
PLANETARY PERTURBATION EQUATIONS BASED ON RELATIVISTIC KEPLERIAN MOTION 

Neil Ashby 
Department of Physics, Campus Box 390 
University of Colorado 
Boulder, Colorado, USA 80309 

ABSTRACT. Solutions of the geodesic equations for bound test particle 
motion in a Schwarzschild field are expressed using Jacobian elliptic 
functions. Keplerian orbital elements are identified and related to a 
set of canonical constants. Relativistic Lagrange planetary perturba­
tion equations are derived. 

1. INTRODUCTION 

In this paper Lagrange's planetary equations 1 are derived for per­
turbed relativistic motion of a test body in a Schwarzschild gravita­
tional field. This will be treated as a problem in Hamiltonian mechan­
ics, with a constraint. First, an exact solution describing an unper­
turbed test body orbit is expressed using Jacobian elliptic functions. 
Perturbation theory then leads to a formulation of Lagrange's planetary 
equations in which the unperturbed orbit includes all the effects of 
General Relativity, e.g., periastron precession. 

It is well known that test body motion in a Schwarzschild field 
can be expressed in quadratures which lead to elliptic functions. 
Hagihara 2 has studied such orbits using Weierstrass elliptic func­
tions. We shall express the unperturbed orbit in terms of Jacobian el­
liptic functions, which are closer in spirit to trigonometric functions 
with which most are familiar. 

2. HAMILTONIAN FORMULATION OF UNPERTURBED PROBLEM 

Because the Lagrangian -mQc/ds is homogeneous in the four-veloci­
ties, the Hamiltonian of this problem vanishes on the test body trajec­
tory. Also, this motion is subject to the constraint 

g w v p j i p v + ( m 0 c ) 2 = 0 (1) 

where p^ = mocgy Vdx v/ds are the four-momenta. The Hamiltonian 
only vanishes "weakly", however, as its derivatives with respect to the 
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canonically conjugate momenta and coordinates do not vanish. 
A Hamiltonian with constraints can be shown 3 to be "strongly" 

equal to a linear combination of the constraint equations expressed so 
that some of the momenta are determined as a function of the remaining 
independent momenta by solving the equations of constraint. The con­
straint equation (1) is thus solved for p 0 in terms of p^ (latin in­
dices run from 1 to 3) by writing i|j(Pk> <\^) for pQ in Eq. ( 1 ) , 

g ° V + 2 g % P i + g i j p l P j + (m„c) 2 = 0 , (2) 

from which i|; may be found. Then the Hamiltonian can be written: 

H = v(s)[ p 0 + * ( p i , q y ) ] , ( 3 ) 

where v(s) is a coefficient to be determined. Positive square roots 
are chosen in Eq. (3) because PQ<0. (We use a metric signature 
- 1 , 1 , 1 , 1 and other notation as in Weber4*.) In Eq. ( 3 ) , the scalar 
parameter s is the proper time measured along the trajectory. 

The Hamiltonian equations of motion are: 

py aq* ' q 3p y " ( 4 ) 

The second of Eqs. (4) above can be shown to give q^p° - q°p^, 
where v -*q°, thus identifying the multiplier v in Eq. ( 3 ) . Then the 
first of Eqs. (4) leads directly to the geodesic equations of motion; 
this is valid for an arbitrary metric. We are interested here in the 
case of the Schwarzschild metric which is: 

- ds 2 - - X ( d X 0 ) 2 + dR 2/X + R 2 d 0 2 + R 2 s i n 2 0 d $ 2 (5) 

where q y = (X°,R,0,$), X = l-2y/R, and y = GM/c 2. In the spirit of the 
Hamiltonian formulation, we shall obtain a solution by studying the 
Hamilton-Jacobi equation for this problem. In the Schwarzschild 
metric, Eq. (5), the variables X° and $ are cyclic. Therefore p 0 and 
p 3 are constants of the motion, which we write as follows: 

2 2 d$ 
P3 = moc R sin 6 -r— = P 3 = constant; (6) 

and a s 

dX° 
p 0 = - m Q c X — = - P 1 = constant. (7) 

We are interested in solutions for non-circular motion in a plane 
of orientation described by inclination I, and angle of the line of 
ascending nodes, Q> as in Fig. 1. To describe the position of the test 
body, we introduce an angle w measured in the plane of the orbit from 
the nodal line. The angular transformations between polar angles 0, $, 
and angles I, P«, and w can be written 

cos w = sin 0 cos ($ - Q); sin w cos I = sin 0 sin ($ - ft) 

sin w sin I = cos 0 , (8) 
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and then by differentiation one may show that 

P3 = m 0 c R 2 cos I = P 2 cos I • (9) 
The constants Pi will reappear as separation constants in the solu­
tion of the Hamilton-Jacobi equation. 

