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We introduce a fully Lagrangian heterogeneous multiscale method (LHMM) to model
complex fluids with microscopic features that can extend over large spatio/temporal
scales, such as polymeric solutions and multiphasic systems. The proposed approach
discretizes the fluctuating Navier–Stokes equations in a particle-based setting using
smoothed dissipative particle dynamics (SDPD). This multiscale method uses microscopic
information derived on-the-fly to provide the stress tensor of the momentum balance in a
macroscale problem, therefore bypassing the need for approximate constitutive relations
for the stress. We exploit the intrinsic multiscale features of SDPD to account for thermal
fluctuations as the characteristic size of the discretizing particles decreases. We validate
the LHMM using different flow configurations (reverse Poiseuille flow, flow passing a
cylinder array and flow around a square cavity) and fluid (Newtonian and non-Newtonian).
We show the framework’s flexibility to model complex fluids at the microscale using
multiphase and polymeric systems. We also show that stresses are adequately captured
and passed from micro to macro scales, leading to richer fluid response at the continuum.
In general, the proposed methodology provides a natural link between variations at a
macroscale, whereas accounting for memory effects of microscales.

Key words: computational methods

1. Introduction

The modelling of complex fluids, synthetic or biological, is in general a challenging
task due to the multiscale nature of the flow, leading to complex behaviours such
as flow-induced phase separation, shear-thinning/thickening and viscoelasticity. Usual
approaches involve the solution of a macroscopic balance of momentum, along with
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constitutive equations that relate the dependency of the stresses and velocity fields due
to microscopically originated features. However, limitations of these approaches arise
when the constitutive equations are not known a priori. Moreover, the existence of large
relaxation times at the microscale results in a non-trivial interplay with macroscopic
flow features, requiring a detailed description of the entire stress history. In this context,
heterogeneous multiscale methods (HMMs) (Ee et al. 2007) that combine numerical
algorithms to resolve separately macro- and microscales, appear as powerful tools to model
the behaviour of fluids across scales. In HMMs, microscales are localized and solved on
parts of the domain to obtain microscopically derived properties that are used to close
the macroscale problem (Ren & Weinan 2005). This methodology offers the advantage
of capturing microscopic effects at the macroscopic length scales, with a lower cost
than solving the full microscale problem in the whole domain. In HMMs, the derived
microscales properties can enter into the macroscales representations either through
constitutive relationships or microscopic stresses information without a priori assumption
of the constitutive relationships. The latest is an important advantage of HMMs for the
modelling of complex fluids. For an extended review on HMMs, the reader is referred to
the work of Ee et al. (2007). One of the key benefits of having a constitutive equation for
stress is the ability to generalize fluid behaviour in the macroscopic domain without the
need for explicit microscopic simulations. Such constitutive relations have been formulated
for various non-Newtonian fluids (Bird et al. 1987). However, many complex systems lack
an a priori constitutive relationship, which necessitates system-specific approximations. In
this context, using microscopically informed stress for the momentum equation provides
a more systematic approach to bypass the need for unknown constitutive models. The
primary assumption with this strategy is that the adopted methodology used for the
microscales should be capable of reproducing the physical system. Consequently, the
microscales will typically require preliminary characterization.

Depending on the type of discretization (Eulerian or Lagrangian) used for macro- and
microscales, the HMMs are classified as Eulerian/Eulerian (EE), Lagrangian/Lagrangian
(LL), Eulerian/Lagrangian (EL) and Lagrangian/Eulerian (LE); see figure 1(a). A large
part of the existent HMMs relies on EE and EL schemes (Ee et al. 2007), where the
macroscale dynamics is resolved on a fixed grid (using a variety of methods such as finite
elements, finite volumes, lattice Boltzmann, to name a few), and microscale simulations
(e.g. molecular dynamics (Alexiadis et al. 2013; Borg, Lockerby & Reese 2015; Tedeschi
et al. 2021), coarse-graining methods, stochastic methods, etc.) are associated with grid
points, where microscopic properties are derived. For viscoelastic fluids modelling,
Laso and Öttinger introduced a pioneering approach known as CONNFFESSIT (Laso
& Öttinger 1993) (calculation of non-Newtonian flow: finite element and stochastic
simulation technique), combining finite elements at the macroscale and stochastic particle
simulations of polymer dynamics at the microscale.

The EE and EL approaches are generally appropriate for fluids with microstructural
relaxation times (λ′) that are sufficiently small compared to the macroscopic ones (λ)
(Ren & Weinan 2005; Yasuda & Yamamoto 2008, 2014). As shown in figure 1(b), for
multiscale problems with significant time scale separation, where λ′ � λ (or Wi = λ′/λ�
1, where Wi is the Weissenberg number), a quasi-steady state can be achieved for the
microscopic stresses, regardless of the flow history. This approach has been employed
in atomistic-continuum simulations of simple fluids using molecular dynamics with an
Eulerian grid-based calculation of the flow field (Ren & Weinan 2005). In simple fluids,
the local stress depends point-wise in time on the velocity gradient, and therefore, the
initial conditions for the microstructure can be chosen arbitrarily at each time step.
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Figure 1. Scheme of different HMM approaches. Eulerian–Eulerian (EE), Eulerian–Lagrangian (EL) and
Lagrangian–Lagrangian (LL). The evolution of the stress tensor depends on the effective relaxation times at the
microscales λ′. Systems with λ′ � λ̄ (green) are accurately computed at the microscopic scales, whereas for
λ′ ≤ λ̄ (blue), larger microscale simulations are required to capture memory effects as the macro scales evolve.
LL approaches facilitate the carrying of the stress information during the time integration at macroscales.

