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Abstract

Let {Zn}n≥0 be a random walk with a negative drift and independent and identically
distributed increments with heavy-tailed distribution, and let M = supn≥0 Zn be its
supremum. Asmussen and Klüppelberg (1996) considered the behavior of the random
walk given that M > x for large x, and obtained a limit theorem, as x → ∞, for the
distribution of the quadruple that includes the time τ = τ(x) to exceed level x, position
Zτ at this time, position Zτ−1 at the prior time, and the trajectory up to it (similar results
were obtained for the Cramér–Lundberg insurance risk process). We obtain here several
extensions of this result to various regenerative-type models and, in particular, to the case
of a random walk with dependent increments. Particular attention is given to describing
the limiting conditional behavior of τ . The class of models includes Markov-modulated
models as particular cases. We also study fluid models, the Björk–Grandell risk process,
give examples where the order of τ is genuinely different from the random walk case,
and discuss which growth rates are possible. Our proofs are purely probabilistic and
are based on results and ideas from Asmussen, Schmidli and Schmidt (1999), Foss and
Zachary (2002), and Foss, Konstantopoulos and Zachary (2007).
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1. Introduction

Let Z = {Z(t)}t≥0 be a stochastic process with increments having a regenerative structure
(see [2]): there exist random times T0 = 0, T1, T2, . . . splitting Z into independent and
identically distributed (i.i.d.) cycles

{Z(t)− Z(0)}0≤t<R1 = {Z(t + T0)− Z(T0)}0≤t<R1 , {Z(t + Tk)− Z(Tk)}0≤t<Rk+1 , . . .

with lengthsR0 = T0 = 0, R1 = T1 −T0, R2 = T2 −T1, . . . (traditionally as in [2], one allows
the first cycle to have a different distribution; we will not do this since our results are easily
adapted to this setting). We will also assume that Z(0) = 0. A main example we have in mind
is the claims surplus process of an insurance company (accumulated claims minus premiums;
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On exceedance times 137

cf. [3]). In this setting, τ = τ(x) = inf{t : Z(t) > x} is the ruin time with initial surplus x,
M = supt≥0 Z(t) is the maximal claims surplus, and

P(τ < ∞) = P(M > x)

is the ruin probability, but τ and M are also of interest in many other contexts. For example,
M could be the stationary waiting time in a single-server queue with i.i.d. service times whose
input process is modulated by a Markov chain (say, this is an output process from another
stationary single-server queue; see, e.g. [9]).

Under suitable assumptions, the supremum

sup
0≤t≤Rk+1

(Z(t + Tk)− Z(Tk)),

over a typical regenerative cycle of the process increments, has a heavy-tailed distribution, say
F , on [0,∞) with mean mF < ∞ whose integrated tail distribution

F I(x) = min

(
1,

∫ ∞

x

F (y) dy

)

is subexponential. It has been proved in a variety of settings that

P(τ < ∞) = P(M > x) ∼ bF I(x) as x → ∞,

where b > 0 is a constant, thereby extending a classical result for random walks and the
Cramér–Lundberg process due to (in alphabetical order) Borovkov, Cohen, Embrechts, Pakes,
Veraverbeke, and von Bahr. In particular, Asmussen et al. [8] proved the following theorem
(for background on subexponential distributions, see, e.g. [3, Section X.1], [18], or [21]).

Theorem 1.1. In the regenerative setting, let

ξk = Z(Tk+1)− Z(Tk), ξ∗
k = sup

Tk≤t<Tk+1

Z(t)− Z(Tk).

Assume that
P(ξ1 > x) ∼ P(ξ∗

1 > x) ∼ F(x) as x → ∞ (1.1)

for some distribution F such that F I is a subexponential tail, and that −a = Eξ1 < 0. Then

P(M > x) ∼ 1

a
F I(x) as x → ∞.

As demonstrated by the examples in [8] (and later papers, of which Asmussen and Biard [4]
is a recent instance), this result covers a large number of examples. Foss and Zachary [19] gave
a similar result in the case of a modulated random walk.

The purpose of the present paper is to supplement Theorem 1.1 and the corresponding result
from [19] with a description of the asymptotic behavior of τ givenM > x, but in a more general
setting that covers both scenarios (of regenerative structure and of modulation). Results of this
type were first given in Asmussen and Klüppelberg [5], where it was assumed that Z is either
the classical Cramér–Lundberg risk process, a Lévy process, or a discrete-time random walk
Zn = ξ1 + · · · + ξn with the ξk i.i.d. and having common distribution F and mean −a < 0.
Note that there is a discrete-time random walk imbedded in the regenerative setting: consider
the process Z at times Tn.
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138 S. ASMUSSEN AND S. FOSS

In the random walk setting, the basic assumption of [5] is that there exists a function e(x) ↑ ∞
such that, for any t > 0,

lim
x→∞

F I(x + te(x))

F I(x)
= G(t) (1.2)

for some distribution G. We assume in addition that the function e(x) is what could be called
weakly self-neglecting, i.e.

lim sup
x→∞

e(x + e(x))

e(x)
< ∞. (1.3)

Both assumptions (1.2) and (1.3) hold in the standard examples of subexponential distributions;
see, e.g. [10] and [22] for further details. In the regularly varying case F(x) = L(x)/xα , a
natural scaling is e(x) = x; then (1.3) is automatic andG is Pareto withG(t) = (1 + t)−α . For
other subexponential distributions such as the lognormal and the heavy-tailed Weibull, we may
take e(x) = F I(x)/F (x) and thenG is standard exponential. LetW be a random variable (RV)
with distribution G. Then, with τ rw(x) = inf{n : Zn > x}, the following theorem is shown in
[5] (for later contributions in the same direction, see [6] and [23]).