Figure 1 . Angles describing unperturbed relativistic trajectory for a 
bound orbit. The altitude of apastron, the first time the trajectory 
passes through apastron after initally passing through the ascending 
node, is denoted by to. The angle w is measured from the nodal line. 

2 . 1 . Hamilton-Jacobi equation 

The Hamilton-Jacobi equation is obtained by seeking a transforma­
tion function WCq^jP^) which depends on the old coordinates and the 
new momenta, and which satisfies 

dW = p^ dq y + Q k dP k . 

Thus p y - 3 W / 3 q ^ ; the Hamilton-Jacobi equation is H(qV , 3 W / 3 q H ) 
= 0 . Since the Hamiltonian, Eq. ( 3 ) , is obtained by solving the cons­
traint equation it is easy to see the Hamilton-Jacobi equation is 
equivalent to 

yv aw 3W . t N 2 c\ (\c\\ g M — — + ( m 0 c r - 0 . ( 1 0 ) 
3 q y 3 q 

This form of the equation has been discussed by V. Fock 5. 

2 . 2 . Solution of Hamilton-Jacobi equation 

The Hamilton-Jacobi equation is solved by separation of 
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variables. Assume W = W 0(X u)+W x(R)+W 2(0)+W 3($). The solution may be 
obtained by methods similar to those found in textbooks 6, and is 

R 0 
W = ± P X X 0 ± / J dR/X ± / N d0 ± P 3 $ , (11) 

Ro TT/2 
where 

J = [ P x
2 - X ( P 2

2 / R 2 + (m 0c) 2) ] 1 / 2 , (12) 

N = [ P 2
2 - P 3

2 / s i n 2 9 ] 1 / 2 , (13) 

and Pj[ are separation constants. Only three independent separation 
constants occur in Eq. (11) because of the constraint, that is, because 
the Hamilton-Jacobi equation is satisfied on the trajectory. The 
fourth separation constant, P Q = 3W/3q° = 3W/3X 0, is ± Pj by virtue of 
the Hamilton-Jacobi equation itself. The signs of the square roots in 
Eq. (11) must be chosen to correspond to the portion of the orbit under 
consideration. For example, we note that R decreases from the initial 
point RQ (apastron). This choice is considerably more convenient when 
using standard elliptic functions. Also, 0 decreases from TT/2 where 
the angle $ has a value equal to the angle of the nodal line. We shall 
choose Pi to be our new canonical momenta. By the method of solution 
it is evident that they are constants of the motion. 

Then three coordinates which are also canonical constants, and 
conjugate to the Pi, may be obtained from Q 1 = 3W/3Pi. For R and 
0 decreasing, 

R 
Q 1 = - X° - / ? x dR / XJ ; (14) 

*o 
R 0 

Q 2 = / P 2 dR / R 2J - / P 2 d0 / N ; (15) 
R 0 TT/2 

0 
Q 3 = $ + / P 3 d0 / N sin 2 0 . (16) 

TT/2 
Since are constants of the motion, one may differentiate 

Eqs. (14-16) with respect to the proper time along the trajectory and 
thus compute the original canonical momenta py, with the aid of the 
constraint. It is then found that the separation constants Pi ap­
pearing in Eqs. (11-16) are identical with the constants Pi intro­
duced in Eqs. (6), (7), and (9). 

The canonical constants may be interpreted as follows. 
First, at the initial point of the R integration, where R = RQ , Q 1 = 
-X° = ~cT, where T is the time of first apastron passage. Second, us­
ing the angles defined in Eqs. (8) and illustrated in Fig. (1), it can 
be shown that 

0 
- / P 2 d0 / N = w . (17) 

TT/2 
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Therefore when R = R 0, Eq. (15) implies Q 2 = w = u>, the altitude of 
first apastron passage. (Subsequent apastron passages will be at dif­
ferent altitudes because the apastron precesses.) Lastly, when 0 = 
TT/2, Eq. (16) gives Q 3 = $ = Q, the nodal angle. 

