
J. Aust. Math. Soc.
doi:10.1017/S144678871300061X

ON THE GROUP INVERSE FOR THE SUM OF MATRICES
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Abstract

Let Km×n denote the set of all m × n matrices over a skew field K. In this paper, we give a necessary
and sufficient condition for the existence of the group inverse of P + Q and its representation under the
condition PQ = 0, where P, Q ∈ Kn×n. In addition, in view of the natural characters of block matrices, we
give the existence and representation for the group inverse of P + Q and P + Q + R under some conditions,
where P, Q, R ∈ Kn×n.
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1. Introduction

Let Km×n and Cm×n denote the set of all m × n matrices over a skew field K and
complex field C, respectively. For A ∈ Kn×n, the smallest nonnegative integer k such
that rank(Ak+1) = rank(Ak) is called the index of A and denoted by ind(A). Let A ∈ Kn×n

with ind(A) = k. The matrix X ∈ Kn×n satisfies XAX = X, AX = XA; Ak+1X = Ak is
called the Drazin inverse of A and denoted by AD. The Drazin inverse of a square
matrix always exists and is unique (see [3, 18]). If ind(A) = 1, then AD is called the
group inverse of A and denoted by A]. If A] exists, A is called group invertible. In this
paper, we let Aπ = I − AA] if A is group invertible.

In [14], Hartwig et al. gave a representation for the Drazin inverse of P + Q under
the condition PQ = 0, and there are some results on the representation for the Drazin
inverse of P + Q, for example [4, 12, 13, 16]. In [1], Benítez et al. studied the
invertibility of c1P + c2Q when P, Q ∈ Cn×n are two k-potent matrices and PQ = 0,
where c1, c2 ∈ C. The representation of the group inverse of c1P + c2Q was also
obtained in [1] when P, Q ∈ Cn×n are two k-potent matrices and PQ = 0. Benítez
et al. also [2] gave a representation of the group inverse of P + Q when PQ = 0
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and P, Q ∈ A are group invertible, where A is an algebra. In this paper, we give a
necessary and sufficient condition for the existence of the group inverse of P + Q and
its representation under the condition PQ = 0, where P, Q ∈ Kn×n.

In 1979, Campbell and Meyer proposed an open problem to find an explicit
representation of the Drazin inverse for a 2 × 2 block matrix M =

(A B
C D

)
, where A and D

are square (see [8]). Hitherto, this problem has not been solved completely. However,
there are some results on the group inverse for the block matrix

(A B
C D

)
under certain

conditions (see [6, 7, 10, 11, 15, 17]). Notice that M =
(A B
C D

)
=

(A 0
0 0

)
+

(0 B
C D

)
:= P + Q,

then PQP = 0; and that M =
(A B
C D

)
=

(A 0
0 0

)
+

(0 B
0 D

)
+

(0 0
C 0

)
:= P + Q + R, then PR = 0

and QP = 0.
In this paper, we give the existence and representation for the group inverse of P + Q

under PQP = 0 and other conditions, where P, Q ∈ Kn×n. We also give the existence
and representation for the group inverse of P + Q + R under PR = 0, QP = 0 and other
conditions, where P, Q, R ∈ Kn×n.

2. Lemmas

In order to obtain our main results, we give the following two lemmas which play
an important role throughout this paper.

L 2.1 [5]. Let M =
(A B
C D

)
∈ Kn×n, where A ∈ Kr×r is invertible, and the group

inverse of S = D −CA−1B exists. Then M] exists if and only if G = A2 + BS πC is
invertible. If M] exists, then

M] =

(
X Y
Z W

)
,

where
X = AG−1(A + BS ]C)G−1A,
Y = AG−1(A + BS ]C)G−1BS π − AG−1BS ],

Z = S πCG−1(A + BS ]C)G−1A − S ]CG−1A,
W = S πCG−1(A + BS ]C)G−1BS π − S ]CG−1BS π − S πCG−1BS ] + S ].

L 2.2 [9]. Let M =
(A B

0 C
)
∈ Kn×n, where A ∈ Kr×r. Then M] exists if and only if

A], C] exist and rank(M) = rank(A) + rank(C). If M] exists, then

M] =

(
A] (A])2BCπ + AπB(C])2 − A]BC]

0 C]

)
.

