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ABSTRACT

In case of a stop-loss treaty the reinsurer takes over that part of the risk that
exceeds a given amount y,. We will deduce bounds on a modified stop-loss
treaty where the liability of the reinsurer is limited to y,—y, in case the claim
amount exceeds y,. Upper and lower bounds of this modified stop-loss premium
are obtained as a simple application of results obtained earlier by the first author.

INTRODUCTION

In case of a stop-loss treaty the insurer takes over that part of the risk that
exceeds a given amount y;. We now suppose that the stop-loss treaty is modified
in such a way that the liability of the reinsurer is limited to y,—y; in case the
claim amount exceeds the amount y,. Hence, the risk of the reinsurer can be
cast into the form

0 Xsyl
Y=<X~-y; y11<X<y;
V2—¥1 y2<X.

The net premium then equals:

E(Y)=j "k —y1) de(x>+(y2—y1)j dFyx (x)

y1 y2

which can still be cast into the following form:
b
E(Y)= I max {min (x —y1, y2—y1), 0} dFx (x)

where y, = yq, Fx(a)=0, Fx(b)=1.
Let ¢ (x) = max {min (x —y1, y>—y1), 0}, then with y,, y2, m, m, real numbers,
we have to consider the following primal problems:

pi(m, my; y1, y2)

Lb xdF(x)=m, Lb «*dF (x) = m3, J': dF (x) = 1)

= sup (Ib ¥(x) dF (x)
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q1(m, ma; y1, y2)
b

Lb xdF(x)=m, _[ x2dF(x) = m, Lb dF (x) = 1)

= inf ( Lb o(x) dF (x)

where the supremum (infimum) is taken over the distributions F on [a, b]
satisfying the constraints indicated after the slash.

We remark that in case y; <a or y,>b the solution of the problem at hand
coincides with the solution obtained in DE VYLDER and GOOVAERTS (1982a).
This paper contains the basis for our present analysis and the same notation will
be used.

Let us first consider the case y; <a. We have:

b b
[vrdFr@=m-y:-[ @-y)dF .
a y2
Consequently:

b b
supI Y(x)dF(x)=m —yl—infj (x —y2) dF (x).

va
Hence:

pilm, ma; y1, y2)=m —y1—qi(m, my)
and

qi(m, ma; y1, y2) =m =y, —pi(m, my)

where g;(m, m,) and p;(m, m;) are the values of the corresponding problems in

DE VYLDER and GOOVAERTS (1982a), with e changed in y,.
In case y, > b, on the other hand, we get:

& b
[wwar@=[ w-yyare)

a y1
such that:
pi(m, m2; y1, y2) = pi(m, mz)
and
q1(m, mz; y1, y2) = qa(m, m2)

where pi(m, m,) and q,(m, m,) are the values of the corresponding problems
in the cited reference, with ¢ changed in y;. Consequently, without loss of
generality we can restrict ourselves to values y;, y, such that:

a<yi1<y:<b.

The distribution F for which the supremum and infimum are obtained are
3-atomic at most, see €.g., DE VYLDER (1982). If « and B are two different
atoms of the 2-atomic probability distribution F satisfying the first-order moment
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constraint { x dF =m, then the corresponding probability masses p., ps must
necessarily be:

_m-B _m-a
o — B ) Ps B —a .
If a, B, v are different atoms of the 3-atomic probability distribution F, satisfying

the moment constraints {xdF =m, [x>dF =m,, then the corresponding
probability masses can only be:

Pa

_SP+m-B)m—y) _s'+(m-a)m-y)  _s’+(m—a)m—p)
Pe =GB a-y) * T B-0B-v T h-a)v-8)

The domain of the parameters m and m, =35>+ m? is defined as:

C'={m m)lasm=<b,0<s’<s(m—a)b-m)}

2. DEMONSTRATION OF THE MAIN RESULT

Theorem

For (m,m;) belonging to the domain C’, defined above, the problems
pi(m, m3; y1,y2) and qi1(m, ms; y1, y2) with a <y, <y, <b have the value and
solution indicated in Table 1 and Table 2 at the end of this note.