To identify the momenta P x and P 2 in terms of Keplerian elements, 
we factor the quantity J 2, given by Eq. (12), in terms of its three 
roots in the variable U = 1/R as follows: 

J 2 / P 2
2 = 2p( ^ - U )( - U )( U - ) 

= 2y( U x - U )( U 2 - U )(U - U 3 ) (18) 

where Uj_ are roots of the equation J = 0 . The parameters a and e 
are defined in terms of P 1 and P 2 by Eq. (18). We consider in this 
paper only the orbits a(l-e) <_ R ^ a(l+e), corresponding classically to 
bound Keplerian orbits. Relativistic effects arise from the factor 
(l/2yX - U ) . Identifying the two expressions for J, Eqs. (12) and 
(18), yields the following expressions for X, Pj> and P 2 in terms of a 
and e: 

X = 1 - 4y/p , (19) 
1 / 2 1 / 2 

P x = m 0c[(l-4p/p+4p 2/ap)/D,J ; P 2 = m^pp/D,,] , (20) 

where p = a(l-e 2), and \ = l-4y/p+y/a . 

The expression (15), using (17), may then be written in the form 

U 1 / 2 
/ dU [(U 1-U)(U 2-U)(U-U 3)] 1 = /(2p)(w- W) , (21) 
u 3 

where we choose w = w ( = Q 2 ) at U = U 3 = l/a(l+e) = 1/RQ* T O reduce 
the integral in Eq. (21) to a standard elliptic integral, we make the 
following change of variable: 

U = U 3 + ( U 2 - U 3 ) sn 2(/D 6(w-w)/2;m) , (22) 
where 

D 6 = l-2y(3-e)/p ; m = 4ye/pD 6 = ( U 2 - U 3 ) / ( U r U 3 ) . (23) 

Then Eq. (21) is satisfied. Thus for the radial variable R: 
R = p/(l - e + 2e sn 2 (/D6(w-a))/2;m)). (24) 

The nonrelativistic limit can be recovered by letting m 0, Dg 1, 
whereupon we obtain R = p/(l - e cos (w-u>)). The negative sign in this 
equation arises because w = w, the altitude of apastron, at R = a(l+e). 

An application of this result is an expression for the precession 
of apastron (or periastron), correct to all orders in e and y/a. The 
elliptic sn function increases from zero at w = to to a value of unity 
at periastron, where the argument is given by /D 6(w-w)/2 = K(m), 
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where K is the complete elliptic integral of the first kind. The change 
in w during the motion from apastron to periastron is therefore Aw = 
2K(m)//Dg • For comparison with a perturbation theory result, we spec­
ialize to the case y/a«l by using the following approximate expression 
for the elliptic integral 6: K(m) = (TT/2) [l+m/4+ 9m 2/64+. •. ]. The ap­
astron precession per revolution is 2AW-2TT and is approximately 

2Aw - 2ir = 2TT [It + 4 (— ~ — e 2) + ]• (25) p p z 2 16 
The first term on the right side of the above equation is the usual re­
sult1*; the additional term is the leading higher-order correction. 

Summarizing the main results of the section, the canonically con­
jugate constants are: 

1 / 2 
Q 1 = -cT ; Pj = moc[l ~ W p + ^ / a p ] ; 

1 - 4p/p + y/a 
1 / 2 

Q 2 = 0) ; P 2 = niQcfyp/d - 4y/p + y/a)] 1 ; (26) 

Q 3 = ft ; P 3 = P 2 cos I . 
It is also of interest to discuss the explicit integrations of 

Eqs. (16) and (14). One finds no new information from Eq. (16) as the 
integration yields relations consistent with Eqs. (8). The integration 
of Eq. (14) can be expressed in intermediate form by 

P 2(X°-cT)/P 1 = [ 2 R 0
2 / / D 6 ] [ / U + B 0 / U dU- + B 0

2 / U ill ] (27) 
0 Q 2 0 Q 0 1 - B 0Q 

where B 0=2y/R 0, n=2e/(l-e), Q=l+nsn 2(u;m), and u = /D 6(w -u0/2. The in­
tegrals are given in the Appendix. 