The average stress is then calculated using the Irving–Kirkwood approximation, provided
that local stationarity is achieved within the same time step.

However, this approach cannot be extended to complex fluids with finite memory, when
λ � λ′ (Wi > 1). As shown in figure 1(b), the stresses and microstructure heavily depend
on flow history, and relaxation times are likely to be comparable to, or even exceed,
the macroscopic time step. The direct use of EL or EE schemes to generate an initial
microstructural configuration in a fixed fluid cell is fundamentally and technically limited
due to two reasons. First, it is not known beforehand where the fluid comes from and
what its flow history was, and second, even if this information were available, it would
require additional constitutive and numerical features capable of accounting for complex
spatio/temporal variations.

Alternative techniques to address these issues include spatial/temporal homogenization
methods and backward-tracking Lagrangian particles combined with Eulerian grids to
capture memory effects in the fluid (Phillips & Williams 1999; Wapperom, Keunings &
Legat 2000; Ingelsten et al. 2021). However, fluid memory can be very long in polymer
systems, suspensions, etc., precluding simple linear backward approximations. Regarding
the second issue, one alternative is to incorporate continuum configuration fields that can
be discretized and advected from the macroscales (Ottinger, van den Brule & Hulsen
1997). However, it would be extremely challenging to know a priori those fields for
general multiphysics problems (i.e. non-polymeric), as well as the numerical generation
of microscopic configurations consistent with the history of the fluid.
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For systems with larger microstructural relaxation times (λ � λ′), the particular
restrictions of EE and EL can be circumvented using fully Lagrangian, LL, schemes
(Ee et al. 2007), and a proper sampling procedure for the microstructure. Indeed, LL
schemes have been successfully used to model elastic effect and history-dependent flows
(Murashima & Taniguchi 2010; Seryo et al. 2020; Morii & Kawakatsu 2021) at large
Weissenberg numbers. As illustrated in figure 1(b), LL schemes directly track the material
points at the macroscale retaining their strain and strain-rate variation, thus naturally
handling history-dependent fluids. A variety of LL methodologies have emerged over the
last decade, adopting mainly smoothed particle hydrodynamics (SPH) discretizations at
the macroscales and combination of different microscopic models (Ellero, Español &
Flekkoy 2003; Murashima & Taniguchi 2010; Feng et al. 2016; Xu & Yu 2016; Sato
& Taniguchi 2017; Zhao et al. 2018; Sato, Harada & Taniguchi 2019; Giessen et al.
2020; Schieber & Hütter 2020; Seryo et al. 2020; Morii & Kawakatsu 2021). At the
microscales, the stress evolution of polymeric solutions and entanglements have been
accounted for using Brownian dynamic (Xu & Yu 2016), active learning (Zhao et al.
2018; Seryo et al. 2020) and slip-link models (Feng et al. 2016; Sato & Taniguchi 2017;
Sato et al. 2019). In these LL schemes, it is considered that microscales only account
for the polymer contribution to the stress, whereas the fluid is modelled uniquely from
the macroscopic discretization (Feng et al. 2016). Its effect (i.e. velocity gradient tensor)
enters the Langevin-type dynamics for stochastic micro-realizations implicitly as a single
parameter, and not directly as a boundary condition for the full microsystem.

In fact, one important issue limiting the applicability of HMM methods to more detailed
descriptions of complex fluids is precisely the proper imposition of microscale constraints
that are consistent with the macroscale kinematics and the calculation of microscopic
information required by the macro state (Ee et al. 2007). When using particle-based
micro-models with explicit solvent description (e.g. molecular dynamics, dissipative
particle dynamics, discrete element method, SDPD), the construction of this constrained
microscale solver represents often the most cumbersome technical step. For LL schemes,
due to the history-dependent evolution of the flow and the existence of non-trivial flow
configurations, the microscales can be subjected to arbitrary series of deformations that
are usually difficult to handle with traditional periodic boundary conditions (BCs). To
avoid these limitations, existent LL schemes have been restricted to the use of microscopic
simulators that do not depend on the ‘physical’ boundary conditions (Feng et al. 2016; Sato
& Taniguchi 2017; Sato et al. 2019; Morii & Kawakatsu 2021). This includes, for example,
the case of Brownian dynamics for statistically independent polymers, such as dilute
polymer solutions or polymer melts in mean field approximation, or where geometries
that reproduce simple flow configurations are utilized (Seryo et al. 2020) (i.e. simple shear
or uniaxial deformation). More general micro–macro couplings (e.g. full particle-based
model of polymeric dispersions, colloid suspensions, emulsions, etc.) involving detailed
microsystems models undergoing arbitrary flow deformations are beyond the capabilities
of the current frameworks.