Demonstration
Let E be the curve with parametric equations:
X =x, Y =x2, Z =max {min (x ~y,, y2—y1), 0}, asx=<bh.

The curve E is shown in fig. 1. She consists of three parts E,, E,, E;. The
parametric representation in each of the three indicated regions is the following;:

Ey, X=x Y=x* Z=0 as<xs<y,
E, X-=x Y=x> Z=x-y; yis<x<y,
E; X=x Y=x* Z=y,-y. y:<x<b.

As far as the problem pi(m, m»; y1, y») is concerned we get immediately three
domains, namely D4, D;, D;. We successively obtain:

(1) Di={(m, sz)ll) asmsy,(m —a)(y2—m)ss2S(m —a)(b—m)
2)ya<sm<b,(m—y)b-m)<s’<(m—-a)b—m)}

The equation of the plane through the three points A, P, and B enables us to
construct an upper bound or a solution of the problem pi(m, m,; vy, y2) in D;:

Y—(y2+b)X+a(y2+b —a)
(a—b)(y2—a)

Z=(Y2—)’1)
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Consequently in D;:

—a)b+y,—-m—a)—s°

pl(m,mz;yl,y2)=(y2_yl)(m a)b+y,—m—a)-s
(b—-a)y2—a)

Dy={(m,s%)|ly2<m<b,0<s’<(m—y)(b—m)}.

(2)
In this case it is readily seen that:
pilm, ma; y1, y2) =y2—y1

3) Di={m,s)la<m=<y,, 0<s’<(m—a)(y.—m)}.
We consider a point Q, on E; with coordinates (x, x2,0) and a point Q; on E,
with coordinates (y, y2, y —y1) and determine the equation of the plane through

Q; and Q,, tangent on E; in Q, and tangent on E; in Q,. The equation reads:

Z=2:X+2,Y+23

B, b, ya=y1)

Py(ys y3ya—y) |Bl(b,b2,0)

i 7
! e /
! s
/;' /
P | /
A
v/ ,
v
z v
A
Y ',’//
Ala, a%,0) T Piyayi0)
P
X ~
Aj

FIGURE 1. Curve E.
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with:
O=zx+2,x°+23 Q. eplane
Yy—y1=2z1y +z2y°+23 Q; € plane
1=2z14+2z,y tangent in Q,
0=2z,+2z5x tangent in Q;.
Solving the first three equations of this system of equations with respect to z,
Z,, 23 gives:

O Tt R _x’+y’=2yy;
=T 12 1= 2 -
2 (x—y) (x—y)?

Of course z,, z, still need to satisfy the last equation. This gives:
(y—x)(y +x—2y1)=0.

Hence with Q:(x, x2, 0) on E; corresponds the point Q,(2y; —x, 2y; —x)°, y1 —x)
on E,.

Now we have to consider two cases according to the position of the point
A,Q2y1—a, 2y ~a)%, y1—a) corresponding to A(a, a’ 0).

In case y;—~a <y, -y, A, is lying under P, and we can consider a partition
of D3 in D31 and D32.

In case y;—a =y, -y, the point A; on E; corresponding with P, is lying to
the right of A and we have to consider a partition D3, and D3, as in fig. 3.

Let us examine now both cases separately.

(i) 2yi—a=y,
Dj,={(m, s2)|a <m<2y;—a,0<s’<Q2y,—a—-m)m—a)}

The equation of the plane through (x, x, 0) tangent to E; and also tangent to
Ez is:

G 7y =2 (X —0) £ 51— (Y =)

of course with y =2y, —x, or:

1 2
= - + .
Z e x)( 2 X +Y+x%)

Hence the equation of the envelope of this set of planes reads:

Ay, =X +22)Z =-2X -2Z2)X +Y +(X -22)>

https://doi.org/10.1017/50515036100006917 Published online by Cambridge University Press


https://doi.org/10.1017/S0515036100006917

28 DE VYLDER, GOOVAERTS AND DE PRIL

B'(b, 5%
s
am
/

% // Pi(y2,¥3)
/ 7~
A
/ /D32
s o Aima @yima)
/S o 2
/ Pi(y1, y1)
D,
A(a, a?)
FIGURE 2. Partition of Ds in case 2y;—a <y,.
B'(b, 5%
A
ya
<

FIGURE 3. Partition of D in case 2y, —a =y,.

