequences (Fn), where Fn ∈
Sn(A) for each n and, for some N > 0 (depending on the sequence), we have that
Fn+1 = ιn(Fn) for n � N . Loosely speaking, I is the collection of eventually constant
sequences in

⋃
n Sn(A). Let U be a non-principal ultrafilter on N . We define an ultrafilter

V on I by setting K ∈ V if and only if

∀Un, ∀U1F1, . . . , ∀Un
Fn, (F1, F2, . . . , Fn, Fn, . . . ) ∈ K.

It is an easy check that V is an ultrafilter. Suppose that (A)V is C-amenable for some
constant C > 0.

Let n � 1, and define a map γ : I → Sn(A) by γ((Fk)) = Fn for (Fk) ∈ I. Hence, by
Proposition 5.4, for each ε > 0, there exists A ∈ Dn(A, C, ε) with γ−1(A) ∈ V. By the
definition of V, this means that

∀Um, ∀U1F1, . . . , ∀UmFm, γ(F1, F2, . . . , Fm, Fm, . . . ) ∈ A.

Hence, for some m > n, by the definition of γ, we see that

∀U1F1, . . . , ∀Um
Fm, Fn ∈ A,

that is, ∀UnFn, Fn ∈ A, which is simply the statement that A ∈ Un. In conclusion, for
each n � 1 and ε > 0, there exists some member of Dn(A, C, ε) in Un.

If condition (ii) does not hold, then for some n � 1 and ε > 0, we have that there
is no finite cover of Sn(A) by members of Dn(A, C, ε). In particular, if F = {Sn(A) \
A : A ∈ Dn(A, C, ε)} then, as no finite intersection of members of F is empty, there
exists an ultrafilter Un containing F . However, by the previous paragraph, we know that
Un ∩ Dn(A, C, ε) is non-empty, which gives a contradiction, as required. �

5.2. C∗-algebras

By throwing a lot of machinery at the problem, we can rather easily settle the question
of when a C∗-algebra is ultra-amenable. In [20], there is a throwaway comment in the
proof of Theorem 2.5 that, for a C∗-algebra A, every ultrapower (A)U is amenable if and
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only if �∞(A, I) is amenable for all index sets I. We do not see why this is ‘obvious’,
however, as in general (A)U is much smaller than �∞(A, I). The following proof avoids
this issue, and uses no more machinery than [20] does.

Theorem 5.7. Let A be a C∗-algebra. Then the following are equivalent.

(i) A is ultra-amenable.

(ii) A′′ is amenable.

(iii) A is the finite-direct sum of algebras of the form C0(K) ⊗ Mn for some integer n

and some locally compact Hausdorff space K.

Proof. By [30, Corollaries 6.4.28 and 6.4.29] we have that when a C∗-algebra is
amenable it has the (metric) approximation property. Hence, if (i) holds, then for any
ultrafilter U , we have that (A)U has the approximation property. For a suitable choice
of U , we have that A′′ is isometric to a complemented subspace of (A)U (see [16,
Proposition 6.7]). As the approximation property clearly drops to complemented sub-
spaces, we conclude that A′′ has the approximation property. By [30, Theorem 6.1.7 and
Remark 6.1.9], this implies that A′′ is amenable, giving (ii).

When (ii) holds, by [30, Theorem 6.1.7], we know that A′′ has the form specified in
(iii), but with K compact, and such that C0(K) = C(K) is a dual space (so that K

is actually a hyperstonian space). Suppose that A′′ were isomorphic to C(K) for some
hyperstonian compact space X. Then A is commutative, and so is isomorphic to C0(L),
for some locally compact space L. Then note that the bidual of C0(L)⊗Mn is isomorphic
to C(K) ⊗ Mn, which is isomorphic to A′′. It is now clear that A must be isomorphic to
C0(L) ⊗ Mn, showing (iii).

Finally, when (iii) holds, it is clear that A is ultra-amenable, giving (i). �

It seems unlikely that (i) and (ii) of the above theorem are equivalent for a general
Banach algebra A, but we do not currently have a counter-example. It would, of course,
be nice to be able to prove the above without using so much machinery, even for certain
classes of C∗-algebra.