Another important assumption in some of the existent microsolvers is that the
microscopic states of all polymers are in equilibrium and that the coils do not
have translational degrees of freedom, but only rotational and extensional ones
(Morii & Kawakatsu 2021). Regarding microscopic BCs approaches using simple flow
configurations, they are suitable to account for translational effects and often provide
information sufficient to characterize simple fluids. However, since complex fluids can
possess microscopic structures that are influenced by different flow configurations,
geometries, time scales and deformation rates, it has been evidenced that to correctly
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model non-Newtonian fluids (Tedeschi et al. 2021), it is necessary to determine the full
stress contribution from the microscopic solver.

In this manuscript, we propose a generalized fully Lagrangian HMM (LHMM) using
smoothed dissipative particle dynamics (Español & Revenga 2003; Ellero & Español 2018)
(SDPD), suitable to model general complex fluids (e.g. colloids, polymer, microstructures
in suspensions) while using the same fluid description across scales. Among the different
computational methods successfully used to model Newtonian and non-Newtonian fluids
at continuum and microscales, SDPD has emerged as a suitable tool to simulate complex
fluids (Kulkarni et al. 2013; Müller, Fedosov & Gompper 2014; Ellero & Español
2018). The main strengths of SDPD are: (i) it consistently discretizes the fluctuating
Navier–Stokes equations allowing the direct specification of transport properties such as
viscosity of the fluid; (ii) SDPD is compliant with the general equation for non-equilibrium
reversible–irreversible coupling (GENERIC) (Öttinger 2005) and therefore, it discretely
satisfies the first and second laws of thermodynamics, and fluctuation–dissipation theorem
(FDT); (iii) at macroscopic scales, SDPD converges to the well-known continuum method
smoothed particle hydrodynamics (SPH) as the characteristic size of the discretized
particle increases (Vázquez-Quesada, Ellero & Español 2009; Ellero & Español 2018).
For an extended review of SDPD, the reader is referred to the publication of Ellero &
Español (2018).

Since SDPD offers a natural physical link between different scales, we construct
an HMM that uses SDPD to solve both macro- and microscales. This approach
ensures the compatibility of the different representations by construction and physical
consistency across scales. At the microscales, we adopt the recently proposed
BC methodology (Moreno & Ellero 2021) that allows the acquisition of the full
microscopic stress contributions for arbitrary flow configurations. This allows to carry
out micro-computations under general mixed flow conditions. While it is true that
CONNFFESSIT (Laso & Öttinger 1993) and other EL methodologies are also capable of
handling mixed flow features, those features are not included in current LL methodologies
with fully explicit solvent descriptions. Furthermore, in the context of LL, our approach
exploits the versatility of SDPD to model a variety of microscopic physical systems beyond
polymeric systems. Our LHMM scheme’s strength lies in its unique combination of
aspects that other methods only partially account for. We can summarize the main features
of the proposed LHHM framework as follows.

(i) Model history-dependent flows by construction.
(ii) Significant spatio-temporal gains in simulations compared with fully resolved

microscale simulations.
(iii) Thermodynamic-consistent discretization of the fluctuating Navier–Stokes equations

in both macro- and microscales (deterministic–stochastic) providing a direct link to
physical parameters.

(iv) GENERIC compliant at both macro and micro levels.
(v) Multiphysics – polymers, colloids, suspensions, multiphasic systems. No

constitutive models for closure are required.
(vi) Complex-flow configurations are allowed and can be handled at the microscales.

In the following sections, first, a general description of HMM is introduced along with
the governing balance equations, then, the proposed fully Lagrangian approach and
the particle-based discretization are presented. Finally, without loss of generality, we
streamline the validation of the methodology focusing on two-dimensional simulations of
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complex flows with memory. At the microscales, we adopt generic, yet complex, polymeric
and multiphase flows to showcase the flexibility of the method.

2. Heterogeneous multiscale methods

In general, for HMMs, we can define the macroscopic problem considering a domain
Ω ⊂ RD (with dimension D = 2, 3) with a boundary ∂Ω = ΓD ∪ ΓN , where ΓD and
ΓN correspond to boundary regions where Dirichlet and Neumann boundary conditions
are applied, respectively. The mass and momentum balance of the system for an
incompressible fluid with constant density ρ can be expressed as

∇ · v = 0, in Ω × (0, T),

ρ
dv

dt
− ∇ · τ (v, p) = f , in Ω × (0, T),

v = g, on ΓD × (0, T),

v(0) = v0, in Ω × {0},

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.1)

where the total stress tensor is given by τ = −pI + π , with p being the pressure and π the
viscous stress. For incompressible Newtonian fluids, the viscous stress is a linear function
of the strain rate (π = η(∇v + ∇vT), with η being the viscosity) and the flow can be
totally described using (2.1). For non-Newtonian fluids such as colloidal and polymeric
systems, this linear behaviour does not hold and other relationships are required (Bird
et al. 1987). Additionally, for microfluidics, where complex flow patterns and thermal
effects may arise, the use of Dirichlet boundary conditions, v = g on ΓD × (0, T), may
not accurately model such microscopic effects, requiring more elaborated considerations
for the boundary conditions.