Consequently:
pilm, ma; y1, y2) =3(m — y1) +38my,
with

2 2 2
Smy, =(Y1—m) +s5°.
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Let us consider now:
D3z ={m,s>)|1)a<m<2y,—a,(m—a)2y1—a—m)<s’<(m—a)(y;—m)
2)2y1—asm<y, 0<s’<(m—a)(y;—m)}.

The equation of the plane through A(a, a®,0) and through Q- and tangent on
E, in Q, is obtained by eliminating z,, z», z; from the following system of

equations:
Z=z2:X+2zY +24
0=2z1a+22a°+2,
y=y1=z1y +22y” +23
1=2z,+22,y.
This gives:

(Z-X +a)Y —2Xa+a®) +(y1—a)(X —a)*=0.
And consequently:

(yi—a)(m—a)?

m,mz,y,y2)=m—a— .
pi( 2; Y1, ¥2) s’ +(m—a)’

(ii) 2y1—a=y;
The point A, corresponding to P, has the following set of coordinates:

(2y1=y2, (2y1—y2)*, 0).
Consequently in:
D’y ={(m,s*)|2y1-y2<m <y, 0<s><(m~2y,+y2)(y2—m)}
we obtain the same upper bound as in Dj;.
pi(m, ma; y1, y2) =3(m =y + smy,).
Let us consider next:

D3y ={(m,s%)|1)2y1—y2<m <y, (y,—m)(m —2y,+y;)<s’
s(m-—a)(y.—m)

2asm=2y,—y,,0<s’s(m—a)(y,—m)}.

We then have to determine the equation of the plane going through P,(y,, y3, y2—
y1), through Q;(x, x*, 0) and tangent on E; in Q;. This equation is obtained by
eliminating z,, z, and z; from the following system of equations:

Z =21X+Z2Y+Z3

2
Va=y1=21y2+22y2+23
0=2zx +22x2+z3

0=2z,+2z5x.
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This gives:
ZQ2y:X-Y~y)=X*y2~y1)~ Y(y2—y1)

and of course:

2
N

pilm, ma; y1, y2) = (y2—y1) P (m _yz)z-
As far as the atoms of the extremal distributions are concerned the solution can
be obtained, completely similar to the solutions obtained in DE VYLDER and
GOOVAERTS (1982a).
Now we come to the solution of the problem q;(m, m; y1, y2). In this case
we have to consider the following three domains.

(1) Ds={m,s?)| Dasm<y, (m—-a)y,—m)<s’<(m—-a)b—m)
yyism<b,(m—y)b-m)<s’<(m—a)b-m)}.

In order to obtain the solution of the problem qi(m, m,; y1, y2) we have to
determine the equation of the plane through A, P, and B. The equation reads:

Y —(yi+a)X +ay,

Z=(y2=y1) (b—a)b—y1)
Hence:
s’+(m—a)m—-yy)
qi(m, ma; y1, y2)=(y2—y1) b-a)b—y1)
@) Ds={(m,s)|a<m=y, 0<s’<(m-a)y,—-m).

In this case it is readily seen that:

qi(m, ma; y1,y2) =0
3) De={(m,s*)|y1<sm=<b,0<s’<(m—y)(6b-m)}.
We have to determine the equation of the plane through Qx(y, y>, y —y,) tangent

on E; in Q; and through Qs(z, z%, y,—y,) tangent on E;. The equation of this
plane reads:

2=z X+z,Y+2z3
where:
y—y1=2z1y +22y°+23
V2-y1=212 +zzzz+23
0=2z:+2z2,

1=21+2z5y.
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Solving this equation with respect to z, and z, gives:

_ ¥~z , =y2+22—2yy2
(y—2)” oy-2)

These solutions have to satisfy 0=z, +2zz,, hence:

22

z2=2y,~y.