5.3. Group algebras

Let G be a locally compact group, and form the Banach algebra L1(G). See [4, § 3.3]
or [22, § 1.9], for example, for details about this class of algebras. We shall make use of
the concept of the almost periodic, or Bohr, compactification for a group G. However, it
makes sense for us to develop these ideas first for general Banach algebras.

Above, for a Banach algebra A, we defined the space of weakly almost periodic func-
tionals of A, denoted by WAP(A′). If we insist that the map Lµ, for µ ∈ A′,

Lµ : A → A′; a 
→ a · µ, a ∈ A,

is compact, and not just weakly compact, we arrive at the definition of an almost periodic
functional, denoted by µ ∈ AP(A′). Clearly, AP(A′) ⊆ WAP(A′), and it is easy to show
that AP(A′) is a closed submodule of A′.
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Let A be a Banach algebra and let U be an ultrafilter. Then we can define

σAP : (A)U → AP(A′)′, 〈σAP((ai)), µ〉 = lim
i→U

〈µ, ai〉, µ ∈ AP(A′), (ai) ∈ (A)U .

It is clear that σAP is norm-decreasing and, for suitable U , σAP is a surjection (cf. [16,
Proposition 6.7]). As remarked upon in [10, § 5], σAP is easily seen to be an algebra
homomorphism.

Proposition 5.8. Let A be an ultra-amenable Banach algebra. Then AP(A′)′ is
amenable.

Proof. This is immediate, as AP(A′)′ can be identified with a quotient of a suitable
ultrapower of A. �

We note that for some algebras A, AP(A′) can be trivial. For example, let E be an
infinite-dimensional Banach space and let A = A(E) be the algebra of approximable
operators on E. Then the dual of A(E) is I(E′), the space of integral operators on E.
For U ∈ I(E′), T ∈ A(E) and µ ⊗ x ∈ A(E), we see that

〈(µ ⊗ x) · U, T 〉 = 〈U, T (µ ⊗ x)〉 = 〈U, µ ⊗ T (x)〉 = 〈U(µ), T (x)〉 = 〈U(µ) ⊗ x, T 〉.

Let U ∈ I(E′) be non-zero, and choose µ ∈ E′ with ‖µ‖ = 1 and such that λ = U(µ) is
non-zero. Define a map Rλ : E → I(E′) by Rλ(x) = λ⊗x, so that Rλ is an isomorphism
onto its range. We hence have that (µ ⊗ x) · U = Rλ(x) for each x ∈ E. As

{S · U : S ∈ A(E), ‖S‖ � 1} ⊇ {U(µ) ⊗ x : x ∈ E, ‖x‖ � 1} = {Rλ(x) : ‖x‖ � 1},

we see that if U ∈ AP(A′), then Rλ is compact, which implies that E is finite dimensional,
a contradiction. We conclude that AP(A′) = {0}.

When A = L1(G), however, AP(A′) is often large. We write AP(G) for AP(A′). For
g ∈ G define

Lg : L∞(G) → L∞(G); Lg(µ)(h) = µ(g−1h), µ ∈ L∞(G), h ∈ G.

When G is discrete, we see that for µ ∈ L∞ the set {a · µ : a ∈ �1(G), ‖a‖ � 1} is
contained in the closure of the absolutely convex hull of the set {Lg(µ) : g ∈ G}. Hence,
µ ∈ AP(G) if and only if the set of translates {Lg(µ) : g ∈ G} is relatively compact in
L∞(G). By a more intricate argument, we can show that this is true for general G (cf.
the argument in [33]).

For more details on AP(G), see for example [22, § 3.2.16] and [23, Theorem 12.4.15].
We have that AP(G) is a unital C∗-subalgebra of L∞(G), so that AP(G) = C(K), for
some compact space K. We denote K by GAP, so that AP(A′)′ = M(GAP), the space of
measures on GAP. Each member of G induces a character on AP(G), and this leads to a
canonical map G → GAP that has dense range. We can use this to extend the product on
G to a product on GAP, which turns GAP into a compact group. We can check that the
induced product on AP(A′)′ agrees with the convolution product on M(GAP). In fact,
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GAP has the following universal property: if H is any compact group, and φ : G → H is
a continuous homomorphism, then φ factors through to canonical map G → GAP. In this
sense, GAP is the maximal compact group which contains a dense homomorphic image
of G.