3. Main results

In this section, we give our main results.

T 3.1. Let P, Q ∈ Kn×n and PQ = 0. Then (P + Q)] exists if and only if P2, Q2

are group invertible and rank(P + Q) = rank(P2) + rank(Q2). If (P + Q)] exists, then

(P + Q)] = (P2)]P + Q(Q2)] + QXP,
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where

X = ((Q2)])2(P + Q)(P2)π + (Q2)π(P + Q)((P2)])2 − (Q2)](P + Q)(P2)].

P. It is well known [3] that there exists an invertible matrix U such that

P = U

(
∆ 0
0 N

)
U−1, (3.1)

where ∆ is invertible and N is a nilpotent matrix. Let Q = U
(Q1 Q2

Q3 Q4

)
U−1, where Q1 has

the same order as ∆. From PQ = 0,

Q = U

(
0 0

Q3 Q4

)
U−1, NQ3 = 0, NQ4 = 0. (3.2)

By Lemma 2.2, the group inverse of P + Q = U
( ∆ 0

Q3 N+Q4

)
U−1 exists if and only if

(N + Q4)] exists. Similarly, there exists an invertible matrix V such that

Q4 = V

(
R 0
0 S

)
V−1, (3.3)

where R is invertible and S is a nilpotent matrix. Let N = V
(N1 N2

N3 N4

)
V−1, where N1 has

the same order as R. From NQ4 = 0,

N = V

(
0 N2

0 N4

)
V−1, N2S = 0, N4S = 0. (3.4)

Applying Lemma 2.2, the group inverse of N + Q4 = V
(R N2

0 N4+S
)
V−1 exists if and only if

(N4 + S )] exists. Since N4, S are nilpotent matrices and N4S = 0, N4 + S is a nilpotent
matrix. Since (P + Q)] exists if and only if (N + Q4)] exists, (P + Q)] exists if and
only if N4 + S = 0.

We prove the ‘only if’ part. If (P + Q)] exists, then N4 + S = 0, N4 = −S . By
N4S = 0 we get N2

4 = 0 and S 2 = 0. From N4 = −S and (3.4) we have N2 = 0. From
(3.1) we know that P2 is group invertible. By S 2 = 0 and (3.3) we know that Q2

4 is

group invertible. By Q2 = U
( 0 0

Q4Q3 Q2
4

)
U−1, we have rank(Q2) = rank

( 0 0
Q4Q3−Q2

4Q]
4Q3 Q2

4

)
=

rank(Q2
4). By Lemma 2.2, we know that Q2 is group invertible. So

rank(P + Q) = rank(∆) + rank(N + Q4) = rank(∆) + rank(Q2
4)

= rank(P2) + rank(Q2).

We now turn to the ‘if’ part. Since P2 and Q2 are group invertible, by (3.1)
and (3.2), we know that N2 = 0, Q2

4 is group invertible and rank(Q2) = rank(Q2
4) =

rank(R). Since rank(P + Q) = rank(∆) + rank(N + Q4) = rank(P2) + rank(N + Q4) =

rank(P2) + rank(Q2) = rank(P2) + rank(R), we have rank(N + Q4) = rank(R). By N +

Q4 = V
(R N2

0 N4+S
)
V−1, we have N4 + S = 0. Hence (P + Q)] exists.
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If (P + Q)] exists,

(P + Q)] = U

(
∆ 0
Q3 N + Q4

)]
U−1

= U

(
∆−1 0

(N + Q4)πQ3∆−2 − (N + Q4)]Q3∆−1 (N + Q4)]

)
U−1

= (P2)]P + Q(Q2)] + QXP,

where X = ((Q2)])2(P + Q)(P2)π + (Q2)π(P + Q)((P2)])2 − (Q2)](P + Q)(P2)]. �

T 3.2. Let P, Q ∈ Kn×n and PQ = 0. Then P + Q is invertible if and only if P, Q
are group invertible and rank(P) + rank(Q) = n. If P + Q is invertible, then

(P + Q)−1 = QπP] + Q]Pπ.