Theorem 1.2. In the random walk setting suppose that F I is a subexponential distribution and
that (1.2) holds. Then, as x → ∞, the conditional distribution of τ rw(x)/e(x) given M > x

converges to the distribution of W/a.

Our first main result is the following extension. For a stochastic process with the regenerative
structure introduced above, for cycle i, let

ti = ti (x) = inf{t ≤ Ri : Z(t + Ti−1)− Z(Ti−1) > x}
if ξ∗

i > x, and ti = Ri otherwise.

Theorem 1.3. In the regenerative setting, in addition to assuming that the conditions of
Theorem 1.1 and (1.2)–(1.3) hold, suppose that, for any y > 0,

P(t1 > ye(x) | ξ1 > x) = o(1) as x → ∞. (1.4)

Then the conditional distribution of τ/e(x) givenM > x converges to the distribution ofμW/a,
where μ = ER.

The intuition behind Theorem 1.3 is as follows. In [5] a number of supplementary results
are given that support the folklore that exceedance of level x occurs as a result of one big ξk
and that all the other ξk are ‘typical’. In the regenerative setting, it was shown in [8] that the
events τ < ∞ and τ rw < ∞ (where the random walk is the process observed at times Tn) are
essentially equivalent, and that exceedance asymptotically occurs in cycle τ rw(x). Thus, we
expect, by the law of large numbers, by the ‘typical’ behavior before τ rw, and by (1.4) (which
ensures that the length of the cycle in which ruin occurs can be neglected), that, conditionally
on M > x, τ/τ rw → μ. Given this, Theorem 1.2 then yields the desired conclusion.

The technical problem is to make this intuition precise in this and in more general settings.
A difficulty is that conditioning on τ introduces some (presumably) small dependence between
cycles 1, . . . , τ rw − 1 as well as some bias in their distribution (expected to be small as well);
this was realized in [4], with the consequence that some results there are heuristic. To overcome
this difficulty, we present an approach for results of the type Theorem 1.2 which is novel and
combines the ideas from [5] and a sample-path analysis developed in [9], [19], and [20]. The new
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approach is developed in Section 3 in the setting of random walks modulated by a regenerative
process Y . For such a process, the asymptotics for P(M > x) are given in [20] (note that the
setting allows Y to be a Markov process with a general state space, whereas the setting in [8]
can only handle the finite case). We supplement here with our second main result, Theorem 3.2,
giving the conditional behavior of τ . Compared to Theorem 1.3, it has the advantage that no
conditions like (1.1) or (1.4) have to be verified, but it is also somewhat less general.

It is easy to construct examples where (1.4) fails as well as the conclusion of Theorem 1.3;
see Section 7. The order of τ may remain e(x) (then with a multiplier larger than μW/a) or be
effectively larger. It is tempting to conjecture that any rate ϕ(x) with ϕ(x)/e(x) → ∞ may be
attained. However, we will show that 1/F (x) is a critical upper bound.

2. Preliminaries

Definition 2.1. Let F be a distribution function, and let F(x) = 1 −F(x) be its tail. Let h(x)
be a positive, nondecreasing function. We say that F is h-insensitive if

F(x + h(x)) ∼ F(x) as x → ∞.

If (1.2) holds for F , we can take h to be any function with h(x) = o(e(x)). The reader is
referred to [21, Chapter 2] for further information about the h-insensitivity property. The term
h-flat is also used by some authors; see, e.g. [11].

Remark 2.1. Any subexponential distribution F is long tailed, i.e. F(x + C) ∼ F(x) for any
constant C. Therefore, by the diagonal argument, we can choose a positive function h ↑ ∞
such that F is also h-insensitive (clearly, the choice of h depends on F ). If F is h-insensitive
and 0 ≤ g ≤ h, then F is also g-insensitive.

Definition 2.2. We say that two families of eventsAx and Bx of positive probabilities, indexed
by x > 0, are equivalent and write Ax ∼ Bx if P(Ax�Bx) = o(P(Ax)) as x → ∞, where
A�B = A \ B ∪ B \ A is the symmetric difference.

Note that if Ax ∼ Bx then P(Ax) ∼ P(Bx) also.

