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Mapping the shape and dimension of
three-dimensional Lagrangian coherent
structures and invariant manifolds
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We introduce maps of Cauchy–Green strain tensor eigenvalues to barycentric coordinates
to quantify and visualize the full geometry of three-dimensional deformation in stationary
and non-stationary fluid flows. As a natural extension of Lagrangian coherent structure
diagnostics, which provide separate scalar fields and a one-dimensional quantification of
fluid deformation, our barycentric mapping visualizes the role of all three Cauchy–Green
eigenvalues (or rates of stretching) in a single plot through a novel stretching coordinate
system. The coordinate system is based on the distance from three distinct limiting states
of deformation that correspond with the dimension of the underlying invariant manifolds.
One-dimensional axisymmetric deformation (sphere to rod deformation) corresponds to
one-dimensional unstable manifolds, two-dimensional axisymmetric deformation (sphere
to disk deformation) corresponds to two-dimensional unstable manifolds and the rare
three-dimensional isometric case (sphere to sphere translation and rotation) corresponds to
shear-free elliptic Lagrangian coherent structures (LCSs). We provide methods to visualize
the degree to which fluid deformation approximates these limiting states, and tools to
quantify differences between flows based on the compositional geometry of invariant
manifolds in the flow. We also develop a simple analogue for bilinearly representing
and plotting both rates of stretching and rotation as a single vector. As with other LCS
techniques, these diagnostics define frame-indifferent material features in the flow. We
provide multiple computed examples of LCS and momentum transport barriers, and show
advantages over other coherent structure diagnostics.
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Figure 1. One-dimensional and 2-D axisymmetric deformation of a fluid sphere, with corresponding
Cauchy–Green eigenvectors, ξ i.

1. Introduction

Lagrangian coherent structures (LCSs) are frame-indifferent and material flow features
with exceptional qualities when compared with neighbouring structures. Fundamental to
the Lagrangian study of fluid flow is the flow map

Ft
t0(x0) = x(t; t0, x0) x ∈ R

3, t ∈ [t0, tf ] (1.1)

that takes a fluid particle from its initial position x0 at time t0, to its current position
x(t; t0, x0) at time t, according to a velocity field v(x, t). The right Cauchy–Green strain
tensor, C(x0) = ∇Ft

t0(x0)
T∇Ft

t0(x0), plays a prominent role in objective descriptions
of Lagrangian deformation and LCS extraction algorithms, the most common of
which is the finite time Lyapunov exponent (FTLE) (Haller 2015). For incompressible
three-dimensional (3-D) flows, C(x0) is symmetric, positive definite with unit determinant.
That is, its eigenvalues λi can be ordered such that

0 < λ1 ≤ λ2 ≤ λ3, λ1λ2λ3 = 1, 0 < λ1 ≤ 1 ≤ λ3. (1.2)

In n-dimensional flows, the FTLE at a point x0, Λn(x0) = (1/(tf − t0)) log(λn)
represents the maximal degree of stretching of fluid initially at the point x0, from t0 to
tf . In 2-D flows, λ2 uniquely determines λ1 via the unit determinant, and 2-D FTLE plots
succinctly describe stretching over a given time window. However, in 3-D incompressible
flows, the deformation of a sphere has two degrees of freedom, and additional information
about fluid deformation quantified by λ1 and λ2 is not determined by FTLE alone
(figure 1). There are currently no LCS diagnostics that present this higher-dimensional
stretching information in a single visualization or metric.

The diffusion barrier strength (DBS), an LCS diagnostic that identifies diffusive
transport barriers, utilizes the trace of time-averaged C, and thus combines information of
all three eigenvalues (Haller et al. 2020). The trace, however, maps the eigenvalue space
onto a 1-D subspace. In this way, both DBS and FTLE fields provide a 1-D presentation of
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The shape and dimension of invariant manifolds

deformation in a system that cannot be fully described by fewer than two scalars. The
last notable frame-indifferent method for quantifying Lagrangian stretching is relative
dispersion (Haller & Yuan 2000). Again, this method provides a single scalar field and
only a 1-D representation of particle pair separation. There are thus currently no methods
available for visualizing, or compactly representing, the geometry of 3-D stretching along
hyperbolic LCS in a single plot.

In the present work, we develop a novel barycentric map to compactly describe the
3-D material deformation of fluid in physical space. Barycentric coordinates date back to
the work of Möbius and define the position of a point by its distances from vertices of
a simplex (Möbius 1827). Barycentric coordinates have since become a common tool for
computer visualizations and computational mechanics (Hormann & Sukumar 2018). In
turbulent flows, barycentric coordinates have also proved useful for visualizing statistical
descriptions of the Reynolds stress. Specifically, the Lumley triangle has long been used as
a way to describe turbulence invariants and anisotropy in fluctuating velocity components
(Lumley & Newman 1977; Pope 2000). A recent adaptation of the Lumley triangle has
utilized a barycentric triangle representation of eigenvalue metrics to describe anisotropy
and the stability of the atmosphere (Banerjee et al. 2007; Stiperski & Calaf 2017; Stiperski,
Calaf & Rotach 2019).