It is also useful to obtain a relation from which s can be cal­
culated in terms of w. Using Eq. (24) in (9), 

« - fX** • i ̂ * • <28> 

The result is 

[ p D 6 / a 3 D j l / 2 ( S - s 0 ) = yjl+^lil f (29) 
(n + m)(l - e ) A / z x 

- (n+m)u/n 2 + E(u)/n + (l/e+2m/n+3m/n 2 )n(-n;u|m)] . 
This is the equation which in the classical case determines the eccen­
tric anomaly in terms of the mean anomaly. 

3. PERTURBATION THEORY 

Now we consider the independent variables p^ = p, (Q^,P^,s)> 
qk - q k ( q i ) p i > s ) along the unperturbed orbit, as functions of the 
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constants of the motion Q*, P^ and the proper time s along the tra­
jectory. The unperturbed Hamiltonian is denoted by H Q • If the motion 
is perturbed by non-gravitational forces or by additional gravitational 
forces from other bodies, we imagine that this is accounted for by let­
ting and P^ determine an "osculating orbit" in the usual sense. 
The perturbations will cause and P^ to change slowly. Then we 
write the equations of motion as 

*£k + y Q 1 + y p . = - * SL + F K (30) 
as i aQ 1 j a p j 9 c* k 

+ y ^ q 1
 + y ^ . ^ L + G k ( 3 D 

3s ^ 3Q 1 j 3Pj J dpy, 

where and G k are used here to denote the generalized perturbing 
forces. We shall neglect perturbing forces that may contribute to the 
right side of Eq. (31). The total Hamiltonian is written H = H 0 + H x ; 
H 0 is the Hamiltonian discussed above, appropriate for the description 
of unperturbed motion in the Schwarzschild field. Then Ffc = -
BHj/Sqk and we neglect G k in the following discussion. The oscu­
lating orbit satisfies Eqs. (4), thus: 

l £ k $i + p = F k ; ^ Q ^ ^ P ^ O . (32) 
3Q 1 3Pj 3Q 1 3Pj 

By taking appropriate linear combinations of Eqs. (32), the equations 
can be recast using Lagrange brackets 

iwVrt1
 + I i q ' . p j I P j - I ^ F k ; ( 3 3 ) 

I ^ Q 1 ^ + ̂ V V V 1
 f V * * (34) 

Using the well-known properties of Lagrange brackets, which can be 
shown to apply in the present case, 

[Q^.Q1] - l P t , P J - 0 ; [ O / . P J = 6* , (35) 
the equations reduce to: 

5 * A - X ^ F . (36) 
k 3 P £

 k 1 k 3Q k 

These equations are the general form of the Lagrange planetary 
equations, neglecting momentum dependence in the perturbing Hamiltonian 
Hj • The remainder of the calculation consists in evaluating the 
partial derivatives on the right sides of Eqs. (39) and (40), using the 
solutions to the equations of motion as expressed by the quadratures, 
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Eqs. (14-16). In this process the variable s is kept constant, since 
the s-dependence is contained in the motion of the osculating orbit. 

3.1. Equations of motion for Q, I 

We shall discuss this case in detail to illustrate the procedure. 
It is necessary to compute all the derivatives of R, 6, $ with respect 
to and Q^. The q* (that is, R, 0, and $) appear explicitly in 
Eqs. (14-16) so the process of computation is straightforward. 

Consider first differentiation with respect to P 3 . From Eq. (14), 
if Q*, X°, ?i and P 2 are kept fixed while P 3 changes, R cannot change 
so 3R/3P 3 = 0. Differentiation of Eqs. (15) and (16) and use of the 
angular transformations, Eqs. (8), yield the expressions: 

| ~ = cos I sin w/[ P 2sin I sin 0 ] ; (37) dP 3 

| ~ = sin w cos w /[ P 2 sin 2 0 ] . (38) 
9 F 3 

The Lagrange planetary equation for Q is then: 

, ft , cos I sin w F + sin w cos w p ^ ( 3 9 ) 

P 2 sin I sin 0 0 P 2 sin 2 0 $ 
This can be expressed in a more standard from by noting that the F^ 
are generalized forces. Let us introduce rectangular force components 
in the R, 0, and $ directions by defining: 

F R = XF n , F G = FjR , F* = F / R sin 0 , (40) 
and denoting the component of the force which is out of the orbital 
plane by: 

F"̂  = - [ cos w sin I F* - cos I F 0 ] / sin 0 . (41) 
Then . 