2.1. Lagrangian heterogeneous multiscale method (LHMM)
We propose an LL-type of methodology, as depicted in figure 1, discretizing both
macro- and microscales with a particle-based representation of the system. We distinguish
macroscale parameters and variables if they are derived from microscales calculations
using the upper bar (i.e. X̄), whereas microscale variables are denoted using a prime (i.e.
X′). We use the subindices x, y and z to indicate the coordinate axis. If we express the
macroscopic viscous stress determined from a representative microscopic domain Ω ′ in
terms of hydrodynamic, non-hydrodynamic and kinetic contributions as π̄ = π̄h + π̄m +
π̄k, the ensemble average stress at the microscales leads to

〈π̄〉(x) = 1
Ω ′

∫
Ω ′

π ′ dΩ ′,

= 1
Ω ′

(∫
Ω ′

π ′
h dΩ ′ +

∫
Ω ′

π ′
m dΩ ′ +

∫
Ω ′

π ′
k dΩ ′

)
, (2.2)

where π ′
h accounts for the hydrodynamic contributions to the stress and π ′

m corresponds to
the non-hydrodynamics effects (presence of colloids, polymers, walls, etc). The 〈·〉 denotes
the averaging over the microscopic domain. However, the π̄ corresponds to a macroscopic
field. For a Newtonian (ideal) solvent, the stress is given by 〈π̄o〉 =< 2ηd̄ >= 〈π̄h〉 (d̄
being the rate-of-strain tensor computed from microscopic information). Additionally, if
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this Newtonian solvent stress contributes homogeneously over the whole domain at all
scales, it is reasonable to consider that πo = 2ηd = 〈π̄o〉. (Notice that the overbar notation
of d is omitted since is not a multiscale contribution, in contrast to d̄ that is a macroscopic
rate of strain determined from microscopic variables.) We can now introduce a hybrid
macro–micro formulation given by

〈π̄h〉(x) = ε2ηd︸ ︷︷ ︸
macro

+ 1
Ω ′

∫
Ω ′

(1 − ε)π ′
h dΩ ′

︸ ︷︷ ︸
micro

. (2.3)

This scheme is a generalized framework that allows us to incorporate ideal hydrodynamics
interactions of the fluid from both scales. The weighting parameter ε conveniently
provides numerical stability to the method, whereas naturally accounting for spatial
inhomogeneities of the stresses. According to (2.3), if ε = 1, the ideal hydrodynamic
contributions are fully accounted for from the macroscale level, and microscales only
contribute to non-hydrodynamic interactions. In contrast, if ε = 0, the viscous stresses
used to solve the macroscale problem are totally computed by the micro-representation,
and it implicitly accounts for all stress contributions (hydro- and non-hydrodynamic)
across scales. The balance between the origin of the Newtonian contribution to the
stress, whether from macro- or microscales, can be controlled by the parameter ε.
Traditionally, Newtonian contributions have only been modelled from macroscales (ε = 1)
as in previous work by other researchers (Murashima & Taniguchi 2010; Feng et al. 2016;
Xu & Yu 2016; Sato & Taniguchi 2017; Zhao et al. 2018; Sato et al. 2019; Schieber
& Hütter 2020; Seryo et al. 2020; Morii & Kawakatsu 2021). Microscopic simulations
have generally been used to reproduce only the complex microstructural features without
incorporating the Newtonian contributions. In contrast, our proposed framework uses the
SDPD method at both scales, which consistently discretizes the Navier–Stokes equation.
As a result, our method is theoretically capable of retrieving the ideal solvent stress
contribution from microscales as well. Although this would not be needed for dispersed
systems in Newtonian media undergoing affine deformations, it could be relevant in most
complex cases considering non-Newtonian materials (Einarsson, Yang & Shaqfeh 2018)
or non-affine polymer deformations (Simavilla, Espanol & Ellero 2023).

A major limitation associated with using only microscopic simulations to determine
both hydrodynamic and non-hydrodynamic contributions (ε = 0) can be related to the
numerical stability of the method. The computation of the stress involves spatial and
temporal averaging over the microscopic realization, and the thermal fluctuations on the
ideal stress can be amplified, leading to instability of the entire macro–micro scheme.
Therefore, it seems reasonable to consider always a non-vanishing contribution of the
Newtonian solvent in the macro description. In the results section, we compare the stability
and accuracy of (2.3) for different values of ε for different simple and complex fluids. An
additional feature of this macro–micro scheme is that it allows for further generalization of
the framework to simulate microscopic stresses at arbitrary locations of the macro domain,
whereas other regions are modelled using the standard Newtonian discretization. Given
(2.2) and (2.3), we can now express τ in (2.1) as

τ = −pI +

⎛
⎜⎝ επo︸︷︷︸

macroscopic

+ [(1 − ε)π̄h + π̄m + π̄k]︸ ︷︷ ︸
microscopic

⎞
⎟⎠ . (2.4)

We remark that hydrodynamic contributions for non-Newtonian solvents combine both
ideal and non-ideal interactions, 〈π̄h〉 = 〈π̄o〉 + 〈π̄h|non-ideal〉. Whereas the ideal effects
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are expected to occur in the fluid at all scales, the non-ideal interactions are only
evident at microscales by the disruption of the flow field due to the presence of any
microstructures. In Appendix B, we present a general LHMM description suitable for
Newtonian and non-Newtonian macroscopic matrix descriptions. Here, we evaluate our
LHMM scheme using (2.4). In § 2.4, we describe the methodology used to estimate
the different components of these stresses. Considering the representation of fluid in a
Lagrangian framework (Español & Revenga 2003) and the previous decomposition (2.4),
the divergence of the total stress in (2.1) takes the form