P. We begin with the ‘only if’ part. If P + Q is invertible, according to Theorem
3.1, we have rank(P + Q) = rank(P2) + rank(Q2) = n. By PQ = 0, we get rank(P) +

rank(Q) ≤ n = rank(P2) + rank(Q2), which implies that P and Q are group invertible.
Turning to the ‘if’ part, suppose that P and Q have the decompositions given in

(3.1) and (3.2). Since P is group invertible, N = 0. Since Q is group invertible, by
Lemma 2.2, Q4 is group invertible and rank(Q) = rank(Q4). By rank(P) + rank(Q) =

rank(∆) + rank(Q4) = n, we have that Q4 is invertible. Hence P + Q is invertible.
If P + Q is invertible, then

(P + Q)−1 = U

(
∆ 0
Q3 Q4

)−1

U−1 = U

(
∆−1 0

−Q−1
4 Q3∆−1 Q−1

4

)
U−1

= QπP] + Q]Pπ.

This concludes the proof. �

T 3.3. Let P, Q ∈ Kn×n, P] exists, PQP = 0 and the group inverse of V =

PπQPπ − QP]Q exists. Then (P + Q)] exists if and only if rank(H) = rank(P), where
H = P2 + PP]QVπQP]P. If (P + Q)] exists, then H] exists and

(P + Q)] = (I + VπQP])(I − PH]Q)(PH]PH]P + V])(I − QH]P)(I + P]QVπ).

P. Since P] exists, there exist invertible matrices U and ∆ such that P =

U
(
∆ 0
0 0

)
U−1. Let Q = U

(Q1 Q2
Q3 Q4

)
U−1, where Q1 has the same order as ∆. By PQP = 0

we get Q1 = 0. Hence

V = PπQPπ − QP]Q = U

(
0 0
0 Q4 − Q3∆−1Q2

)
U−1.

Since V] exists, S = Q4 − Q3∆−1Q2 is group invertible. Applying Lemma 2.1, the
group inverse of P + Q = U

( ∆ Q2
Q3 Q4

)
U−1 exists if and only if G = ∆2 + Q2S πQ3 is

[4] On the group inverse for the sum of matrices 39
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invertible. Since H = P2 + PP]QVπQP]P = U
(G 0

0 0
)
U−1, G is invertible if and only if

rank(H) = rank(P). Hence (P + Q)] exists if and only if rank(H) = rank(P).
From the above arguments, (P + Q)] exists if and only if G is invertible. So H]

exists if (P + Q)] exists. Then we have H] = U
(
G−1 0

0 0

)
U−1. By Lemma 2.1,

(P + Q)] = U

(
∆ Q2

Q3 Q4

)]
U−1 = U

(
X1 X2

X3 X4

)
U−1,

where
X1 = ∆G−1(∆ + Q2S ]Q3)G−1∆,
X2 = ∆G−1(∆ + Q2S ]Q3)G−1Q2S π − ∆G−1Q2S ],
X3 = S πQ3G−1(∆ + Q2S ]Q3)G−1∆ − S ]Q3G−1∆,
X4 = S πQ3G−1(∆ + Q2S ]Q3)G−1Q2S π − S ]Q3G−1Q2S π − S πQ3G−1Q2S ] + S ]. So

(P + Q)] = U

(
X1 X2

X3 X4

)
U−1

= U

(
I 0

S πQ3∆−1 I

) (
I −∆G−1Q2

0 I

) (
G−1∆G−1∆ 0

0 S ]

)
×

(
I 0

−Q3G−1∆ I

) (
I ∆−1Q2S π

0 I

)
U−1

= (I + VπQP])(I − PH]Q)(PH]PH]P + V])(I − QH]P)(I + P]QVπ).

This concludes the proof. �

R 3.1. If P], Q] exist and PQ = 0, then P = U
(
∆ 0
0 0

)
U−1, Q = U

( 0 0
Q3 Q4

)
U−1 and Q]

4
exists. Thus V = QPπ = U

(0 0
0 Q4

)
U−1 is group invertible and H = P2. By Theorem 3.3,

(P + Q)] exists and
(P + Q)] = QπP] + Q]Pπ.

T 3.4. Let P, Q, R ∈ Kn×n, P] and Q] exist, PR = 0, QP = 0, RPπ = 0 and
RP]Q = 0. Then the group inverse of P + Q + R exists and

(P + Q + R)] = (I + PπQπRP])(I − P]Q)(P] + PπQ])(I − RP]).