3. Modulated random walk

Consider a discrete-time regenerative process Y = {Yn, n ≥ 1} such that, for each n, Yn
takes values in some measurable space (Y,BY). We say that a random walk {Zn, n ≥ 0}
defined by Z0 = 0 and Zn = ξ1 + · · · + ξn for n ≥ 1 is modulated by the process Y if

(i) conditionally on Y , the RVs ξn, n ≥ 1, are independent;

(ii) for some family {Fy, y ∈ Y} of distribution functions such that, for each x, Fy(x) is a
measurable function of y, we have, for n = 1, 2, . . . ,

P(ξn ≤ x | Y ) = P(ξn ≤ x | Yn) = FYn(x) almost surely (a.s.). (3.1)

LetM rw = supn≥0 Zn. Under conditions (C1)–(C4) below, Zn → −∞ a.s. as n → ∞, and so
the random variable M rw is finite a.s.

The regenerative epochs of the modulating process Y are denoted by 0 = T0 < T1 < · · · ,
with Rk = Tk − Tk−1. By definition, the cycles (Rk, (Yn, 0 < n ≤ Tk − Tk−1)), k ≥ 1, are
i.i.d. We assume that

μ = ER1 < ∞. (3.2)
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Let

π(B) = E
∑R1

1 1(Yn ∈ B)
μ

, B ∈ BY,

be the stationary probability measure. We assume that each distribution Fy, y ∈ Y, has a finite
mean

ay = E[ξn | Yn = y] =
∫ ∞

−∞
xFy(dx) ∈ (−∞,∞), (3.3)

and that the family of distributions

{Fy, y ∈ Y} is uniformly integrable. (3.4)

Furthermore, we assume that this family of distributions satisfies the following additional
assumptions with respect to some reference distributionF with finite mean and some measurable
function c : Y → [0, 1]:
(C1) Fy(x) ≤ F(x) for all x ∈ R and all y ∈ Y

(C2) Fy(x) ∼ c(y)F (x) as x → ∞ for all y ∈ Y;

(C3) κ = supy∈Y ay is finite and a = − ∫
Y ayπ(dy) is finite and strictly positive;

(C4) for some nonnegative b > κ ,

P(bR1 > n) = o(F (n)) as n → ∞.

Note that condition (C4) is redundant if κ < 0—then we can take b = 0.
The following result is known (see Theorem 2.2 of [20] for a slightly more general version

and also for a discussion on the importance of conditions; see also Proposition 3.2 of [23]).

Theorem 3.1. Suppose that conditions (3.1)–(3.4) and (C1)–(C4) hold, and that the distri-
bution F I is subexponential. Then Zn/n → −a a.s. as n → ∞; in particular, M rw is an
almost-sure finite RV. Furthermore,

lim
x→∞

P(M rw > x)

F I(x)
= C

a
,

where C = ∫
Y c(y)π(dy) ∈ [0, 1].

The main idea in the proof of Theorem 3.1 is that the supremum of the modulated random
walk, M rw, may be closely approximated by a sum of two independent RVs, where one has a
light-tailed distribution and the other is the supremum of an ordinary random walk with i.i.d.
heavy-tailed increments with integrated tail distribution proportional to F

I
.

We also note that, by the strong law of large numbers (SLLN) and the diagonal argument,
we can choose a sequence εn ↓ 0 such that

P(|Zm +ma| ≤ mεm for all m ≥ n) → 1 as n → ∞.

Then, for any function h(t) ↑ ∞ as x → ∞,

P(|Zm +ma| ≤ mεm + h(x) for all m) → 1 as x → ∞. (3.5)

Based on Theorem 3.1 and (3.5), we obtain the following auxiliary result (see, e.g. Corollary 5
of [19] for an analogous statement in the case of an ordinary random walk).
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Proposition 3.1. Assume that the conditions of Theorem 3.1 hold and that C > 0. Let the
function h(x) ↑ ∞, h(x) = o(x), be such that F I is h-insensitive, and introduce the events

Kn,x =
⋂

m≤n−1

{|Zm +ma| ≤ mεm + h(x)},

An,x = {ξn > x + na}, Aε,hn,x = {ξn > x + na + nεn + h(x)}.
Then the following equivalences hold:

{M rw > x} ∼
⋃
n≥1

{M rw > x} ∩ An,x ∩Kn,x

∼
⋃
n≥1

{M rw > x} ∩ Aε,hn,x ∩Kn,x

∼
⋃
n≥1

{M rw > x} ∩ An,x

∼
⋃
n≥1

{M rw > x} ∩ Aε,hn,x

∼
⋃
n≥1

An,x

∼
⋃
n≥1

Aε,hn,x; (3.6)

therefore,

P(M rw > x) ∼
∑
n≥1

P(Aε,hn,x ∩Kn,x) ∼
∑
n≥1

P(Aε,hn,x) ∼
∑
n≥1

P(An,x) ∼ C

a
F I (x). (3.7)

Finally, there exists a function N = N(x) → ∞ such that F
I
(x + aN) ∼ F

I
(x) and equiva-

lences (3.6) continue to hold if we replace n ≥ 1 by n ≥ N .

Proof. We can easily verify that⋃
n≥1

Kn,x ∩ Aε,hn,x ⊆ {M rw > x}.