Consequently with the point Qx(y, vy, y—y1) on E, corresponds the point
Q:(2y2—y, (2y2—y)2, y2—y1) on E;. We have to consider two cases, namely
2y,—yi<b and 2y,—y1=b.

(@) 2y2—y1s<b .
In the present situation we consider a partition of D¢ as shown in fig. 4.
B'(b, 5%
|
7/
/ /De ’

/ (2y2—y1, (2)’2—)’1)2)

AN

/ Pi(y1,y1)

A(a,az)

FIGURE 4. Partition of D¢ in case 2y,—y; <b.

We have:
D1 ={(m, s*)ly1<sm<2y,—y;,0ss’<(m—y)2y,—y1—m)}.

Next we have to deduce the equation of the envelope of the set of planes:

2 2
+z°-2 -
y *z YYz(X_Z)+ y2—z

. 2
(y—z) (y—Z)z(Y 2

Z=Y2—y1+

with z =2y, —y.
Substitution gives:

4y —y)Z —y2+y1) =2(y —2y2)(X —2y2~y))+ Y =2y, —y)>.

https://doi.org/10.1017/50515036100006917 Published online by Cambridge University Press


https://doi.org/10.1017/S0515036100006917

32 DE VYLDER, GOOVAERTS AND DE PRIL

The equation of the envelope is obtained by eliminating y between this equation
and the next one, obtained by taking the derivative with respect to y in the
preceeding equation

y=2Z+2y,—-X.
Hence the equation of the envelope becomes:
QZ+2y1~X —y) =(y2—-X)*+Y - X".
Finally

q1(m, ma; vy, y2) = 35(y2+ M — 21— Spy,)-

Next we consider:

De={(m,s)| D) y1sm<2y,—y1,(m—y)Ry,—y1—m)<s’<(m—y,)b—-m)
2)2ys—yism<b,0<s’<(m—y)(b—m).

In the present situation the envelope is obtained by considering a set of planes
through (y,, yf, 0) and tangent on E;. We get:

Z=z2:1X+2zY+2z;
0=zly1+zzyf+z3
Vo= y1=z12 +2227+ 23
0=2z(+22,z.
Eliminating z1, z, and z3 gives:
Z=2Z__.2___..YL
- Y1

(Z y)z(X—)H)‘ c 12(Y—Y%)-

y2—y
(z—y1)
Consequently the envelope of this set of planes depending on z is obtained by
eliminating z between this equation and the derivative with respect to z.

(z=y) Z=(y2—y)(X —y1).
This results in
~ZR2y1X-yi-Y)=(y2—y )X —y1).

Hence

1 ’ 2y Y1, Y2 ya 1 s2+(m_y1)2'

(i) 2y2~y1=b
In this case we have to consider a partition of Dg in D§; and Dg,, as indicated
in fig. S.
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Vs /@b, @yt
/ /s
/ Vs

4_// Pibrs yf)
Ala,a?)

FIGURE S. Partition of Dg in case 2y, —y, =b.

In the domain
Dy ={(m,s)|2y,—b<m=<b,0<s’<(m—2y,+b)(b —m)}

the same result as in the case Ds; applies.
Hence

q(m, m2; y1, y2) =3(y2+m —2y1— Smy,).
On the other hand we have:
D ={(m,s?)| 1) 2y,—b<m<b,(m—2y,+b)(b —m)<s*<(m—y,)(b—m)
2)y1sm<2y,~b,0<s’<(m—y)(b—m)}.

We have to examine the set of planes through B (5, b2, y2—7¥1), through a point
of E; and tangent on E, in that point.
These planes are determined by the following equations:

Z=2,X+2z,Y+2z3
y2—y1=21b +zzb2+z3
y=y1=21y +22y° +23
1=2,+2z,y.
Hence the parametric representation of these planes reads:

y2+b2—2yy2
(y —b)

b—Y2
(y—b)

Z=y,—y1+ X-b)- (Y -b%).
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Taking the derivative with respect to y gives:
(y =b)Z —y2+y1) =(y —y2)(X - b).