In general, the canonical map G → GAP need not be an injection. When it is, equiva-
lently, when AP(G) separates the points of G, we say that G is maximally almost periodic.
Obviously, all compact groups are maximally almost periodic, and abelian groups G are
also maximally almost periodic, which follows as the characters of G separate the points
of G. At the other extreme, if AP(G) is the linear span of the constant function in L∞(G),
then G is minimally almost periodic. This is equivalent to the statement that the only
continuous homomorphisms from G to a compact group are trivial.

There exist amenable, minimally almost periodic groups, as the following example,
due to George Willis (personal communication), shows. Let FSym(N) be the collection
of permutations of the natural numbers which fix all but finitely many elements. Let
G = Alt(N) be the index-2 subgroup of even permutations. The Alt(N) is a simple group
(see [13, Corollary 3.3A]) and, as it is the direct limit of finite groups, it is amenable.
Suppose that AP(G) is not trivial, so that G admits some non-trivial homomorphism
into a compact group. By the representation theory of compact groups (essentially, the
Peter–Weyl theorem), it follows that there is a non-trivial homomorphism of G into a
matrix group GLn(C). As G is simple, such a homomorphism is injective. By a theorem
of Tits (see [24, Theorem 3.10]) it follows that G contains a normal, solvable group of
finite index. This is a contraction, and so we see that AP(G) is trivial.

Theorem 5.9. Let G be an infinite compact group or an infinite abelian locally
compact group. Then L1(G) is amenable, but not ultra-amenable.

Proof. It is well known that, for such groups G, L1(G) is amenable. Suppose that
L1(G) is ultra-amenable, so by the above proposition we see that M(GAP) is amenable.
By [6], this implies that GAP is amenable and discrete, but, as GAP is compact, we have
that GAP is finite. However, we remarked above that G is maximally periodic, and so we
see that G is also finite: a contradiction. �

5.4. Discrete group algebras

We wish to develop a little theory for discrete group algebras. This will motivate some
technical and obtuse constructions below, which will work for many non-compact groups.
Let G be a discrete group, and consider the Banach algebra �1(G). We write δg for the
point mass at g ∈ G, so every a ∈ �1(G) can be written as a =

∑
g∈G agδg for some

family of scalars (ag)g∈G such that ‖a‖ =
∑

g |ag|. Let U be an ultrafilter on an index
set I, so we can form the ultrapower (�1(G))U . We can also form the ultrapower of G,
denoted by (G)U . This is the set of all families (gi)i∈I of elements of G, quotiented by
the equivalence relation

(gi) ∼ (hi) ⇐⇒ {i ∈ I : gi = hi} ∈ U .
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Then (G)U becomes a (discrete) group for the pointwise product, and we have a canonical
map G → (G)U formed by sending g ∈ G to the constant family (g).

For 1 � p < ∞, define a map ψp : �p((G)U ) → (�p(G))U by

ψp(δg) = (δgi)i∈I , g = (gi) ∈ (G)U .

If (gi) ∼ (hi) in (G)U , then

{i ∈ I : ‖δgi − δgi‖ = 0} = {i ∈ I : gi = hi} ∈ U ,

showing that ψp is well defined. An analogous calculation shows that if we extend ψp

by linearity and continuity, then ψp is an isometry onto its range. Let ψ0 : c0((G)U ) →
(c0(G))U be the analogous map. Then it is easy to check that when 1 < p < ∞ and
p−1 + p′−1 = 1, then ψ′

p′ ◦ ψp is the identity on �p((G)U ). Similarly, ψ′
0 ◦ ψ1 is the

identity on �1((G)U ), where, as usual, we treat (�1(G))U as a subspace of (c0(G))′
U .