5 = R sin w F / P 2 sin I . (42) 
This is similar to the classical Lagrange planetary equation for ft, ex­
cept that the function R (given by Eq. (24)) depends on a Jacobian el­
liptic function and P 2 contains relativistic corrections. 

To find the rate of change of I, we use the relation between P 2 

and P 3 given by Eq. (9), to show: 
I = (P 2 cos I - f>3 )/ P 2 sin I . (43) 

Thus rates of change of P 2 and P 3 are both needed. First, from Eqs. 
(15) and (17) it can be seen that 3R/8Q 3 and 3w/3Q 3 are proportional. 
Eq. (14) implies 3R/3Q 3 = 0. The angular transformations (8) then give 
30/3Q 3 - 0, 3$/3Q 3 = 1. Thus 

P 3 = F $ . (44) 
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Similarly, it is straightforward to show that: 
P 2 = = R F S (45) 

where F s is the component of the perturbing force normal to the 
radius in the orbital plane, defined by: 

F S = [ - sin I cos w F„ + cos I F_/ sin 0 ]/ R sin 0 .(46) 
0 9 

Combining the above then gives the other member of this pair of plane­
tary equations: 

I = R cos w r~ /P 2 • (47) 

3.2. Equations of motion for a and e (P 1 and P 2 ) 

The two quantities Pj and P 2 depend only on a and e and it is nat­
ural to consider them together. Differentiating each of the Eqs. 
(15-17) in turn with respect to Q 1 yields the following relationships 
among the derivatives of the coordinates with respect to Q 1 : 

0 = ii + P 3 li 
3Q 1 N sin 2 0 3Q 1 * 

0 = _JJL 15: _ _Zi li 
R 2J 3Q 1 N 3Q 1 

- 1 
P l 3R 

k i 
These may be solved for the derivatives 3q / 3Q and substituted 
into Eq. (36) to yield: 

? l = J F R / Pi - X P ^ / R P j , (48) 

Eqs. (45) and (48) are thus the planetary equations for P^ and P 2 . 
Since a and e can be determined by Eqs. (26) in terms of Pj and P 2 if 
necessary, it may be easier to use the equations for Pj and P 2 rather 
than equations for the rates of change of a and of e. From Eqs. (26) 
the following expressions for these quantities may be derived: 

a = DP 2[4e/D 6 sn cn dn F R/p - 2XF S/R]/A - B[2P 2RF S]/A (49) 

e = -CP 2[4e/D 6 sn cn dn F R/p -2XF S/R]/A + A[2P 2RF S]/A (50) 

where the arguments of the elliptic functions are suppressed but are 
given by u = /Dg(w-co)/2. The constants A, B, C, D, and A which have 
not previously been defined are given by: 

A = 3P x
2/3a = y(m 0c) 2[l-8y/p+16y 2/p 2-4y 2/ap]/a 2D I, 2 ; 

B = 3Px 2/3e = (m 0c) 2[8y 3e/ap 2]/D l +
2 ; 
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C = 3P 2
2/3a - y(l-e 2)(m 0c) 2(l-8y/p+2y/a)/D l f

2 ; (51) 
D - 3P 2

2/3e = -2pae(m 0c) 2[l-8p/p+y/a]^ 2 . 
A = AD-BC = ^ P ^ D ^ e U o C ^ y U - n O / a p D ^ . (52) 

Except for the complexity of these constants, the results are very 
similar to the classical results. For example, in the expression for 
the rate of change of a, the coefficient of the radial perturbing force 
F R, the only variable part arises from the product of the elliptic 
functions. In the non-relativistic limit this product becomes 
sin(w-w), as in the classical expression. 

3.3. Equations of motion for cT and to (Q 1 and Q 2 ) 

The planetary equations for this pair of variables are the most 
complicated to obtain, because they involve differentiation with res­
pect to and P 2 of the canonical expressions Eqs. (14-16). There are 
two ways to proceed here. One can actually perform the integrations 
required as indicated in these equations, and then subsequently differ­
entiate the resulting integrals with respect to Q 1 and Q to obtain the 
required partial derivatives for substitution into Eq. (36). Alterna­
tively, one can differentiate Eqs. (14-16) directly with respect to Pj 
and P 2 . The latter process is more efficient, except that interchange 
of the order of integration and differentiation introduces an apparent 
singularity at the lower limit in the R integrals, because the depend­
ence of RQ on ?i and P 2 must be taken into account. However these are 
spurious singularities and can be shown to cancel out exactly because R 
= RQ is a root of the equation J 2 = 0. 

