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Abstract. We have analyzed the record of Earth’s global temperature variations between 1850
and 2007 looking for signals of periodic variations and compared our results with solar activity
variations in the same time period. Significant periods are found at 9.4, 10.6 and 20.9 years.
These periodic variations may be caused by solar activity. However, and amazingly enough,
we also find at least 17 other significant periodic variations in addition to expected variations
with periods of 1 year and of half a year. The result is considered in terms of solar related
forcing mechanisms. These may be variable solar heating associated with the small changes in
solar irradiance over the solar cycle, or direct effects of interactions between variable magnetic
fields carried by the solar wind and particles and fields in interplanetary space or in the Earth’s
ionosphere.
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1. Introduction
The role of solar forcing on Earth’s global temperature level is a disputed question. In

addition to radiative forcing, which is weak, it has been suggested that variations in the
influx of cosmic rays into interplanetary space, owing to solar magnetic activity, causes
variations in cloud formation on Earth that may account for climate changes on long
timescales, from years to millennia (e.g. Svensmark 2007). However, other magnetically
related effects are also conceivable.

Looking for periods in the global temperature on the same time scale as solar activity
variations may thus be a way of checking on the amount and character of solar forc-
ing, whether thermal or magnetic. Any periodic variations may, so to speak, serve as a
calibration for solar effects. We have therefore analyzed the record of Earth’s global tem-
perature between 1850 and 2007 looking for periodic signals in the range 1–30 years. To
establish a good average value for the solar activity period in the same time interval, we
also analyzed the record of sunspot numbers, taking these as a satisfactory indicator of
solar magnetic variations, causing variations in the spectrally integrated solar irradiance
as well as interacting with magnetic fields on Earth and in space around us.

2. Data sources and data reduction
The data consist of the record of Earth’s global temperature variation together with

solar activity data for the period 1850 through 2007, i.e. 158 years.
Solar activity. The significance of the solar activity variations is twofold. Firstly, a small
variation in the irradiance with solar activity has been found from three decades of space
observations (see e.g. Fröhlich 2006, Scafetta 2009 and references therein). An absolute
calibration of the variable solar irradiance is problematic, but clearly its peak-to-peak
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variation is ≈1 W m−2 , with an average value near 1366 W m−2 , i.e. a total variation of
0.075 percent. Secondly, the transport of magnetic fields from the Sun into interplanetary
space increases strongly with increasing solar activity. This may influence cloud formation
on Earth, according to Svensmark (2007), or affect tropical electric storm activity with
further effects on global temperatures.

To find the length of the solar activity cycle we used daily sunspot numbers listed by
the Solar Influences Data Analysis Center, Royal Observatory of Belgium, (see SIDC:
http://www.sdic.be/sunspot-data). A recent thorough analysis of these data was made
by Gil-Alana(2009). He obtained a value for the period of 130 months, or 10.83 years, for
the interval 1749–2008. However, in the first century of this interval the sunspot record
is incomplete.

We therefore performed a Fourier analysis of the data in the 158 year interval referred
to above and found a value for the period of 10.45 ± 0.6 years. The given uncertainty is
simply estimated from the width of a Gaussian fit to the slightly asymmetrically placed
power spectrum peak corresponding to the 11 year period.
Global temperatures. Global temperatures are taken from the United Kingdom Met Office
Hadley Centre observations datasets. A table of monthly and annual temperature anoma-
lies, i.e. global temperatures in ◦C relative to a mean over a range of years, is listed in the
HadCRUT3 database (see http://hadobs.metoffice.com/hadcrut3/). Formats of the Had-
CRUT3 tables can be obtained from the same site. Regarding the formats we note that
the data tables, in addition to the most reliably estimated anomalies, also contain the
upper and lower 95% uncertainty ranges from the combined effects of all uncertainties.
The data and uncertainties are described by Brohan et al. (2006).

In our investigation we shall use the monthly temperature anomalies. The best monthly
anomalies from 1850 through 2007 as listed in the HadCRUT3 database, are shown in
the left panel of Figure 1.

Figure 1. Left panel: Global temperature anomaly 1850–007. Right panel: Temperature
anomaly with long term trends subtracted and average equal to zero.