We present a method for mapping the 2-D space spanned by C eigenvalues, and their
associated stretching exponents, to barycentric coordinates to determine the dimension
of the underlying stable and unstable manifolds in 3-D non-stationary fluid flow. These
invariant manifolds control the shape of the Lagrangian deformation of fluid and their
dimension in physical space provides a convenient way to describe that deformation.
We define each vertex of a 2-simplex (triangle) to represent a unique end state: 1-D
axisymmetric stretching, 2-D axisymmetric stretching or a 3-D isometry of fluid. The
distance to the vertices represents the local deformation of the fluid being studied. In
contrast to the Lumley triangle where end states represent shapes in the eigenspace of the
Reynolds stress tensor, we are instead describing physical fluid deformation in an objective
and material way.

We provide several motivating examples that examine advantages for identifying
3-D fluid structures with barycentric coordinates over scalar fields, and novel metrics
for describing the geometry of invariant manifolds in the flow. We also compare our
visualizations with FTLEs and common diagnostics for studying wall-bounded turbulent
flows.

2. Methods

2.1. Linear eigenvalue ratios
A simple barycentric map representing the three idealized states of deformation can be
defined directly from the eigenvalues of the Cauchy–Green strain tensor, C. To do this, we
first normalize the eigenvalues so that they sum to one, λ̃i = λi/

∑
j λj. In this way, every

combination of eigenvalues can be represented as a convex combination of barycentric
coordinate vectors, and be mapped to the interior of a 2-simplex (triangle). We map from
the eigenvalue space to a barycentric coordinates system, (C1, C2, C3) via

C1 = λ̃3 − λ̃2, (2.1)

C2 = 2(λ̃2 − λ̃1), (2.2)

C3 = 3λ̃1. (2.3)
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Eigenvalues C1 C2 C3 (xb, yb) Invariant Manifolds Resulting Shape

λ̃1 = λ̃2 = λ̃3 = 1/3 0 0 1 (1/2,
√

3/2) Elliptic Sphere
λ̃1 ≈ 0, λ̃2, λ̃3 ≈ 1/2 0 1 0 (0, 0) Hyp: 1-D Stable, 2-D Unstable Disk
λ̃1, λ̃2 ≈ 0, λ̃3 ≈ 1 1 0 0 (1, 0) Hyp: 2-D Stable, 1-D Unstable Rod

Table 1. Relationship of Cauchy–Green strain tensor eigenvalues, barycentric coordinates, invariant
manifolds and resulting deformation of a sphere.

For each coordinate, Ci = 1 corresponds to the limiting states of deformation defined in
table 1. This linear mapping provides a simple tool for compactly representing the role
of all three C eigenvalues in fluid deformation, and estimating the dimension of invariant
manifolds. The study of LCSs typically focuses on the rate of stretching of fluid, however,
which requires a more complex map to represent in barycentric coordinates. We develop
that map in the following section, and it remains the focus of the examples in the rest of
this study. The techniques of stretching coordinate analysis, however, equally apply to our
initial linear barycentric eigenvalue coordinate system.

2.2. Stretching exponent representation
To more directly represent the rate of stretching in a time-varying velocity field, we
approximate the stretching exponents as defined as the natural logarithm of the C
eigenvalues. Mapping the stretching exponents to barycentric coordinates is a considerably
more complex task as ln(λ1) is negative and unbounded below, ln(λ3) is unbounded above
and ln(λ2) is unbounded both above and below. We perform a series of transformations to
make the stretching exponents more easily manipulated and represent each state of fluid
stretching with strictly non-negative barycentric coordinates (inside a triangle). By initially
adding one to each eigenvalue, we guarantee non-negative exponents for λ1 and λ2. The
transformed exponents, Λ̂i = ln(λi + 1), satisfy

0 < Λ̂1 < Λ̂2 < Λ̂3 < ∞, Λ̂1 ≤ ln(2) ≤ Λ̂3. (2.4)

From here, the stretching exponent coordinate system is defined as

Ĉ1 = Λ̂3 − Λ̂2, (2.5)

Ĉ2 = Λ̂2 − Λ̂1, (2.6)

Ĉ3 = 1

ln(2) − Λ̂1
− 1

ln(2)
. (2.7)

Lastly, we normalize the Ĉi vectors such that
∑

Ci = 1, as before. Each limiting state,
Ci = 1, is equivalent to those defined by the simpler linear eigenvalue ratios in table 1.
By representing these modified the stretching exponent, Λ̂i, barycentrically, we can more
closely relate our findings to the Lyapunov exponents standard in the dynamics literature.
As shown in the following examples, visualizing the barycentric stretching exponent map
as red-blue-green (RGB) vectors provides the same level of detail as FTLE plots, while
also providing additional information about deformation and invariant manifold geometry.

As was originally derived for anisotropy tensors by Banerjee et al. (2007), both the
linear and exponential coordinate systems can be mapped into a Cartesian triangle with
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Figure 2. Barycentric Cauchy–Green eigenvalue triangle relates the colouring scheme for fluid deformation
visualization, the limiting states coordinates and the dimension of unstable invariant manifolds to the eigenvalue
relationships.

the mapping

xb = C1 + C3

2
, (2.8)

yb = C3

√
3

2
. (2.9)

This triangle is shown in figure 2 and compactly represents all possible states of
deformation for an initial sphere in a frame-indifferent and material manner. That is, for
an initial sphere of fluid under advection in an incompressible flow, the final shape of
that sphere is uniquely represented by coordinates (C1, C2, C3), with larger values in any
dimension representing a stronger influence of the respective invariant manifolds. The Ci
coordinates easily map to any linearly independent set of RGB vectors and can be used
to visualize the shape of deformation and the role of all three C eigenvalues in a single
image. In this work, we use a canonical map to red, green and blue vectors as is common
in the Reynolds stress literature (see e.g. Banerjee et al. 2007; Stiperski & Calaf 2017;
Stiperski et al. 2019), shown in figure 2. The map defined by equations (2.5–2.7) is not
unique. Varying this mapping in a way that maintains the physical meaning of the limiting
states Ci = 1, could provide a different definition of distance to each limiting state inside
the simplex, while still respecting the definitions in table 1. These barycentric stretching
coordinates also provide a vector quantity that can be used for analysis of flow geometry
in different regions or different flows.