∇ · τ = −∇p + ε

(
η̄∇2v +

(
ζ̄ + η̄

D

)
∇∇ · v

)
+ (1 − ε)∇ · π̄h + ∇ · π̄m + ∇ · π̄k,

(2.5)

where D is the dimension, and η and ζ are the shear and bulk viscosities, respectively. It
is worth noting that although the continuity equation assumes exact incompressibility, the
SDPD and SPH models adopted in this work are based on a standard quasi-incompressible
approach where the artificial sound speed is tuned to keep compressibility effects below a
few percent. As a results, compressible terms in the continuity and momentum equations
are considered whereas the magnitude of the bulk viscosity is chosen to remove the
velocity divergence formally from the momentum equation. Previous studies have also
discussed the importance of these numerical aspects in SDPD discretizations (Colagrossi
et al. 2017).

In general, since we aim to incorporate hydrodynamics interactions of the fluid in
both scales, a critical requirement for the microscales solver is the capability to model
both simple and complex fluids. Here, we model both macro- and microscales using
SDPD, discretizing the fluctuating momentum equation as a set of N interacting particles
with position ri and velocity vi. The system is constituted by particles with a volume
Vi, such that 1/Vi = di = ∑

j W(rij, h), with di being the number density of particles,
rij = |ri − rj|, and W(rij, h) an interpolant kernel with finite support h and normalized to
one. Additionally, to discretize the balance equations, a positive function Fij is introduced
such that Fij = −∇W(rij, h)/rij, where the gradient of the kernel function is expressed as
∇W(rij, h) = ∂W(rij, h)/∂rij eij. From now, when describing each scale, we identify the
discrete particles at microscales with the subindices i and j, whereas those at macroscales
with I and J.

For the interpolant function at both scales, we adopt the Lucy kernel (Español &
Revenga 2003) typically used in SPH and SDPD:

W(r) =
⎧⎨
⎩

w0

hD

(
1 + 3r

h

)(
1 − r

h

)3
, r/h < 1,

0, r/h > 1,

(2.6)

where w0 = 5/π or w0 = 105/16π for two or three dimensions, respectively.

2.2. Macroscales
At the macroscales, when the volume VI of the discretizing particle approach continuum
scales and thermal fluctuations are negligible, SDPD is equivalent to the smoothed particle
hydrodynamics method (Vázquez-Quesada et al. 2009). For this scale, the geometry and
type of flow prescribe the boundary condition at ∂Ω . The SDPD discretized equations for
(2.1), describing the particle’s position, density and momentum for a fluid without external
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forces, are expressed as (Español & Revenga 2003)

M
ac

ro
sc

al
es

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

drI/dt = vI, (2.7)

m
dvI

dt
=
∑

J

([
pI

d2
I

+ pJ

d2
J

]
FIJrIJ

− ε[avIJ + b(vIJ · eIJ)eIJ]
FIJ

dIdJ
− π̄ IJFIJrIJ

)
, (2.8)

where rIJ = rI − rJ , vIJ = vI − vJ and eIJ = rIJ/rIJ . In (2.8), FIJ is expressed in terms
of the macroscales indicating its correspondence with a interpolation kernel with finite
support h̄. Additionally, a and b are friction coefficients related to the shear η and bulk
ζ viscosities of the fluid through a = (D + 2)η/D − ζ and b = (D + 2)(ζ + η/D) (for
D = 2, 3).

The term p is the density-dependent pressure. We adopt the Tait equation of state,
given by pi = c2ρ0/7[(ρi/ρ0)

7 − 1] + pb, where c is the speed of sound on the fluid
and ρ0 is the reference density. The term c2ρ0/7 corresponds to the reference pressure
of the system, given by c2 = ∂p/∂ρ|ρ=ρ0 . The parameter pb is a background pressure that
provides numerical stability by keeping the pressure of the system always positive.

The microscopically informed tensor π̄ IJ is given by

π̄ IJ = (1 − ε)

(
π̄ I

d2
I

+ π̄J

d2
J

)
h

+
(

π̄ I

d2
I

+ π̄J

d2
J

)
m

+
(

π̄ I

d2
I

+ π̄J

d2
J

)
k

. (2.9)

The terms (π̄ I)h, (π̄ I)m and (π̄ I)k are obtained from the microscale. Their representation
is detailed in § 2.4.