The events Kn,x ∩ Aε,hn,x are disjoint and
∑
n≥1 P(A

ε,h
n,x \ An,x) = o(F I(x)); hence, by (3.5),

P

(⋃
n≥1

Kn,x ∩ Aε,hn,x
)

=
∑
n≥1

P(Kn,x ∩ Aε,hn,x) ∼
∑
n≥1

P(Kn,x ∩ An,x) ∼
∑
n≥1

P(An,x).

Since we have P(M rw > x) ∼ (C/a)F I(x) by Theorem 3.1, and since, by direct computations,∑
n≥1 P(An,x) ∼ (C/a)F I(x), equivalences (3.7) follow. The last fact follows directly from

Remark 2.1 and equivalences (3.6) and (3.7). This completes the proof.

A special case of a modulated random walk is an ordinary random walk with i.i.d. increments.
Consider an auxiliary i.i.d. sequence {ξ
n} with distribution F , and introduce the events

A
n,x = {ξ
n > x + na} and D
x =
⋃
n≥1

A
n,x.
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Assume that there exists a function e(x) ↑ ∞ such that, for any t > 0, there exists a limit

lim
x→∞

P(D



x+te(x))

P(D


x)

= G(t) (3.8)

with limt→∞G(t) = 0. Note that condition (3.8) is nothing other than condition (1.2) since
P(D



x) ∼ ∑

n≥1 P(A


n,x) ∼ (1/a)F

I
(x).

On the event D
x , introduce the random variable

τ 
 ≡ τ 
(x) = min{n ≥ 1 : 1(A
n,x = 1)}.
Then the following result holds.

Lemma 3.1. Assume that the distribution F I is subexponential and that (1.2) holds. Then the
conditional distribution of τ 
/e(x) givenD
x converges to the distributionG (say of the RVW ).

Indeed,

P

(
aτ


e(x)
> t

∣∣∣∣ τ 
 < ∞
)

= P

(
τ 
 >

t

a
e(x)

∣∣∣∣ τ 
 < ∞
)

∼
∑
n>(t/a)e(x) P(ξ



n > x + na)

P(D


x)

∼ P(D



x+te(x))

P(D


x)

→ G(t).

We now return to the modulated random walk. On the event {M rw > x}, we similarly
introduce the RV

τ rw = τ rw(x) = min{n ≥ 1 : Zn > x}.
Recall from Proposition 3.1 that

{M rw > x} ∼ Dx =
⋃
n≥1

An,x.

Then, by Lemma 3.1, we obtain the following result.

Lemma 3.2. Under the assumptions of Theorem 3.1 with C > 0 and (1.2), the conditional
distribution of aτ rw/e(x), conditioned on {M rw > x}, converges to the distribution G.

Indeed, the equivalence

P(aτ 
 > te(x) | τ 
 < ∞) ∼ P(aτ rw > te(x) | τ rw < ∞)

holds since we may represent conditional probabilities as ratios of probabilities where both
numerators and both denominators are pairwise asymptotically proportional, with the same
coefficient C.

Furthermore, by Proposition 3.1 and Lemma 3.2, we deduce the following result.

Theorem 3.2. Assume that (1.2) holds. Then, under the conditions of Theorem 3.1 and the
assumption that C > 0, the distribution of(

aτ rw

e(x)
,
Zτ rw−1

e(x)
, max

0≤m≤τ rw−1

|Zm +ma|
τ rw ,

Zτ rw − x

e(x)

)
, (3.9)
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conditioned on {M rw > x}, converges to the distribution of (W,−W, 0,W ′), whereW andW ′
have the same distribution G and, for any positive u and v,

P(W > u, W ′ > v) = P(W > u+ v). (3.10)

This result is a complete analogue of Theorem 1.1 of Asmussen and Klüppelberg [5] which
was obtained in the case of an ordinary random walk.

Proof of Theorem 3.2. We have already proved the convergence of the first component in
(3.9). From that and (3.5), we conclude that

P(|Zm +ma| ≤ mεm + h(x) for all m < τ rw | τ rw < ∞) → 1 as x → ∞.

Then the convergence of the second and third components in (3.9) follows if we take h(x) → ∞
such that h(x) = o(e(x)).

It remains to show the convergence of the last component in (3.9). Since

{Zτ rw − x > ve(x)} ∼
⋃
n≥1

{ξn − x − na > ve(x)},

we obtain

P(Zτ rw − x > ve(x)) ∼ P

(⋃
n≥1

{ξn − x − na > ve(x)}
)

∼
∑
n≥1

P(ξn − x − na > ve(x))

=
∑
n≥1

P(ξn > x + ve(x)+ na)

∼ P(Dx+ve(x))

(here we assume that Zτ rw = −∞ if τ rw = ∞). Similarly, equality (3.10) follows since

{aτ rw > ue(x), Zτ rw − x > ve(x)} ∼
⋃

n>ue(x)

{ξn > x + na, ξn − na − x > ve(x)}

=
⋃

n>ue(x)

{ξn > x + na + ve(x)}.