Of additional interest to the fluid dynamics community is the role of rotationally
coherent structures, vortices. A natural extension of the present work is an inclusion of
rotational information with fluid stretching. In the Appendix, we show how a similar
bilinear approach can quantify and visualize combined rates of material rotation and
deformation. The combined stretching and rotation methods do not utilize limiting states
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Figure 3. Burgers–Rott vortex streamlines and underlying invariant manifolds (a), forward BSM (b),
backward BSM on the z = 0.1 plane (c).

of fluid particle motion and are less technically involved. Even so, we show that more
informative qualitative and quantitative analysis can be performed when combining rates
of stretching and rotation for 2- and 3-D examples.

3. Results

3.1. Stable and unstable manifolds
The main strength of the new barycentric mapping of Lagrangian stretching exponents is
their ability to identify not only the degree of stretching, but also the dimension of stable
and unstable manifolds in a flow. We verify this claim by analysing finite time advection
of fluid particles surrounding the Burgers–Rott vortex (Burgers 1948; Rott 1958). We can
write this stationary solution to the Navier–Stokes equations in Cartesian coordinates as

ux = −ξx − Γ

2πr2 (1 − e−(r2ξ/2ν))y, (3.1)

uy = −ξy + Γ

2πr2 (1 − e−(r2ξ/2ν)), x (3.2)

uz = 2ξz, (3.3)

where r =
√

x2 + y2, and choose the parameters ξ = 0.042, Γ = 1.45 and ν = 0.01.
This model of vortical flow consists of a 2-D stable (repelling) manifold on the z = 0

plane and a line vortex on the z-axis acting as an unstable (attracting) manifold, in
forward-time advection. In backward-time advection, the x–y plane is unstable, and the
z-axis is stable. Streamlines initiated on the z = ±0.1 planes surrounding the forward time
Burgers–Rott vortex, and the underlying forward-time stable (green) and unstable (red)
manifolds can be found in figure 3(a).

In figure 3(b), the RGB barycentric stretching map (BSM) of a subsection of the z = 0.1
plane shows the dominant influence of the core line vortex (1-D unstable manifold) over
an integration time tf − t0 = 70. Large C1 corresponds to the predominately axisymmetric
one-component stretching and dominance of the largest eigenvalue (FTLE) over the other
two eigenvalues. Under backward-time advection over the same window (figure 3c), we see
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The shape and dimension of invariant manifolds

that significant two-component axisymmetric stretching is occurring for the majority of the
domain, but in the immediate neighbourhood of the line vortex, there is still significant 1-D
deformation. This is an effect of finite time advection when fluid particles are in transition
from stable to unstable manifolds, or finite time approximations to asymptotic behaviour.
That is, the strong rate of rotation and fluid stretching around the central vortex outweighs
the stretching along the x–y plane for fluid adjacent to the vortex over short time periods.
As tf − t0 goes to infinity, the unstable manifold effectively attracts all fluid parcels from
the z = 0.1 plane, and flattens them in a two-component axisymmetric fashion. At longer
finite integration times (e.g. tf − t0 = 104), this effect is already evident and replaces
figure 3(c) with a purely green field. This sensitivity to integration time highlights the
degree to which the local geometry of deformation is determined by the BSM field.

3.2. Stationary concentrated vortex model
The stationary concentrated vortex model (SCVM) is a steady axially symmetric solution
to the Euler equations that represents vortices in the Earth’s atmosphere with finite
spatial extent, such as dust devils and tornados (Onishchenko et al. 2021). The vortex
is concentrated in both the radial and vertical directions and consists of two distinct inner
and outer regions, an internal upward motion and external downward motion. The vortex is
also divided vertically into a centripetal flow in the bottom and centrifugal flow at the top
with upward moving fluid recirculated from the top of the vortex back down. The velocity
components can be written in cylindrical coordinates as

vr = −v0
r
L

(
1 − z

L

)
exp

(
− z

L
− r2

r2
0

)
, (3.4)

vθ = ±vθ0

z
L

exp

(
− z

L
− r2

r2
0

)
, (3.5)

vz = 2v0
z
L

(
1 − r2

r2
0

)
exp

(
− z

L
− r2

r2
0

)
, (3.6)

where r0 is the radial extent separating inner and outer vortex structures, L is the height
of maximum vertical velocity at r = 0 and v0 and vθ0 are characteristic velocities. For our
example, we use v0 = 1, L = 10, r0 = 10 and vθ0 = 9.