2.3. Microscales
At microscales, the SDPD (Ellero & Español 2018) equations contain both deterministic
and stochastic contributions. The later accounts consistently for thermal fluctuations. The
balance equations are then given by

M
ic

ro
sc

al
es

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dr′
i/dt = v′

i, (2.10)

m′ dv′
i

dt
=
∑

j

[
p′

i

d2
i

+
p′

j

d2
j

]
F′

ijr
′
ij −

∑
j

[
a′v′

ij + b′(v′
ij · e′

ij)e
′
ij

] F′
ij

didj
+ m′ dṽi, (2.11)

m′ dṽi =
∑

j

(
Aij dW̃ ij + Bij

1
D

tr[dW ij]
)

· e′
ij

dt
, (2.12)

where v′
ij = v′

i − v′
j, and a′ and b′ are friction coefficients related to the shear η and

bulk ζ viscosities of the fluid through a′ = (D + 2)η/D − ζ and b′ = (D + 2)(ζ + η/D).
Thermal fluctuations are consistently incorporated into the model through the stochastic
contributions to the momentum equation by (2.12). Here, W ij is a matrix of independent
increments of a Wiener process for each pair i, j of particles and W̃ ij is its traceless
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symmetric part, given by

dW̃ ij = 1
2

[dW ij + dW T
ij ] − δαβ

D
tr[dW ij], (2.13)

where the independent increments of the Wiener processes satisfy

〈dW αα∗
ii∗ dW ββ∗

jj 〉 = [δijδi∗j∗ + δij∗δi∗j]δαβδα∗β∗
dt. (2.14)

To satisfy the fluctuation–dissipation balance, the amplitude of the thermal noises Aij and
Bij are related to the friction coefficients a′ and b′ through

Aij =
[

4kBTa′ F′
ij

didj

]1/2

, (2.15)

Bij =
[

4kBT
(

b′ − a′ D − 2
D

) F′
ij

didj

]1/2

. (2.16)

We remark that in (2.12), the prime notation for the Aij and Bij is omitted since thermal
fluctuations are only accounted for microscales. The selection of these amplitudes in (2.15)
and (2.16) for the noise terms, in the context of the fluctuation–dissipation theorem, leads
to a dissipation which is exactly the same as that in the macroscopic discretization of
SDPD. Furthermore, (2.15) and (2.16) ensure that the stochastic differential equation (2.11)
produces a variables distribution in accordance with the Einstein distribution function and
follows the GENERIC structure. For a detailed derivation of SDPD, the reader is referred
to the work of Español & Revenga (2003).

At microscales, smoothed dissipative particle dynamics has been used to model complex
fluids such as polymer or colloids (Ellero et al. 2003; Vázquez-Quesada et al. 2009;
Moreno & Ellero 2021; Simavilla & Ellero 2022) by using additional potentials (Litvinov
et al. 2008) or constructing colloidal objects with adequate interaction potentials with the
surrounding fluid (Vázquez-Quesada et al. 2009; Bian et al. 2012). Using this approach,
(2.11) can be further enlarged to explicitly account for contributions due to connectivity
potentials (i.e. FENE Litvinov et al. 2008), colloid–solvent interactions (Bian et al. 2012),
colloid–colloid interactions (Vázquez-Quesada et al. 2009), blood flow (Moreno et al.
2013; Müller et al. 2014; Ye et al. 2020), phase separation (Lei et al. 2016) and coffee
extraction (Mo et al. 2021).

2.4. Coupling
In the proposed LHMM, the transfer of information macro-to-micro occurs through the
velocity field of the macroscales, v, that defines the boundary conditions of the microscale
subsystems. However, the micro-to-macro transfer occurs via the stress tensor, π̄ . If N
denotes the number of microscopic subsystems generated to compute microscale-informed
stresses, here we consider the most general case, N = N̄, such that one microscopic
simulation is generated per each macroscopic particle. Of course, microscopic simulations
contain a large number of microscopic degrees of freedom (e.g. polymers, colloids,
droplets) on which the mean average is referred. In general, the total number of degrees
of freedom (particles) required to describe a system using LHMM decreases compared
with a fully resolved microscopic system when the length scale separation between
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Figure 2. (a) Schematic representation of the fully Lagrangian heterogeneous multiscale method proposed.
(b) Algorithm and (c) parallelization.

scales increases (i.e. towards a continuum representation of the fluid), which offers
significant advantages from a computational standpoint. In § 2.5, we further discuss those
computational aspects. We present the general stages of the coupling in figure 2 and
Algorithm 1 in Appendix A. The coupling strategy is accomplished in two alternating
stages: (i) macro-to-micro and (ii) micro-to-macro. In the first stage, the velocity gradient
at the macroscale is computed and used to prescribe the boundary conditions at the
microscale. Microscale simulations are then conducted using (2.10) and (2.11). In the
second stage, the ensemble and time average of the stress for each microscopic simulations
is computed and passed to the macroscopic particles to solve (2.7) and (2.8). After
updating positions and velocities of the macroscale particles, another coupling loop is
started

2.4.1. Macro-to-micro
At the microscale, we use a generalized boundary condition scheme recently proposed
(Moreno & Ellero 2021) to non-trivial velocity fields (i.e. mixed shear and extensional) in
periodic domains. We decompose the microscopic simulation domain in three regions:
buffer, boundary condition (Ω ′

bc) and core (Ω ′), as shown in figure 2. The properties
of the fluid, such as the stress tensor, are evaluated from the core region. In the
boundary-condition region, the velocity of the particles is prescribed from a macroscopic
velocity field v. The system is further stabilized and periodic boundary conditions are
adopted owing to the buffer region. A detailed description of this domain decomposition
approach can be found from Moreno & Ellero (2021). To reconstruct the velocity field v

at boundary regions Ω ′
bc, we use the velocity gradient ∇vI at the macroscale Ith particle

position. The macroscopic ∇vI can be approximated using the SDPD interpolation kernel,
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such that