For 1 � p < ∞, we can hence identify �p((G)U ) with a 1-complemented subspace of
(�p(G))U . This identification respects the identification of �p(G) in either �p((G)U ) or
(�p(G))U . Let Ip be the obvious complementary subspace to �p((G)U ) in (�p(G))U , that
is, Ip is the kernel of ψ′

p′ , or ψ′
0, as appropriate.

Lemma 5.10. We may identify Ip with the collection of equivalence classes in (�p(G))U
represented by sequences (xi)i∈N with limi→U ‖xi‖∞ = 0. Furthermore, I1 is an ideal in
the algebra (�1(G))U .

Proof. Suppose that (xi) ∈ (�p(G))U is such that limi→U ‖xi‖∞ > 0. For each i, let
xi = (x(i)

g )g∈G ∈ �p(G). Hence, there exists δ > 0 and U ∈ U with a function k : U → G

such that |x(i)
k(i)| � δ for i ∈ U . Extend k to I in an arbitrary way, so we see that

lim
i→U

|〈δk(i), xi〉| � δ,

and so (xi) does not annihilate (δk(i)) ∈ �p((G)U ). Hence, (xi) �∈ Ip, as required.
Now suppose that (xi) ∈ (�p(G))U is such that limi→U ‖xi‖∞ = 0. For any map

k : I → G, we see that
lim
i→U

|〈δk(i), xi〉| � lim
i→U

‖xi‖∞ = 0,

so that (xi) annihilates (δk(i)) ∈ �p((G)U ). By linearity and continuity, (xi) ∈ Ip, as
required.

Finally, consider (xi) ∈ I1 and let (ai) ∈ (�1(G))U , so that

lim
i→U

‖aixi‖∞ = lim
i→U

sup
g∈G

∣∣∣∣ ∑
h∈G

a
(i)
h x

(i)
h−1g

∣∣∣∣
� lim

i→U
sup
g∈G

∑
h∈G

|a(i)
h ||x(i)

h−1g|

� lim
i→U

‖xi‖∞‖ai‖1 = 0,

so that (aixi) ∈ I1. Hence, I1 is a left-ideal, and similarly I1 is a right-ideal. �
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Theorem 5.11. Let G be an infinite discrete group and let U be a countably
incomplete ultrafilter. Then (�1(G))U is not amenable. In particular, �1(G) is not ultra-
amenable.

Proof. As U is countably incomplete, we may suppose that U is an ultrafilter on N

(cf. proofs of Theorem 6.3 or Proposition 7.1 in [16]). Suppose that (�1(G))U is amenable.
Then I1 is a complemented ideal in an amenable Banach algebra, and so I1 is amenable
(see [30, Theorem 2.3.7]). In particular, I1 has a bounded approximate identity. We shall
show that this leads to contradiction, as required.

Let H be a countably infinite subgroup of G, and choose a sequence (gn) in H as
follows. Let g1 be arbitrary. Suppose we have chosen g1, . . . , gn. Consider the set

Bn = (gi)n
i=1 ∪ (gig

−1
j gk)1�i,j,k�n,

which is finite. We simply choose gn+1 ∈ H \ Bn.
Let eG be the unit of G and let g ∈ H with g �= eG. Suppose that gig = gj for some

i, j � 1. Let t � 1 be minimal such that, for some m � 1, we have that g = g−1
t gm

or g = g−1
m gt. By minimality, t < m, and so gig ∈ Bm for 1 � i � m. Thus, gn �= gig

(equivalently, g �= g−1
i gn) for any n > m and i � m. Similarly, gig

−1 ∈ Bm for i � m,
and so g �= g−1

n gi for n > m and i � m.
Suppose that g = g−1

t gm, and let r, s � 1 be such that g = g−1
r gs and (r, s) �= (t, m).

If r = t, then g = g−1
t gm = g−1

t gs so that gm = gs, that is, m = s: a contradiction.
Similarly, m �= s. By minimality, r, s � t, so actually r > t. By the above, r, s � m, so
actually s < m. If r < m, then gtg ∈ Bm−1 and so gm �= gtg: a contradiction. Hence,
r = m and so g = g−1

t gm = g−1
m gs, so that gs = gmg−1

t gm, and hence s must be unique.
A similar argument works when g = g−1

m gt. We conclude that

|{k � 1 : gkg = gm for some m � 1}| � 2, g ∈ H, g �= eG.