Then

P(aτ rw > ue(x), Zτ rw − x > ve(x)) ∼
∑

n>ue(x)

P(ξn > x + na + ve(x))

∼ C
∑

n>ue(x)

P(ξ
n > x + na + ve(x))

= C
∑
n≥1

P(ξ
n > x + na + (v + u)e(x))

∼ CP(D



x+(u+v)e(x))
∼ P(Dx+(u+v)e(x)),

completing the proof.
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4. Continuous-time modulated regenerative processes

We now consider the continuous-time processZ(t) introduced in Section 1 and assume that,
more generally, it is a regenerative process which is modulated by a discrete-time regenerative
process Y . This means that (compare with the previous section!)

(i) conditionally on Y , the random elements Vk+1 = {Z(t) − Z(Tk), 0 ≤ t ≤ Rk+1} are
independent;

(ii) for any n,
P(Vn ∈ · | Y ) = P(Vn ∈ · | Yn) a.s.

Furthermore, let, as in Theorem 1.1,

ξk = Z(Tk+1)− Z(Tk), ξ∗
k = sup

Tk≤t<Tk+1

Z(t)− Z(Tk),

and assume that the conditions of Theorem 3.1 and (1.2) hold. Then the statements of Theo-
rems 3.1 and 3.2 also hold.

Note thatM ≡ supt≥0 Z(t)may also be represented asM = supn≥0(ξ1 + · · · + ξn + ξ∗
n+1).

Then we have the following result.

Theorem 4.1. Assume that the conditions of Theorem 3.1 and (1.2) hold, and that C > 0 in
Theorem 3.1. Assume further that, for all y ∈ Y,

P(ξ∗
n > x | Y = y) ∼ Fy(x) a.s.

and that
P(ξ∗

n > x) ≤ cF (x)

for some c ≥ 1 and all x. Then, as x → ∞,

{M > x} ∼ {M rw > x} ∼
⋂
n≥1

Kn,x ∩ An,x

and, for τ̂ rw ≡ τ̂ rw(x) = min{n ≥ 1 : Zn−1 + ξ∗
n > x},

P(τ rw = τ̂ rw | M > x) → 1 as x → ∞ (4.1)

and
P(τ rw = τ̂ rw | M rw > x) → 1 as x → ∞. (4.2)

Therefore, the statement of Theorem 3.2 continues to hold if in (3.9) we replace τ rw by τ̂ rw and
then Zτ rw by Zτ̂ rw−1 + ξ∗

τ̂ rw .

The proof of Theorem 4.1 follows from minor, routine modifications of the calculations
given in the previous section.

5. Proof of Theorem 1.3

Now we assume that the process Z(t) is regenerative. This means that Y is a constant and,
as a corollary, conditions (3.1)–(3.4) and (C1)–(C4) are redundant. Also, the ξn are i.i.d. in this
case and, therefore, we may take τ 
 = min{n : ξn > x + na}.

Let P
(x) denote the conditional probability given τ < ∞, write Tn = R1 + · · · + Rn, and

recall the definition of τ̂ rw from Theorem 4.1. Note that, since the events τ < ∞ and τ̂ rw < ∞
coincide, and are equivalent to each of the events τ rw < ∞ and τ 
 < ∞ (see Lemma 3.2), we
may use either of the four in conditioning arguments.

https://doi.org/10.1239/jap/1395771419 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1395771419


On exceedance times 145

The proof of Theorem 1.3 is a straightforward combination of Theorem 3.2, Theorem 4.1
and the following two lemmas. Both lemmas use the fact, implicit in [8] and also a consequence
of (4.1) and (4.2), that

P
(x)(τ ∈ [Tτ rw−1, Tτ rw)) → 1 as x → ∞

since, asymptotically,
{τ ∈ [Tτ rw−1, Tτ rw)} ⊆ {τ rw = τ̂ rw}.

Lemma 5.1. It holds that Tτ rw−1/e(x) → μW/a in P
(x)-distribution.

Proof. We use the representation

Tτ rw−1

e(x)
= Tτ rw−1

τ rw

τ rw

e(x)
. (5.1)

Choose N = N(x) → ∞ from Proposition 3.1. The first fraction on the right-hand side of
(5.1) converges to μ in P

(x) probability since, by the independence of An,x and Tn−1 and by
the SLLN, {∣∣∣∣Tτ rw−1

τ rw − μ

∣∣∣∣ ≤ ε, τ rw < ∞
}

∼
⋃
n≥1

{∣∣∣∣Tn−1

n
− μ

∣∣∣∣ ≤ ε

}
∩ An,x

∼
⋃
n≥N

{∣∣∣∣Tn−1

n
− μ

∣∣∣∣ ≤ ε

}
∩ An,x

∼
⋃
n≥N

An,x

∼
⋃
n≥1

An,x

∼ {τ rw < ∞}.
Then the second fraction converges to W/a by Theorem 3.2, and the result follows.

Recall that τ = ∑τ̂ rw−1
1 Ri + tτ̂ rw .

Lemma 5.2. Under the conditions of Theorem 1.3, tτ̂ rw/e(x) → 0 in P
(x)-probability.