∇vI =
∑

J

FIJrIJvIJ. (2.17)

This first-order approximation allows us to compute velocity gradients with a minimal
computational cost during the macroscopic force calculation stage. In the results section,
we validate the use of this approach. Other high-order alternatives to compute ∇vI are
also possible. However, it would require an additional spatial interpolation step (Zhang
& Batra 2004). Using (2.17), the velocity v′

i of the microscale particles located at the
boundary-condition region is then determined by

vi = r′
i∇vI, ∀i ∈ Ω ′

bc, (2.18)

where the macroscopic velocity field is linearly interpolated taking the macroscopic
particle centred at the origin of the box (see figure 2). The extent of the microscopic
subsystems is given by the characteristic length Ω ′. In general, we consider that all
microscopic subsystems have the same size Ω ′, however, different sizes can be used if
the specific features of the flow require it.

2.4.2. Micro-to-macro
Given a macroscopic particle I, we determined its stress tensor, π̄ I , from the microscales.
Here, we adopt the Irving–Kirkwood (IK) methodology (Yang, Wu & Li 2012) such that
the stress is given by π̄ I(x′; t) = π̄K

I (x′; t) + π̄P
I (x′; t), where π̄K

I (x′; t) and π̄P
I (x′; t)

account for kinetic and potential contributions to the stress tensor, respectively. This
potential contribution contains both hydrodynamic and non-hydrodynamic terms. We use
the weighting function wIK(r′, x′) for the spatial averaging, whereas time averaging is
conducted over a range on N′

t microscopic time steps. Transient simulations require careful
consideration of the desired level of accuracy. Ensemble averaging alone can lead to a high
noise-to-signal ratio, producing spurious fluctuations in the macroscopic system. While
running replicates of the microscale simulations can improve ensemble measurement, this
incurs a significant overhead, making it impractical for use in the LHMM. To accurately
estimate the stress, the IK approach requires spatial and temporal averaging. We propose
a simple approximation of the measured stress at the end of the microscopic interval
using the computed running average of the stress during that interval, which suffices if
the stress magnitude does not significantly change during that interval. For a more precise
estimation of the transient stress, a denoising stage can be performed at the end of each
coupling loop (Zimmerman, Jones & Templeton 2010; Zimon, Reese & Emerson 2016).
This involves smoothing and interpolating the measured signal within the interval of the
microscopic simulation, followed by using the interpolated approximation to calculate the
expected stress at the end of the microscale interval. This approach is particularly useful for
systems where larger macroscopic time steps are desired or if the measured stress during
the macroscopic interval can exhibit an overshoot.

The kinetic part is then given by (Tadmor & Miller 2011)

π̄K
I (x; t) = − 1

N′
t

N′
t∑

n=1

[∑
i

mi wIK(ri(n) − x)� v′
i(n) ⊗ � v′

i(n)

]
, (2.19)

where � v′
i(n) = v′

i − 〈v′(ri; n)〉 is the relative velocity of the particle i at time step n.
In the IK approach, if ϕij is the magnitude of the force between particles i and j, it is
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considered that the force term can be expressed in central force decomposition as

f ij(n) ⊗ rij(n) = ϕij(n)rij(n)

rij(n)
⊗ rij(n). (2.20)

With this, the potential part of the stress tensor reads

π̄P
I (x, t) = 1

2N′
t

N′
t∑

n=1

⎡
⎢⎢⎣∑

i,j
i /= j

f ij(n) ⊗ rij(n)B(x; ri(n), rj(n))

⎤
⎥⎥⎦ , (2.21)

where B(x; ri(n), rj(n)) is a bond function given by B(x; u, v) = ∫ 1
s=0 wIK((1 − s)u +

sv − x) ds. The bond function is the integrated weight of the bond for a weighting function
centred at x. If the weighting function wIK(y − x) is taken as constant within a domain Ωa
and zero elsewhere, wIK = 1/Vol(Ωa) if y ∈ Ωa. If additionally, the bond function B is
calculated only with bonds fully contained in Ωa, we would have B(x; ri, rj) = 1/Vol(Ωa)
for i − j ∈ Ωa. For more detailed descriptions and extended validation benchmarks, we
refer the reader to the work of Moreno & Ellero (2021).

2.4.3. Time stepping
A critical aspect of heterogeneous multiscale methods is the time-stepping approach
used to send information between scales (Ee, Ren & Vanden-Eijnden 2009; Lockerby
et al. 2013). From macroscales, we consider the time step is given by t, whereas the
overall time scale λMM of the system investigated is related to the operative conditions,
such as the shear rate, γ̇ . Thus, macroscopic scales define the extent of the overall
simulations, requiring a minimum of m steps (λMM = mt). The time-stepping approach
depends on the time-scale separation between macro- and microsystems. If we denote
the characteristic relaxation time for each scale as λ, systems with large time scale
separation satisfy λ′ � λ, whereas for highly coupled scales, λ′ ≈ λ. From microscales,
the time step t′ sets the condition to accurately resolve the stress evolution of the system.
The relaxation of the microscales requires a minimal number of time steps n, such that
λ′ = nt′. In practice, microscopic simulations would use n large enough (λ′ < nt′) to
ensure the proper stabilization of the system and to reduce the noise-to-signal ratio.