We analyse the nested SCVM structures in BSM fields and compare with FTLE values
in figure 4. Both FTLE and BSM plots highlight the outermost boundary of the vortex, as
well as the edges of the internal spiral structure. The strongest 1-D deformation, shown in
red in figure 4(a), is verified through direct advection in figure 4(c). Fluid in this region
coincides with the FTLE ridge in figure 4(d). An initially small sphere located where the
maximal C1 value is found (black dot in figure 4a) is advected in the flow for tf − t0 = 500.
The resulting shape (red band) was translated back to the origin to compare with other
limiting state shapes. This long red band is the result of 1-D axisymmetric deformation
along a 1-D unstable manifold, as predicted.

The innermost core, where ascending fluid rises to the top of the vortex before spreading
laterally and descending, is separated from the outer regions in the BSM field as a distinct
C2 (green) structure. This region is a great example of the strength of BSM for visualizing
both degrees of freedom in 3-D incompressible fluid stretching. Relatively low λ3 values
lead the FTLE map to prescribe similar values in the C2 vortex core as outside the
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Figure 4. Examining the stationary concentrated vortex structure through the Cauchy–Green eigenvalue
BSM (a), stretching coordinates (b), shapes of advected fluid spheres (c) and FTLEs (d).

vortex domain. However, in this zone, small λ1, relatively large λ2 and moderate λ3 values
result in a distinct flattening of fluid parcels, as shown by the advected C2 limiting case
sphere in figure 4(c) (green disk). This behaviour is distinct from both the outer region of
the vortex, as well as the region outside the vortex, and is not visible from the FTLE field
alone.

The region outside the concentrated vortex is shown with high C3 values, and low
FTLE values, as λ1 is close to 1. Here, fluid parcels are not deformed, as is shown by
the small blue sphere of advected fluid in figure 4(c) originating at the black dot in panel
(a). We can further define the 3-D structure of the SCVM by extracting Ci isosurfaces. In
figure 5, we show isosurfaces of Ci = 0.75 for i ∈ {1, 2, 3} overlaid on SCVM streamlines
coloured in grey scale by their trajectory stretching exponents (Haller, Aksamit & Bartos
2021). While trajectory stretching exponents do not separate the flow domain to the
same degree of detail as BSM, shading of the rising inner core (white) and lower outer
recirculating core (black) complements the structural information provided by streamlines
alone.

The innermost C2 core consists of fluid that quickly rises to the top of the vortex, before
descending on the outer regions of the flow, whereas immediately adjacent fluid with
positive vertical velocity is recirculated in the lower vortex spirals, contained in the strong
C1 regions. This separation is not evident from the velocity profiles alone. The distinction
of the C1 and C2 regions is supported by the FTLE fields, but as mentioned before, the
responsible invariant manifold, or shape of fluid deformation, is indistinguishable from
regions outside the vortex domain. The outermost C3 isosurface separates the fluid with
minimal motion, as can be seen by streamlines in the outer domain with minimal length.
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Figure 5. Isosurfaces separating end-state regions of the stationary concentrated vortex with vortex
streamlines coloured by the trajectory stretching exponent.

The balance of these distinct vortex features is shown in figure 4(b). Each (xb, yb)
coordinate represents one initial condition of fluid from figure 4(a). This presentation
provides additional quantifiable insight into the flow structure. For example, there are
no regions with λ1 = λ2, except when λ3 is exceptionally large or small. The black
marker indicates the centre of mass for this distribution of barycentric coordinates,
(C1, C2, C3) = (0.65, 0.18, 0.17), and represents the relative presence of 1-D and 2-D
stretching, and isometric regions in the flow domain. This simple mean also provides a
basis for distinguishing similar flows, as we shall show in the next section.

Upon slightly modifying the SCVM model, we present another example of the enhanced
utility of harnessing all C eigenvalues for understanding 3-D flows. We reduce the rate of
rotation by setting vθ0 = 1, and increase the characteristic vertical velocity to v0 = 5. This
generates a much simpler plume structure over finite times in the core of the SCVM.
Advecting particles initially on the z = 5 plane for a transport time tf − t0 = 20, we can
calculate the BSM and FTLE fields, and map their values on the final position of the fluid
surface. This deformed surface can be seen in figure 6.

Fluid in the annulus 15 < r < 21 is stretched towards and up the central core
of the vortex. This results in a distinct stem formation with both large FTLE and
single-component BSM values. Fluid particles with r < 15 are quickly transported
vertically, and then spread in a distinctly two-component fashion along the cap structure
seen in figure 6. These fluid particles are attracted to an unstable manifold distinct from the
vortex core in the flow. With the BSM map, we are able to distinguish the cap, stem and
surrounding fluid field. In contrast, focusing solely on the largest eigenvalue with FTLE,
we are able to distinguish the cap from the stem, but do not know the cap fluid is actually
deforming in a different manner than that at radial distance r = 19.
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Figure 6. The BSM (a) and FTLE (b) fields plotted on the final position of fluid particles advected from the z =
5 plane in the SCVM. The stem in the centre of the vortex appears as both strong FTLE and single-component
BSM values. The BSM reveals the 2-D deformation of the fluid in the cap, whereas FTLE values reveal a
degree of stretching similar to the outer regions of the vortex and are unable to distinguish this feature.