Set x = χ{gn:n∈N} ∈ �∞(G), so that ‖x‖ = 1. For each n ∈ N, let

an =
1
n

n∑
i=1

δgi ∈ �1(G),

so that ‖an‖1 = 1. We have that

〈x · an, δeG
〉 =

1
n

n∑
i=1

〈x, δgi〉 = 1.

Now let g ∈ H with g �= eG. Then, by the above,

|〈x · an, δg〉| =
1
n

n∑
i=1

〈x, δgig〉 =
1
n

|{1 � i � n : gig = gk for some k � 1}| � 2
n

.

If g ∈ G\H, then clearly 〈x, δgig〉 = 0, as gig �∈ H, for any i � 1. Let a = (an) ∈ (�1(G))U ,
so clearly a ∈ I1, and we see that x·a = eeG

in (�∞(G))U . Here eeG
refers to the point mass

at eG, namely the same function as δeG
, but now treated as a member of c0(G) ⊆ �∞(G).
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By assumption, I1 has a bounded approximate identity, so, in particular, there exists
b = (bn) ∈ I1 with ‖a − ab‖ < 1

2 . Hence, |〈x · a, δeG−b〉| = |〈x, a − ab〉| < 1
2 , as ‖x‖∞ = 1.

However, from the above, 〈x · a, δeG−b〉 = 〈eeG
, δeG−b〉 = 1 − limi→U 〈eeG

, bi〉 = 1, as
b ∈ I1. This contradiction completes the proof. �

5.5. General groups

We start by making some observations about quotients of groups.

Proposition 5.12. Let G be a locally compact group such that L1(G) is ultra-
amenable and let H be a closed normal subgroup of G. If G/H is compact, abelian
or discrete, then G/H is finite.

Proof. As detailed in [22, § 1.9.12], we have a surjective algebra homomorphism
L1(G) → L1(G/H). By Proposition 5.2, we see that L1(G/H) is ultra-amenable. The
result now follows from Theorems 5.9 and 5.11. �

In particular, by considering the modular function of the Haar measure on G (see
[22, § 1.9] or [4, § 3.3]), we see that if L1(G) is ultra-amenable, then G is unimodular;
otherwise, a quotient of G would be isomorphic to an infinite subgroup of (R>0,×),
which is abelian. Similarly, if L1(G) is ultra-amenable, then the derived subgroup G′ of
G (see [23, § 12.1]) must be ‘large’, in the sense that G/G′ is finite.

We now wish to generalize the arguments used above for discrete groups. Let G be a
locally compact group and let U be an ultrafilter on an index set I. Let I1 ⊆ (L1(G))U
be the collection of elements x ∈ (L1(G))U such that x has a representation of the form
(xi)i∈I , where xi ∈ C0(G) for each i, and limi→U ‖xi‖∞ = 0. It is easy to verify that I1

is a subspace of (L1(G))U , and as C0(G) ∩ L1(G) is dense in L1(G), it follows that I1 is
closed.

Lemma 5.13. With notation as above, I1 is an ideal in (L1(G))U .

Proof. Let x ∈ I1, so x = (xi) with xi as above. Let a = (ai) ∈ (L1(G))U , where by
density, we may suppose that ai ∈ C0(G) for each i. Then aixi ∈ C0(G) for each i, and
we have that ‖aixi‖∞ � ‖ai‖∞‖xi‖1, from which it follows that ax = (aixi) ∈ I1, so we
see that I1 is a left-ideal. Similarly, I1 is a right-ideal. �

We cannot, in general, show that I1 is complemented. However, we shall show that I1

is weakly complemented. That is,

I⊥
1 = {µ ∈ (L1(G))′

U : 〈µ, x〉 = 0(x ∈ I1)}

is complemented in (L1(G))′
U .

Proposition 5.14. With notation as above, I1 is weakly complemented.