Proof. By Theorem 3.2 and Theorem 4.1, for any δ > 0, we can choose K > 0 such that

P

(
τ̂ rw

e(x)
> K

)
≤ δ

2

for all large enough x. Then, for any y > 0,

P
(x)

(
tτ̂ rw

e(x)
> y

)
≤ (1 + o(1))

∑
n≤Ke(x) P(tn > ye(x), ξn > x + na)

F
I
(x)/a

+ δ.

If (1.3) holds then lim supx→∞ e(x + ke(x))/e(x) < ∞ for any k > 0. Therefore, the latter
sum in the numerator is equivalent to∑

n≤Ke(x)
P(tn > ye(x + na) | ξn > x + na)P(ξn > x + na) = o(1)F

I
(x)

since the (tn, ξn) are i.i.d. Then we complete the proof by first letting x → ∞ and then δ → 0.

Combining this with the statements of Theorem 4.1 and Lemma 5.1 completes the proof of
Theorem 1.3.
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6. Examples

Example 6.1. In the setting of Section 3, we assume that Z(t) is a right-continuous, piecewise
constant process with Z(n) = Zn. We will show here that, under a natural extra assumption,
Theorem 1.3 holds for this model as well. Note that, because of the result in [20], we need not
verify the conditions of Theorem 1.1 (which may be messy); all that is needed is to establish
(1.4).

Assume in addition that the distribution of the cycle length, R, has a lighter tail than F(x),
in the following strong sense: there exists a constant c > 1 such that

P(cR > x) = o(F (x)) as x → ∞. (6.1)

Let ξ be the increment over the cycle, i.e. ξ = ∑R
1 ξi . For (1.4) to hold, it suffices to show that,

for any y > 0,
P(R > yx, ξ > x) = o(F (x)) as x → ∞, (6.2)

where F is the reference distribution. For any fixed x0 and x ≥ x0, as x → ∞,

P(R > yx, ξ > x) = E[P(ξ > x | R, Y0, . . . , YR)1(Y > yx)]
≤

∑
k≥xy

F k(x)P(R = k) (by (C2))

≤
∑
k≥x0y

F k(x)P(R = k)

∼ F(x)E[R;R > x0y],
where, under assumption (6.1), the last equivalence follows from [17, Theorem 1]. By letting
x0 → ∞, we obtain (6.2).

Example 6.2. The Björk–Grandell model (see [13]) is a regenerative risk process such that, in
addition to the cycle length R, the rate� of claim arrivals within a cycle is random. All claims
are i.i.d. with distribution H and with mean m, and independent of (R,�), with a constant
rate 1 of premium inflow. The infinite-horizon ruin probabilities are discussed in [13] for the
light-tailed case and in [8] for the heavy-tailed case. As noted in [8], heavy tails of ξ may occur
in at least three ways: (i) F is heavy tailed; (ii) � is heavy tailed; (iii) R is heavy tailed for
sufficiently large values of�. Under some (not necessarily minimal) assumptions, we will give
arguments to identify the limiting conditional behavior of τ .

For the following estimates, we may keep in mind

ξ = X1 + · · · +XMR�
− R (6.3)

withM an independent Poisson process at unit rate. For the tail asymptotics of ξ , the −R term
may often be neglected (see [4] for some preliminary discussion and [1] for a more complete
picture). Also, with light-tailed claims we may frequently approximate X1 + · · · + XMR�

by
mR�; the relevant large deviations arguments are given in detail in [8] and will not be repeated
here.

Consider case (i) with R and � both light tailed. Using (6.3) and an independence result
from [4], it is standard that

P(ξ > x) ∼ E(R�)F(x).
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By a classical inequality due to Kesten (see, e.g. [12, p. 429]), to each δ > 0 there is a Cδ < ∞
such that P(X1 + · · · +Xn > x) ≤ CδenδF (x) for all n. With

p = P(MR� = 1) > 0, q = pP(X1 > x + R) ∼ pF(x),

we obtain

E[esR | ξ > x] = E[esR; ξ > x]
P(ξ > x)

≤ 1

q
E[esR;X1 + · · · +XMR�

> x]

≤ 1

q
E[esRCδeδMR�F (x)]

∼ Cδ

p
E[esReR�(e

δ−1)].
Taking s and δ small enough, this expression is finite, and its independence of x together with
e(x) → ∞ then gives (1.4) and the conclusion of Theorem 1.3.

Let us now consider case (ii) with F light tailed and (R,�) satisfying P(� > x) ∼ x−α
with α > 1 and ERα

′
< ∞ for some α′ > α. Then, by Breiman’s theorem (see [14], [15],

and [16]), P(mR� > x) ∼ cx−α , where c = mαERα . By a large deviations argument,

P(MR� > x) = P(R� > x)+ O(e−ε1x)

for some ε1 > 0. A further large deviations argument, given in [7], then shows that

{X1 + · · · +XMR�
> x}�{mR� > x} = A(x),

where PA(x) = O(e−εx) for some ε > 0. In particular, X1 + · · · +XMR�
has asymptotic tail

cx−α . Hence, so has ξ = X1 + · · · + XMR�
− R (see [4]; note that this is nontrivial due to

dependence). Let α < α′′ < α′, and let R∗ be an RV with distribution

P(R∗ ∈ dt) = E[Rα′′ ;R ∈ dt]
E(Rα

′′
)

.