Before we analyzed the data we subtracted long-term trends. For this we fitted a
high order polynominal to the observed anomalies and subtracted the time series values
obtained from the polynominal. We found that a 10th order polynominal gave the lowest
chi-square value for the fit. Afterwards we subtracted the very small average of the
resulting anomalies (≈ 10−4 ◦C). This removed the zero frequency power from the power
spectrum and facilitated detection of periods of the order 10-20 years. The procedure
only adds a small uncertainty to the lowest frequencies, f = 1–5. The result, which we
shall call the differential temperature anomaly, is shown in the right panel of Figure 1.
Power spectrum and significance of power signals. The monthly differential temperature
anomalies have been Fourier analyzed and the power spectrum calculated. The result
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is shown in Figure 2. We have limited the plot to the 170 lowest frequencies. A yearly
variation is clearly present at f=158. In addition there is a likely significant peak at
f=316, i.e. corresponding to a half-yearly variation.

Figure 2. Power spectrum of the differential global temperature anomaly, for f = 0–170.

Two annotated marks in the figure give power levels where we find that given fractions
of power values above these levels correspond to real signals and are not caused by noise.
Thus, for power values larger than 7.5 10−5 and 1.1 10−4 the fraction of real signal values
relative to the total number of noise and signal together is 95 % and 99.9 %, respectively.
We shall now describe how we have estimated this significance of any particular power
value, something that is needed in order to decide which of the peaks in the power
spectrum correspond to real time variations, as distinguished from noise.

The noise level in the power spectrum of a data set may be estimated by shuffling
the data randomly and calculate the power spectrum of the shuffled data. If this is done
many times, say a 1000 times or more, a significant average is obtained. The procedure
gives a reasonable result if the power in the data is dominated by the noise, which is the
case here. However, there is always an amount of signal mixed into the noise obtained
this way.

The significance of a particular power value may, however, be estimated in another
fashion. If we plot the distribution of values in our power spectrum we get a normalized
distribution function as shown in the left panel of Figure 3. The normalized distribution,
N(p)/N , is defined as the number of values per power unit in the power spectrum as a
function of power, p. It is obtained by dividing the power spectrum into small sections
each covering a range in power from p to p+δp, counting the number of values in each
section, and dividing by the interval δp. The crosses in the figure give the counted values
while the drawn line is the best estimate of a curve through the points. This curve consists
of two exponential functions added together, where the exponents are linear functions of
power, p. Thus, they appear as straight lines on the logarithmic scale of the y-axis.

The two separate domains for high and low powers correspond to a noise dominated
and a signal dominated part of the distribution function. A synthetic model may easily
demonstrate this. Thus, we made a data set of 20 oscillation with different amplitudes
and with frequencies close to the probable frequencies in the power spectrum of the real
data. Then we added different amounts of noise to the resulting time series values. The
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result is seen in Figure 3b, where two of the curves have noise levels bracketing what is
found in the real data and the third curve (dot-dashed) is from the synthetic data set
with no noise at all. We did not include the counted values in the plots in Figure 3b,
but they correspond in a general fashion to the counted values in the analysis of real
temperature data shown in the left panel, Figure 3a.

Figure 3. Left panel (a): Normalized distribution of power values in the power spectrum of
Earth’s differential global temperature anomalies. Right panel (b): Normalized distribution of
power values in the power spectrum of a synthetic set of 20 oscillations, with different levels
of noise added.

The likelihood of a particular power value being caused by a real signal or by noise
may then be derived from the two contributing distributions in Figure 3a. This is how the
fractional annotation values in Figure 2 were determined. Uncertainties in the derived
likelihood values may furthermore be computed from the uncertainties in the fitting of
straight lines to the logarithm of the ”noise” and the ”signal” distributions, respectively,
in the two domains in Figure 3a.

Finally, the values of the power peaks (and indeed any value in the power spectrum)
have uncertainties owing to the inherent total uncertainty of the given temperature
anomalies. The 95% uncertainty ranges from the combined effects of all the uncertain-
ties are, as mentioned above, included in the data set. The uncertainties may not be
randomly distributed, but for our purpose we have assumed this as a sufficiently close
approximation. A large number (30000) of time series of possible temperature anomalies
were created, where Gaussian randomly distributed increments were added to each tem-
perature value in the original best series. These random temperature increments were
all different, had a mean of zero and a standard value corresponding to the given un-
certainties in the measured temperature anomalies. Thus, the 95% limits were regarded
as 2 × sigma deviations from a mean value. The synthetic temperature anomalies were
then treated the same way as the standard set of values and their power spectra were
derived. From this we obtained the distribution of the power in the power spectrum. An
example, including the two strong power peaks at f=7-8 and f=17 and a selection of four
other peaks in the power spectrum, is shown in Figure 4. The values for the 95% and
99% likelihood of the power peak being caused by a real signal is marked in the figures
(broken vertical lines).