Proof. We shall sketch this, as the details are very similar to ideas used to deal with
dual Banach algebras in § 3.1. Let φ be the composition of the isometric inclusions

(L1(G))U → (M(G))U = (C0(G)′)U → (C0(G))′
U ,
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so that φ′ : (C0(G))′′
U → (L1(G))′

U is a quotient map (or metric surjection). As (C0(G))U
is a C∗-algebra, we see that (C0(G))′′

U is a von Neumann algebra. We can verify that
the kernel of φ′ is an ideal in (C0(G))′′

U , and so (L1(G))′
U becomes a C∗-algebra. As

(L1(G))′
U is a dual space, we see that (L1(G))′

U is a commutative von Neumann algebra.
Notice that (L1(G))′

U isometrically contains (L∞(G))U , and it is not hard to show that
(L∞(G))U becomes a ∗-subalgebra of (L1(G))′

U .
We can check that I⊥

1 is a ∗-subalgebra of (L1(G))′
U . As I⊥

1 is weak∗-closed, we see
that I⊥

1 is a commutative von Neumann algebra, and is hence injective (see [30, § 6.2]).
Hence, there is a (contractive) projection (L1(G))′

U → I⊥
1 , as required. �

We now make a temporary definition. Let G be a non-compact, locally compact group.
We shall say that G is relatively [IN] if there exists a compact, symmetric, non-null (with
respect to Haar measure) set K in G and a subset A ⊆ G whose closure is not compact,
such that aK = Ka for each a ∈ A. We shall say that (K, A) is a witness. We recall that
if we can take A = G, then G is an [IN]-group (see [23, § 12.1.8] for further details of
this class of groups).

Lemma 5.15. Let G be a relatively [IN] group witnessed by (K, A). Let A0 be the
closed subgroup generated by A. Then aK = Ka for a ∈ A0. Let K0 be the closed
subgroup generated by K. Then also aK0 = K0a for a ∈ A0. Finally, if G0 is the closed
subgroup of G generated by K0 and A0, then gK0 = K0g for g ∈ G0.

Proof. As K is symmetric, we see that if g, h ∈ A, then g−1K = Kg−1, and ghK =
gKh = Kgh. Hence, K is invariant under the action of the subgroup generated by A.
Let (aα) be a net in the subgroup generated by A converging to a ∈ G. For k ∈ K, the
net (aαka−1

α ) is in K and converges to aka−1, so as K is closed, aka−1 ∈ K, and so we
see that aK = Ka. Thus, K is invariant under the action of A0.

As K is symmetric, the subgroup generated by K is simply
⋃

n�1 Kn, and it is clear
that this is invariant under the action of A0. Let a ∈ A0 and let (kα) be a net in the
subgroup generated by K tending to k ∈ G. Then akαa−1 → aka−1, showing that
aka−1 ∈ K0. Hence, K0 is invariant under the action of A0.

Let G1 be the subgroup of G generated by A0 and K0. As K0 is invariant under A0,
we see that G1 = A0K0 = K0A0, and so clearly K0 is invariant under the action of G1.
Again, a continuity argument shows that the same holds for G0. �

We shall see later that we really only care about subgroups, and so the above shows
that being a relatively [IN] group is rather similar to having a closed subgroup which is
[IN]. However, we cannot in general show that K (as opposed to K0) is invariant for G0.
Indeed, K is G0-invariant if and only if K is K-invariant (kK = Kk for each k ∈ K).

However, we can always assume that, for a witness (K, A), we have that A is a closed
non-compact subgroup of G.

Theorem 5.16. Let G be a non-compact group which is relatively [IN]. Let U be a
countably incomplete ultrafilter. Then (L1(G))U is not amenable. In particular, L1(G)
is not ultra-amenable.
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Proof. As in the proof of Theorem 5.11, above, we may suppose that U is an ultrafilter
on the index set N. If (L1(G))U is amenable, then as I1 is a weakly complemented ideal,
then I1 is amenable as well, by [30, Theorem 2.3.7]. Again, in particular, I1 has a bounded
approximate identity. Let (K, A) be a witness to the fact that G is relatively [IN].