Only the results of the calculations will be given here. As in 
the case of the classical Lagrange planetary equations dto/ds can be ex­
pressed as a linear combination of contributions due to the perturbing 
forces in three orthogonal directions. The result is: 

• R 
eto = -p sn cn dn N s c cjF /P 2Dg 

2e R R n
2 s c d P o 2 c d 

-eR cot I sin w F^"/P2 . (53) 
Lastly, one finds as in the nonrelativistic case that the perturbing 
force normal to the osculating plane does not contribute to the equa­
tion for T, so: 
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Quantities such as N S C ( j appearing in the above results compactly de­
note integrals of certain combinations of Jacobian elliptic functions, 
and are defined and evaluated in the Appendix. 

4. MOMENTUM-DEPENDENT PERTURBING FUNCTION 

To complete the theory one must also allow for the possibility 
that an additional term G k, arising from derivatives of the perturb­
ing function with respect to momentum, may contribute to the right-hand 
sides of Eqs. (33) and (34). Then Eqs. (36) would have additional 
terms on the right which are linear combinations of G k with 
coefficients formed from partial derivatives of the momenta p^, with 
respect to the canonical constants. The relations needed, expressing 
Pk in terms of these constants, can be obtained from p^ = 9W/3qk, 
and are: 

p R = ± J/X ; P Q = + N ; p $ = P 3 . (55) 

To use these it is also necessary to express 0 and R in terms of ?± 
and We have however already calculated derivatives of R, 0, and 
$ with respect to the canonical constants in deriving the above gener­
alizations of the Lagrange planetary equations. A second stage of gen­
eralization including momentum-dependent perturbing forces can there­
fore be supplied. 

5. CONCLUSION 

Although there are probably no new applications of the theory pre­
sented here to motion of solar system bodies, that cannot be as easily 
calculated using classical perturbation theory, it is interesting that 
a treatment of this problem yields to the application of Hamiltonian 
methods. Potential applications to relativistic systems may be found 
in astronomy. For example one may wish to investigate the effect on 
the orbital elements of the gravitational radiation reaction force on a 
small body emitting such radiation as it orbits a massive companion. 

APPENDIX. EVALUATION OF INTEGRALS 

The notation used is as follows: 
n = 2e/(l-e) ; m = 4ye/pDg ; m^ = 1-m ; 

Q = 1 + n sn 2(u,m) ; u = /D6(w-u>)/2 . 

E(u) is the elliptic integral of the second kind; II is the elliptic 
integral of the third kind. Then in the following the arguments (u;m) 
of the Jacobian elliptic functions sn, cn, and dn are suppressed. The 
limits on all integrals are 0 and u. 

N,(u) = J d u/dn 2 = [E(u) - m sn cn/dn]/mi; 
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N (u) = fdu[l/sn 2 - 1/u 2] - 1/u = -E(u) + u - cn dn /sn ; s J 

N c d ( u ) = /du/(cn 2 d n 2 ) = [ N C - mN d]/m 1 ; 

N s c d ( u ) = [ N c " m 2 N d ] / m l + N s ; 

N Q = /du/Q = n(-n;ujm) ; 

N Q d = /du/[Q dn 2] = [nN Q + mN d]/(n+m) ; 

N Q Q = /du/Q 2 = [n 2 sn cn dn /Q + nE(u) - (n+m)u 

-(n 2+2n(l+m)+3m)N Q]/[2(n+l)(n+m)] ; 

NQQd ~ / d u / Q 2 d n 2 " [n(n+m)N Q Q + nmN Q + m 2 N d ] / ( n + m ) 2 ; 

NQQscd = - [ n 2 ( n + 1 ) N Q Q d + n 2 ( n + 2 ) N Q d + n ( n + 2 ) N c d ] / ( n + l ) 2
 + N s c d 

/du/(l-B 0Q) = n(nB 0/(l-B 0);u|m)/(l-B 0) . 
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