Then

E[Rα′′ | ξ > x] ∼ E[Rα′′ ; ξ > x]
cx−α

≤ 1

cx−α E[Rα′′ ;X1 + · · · +XMR�
> x]

= 1

cx−α E[Rα′′ ;mR� > x] + O(e−εx)

= 1

cx−α ERα
′′
P

(
R∗� >

x

m

)
+ O(e−εx).

Another application of Breiman’s theorem justified by the choice of α′′ shows that R∗� has a
distribution tail asymptotically proportional to x−α . Hence, E[Rα′′ | ξ > x] stays bounded as
x → ∞, and arguing as above gives (1.4) and the conclusion of Theorem 1.3.

In contrast, the behavior in case (iii) is different; see Section 7.

Example 6.3. LetZ be a two-stage fluid model, where a cycleR is composed of two stages such
that the first has deterministic lengtha1 and the second a random lengthR2 with a subexponential
distribution F with mean a2 < a1. In stage 1, Z decreases deterministically at rate 1 and in
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stage 2,Z increases deterministically at rate 1 (thus, −a = a2 −a1 < 0). Clearly, ξ > x occurs
if and only if R2 > x + a1. Thus, P(ξ > x) = F(x + a1) ∼ F(x) and given ξ > x, R is at
least x. Since e(x) = O(x) in all examples, condition (1.4) cannot hold and, more precisely,
given ξ > x, R is of order x + e(x). Therefore, τ is of order e(x) in the regularly varying
case, but with a multiplier larger than μW , and of order x � e(x) for other subexponential
distributions.

Note that this example shows that the regenerative setting is more flexible than the Markov
additive setting: if we consider the discrete-time analogue, the increments in each Markov stage
are bounded and there is thus no version of condition (C2) with F heavy tailed. On the other
hand, conditions may be easier to verify in the Markov additive setting.

7. Different growth rates

The following result is straightforward given Lemma 5.1 and the proof of Theorem 1.3. For
simplicity (to avoid distinction between x and e(x)), we state it only for the regularly varying
case where the RV W in Theorem 1.2 is Pareto.

Corollary 7.1. Assume that F in (1.1) is regularly varying and that instead of condition (1.4)
we have

P

(
t1

e∗(x)
> y

∣∣∣∣ ξ > x

)
→ P(W ∗ > y) for all y

for some function e∗(x) with lim inf e∗(x)/x > 0 and some RV W ∗.

(i) If e∗(x) ∼ dx for some d then

τ

x
→ Wμ

a
+ d(1 +W)W ∗ in P

(x)-distribution.

(ii) If e∗(x)/x → ∞ then

τ

e∗(x(1 +W))
→ W ∗ in P

(x)-distribution

with W and W ∗ independent in both (i) and (ii), and W independent of τ in (ii). In particular,
if e∗(x) ∼ dxβ with β > 1 then τ/xβ → d(1 +W)βW ∗ in P

(x)-distribution.

Proof. The asymptotic P
(x)-distribution of τ is the same as the asymptotic distribution

of
∑τ̂ rw−1

1 Ri + tτ̂ rw . Here
∑τ̂ rw−1

1 Ri/x → μW/a in P
(x)-distribution (Lemma 5.1). More

generally,

1

x

(τ̂ rw−1∑
1

Ri,

τ̂ rw−1∑
1

ξi

)
→

(
μW

a
,W

)
.

Given W = w, ξτ̂ rw will asymptotically have to exceed xw + x, implying that t̂τ rw/e∗(x(w +
1)) → W ∗ and the conclusion of (i) since the limit W ∗ does not depend of w. For (ii), just
note that in this case

∑τ̂ rw−1
1 Ri may be neglected.

We now give an example of e∗(x) ∼ dx and thereafter some discussion of what may happen
if e∗(x)/x → ∞.

Example 7.1. We return to the Björk–Grandell model of Example 6.2(iii), i.e. R is heavy
tailed for sufficiently large values of �. Here we expect that given � = λ, the surplus process∑N(t)

1 Ui − t can be approximated by λmt − t , and this is confirmed by the large deviations
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bounds in [8]. Therefore, the behavior should be like a fluid model with heavy-tailed on periods,
so that the exceedance time of x within a cycle should be of order x and accordingly makes a
genuine contribution to τ .

We next verify this statement and make it more precise. Assume, as in [8], that the claims
are light tailed and independent of (R,�); that, for some λ0 > 1/μ,

P(R > t | � = λ) = F(t), λ > λ0,

P(R > t | � = λ) ≤ G(t), λ ≤ λ0,

for some regularly varying F with F(t) = L(t)/tα (L slowly varying) and some G satisfying
G(t) = o(F (t)); and that the regularity condition

sup
x≥x0

L(x/y)

L(x)
≤ g(y) (7.1)

for all y > 0, some x0 > 0, and some function g(y) with E[�αg(�)] < ∞ holds.
It was then shown in [8] that the conditions of Theorem 1.1 are satisfied and that

ψ(x) ∼ c1F(x),

where
c1 = c

(α − 1)[ER −mE(�R)] , c = E[(�m− 1)α;� > λ0].