We choose a sequence (gn) in A as follows. Let g1 ∈ A be arbitrary. Suppose we have
chosen g1, . . . , gn, and let

Bn =
n⋃

i=1

giKK ∪
n⋃

i=1

giK
4 ∪

n⋃
i=1

giK
8 ∪

n⋃
i,j,k=1

gig
−1
j gkK4,

so that Bn is compact in G. We can hence choose gn+1 �∈ Bn, as A is not compact. Then,
for k � n, we see that gn+1 �∈ gkKK = KKgk, so that gn+1g

−1
k �∈ KK. Similarly, as

(KK)−1 = KK, we see that gkg−1
n+1 �∈ KK for k � n.

Let g �∈ KK and let t � 1 be minimal such that, for some m � 1, we have that
g ∈ gmg−1

t KK or g ∈ gtg
−1
m KK. As g �∈ KK, by minimality, we have that t < m. Let

r, s � 1 with g ∈ grg
−1
s KK, so by minimality, r, s � t, so actually, r > t or s > t.

Suppose that r, s < m, so that either g ∈ gmg−1
t KK, so that gm ∈ gKKgt ⊆

grg
−1
s K4gt = grg

−1
s gtK

4 ⊆ Bm−1 (a contradiction), or g ∈ gtg
−1
m KK = KKgtg

−1
m ,

so that gm ∈ g−1KKgt ⊆ gsg
−1
r K4gt = gsg

−1
r gtK

4 ⊆ Bm−1 (a contradiction). Hence,
r � m or s � m.

As r �= s, either r < s or s < r. If r < s, then the argument in the previous paragraph
shows that we do not have that m, t < s, that is, m � s. Similarly, if s < r, then m � r.
We conclude that m � max(r, s) � m, so that m = max(r, s).

Suppose that g ∈ gmg−1
t KK. If m = r > s, then g−1

m g ∈ g−1
t KK ∩ g−1

s KK. If t > s,
then gt ∈ K4gs (a contradiction), so by symmetry, t = s. Otherwise m = s > r, in which
case g ∈ gmg−1

t KK ∩ grg
−1
m KK so that gmg−1

t gm ∈ grK
4. Suppose that there exists r′

with r′ < s and g ∈ gr′g−1
m KK, so that gmg−1

t gm ∈ gr′K4. Suppose that r > r′, so that
gr ∈ gr′K8 (a contradiction); thus, by symmetry, we conclude that r = r′. Hence, r is
unique.

An analogous argument works when g ∈ gtg
−1
m KK, showing that, in all cases,

|{1 � l � n : g ∈ gkg−1
l KK for some k � 1}| � 2, n � 1, g ∈ G \ KK.

For a measurable subset B ⊆ G we let χB be the indicator function of B, so that
χB ∈ L∞(G). When B has finite measure, we have that χB ∈ L1(G); write χ1

B in this
case. Let x ∈ L∞(G) be defined by the following formal sum

x =
∞∑

n=1

χgnK ,

which makes sense as, by construction, gnK ∩ gmK = ∅ when n �= m. We see that
‖x‖∞ = 1. For each n � 1, let

an =
1

n|K|

n∑
k=1

χ1
gkK ∈ L1(G),
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so that ‖an‖ = 1, and hence a = (an) ∈ (L1(G))U . Notice that 〈x, an〉 = 1 for all n.
Define f ∈ L∞(G) by f = |K|−1χ1

K · χK , so that

f(g) =
1

|K|

∫
G

χK(gh)χ1
K(h) dh =

1
|K|

∫
K

χg−1K(h) dh =
|K ∩ g−1K|

|K| , g ∈ G.

Then f is continuous, ‖f‖∞ � 1 and f(eG) = 1. Furthermore, f(g) �= 0 only when
g ∈ KK. For s, t ∈ G, we see that

|K|−1(χ1
sK · χtK)(g) =

1
|K|

∫
G

χtK(gh)χ1
sK(h) dh

=
1

|K|

∫
G

χK(t−1gh)χ1
K(s−1h) dh

=
1

|K|

∫
G

χK(t−1gsh)χ1
K(h) dh = f(t−1gs).

Hence, (χ1
sK · χtK)(g) �= 0 only when g ∈ tKKs−1 = ts−1KK, that is, st−1g ∈ KK.