3.3. Case of Arnold–Beltrami–Childress flow
As a third example, we consider the 3-D steady Arnold–Beltrami–Childress (ABC) flow
(Dombre et al. 1986) on the triply periodic domain U = [0, 2π]3,

v(x, t) =
⎛
⎝A sin x3 + C cos x2

B sin x1 + A cos x3
C sin x2 + B cos x1

⎞
⎠ . (3.7)

Following the parameter space study by Dombre et al. (1986), we consider two distinct
cases of the flow in figure 7. In panels (a,b,c), we show FTLE, BSM and the stretching
triangle for A = 1, B = √

2/3 and C = √
1/3, over an integration time tf − t0 = 100.

This is a commonly studied example where the six principal vortices are present. As a
second case, we advect fluid particles for the same integration time with the parameters
A = 1, B = 0.145789 and C = 0.145789, when a double resonance is present (Dombre
et al. 1986). The difference between the two choices of parameters is qualitatively evident
when comparing the FTLE or BSM fields from panels (a,b,c) and (d,e,f ) of figure 7, as
several of the six principal vortices have clearly collapsed.

For the six-vortex ABC flow (panels a–c), the highly chaotic regions are identified by
large FTLE values surrounding the Kolmogorov–Arnold–Moser (KAM) surfaces. In the
BSM field, this region is dominated by strong 2-D stretching. This is distinct from the
dimension of deformation occurring in the SCVM example where the most significant
fluid stretching (largest FLTE) was primarily along 1-D unstable manifolds. The strong
shear layers separating the KAM surfaces (six vortices) are correctly identified with large
C2 (two-component axisymmetric), and are extracted as C2 = 0.5 isosurfaces in figure 8.

The stretching coordinates (figure 7c, f ) provide another view of this flow dynamics. For
the six-vortex ABC flow, the Cauchy–Green strain tensor is dominated by small λ1 values
(yb ≈ 0), significant chaotic C2 regions and a dominance of 1-D deformation tangent to
the KAM surfaces. There are few points in isometric (pure translation/rotation) regions, as
shown in the stretching coordinate triangle, the BSM and C3 = 0.3 isosurfaces in figure 8.
The centre of mass for the barycentric stretching coordinates reveals the relative balance
of these structures with a value of (0.687, 0.312, 5 × 10−4), marked in black in figure 7(c).
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Figure 7. Finite time Lyapunov exponents, BSM and stretching coordinates for the ABC flow: (a–c) A = 1,
B = √

2/3 and C = √
1/3; (d–f ) A = 1, B = 0.145789 and C = 0.145789.
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Figure 8. The C2 and C3 isosurfaces in the six-vortex ABC flow identify vortex cores and separating shear
layers.

In contrast, for the double resonance case (d–f ), we find much weaker shear layers,
and smaller chaotic regions surrounding the four principal x–y vortices noted by Dombre
et al. (1986), as well as much larger isometric regions. This is reflected quantitatively
in a barycentric stretching centre of mass with a smaller C2 influence and larger C3,
(0.83, 0.16, 0.01), marked in black (figure 7f ). Additionally the stretching coordinates now

958 A11-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

93
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.93


N.O. Aksamit

show a much broader range of features present in the flow as more of the triangle is filled
in, providing a qualitative fingerprint of the shape of material flow structures.

3.4. Turbulent channel flow
Lastly, we examine data from the publicly available Johns Hopkins University Turbulence
Database (JHTDB) direct numerical simulation of a Reτ = 1000 channel flow (Perlman
et al. 2007; Li et al. 2008; Graham et al. 2016). The JHTDB channel flow is available on a
2048 × 512 × 1536 grid for a domain of size 8πh × 2h × 3πh, where h is the half-channel
height. All figure coordinates will be displayed in dimensionless half-channel height units
(h = 1). This dataset has been used in a large number of turbulence studies, including
recently by Aksamit & Haller (2022) to study the structure and organization of objective
momentum transport barriers.

In figure 9(a) we present BSM for fluid particles in a streamwise–wall-normal 1.5h × 2h
section of the z = 3 plane. This is the same region used for momentum barrier tracking
by Aksamit & Haller (2022). We calculated the Cauchy–Green strain tensor for a
2000 × 2000 grid of initial conditions, over tf − t0 = 200δt (channel flow-through times).
Figure 9(b) shows the mean streamwise velocity profile in the plane, and figure 9(c) shows
the instantaneous streamwise velocity field at time t0, a diagnostic common to boundary
layer structure discussions (Adrian, Meinhart & Tomkins 2000; Kwon et al. 2014; De Silva,
Hutchins & Marusic 2015).

We averaged the stretching coordinates Ci in wall-parallel planes to obtain an average
stretching coordinate profile in figure 9(d). As in FTLE studies of turbulent boundary
layers (e.g. Green, Rowley & Haller 2007; Haller et al. 2020), there is a clear influence
of the shear generated by both channel walls on the material deformation of the flow. The
highly turbulent near-wall region is characterized by strong 1-D deformation, as evidenced
by the dominance of red regions in BSM plot and the mean stretching coordinates near the
C1 = 1 corner for the y = −1 plane (figure 9d). As we begin to traverse the channel, λ1
and yb remain small, indicating a high degree of fluid deformation. Planar interfaces begin
to appear as green curves in the BSM field as y increases, and xb migrates towards zero
while yb stays close to zero. This suggests the presence of organizing internal interfaces,
or 2-D unstable manifolds, along which the fluid is spreading and separating high mixing
(C1) regions.