Hence, the following equation is obtained for the envelope:

(Y—b2 Y -5’

X-b X~—b

—2b>(Z—yz+y1)=(

such that:

s2+(m—yy)(m—b)
s?+(m—b)*

a1(m, my; y1,y2)=y2—y +

TABLES 1 AND 2

VALUE AND SOLUTIONS OF THE PRIMAL PROBLEM

Abbreviation: sfny =s2+(m- y)2
Domain of the parameters:

(m

~b=y2) (X =)

-b).

asms<bh 0<ss’<s(m—a)b—m)

Maximization

Condjtions Value of the problem Atoms
asmsy, 2
m—a)b+y,~m—a)—s

(m—a)(y,—-m)<s’<s(m—a)b-m) (Y2—Y1)( 21(7 a’;iy a)) a,yz b

_ ”—
y2<sm<b (m-a)b+y,—-m—a)—s*
(m=yab=m)<s*<(m=a)b-m) (1) =0 2 a)) a,y2.b

— a—
y2sm<bh
0<s’><(m—y)b—m) Y2—¥1 ya, m, b

sm<y;
ss’<(m-a)y,—m)

(@) 2y;—a=<y,
asms<ly —a %(m—y1+smy,)
0<s’<(2y;—a—m)m—a)
asmsly;—a
(m—a)(2y1—a~m)ss2

_ _ 2
<(m-a)(y;—m) m_a_()’x_t_l_)fm__al_

52+(m —a)2

(y1—a)m—a)’

s2+(m—a)2

2yi—asm<y,

0=<s’=s(m-a)y;—m) m-—a-
2)’1—2)’2<m =Yy
0=<s"<(m-2y,+y2)(y2—m)
(i) 2y;—a=y,

1
2m—y,+ smyl)

2y1—y2smsy, 2
(y2—m)(m —2y;+y))ss 2

S
s(m—a)(y2—m) (YZ_YI)m
asm=<ly;—y, 2
0<s’<(m-a - — R
s's(m—-a)lyz~m) (y2 Y1)52+(m_y2)2

Y1 = Smyn» Y1 +smy1

2

a,m+
m-—a

2

a,m+
m-—a

Y1~ Smy1» YI+smy1

https://doi.org/10.1017/50515036100006917 Published online by Cambridge University Press


https://doi.org/10.1017/S0515036100006917

STOP-LOSS PREMIUMS 35

Minimization
Conditions Value of the problem Atoms
asms<y, 2
s+(m—a)m-y,)
(m—a)(y,—m)<s’<(m—a)(b—m) (= yy) SRR YY) a,y.b
(b—a)(b—y,)
yismsbh 2
s“+(m-—a)(m-
(m—y)b-m)<s’<(m—a)b—m) (YZ—YI)_——YL) a,yi b
(b—a)b—yi)
asmsy,
0ss’s(m-a)(y;—m) 0 a,m,y,
yismsb
0ss’<(m-y)(b-m)
(@) 2y;—y <b
ylirznslyz—yl .
O0ss"s(m—y)Q2y;—y1—m) 2(y2+m—2y1— Sinyy) Y2~ Smyzs Y2+ Smys
yisms2y,—y )
(m;()'x)(_2)’2)("b)’_1"n')")$s (y2—y0) (m—y1)? . 2
s=m-y Y2 s_m—z-%(m—yl)z Y1, ———
2y2—2y1<mib ( . .
0<s"<(m—yi}b—m) m-—y;
— —_——— , +
(i) 2y2—y1=b 029 Ty T
2y,—bsm<b
0$52$(m—2)’2+b)(b“m) %(y2+m—2YI—smy2) YZ_smyz»y2+smyz
2y,~bsm<b s
(m—=2y,+b}b—-m)<s 2+ (m— _ 2
y2)(m —b) s
<(m-y)b—m) S E A A (m—b) m =’
yism=<2y,~b sZ+(m— - i
y2)(m —b) s
0<s®<(m—y)b— —y 2 (m—b) m— b
s*<(m—y)lb—m) I R I A (m=b) m——
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