This depends on the estimate

P(ξ > x) ∼ cF (x). (7.2)

As preparation for the study of the ruin time, we first recall the proof of (7.2). That the event
ξ > x occurs follows by large deviations arguments equivalent to R(�m− 1) > x, and so

P(ξ > x) ∼
∫ ∞

λ0

f�(λ)F

(
x

λm− 1

)
dλ

=
∫ ∞

λ0

f�(λ)(λm− 1)α
L(x/(λm− 1))

xα
dλ

∼
∫ ∞

λ0

f�(λ)(λm− 1)α
L(x)

xα
dλ

= cF (x),

where the last ‘∼’ follows by dominated convergence justified by (7.1). If ξ > x, τ ≤ xt is
to occur, we need in addition x/(λm − 1) ≤ xt , and so, by the same dominated convergence
argument,

P(ξ > x, τ ≤ xt) ∼
∫ ∞

λ0∨(1/t+1)/m
f�(λ)F

(
x

λm− 1

)
dλ

∼
∫ ∞

λ0∨(1/t+1)/m
f�(λ)(λm− 1)α

L(x)

xα
dλ

= cF (x)W ∗(t),
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where W ∗ is the distribution with cumulative distribution function

P(W ∗ ≤ t) =
⎧⎨
⎩

1

c

∫ ∞

(1/t+1)/m
f�(λ)(�m− 1)α dλ, t ≤ 1/(λ0m− 1),

1, t > 1/(λ0m− 1).

From Corollary 7.1 we therefore conclude that τ(x)/x → W ∗(1 +W) in P
(x)-distribution.

We now discuss when τ may grow at rates larger than e(x) and how fast the rate may be. If
tx = E[R | ξ = x] → ∞ faster than e(x), we expect R given ξ > x (and, hence, often τ ) to
grow at a faster rate than e(x). At first sight, we could conjecture that any rate is possible. This
is, however, not possible because of the requirement that ER < ∞. Suppose, for example, that
F is a discrete subexponential distribution with point probabilities fx = P(ξ = x) ∼ c1/x

α+1.
Assuming that tx ∼ c2x

β , we obtain

∞ > ER =
∞∑
0

txfx ≈
∞∑
0

c2x
β c1

xα+1 ,

implying that β < α. The following result gives the more precise upper bound c/F (x) and is
more satisfying by being in terms of the growth rate of τ rather than expected values.

Theorem 7.1. Let F(x) = P(ξ ≤ x) be a discrete subexponential distribution with point
probabilities f0, f1, . . . , and let ϕ be a function with ϕ(x)/e(x) → ∞. Assume that P(R >

εϕ(x) | ξ > x) ≥ δ for some ε, δ > 0 and all large x. Then ϕ(x) ≤ c/F (x) for some
constant c.

Proof. Define t (x) as above, and let

k(x) = E[R | ξ > x] = 1

F(x)
(tx+1fx+1 + tx+2fx+2 + · · · ).

Multiplying by F(x) and subtracting the resulting equation with x replaced by x+1, it follows
that

tx+1 = 1

fx+1
(k(x)F (x)− k(x + 1)F (x + 1)).

This expression needs to be positive which gives k(x + 1)/k(x) < F(x)/F (x + 1) and,
multiplying from x = 1 to y − 1,

k(y) < k(1)F (1)
1

F(y)
. (7.3)

However, clearly, k(x) = E[R | ξ > x] ≥ εδh(x), from which we conclude that

ϕ(x) ≤ k(x)

εδ
<
k(1)F (1)

εδ

1

F(x)
,

completing the proof.

The fact that the upper bound of order 1/F (x) is attainable follows from the following
example.

Example 7.2. Let F be a discrete subexponential distribution with f0 > 0, f1, f2, . . . being
point probabilities. A discrete-time regenerative process Z is constructed as follows. At the
start of a cycle, an RV X with distribution F is drawn. If X = 0, we take R = 1 and ξ = −b.
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If X = x > 0, we take R = ϕ(x) for some suitable ϕ(x) ↑ ∞, Z0 = · · ·Zϕ(x)−2 = 0, and
ξ = Zϕ(x)−1 = x (we then need to choose b such that Eξ < 0).

The question is whether all rates are attainable. To discuss this point, let ϕ(x) ↑ ∞. By
Theorem 7.1, ϕ must satisfy ϕ(x) = O(1/F (x)). Conversely, the construction works if (7.3)
holds and gives a risk process such that τ grows at rate at least ϕ(x).

For example, if F is regularly varying with index α > 1, this allows for growth rates ϕ(x)
of order xβ with 1 < β < α, whereas e(x) is only of order x.
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