At approximately y = −0.8, pockets of limited fluid deformation (blue regions) begin
to appear, and yb values begin to increase. This suggests the presence of small pockets
of relatively undisturbed fluid behind turbulent coherent structures. This is representative
of sheltering of fluid that occurs behind ramps or large scale motions that peel off of the
wall into the faster moving channel core. In figure 9(c), we see this is approximately the
location where the streamwise velocity deviation is close to zero, and the maximal extent
of the low velocity bulge outlined by vx = 1.04.

As we traverse further into the relatively quiescent core of the channel, one can see
patches of energetic stretching, surrounded by primarily blue, nearly isometric regions.
This confirms that, on these time scales, stretching inside the channel core is much less
influential than pure translation or rotation. This is also evident in the mean stretching
coordinates where the y = 0 average is close to the C3 = 1 limiting state. Symmetric
behaviour can be seen as one approaches the y = 1 wall, as well as a large scale ramp
of turbulent fluid peeling off the y = 1 wall into the channel core.

This examination is complemented by the standard tool for uniform momentum
zone analysis, the streamwise velocity histogram (figure 9e). Several distinct uniform
momentum zones can be identified as velocity peaks in the histogram. The separating
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Figure 9. Comparison of the BSM of Cauchy–Green eigenvalues (a), the average streamwise velocity
profile (b), instantaneous streamwise velocities (c), stretching coordinate distribution (d) and streamwise
velocity distribution (e). Streamwise velocity contours in (c) correspond to marked local minima in (e). The
arrow in (a,c) identifies low velocity fluid as it enters the quiescent core.

interfaces are drawn as vx contours corresponding to minima between these peaks in
figure 9(c). While there is some loose qualitative agreement between momentum zones
and LCSs, it is important to remember that momentum zone designations are Eulerian
in nature, not frame-indifferent and thus not designed to extract material fluid structures.
Rather, they are used to discuss streamwise momentum organization. Even so, there are
some insightful conclusions that can be drawn from the BSM plots. For example, the
isometric blob at approximately (6, −0.85) originates in a protected region behind a slow,
vx = 0.76, ramp leaving the wall. As well, the edge of the quiescent core (Kwon et al.
2014) at vx = 1.04 correlates with the edge of dominant isometric motion, especially in
the upper half of the channel.

We have also used arrows to highlight a relatively low velocity region of fluid above
the vx = 0.76 contour in figure 9(a,c). This fluid has positive wall-normal velocity
(figure 10a), and deforms as it encounters the faster moving, but less turbulent, core of
the channel. The top of this slowly moving fluid is highlighted by a ridge of quasi-planar
two-component stretching (figure 9a), similar to that seen along the cap of figure 6. We can
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Figure 10. Comparison of vertical velocity fields (a) with the BSM (b) calculated in the momentum barrier
field at time t0. Specific contours of streamwise and wall-normal velocities are overlaid in both panels. The
aBSM plot reveals objective momentum barrier structures and provides a much greater degree of structural
detail than frame-dependent velocity fields.

resolve even finer structure details in this highly turbulent near-wall region by following
the momentum barrier field analysis of Aksamit & Haller (2022).

To identify momentum transport barriers, we first advect trajectories in the
instantaneous momentum barrier field at time t0, instead of the original velocity field. It
has been shown that instantaneous barriers to objective momentum transport correspond
to invariant manifolds in the vector field x′ = 	v (Haller et al. 2020). By calculating
Cauchy–Green eigenvalues from flow maps defined in this vector field, we can examine
instantaneous barriers to momentum transport in the flow at a given time, instead of
passive barriers of fluid transport. The FTLE analogue in the active barrier domain is
referred to as aFTLE Haller et al. (2020). The reader is referred to Haller et al. (2020) and
Aksamit & Haller (2022) for further details of this method and development of the theory.

We show BSM in the active barrier field (aBSM) in figure 10(b). In both panels of
figure 10, we overlay contours of streamwise and vertical velocity. It is immediately clear
that the aBSM field reveals more internal structure in the fluid flow than contours of vx or
vy. Closer investigation also reveals some layering in the high shear regions near the wall.
Specifically, we find much smaller momentum blocking structures below the vx = 0.76
contour, as could be expected in the near-wall region. Although velocity contours have
no significance as a momentum blocking structure, the low streamwise values are likely
a result of the turbulent structures revealed in the momentum barrier field (Aksamit &
Haller 2022).

Above approximately y = −0.8, we transition to less densely packed structures with
lower curvature. There is more space between strong momentum barriers, which
corresponds to the intermittent isomorphism zones detailed in figure 9(a). Spacious
regions of strong one-component mixing (red) are often delimited by two-component
(green) ridges. This suggests intense internal mixing, separated by small quasi-planar
interfaces. As we move further from the wall, multiple vortical momentum barriers can be
found below the vy = 0 contour. The extent of the strongly deforming zone is seen as more
isomorphic (blue) regions become present around y = −0.6 in both the fluid transport, and
momentum transport fields (figures 9a and 10b, respectively). The uppermost reaches of
the highly turbulent zone (surrounding arrow in figures 9 and 10) contains three vortical
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Figure 11. Multiple BSM plots (a–d) and barycentric stretching triangles (e–h) for increasing integration
times. The edge of the highly turbulent zone appears as a two-component ridge for all integration times, but the
degree of structural detail above and below the interface increases with integration time. There is also smaller
change between the two longest integration times than any other pair.

momentum barriers at the interface between the shear-driven turbulence at the wall and
the quiescent core of the channel. Contours around vortex heads can be seen as circular
layering of one- and two-component stretching in the aBSM field, before transitioning
to the upper isomorphism region. These vortex heads are travelling away from the wall
(figure 10a), and are capped above by two-component ridges described in more detail
below.