3. Results
The results of the investigation are presented in Figure 2 and in Table 1. In Table 1 we

list parameters for oscillations with power values larger than 0.85·10−4 . Power values at
this lower limit are significant to 95%, even if the uncertainty in the limit is taken into
account. Most of the listed power peaks can, however, be considered as real signals with
a significance of well above 99.9%.
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Figure 4. Distribution of power values at 6 selected frequencies derived from the uncertainties
in the observed temperature anomalies, 1850–2007. < p > is the average power value.

Table 1. The strongest maxima in the global temperature power spectrum.

Frequency Frequency–fa Power value Period Remarks
(nominal) (adjusted) (at peak x 104 ) (years)

(4)-5 4.60 1.18 ± 0.30 34.4 Asymmetric feature
(7)-8 7.56 3.70 ± 0.63 20.9 Asymmetric feature
11 10.87 1.30 ± 0.39 14.5
15 14.90 1.36 ± 0.39 10.6
17 16.90 4.45 ± 0.72 9.35
19 18.75 1.25 ± 0.39 8.42
21 21.21 1.90 ± 0.48 7.45
24 24.29 1.14 ± 0.37 6.51
26 25.98 2.13 ± 0.51 6.08

30-31 1.27 5.2 Blended feature
33 33.24 2.29 ± 0.5 4.75
38 38.02 1.31 ± 0.40 4.16

42-45 2.15 3.75-3.5 Broad blended feature
48 48.11 0.91 ± 0.33 3.28
50 50.07 1.25 ± 0.39 3.15
55 55.01 2.12 ± 0.51 2.87
59 59.11 1.32 ± 0.40 2.67
62 61.80 0.86 ± 0.32 2.56
68 68.17 0.88 ± 0.32 2.32
79 79.21 0.89 ± 0.32 1.99
158 157.68 2.25 ± 0.53 1.00
160 160.14 1.03 ± 0.35 0.987
316 315.93 0.90 ± 0.34 0.50

We start by noting that the two strongest periods in the power spectrum are located
at nominal frequencies f=8 and f=17. These peaks are unequivocally caused by a real
signal. They are clearly outstanding also if we analyze the annually averaged temperature
anomalies. In addition there is a weaker power peak at f=15, blended in with the stronger
peak at f=17. Table 1 gives more accurate frequencies, found by fitting Gaussians to
the sometimes asymmetrically placed power peaks and deriving the position of these
profiles. The periods of oscillations corresponding to f=8, 15 and 17, are 20.9 ± 1.7 years,
10.60 ± 0.42 years, and 9.35 ± 0.35 years, respectively. Periods are determined from the
expression P = 158/fa , since the data set is 158 years long. Uncertainties in the periods
are estimated from an assumed full width at half maximum (FWHM) of the power peaks
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of 1 frequency unit. The periods of f=8 and f=15 agree especially well with the solar
activity period of 10.45 ± 0.6 years and with twice this period, which correspond to the
periodic variation of the changing solar magnetic polarity. The temperature amplitudes
of the three oscillations are approximately 0.05 K, 0.035 K and 0.05 K, respectively.

The investigation started as a search for periodicities corresponding to the solar activity
period. However, the detection of a number of other persistent and clearly significant
periods, came as a serendipitous, amazing and exciting additional result. Periods of half
a year, one year, and two years, are clearly related to the Earth, moving in its eccentric
orbit around the Sun, and having different distributions of continents and oceans on
the two hemispheres. The other oscillations have periods shorter than ≈ 9 years, with
exception of one period at 34 years. It seems likely that these variations persist over long
times, since the global mean temperature data span almost 160 years.

4. Concluding remarks
The closeness in period between the strongest global temperature variations and the

period of solar activity points to a clear connection between the two. The 21 year period
might possibly be an undertone of the shorter period variation and might thus be caused
by solar irradiance variations. However, a mechanism depending on solar magnetic polar-
ity regulating how well solar wind particles penetrate the Earth’s magnetosphere, would
also have to be considered. Whether solar irradiance variations would be able to drive
oscillations with the derived temperature amplitudes is also an open question, but may
at a first glance seem likely. But what about all the other persistent oscillations in the
global temperatures? They also have to be driven by an external variable energy input.
Also here the ultimate driving force may be solar variations, but perhaps the required
energies from irradiance variations alone are insufficient. These and other questions will
be addressed in ongoing investigations.
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