For g ∈ G, we have that

(an · x)(g) =
1
n

∞∑
k=1

n∑
l=1

|K|−1(χ1
glK

· χgkK)(g) =
1
n

∞∑
k=1

n∑
l=1

f(g−1
k ggl).

Hence, for g �∈ KK, we see that

|(an · x)(g)| � 1
n

|{1 � l � n : glg
−1
k g ∈ KK for some k � 1}| � 2

n
,

from the above. If b = (bn) ∈ I1, then ‖bn‖∞ → 0, and so ‖bn|KK‖1 → 0, and from
this it follows that ba �= a, exactly as in the proof of Theorem 5.11. This contradiction
completes the proof. �

Notice that, for abelian groups G, the above improves upon Theorem 5.9, as Theorem
5.9 only tells us that (L1(G))U is not amenable when there is a surjection (L1(G))U →
AP (G)′; unless G is sufficiently ‘small’, we cannot necessarily take U to be an ultrafilter
on a countable set.

We conclude with the following.

Theorem 5.17. Let G be a locally compact group such that L1(G) is ultra-amenable.
Then G is finite; or G satisfies the following:

(i) G is amenable;

(ii) G is not compact nor a relative-[IN] group (so that G is not abelian or discrete);

(iii) AP (G) is finite dimensional;

(iv) if H is a closed normal subgroup of G then either G/H is finite, or G/H satisfies
the above properties.
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We currently do not know of any group which satisfies the above conditions, so we
strongly suspect that L1(G) is only ultra-amenable when G is finite.

We suspect that a careful argument using the ideas of Proposition 5.12 could reduce
this problem to the study of totally disconnected groups (see [23, § 12.3]), as connected
groups are fairly well understood (they are pro-Lie groups; see [23, § 12.2]). Of course,
totally disconnected groups are not terribly well understood. We strongly suspect that
the correct course of attack is to improve the proof of Theorem 5.16 so that it will hold
for all non-compact groups.
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15. G. Godefroy and B. Iochum, Arens-regularity of Banach algebras and the geometry
of Banach spaces, J. Funct. Analysis 80 (1988), 47–59.

https://doi.org/10.1017/S0013091507001083 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091507001083


338 M. Daws

16. S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980),
72–104.

17. B. Iochum and G. Loupias, Arens regularity and local reflexivity principle for Banach
algebras, Math. Annalen 284 (1989), 23–40.

18. R. C. James, Super-reflexive Banach spaces, Can. J. Math. 24 (1972), 896–904.
19. S. Kaijser, On Banach modules, I, Math. Proc. Camb. Phil. Soc. 90 (1981), 423–444.
20. A. T.-M. Lau, R. J. Loy and G. A. Willis, Amenability of Banach and C∗-algebras

on locally compact groups, Studia Math. 119 (1996), 161–178.
21. T. W. Palmer, The bidual of the compact operators, Trans. Am. Math. Soc. 288 (1985),

827–839.
22. T. W. Palmer, Banach algebras and the general theory of ∗-algebras, Volume 1 (Cam-

bridge University Press, 1994).
23. T. W. Palmer, Banach algebras and the general theory of ∗-algebras, Volume 2 (Cam-

bridge University Press, 2001).
24. A. L. T. Paterson, Amenability, Mathematical Surveys and Monographs, Volume 29

(American Mathematical Society, Providence, RI, 1988).
25. V. I. Paulsen and R. R. Smith, Diagonals in tensor products of operator algebras,

Proc. Edinb. Math. Soc. 45 (2002), 647–652.
26. A. Pietsch, Operator ideals (North-Holland, Amsterdam, 1980).
27. J. S. Pym, The convolution of functionals on spaces of bounded functions, Proc. Lond.

Math. Soc. 15 (1965), 84–104.
28. Y. Raynaud, On ultrapowers of non commutative Lp spaces, J. Operat. Theory 48 (2002),

41–68.
29. V. Runde, Amenability for dual Banach algebras, Studia Math. 148 (2001), 47–66.
30. V. Runde, Lectures on amenability (Springer, 2002).
31. V. Runde, Cohen–Host type idempotent theorems for representations on Banach spaces
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