The BSM and aBSM plots reveal the 3-D nature of structures in a 2-D presentation.
As with all Lagrangian diagnostics, the values calculated are fundamentally linked to
the user-defined integration time. For longer integration times, fluid particle behaviour
becomes uncorrelated with fluid structures adjacent to initial positions where diagnostics
are mapped. The flow map becomes the identity for integration times of zero. Choosing
an appropriate time that balances these effects can be done with trial-and-error, or through
statistics on autocorrelation functions (e.g. Aksamit & Haller 2022).

In figure 11, we show the effect of longer integration times on BSM for a region
surrounding the turbulence interface. At short transport times (tf − t0 = 80δt), we see
that much of the fluid has not yet had a chance to significantly deform, but the top
edge of the highly turbulent zone at y = −0.6 is already appearing as a 2-D barrier.
A transect of barycentric stretching in figure 11(e–h) quantifies the state of deformation. In
figure 11(e), stretching coordinates have a centre of mass marked in black at approximately
(xb, yb) = (0.5, 0.7) confirming a generally low level of deformation. As integration time
increases (figure 11b,c), more fluid stretching is revealed below the edge of the channel
core, with limited changes above. The centre of mass in the barycentric stretching triangle
migrates to a higher degree of deformation as more one- and two-component stretching
is measured. From tf − t0 = 160δt to tf − t0 = 200δt, the centre of mass in the stretching
triangle has not significantly moved and there is qualitatively minimal structural change
between figure 11(c,d). This suggests steady BSM has reached a steady state for the
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Figure 12. Multiple aBSM (a–c) and aFTLE (d–f ) plots for increasing integration times. There is
progressively enhanced structural detail as integration time increases, but aBSM and aFTLE ridges become
much noisier at the longest integration time, suggesting a saturation in structure information available.
Two-component ridges (caps) appear above both vortex heads in regions of low aFTLE at all integration times.

time being. Longer integration times would likely reveal more structure in the channel core
as lower vorticity there slows the rate at which rotational fluid structures can be identified.

We conduct a similar sensitivity analysis for aBSM surrounding vortex heads at the
edge of the channel core in figure 12. As integration time increases, the edges of the two
vortices becomes more well defined, and more structure above and below the vortex heads
is revealed. Similar to previous comparisons, the use of all Cauchy–Green eigenvalues
shows detailed two-component stretching features in aBSM plots where low aFTLE values
reside. Additionally, isomorphic aBSM zones correspond to remaining low aFTLE values.
At the longest integration time (2.5 × 10−4, figure 12c, f ), aFTLE and aBSM ridges around
the vortex heads become noisy. This is due to the long integration time effects mentioned
earlier. At this point, even longer integrations would be detrimental as they would reduce
the information presented and increase the computational burden.

4. Conclusions

We introduce a novel frame-indifferent and material method to quantify the dimension
of invariant manifolds and represent the 3-D geometry of LCSs and momentum
transport barriers in incompressible stationary and time-varying fluid flows. By mapping
Cauchy–Green strain tensor eigenvalues to barycentric coordinate systems, we can
visualize the shape of fluid deformation in turbulent and non-turbulent fluids. We
complement the extensive literature on LCSs and strain tensor invariants with an advance
in visualizing and quantifying higher-dimensional structure geometry. As analysis of
barriers and transport in complex 3-D flows continues to accelerate, a method to quantify
and represent the geometry of 3-D coherent structures on a static printed page holds great
value for scientific communication and investigation.

Our visualization utilizes three limiting states of deformation as the basis for barycentric
coordinate vectors: 1-D axisymmetric, 2-D axisymmetric deformation and 3-D fluid
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parcel isometries. The deformation cases also correspond to the dimension of the
underlying invariant manifolds in both autonomous and non-autonomous systems.
Mapping to barycentric coordinates allows a single compact visualization of flow
geometry that has previously only been possible by using, at least, two separate scalar
fields. We can also use the barycentric stretching coordinates to describe qualitative
aspects of the flow and distinguish between similar flows. This can be especially helpful
for comparing case studies or identifying specific physical phenomena.

The choice of map from eigenvalues and stretching exponents to barycentric coordinates
is not unique. By fixing the limiting states, the boundaries of the stretching simplex, future
research may find benefit from other maps of stretching coordinates in the interior of the
stretching simplex. This would vary how quickly descriptions of the flow would transition
between limiting states for intermediate conditions.

An analogue of this higher-dimensional fluid description is the combination of rates
of both material stretching and rotation in one quantitative measure. We show how
this can be simply performed with bilinear maps of FTLEs and Lagrangian-averaged
vorticity deviation in the Appendix. This method provides further insight into how rates
of stretching and rotation relate for various 2- and 3-D flows.