P. Since P] exists, there exist invertible matrices U and ∆ such that P =

U
(
∆ 0
0 0

)
U−1. Suppose that Q = U

(Q1 Q2
Q3 Q4

)
U−1, R = U

(R1 R2
R3 R4

)
U−1, where Q1, R1 have the

same order as ∆. Since PR = 0, QP = 0 and RPπ = 0, Q = U
(0 Q2
0 Q4

)
U−1, R = U

( 0 0
R3 0

)
U−1.

By RP]Q = 0 we get R3∆−1Q2 = 0. Since Q] exists, by Lemma 2.2, Q]
4 exists and there

exists a matrix X such that Q2 = XQ4. So we have Q2Qπ
4 = 0. Since R3∆−1Q2 = 0, by

Lemma 2.1, the group inverse of P + Q + R = U
( ∆ Q2
R3 Q4

)
U−1 exists and

(P + Q + R)] = U

(
X1 X2

X3 X4

)
U−1,
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where
X1 = ∆−1(∆ + Q2Q]

4R3)∆−1,

X2 = −∆−1Q2Q]
4,

X3 = Qπ
4R3(∆2)−1(∆ + Q2Q]

4R3)∆−1 − Q]
4R3∆−1,

X4 = −Qπ
4R3(∆2)−1Q2Q]

4 + Q]
4. Hence

(P + Q + R)] = U

(
I 0

Qπ
4R3∆−1 I

) (
I −∆−1Q2

0 I

) (
∆−1 0
0 Q]

4

) (
I 0

−R3∆−1 I

)
U−1

= (I + PπQπRP])(I − P]Q)(P] + PπQ])(I − RP]).

This concludes the proof. �

Next we use K = {a + bi + c j + dk} to denote the real quaternion skew field, where
a, b, c, d are real numbers. We give some examples to illustrate the application of the
representations given in this paper.

E 3.5. Let P =

(
1 0 0
0 0 1
0 0 0

)
∈ K3×3, Q =

(
0 0 0
0 0 −1
0 0 0

)
∈ K3×3. By computation,

P2 =

1 0 0
0 0 0
0 0 0

 , Q2 =

0 0 0
0 0 0
0 0 0

 and P + Q =

1 0 0
0 0 0
0 0 0

 .
So P2, Q2 are group invertible and rank(P2) + rank(Q2) = rank(P + Q) = 1. By
Theorem 3.1, (P + Q)] exists and

(P + Q)] =

1 0 0
0 0 0
0 0 0

 .
E 3.6. Let

P =


i j 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ∈ K4×4, Q =


0 0 i j
0 0 0 0
k k 2k 1
k k k 2

 ∈ K4×4;

then by computation,

P] =


−i − j 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Pπ =


0 k 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and PQP = 0.
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And then

V = PπQPπ − QP]Q =


0 0 0 0
0 0 0 0
0 k − 1 k 0
0 k − 1 k 1

 ,

V] =


0 0 0 0
0 0 0 0
0 1 − k −k 0
0 −k − 1 −1 1

 , Vπ =


1 0 0 0
0 1 0 0
0 −1 − k 0 0
0 0 0 0


and

H = P2 + PP]QVπQP]P =


−1 k 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
So rank(H) = rank(P) = 1. By Theorem 3.3, (P + Q)] exists and

(P + Q)] =


i j i j
0 0 0 0
k k 2k 1
k k k 2


]

=


−3i 6i − 9 j − 2 k k
0 0 0 0
i −2i + 3 j − k + 1 −k 0
j −3i − 2 j + k − 1 0 1

 .
E 3.7. Let

P =

 i j 0
0 0 0
0 0 0

 ∈ K3×3, Q =

0 0 0
0 0 0
0 0 i

 ∈ K3×3, R =

 0 0 0
0 0 0
−1 k 0

 ∈ K3×3;

then by computation,

P] =

−i − j 0
0 0 0
0 0 0

 , Pπ =

0 k 0
0 1 0
0 0 1

 .
Then PR = 0, QP = 0, RPπ = 0 and RP]Q = 0. By Theorem 3.4, we know that (P +

Q + R)] exists and

(P + Q + R)] =

 i j 0
0 0 0
−1 k i


]

=

−i − j 0
0 0 0
−1 k −i

 .
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