The methods developed here are a natural extension of the objective invariant manifold
and LCS for 3-D flows. The majority of LCS studies have been performed in 2-D
flows where a single Cauchy–Green eigenvalue describes deformation in the flow. This
is insufficient for 3-D flows. We provide additional insights into LCS geometry and
invariant manifold dimension for 3-D flows that can help inform researchers that study
fluid structures without an a priori understanding of how a fluid is deforming or separating.
For example, in studies of leading edge vortices, the geometry of fluid mixing can
significantly augment lift forces (Eldredge & Jones 2019). For convective fluid studies,
we have shown that distinct parts of buoyancy driven plumes can be delimited based
on how they deform in the surrounding fluid. In turbulent boundary layer flows, the
dominance of top-down or bottom-up structures is not universally understood, nor is the
mechanism of amplitude modulation. In these cases, more complete descriptions of fluid
deformation may help objectively verify how vortices are formed and interact with the
surrounding flow. Furthermore, researchers that are interested in constructing complex
fluid structures from simplified building blocks would benefit from a more complete
description of structure geometry and visualizations.
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Appendix

The techniques developed thus far provide a natural extension of hyperbolic Lagrangian
coherent structure diagnostics for 3-D flows by combining multiple qualitative measures
of fluid deformation. In addition to hyperbolic manifolds, there is also great interest in
understanding elliptic manifolds, such as coherent rotational vortices. While fixed points
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Figure 13. Example of a bilinear colour map that represents all possible values of the two independent
components of material deformation, stretching (FTLE) and rotation (LAVD).
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Figure 14. Panels (a,b) show linear colour maps of FTLE and LAVD, respectively for the SCVM in figure 4.
Panel (c) shows the relationship between stretching and rotation for different locations in the flow. Panel (d)
reveals the stretching and rotation structures, especially the strong recirculation zone.
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Figure 15. Panels (a,b) show linear colour maps of FTLE and LAVD, respectively for the ABC flow from
figure 7, rescaled between their minimum and maximum values. Panel (c) shows the relationship between
stretching and rotation for different locations in the flow, with a much higher relative rate of rotation (LAVD)
throughout the flow. Panel (d) combines the stretching and rotation measures to represent the role of each
structure in the flow.

(λ3 = 1) provide some indicator of elliptic regions, there are also objective tools we can
utilize to address material rotation more directly. In the following, we show how fluid
stretching and rotation information can be easily combined in a compact visualization for
2-D and 3-D flows.

The Lagrangian-averaged vorticity deviation (LAVD) is a widely used objective
measure of material rotation for 2- and 3-D time-varying flows (Haller et al. 2016). This
diagnostic provides an analogous rotational complement to Cauchy–Green eigenvalues.
While stretching and rotation are intrinsically linked through the governing equations of
fluid flow, rates of stretching and rotation are independent of each other. That is, high
stretching and rotation regions may overlap, or be entirely uncorrelated. This is in contrast
to the eigenvalues of the Cauchy–Green tensor which must follow strict relationships (1.2).
Both FTLE and LAVD naturally take values between zero and infinity for incompressible
flows, further simplifying visualization. For this parameter space, we propose a simple
bilinear colour map, with each linear colour map normalized by either the maximum rate
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Figure 16. Panels (a,b) show linear colour maps of FTLE and LAVD, respectively for the 2-D geostrophic
currents in the Agulhas leakage region. Panel (c) shows the relationship between stretching and rotation for
different locations in the flow. Panel (d) combines the stretching and rotation measures to indicate the relative
location of fronts and eddies.

of stretching (FTLE) or rotation (LAVD). An example of one such colour map is shown in
figure 13.

For clarity, we make two linear colour maps with visually distinct RGB values to
represent maximal stretching and rotation. Both linear colour maps use the same neutral
colour for zero. An example of these two colour maps can be found in panels (a,b) for
three different flows in figures 14–16. Once values of FTLE and LAVD have been mapped
to RGB vectors, we combine them through multiplication and this results in the stretching
and rotation maps in panel (d) for figures 14–16. This combines the stretching and rotation
measures and allows a compact representation of the role of each structure in the flow.
Similar to the barycentric stretching triangle, each bilinear map gives a signature of the
strength of hyperbolic and elliptic LCS in the flow, shown in panel (c) for the three
examples.

The SCVM analysis in figure 14 provides complementary insight to BSM in figure 4.
The LAVD reveals the how much more material rotation occurs in the recirculation zone
as opposed to the rest of vortex. In panel (c), we also see that for this domain in the flow,
there are regions with both low rotation and stretching, but there are no zones where there
is high material rotation and no stretching.
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In figure 15 we obtain a considerably different stretching and rotation profile for the
ABC flow when compared with the SCVM. As seen in figure 15(a,b), there is a relatively
lower rate of material rotation outside of the vortices, and minimal stretching inside the
vortex cores. In fact, figure 15(c) reveals that, throughout the flow, LAVD rarely drops
below half of its maximum value, whereas FTLE can range from zero to its maximum
value. This presents a distinctly different relationship between stretching and rotation than
in the SCVM.

We can also represent rates of rotation and stretching for 2-D flows. Rotation gives us an
extra degree of freedom in contrast to eigenvalues of the 2-D right Cauchy–Green strain
tensor, which is positive definite with unit determinant. Figure 16 shows the relationship
between strongly hyperbolic and elliptic regions in geostrophic ocean surface currents in
the well-studied Agulhas leakage region (Beron-Vera et al. 2013). Figure 16(d) clearly
visualizes the eddy cores as large LAVD zones separated by hyperbolic ocean fronts. In
figure 16(c), we again compare stretching and rotation, and see that FTLE and LAVD both
take on a large range of values, but there are no regions with both large (greater than 60 %
of the max) stretching and rotation.
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