In multiscale methods, the relaxation time of the macro- and microsystems determines
the ratio t/t′. As the limit condition for the highest temporal resolution, we can
consider the case of t/t′ = 1. However, in practice, this would not correspond to a
temporal multiscale method, but a fully microscopic description of the system. In those
cases, the gain in performance for using HMM comes only from the spatial upscaling of
the stress. Existent LL schemes (Yasuda & Yamamoto 2014; Sato & Taniguchi 2017; Sato
et al. 2019) that use time steps in the same order for macro- and microsolvers are limited
to problems with microscale temporal resolutions. Otherwise, in the case of stochastic
microscale simulations (Morii & Kawakatsu 2021), equilibration of the microscales is
assumed through mean-field approximations. Due to these practical restrictions, different
time-stepping approaches have been recently investigated (Ee et al. 2009; Lockerby
et al. 2013) to increase the temporal gain in HMMs and reach macroscopic time scales.
Depending on the order of magnitude of t/t′, different time-stepping schemes can be
used. In figure 3, we illustrate the basic sequence of time stepping: (a) scattering ∇vI on
individual microscopic solvers; (b) solving microscales under arbitrary BC; (c) gathering
π̄ I for macroscales; and (d) solving macroscales. The simplest time-stepping, typically
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Figure 3. Time-stepping approaches and information passing between scales. In LL schemes, it is in principle
possible to pass information from micro solvers before reaching full equilibration, since the historically
dependent stress is naturally tracked in the Lagrangian framework.

referred as continuous coupling between scales (see figure 3), considers that microsolvers
are evolved during nt′, whereas the time integration at macroscale occurs at t = nt′.
An alternative to achieve both spatial and temporal gain when using our LL schemes is the
heterogeneous-coupling time stepping (Lockerby et al. 2013) (as known as time burst), as
presented in figure 3. In time-burst approaches, the macroscales are evolved using t =
mt′, where m � n. Therefore, microscale behaviour is extrapolated over larger periods.
Compared with continuous coupling, the overall gain of heterogeneous time stepping is
given by the ratio m/n. In general, for highly coupled scales (λ′ ≈ λ), we would require
m ∼ n to reach the continuous coupling. The EE and EL schemes with time-burst time
stepping have been adopted for systems with large enough time scale separation (λ′ � λ).
However, due to the incompatibility of a simple Eulerian description to capture memory
effects, this approximation of constant microscopic stresses over a larger macroscopic time
exhibit larger deviations as the microscale relaxation time increases. These limitations can
be significantly relieved using LL schemes (Ee et al. 2009). Here, depending on the type
of system and scale separation, we used both continuous and heterogeneous coupling in
time.

The Lagrangian nature of the proposed framework represents a critical ingredient to
perform the multiscale coupling with SDPD. Flow history is by default accessible to every
element of fluid (SPH particle), which carries its microstructure (in a Lagrangian sense).
As a consequence, the initial conditions (SDPD positions/velocities) at every macroscopic
time step can be taken as those at the end of the previous time step, regardless of whether
the microstructure has relaxed or not within it. This idea allows us to apply HMM directly
to the flow of complex fluids by running SDPD simulations in parallel (one for each SPH
particle) undergoing inhomogeneous and possibly unsteady velocity gradients obtained
from the macroscopic SPH calculation. As discussed by Bertevas, Fan & Tanner (2010),
accurate IK estimates in mesoscopic calculations require typically periodic representative
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elementary volumes (RVEs) three to ten times larger in linear size than the suspended
solid particles, and therefore we expect a significant computational gain when applying
this procedure to SPH fluid volumes much larger than the RVE.

2.5. The LHMM implementation
Since each macroscopic particle is equipped with its microscale solver, the overall cost of
the HMM simulations increases compared with constitutive-equations-based approaches.
However, the expected cost is significantly reduced for fluids that require to be solved with
a resolution at the microscopic scale (polymer coil or colloid scale for example). The LL
schemes offer parallelization advantages, allowing each macroparticle to compute its stress
independently. Here, we implement the LHMM using a c++ driver, coupled with multiple
parallel instances of LAMMPS (Plimpton 1995) to solve both macro- and microscales.
In figure 2(c), we illustrate the parallelization approach used. An important feature of
the current implementation is that both macro- and microscales can be fully parallelized
separately. This has significant advantages compared with fully microscopically resolved
systems. In those, the computational cost does not scale linearly as the size of the
macroscopic domain reaches continuum scales.

Since both scales are solved using SDPD, we can estimate the relative cost of solving
a given system in terms of the total number of discretizing particles used or degrees of
freedom (DOFs). Considering a macroscopic system of size L̄ being fully microscopically
resolved with interparticle distance dx′, the total number of DOFs is then given by Nfull =
(L̄/dx′)D, where D is the dimension of the system. This system in an LHMM discretization
requires NLHMM = N̄N′ total particles, where N̄ = (L̄/d x)D and N′ = (Ω ′/dx′)D, with Ω ′
being the size of the microscopic domain sampled. Additionally, if we define the spatial
and temporal gain of the LHMM method as Gs = h̄/Ω ′ and Gt = t/t′, respectively,
the total number of DOFs for LHMM can be expressed as

NLHMM = Nfull

(
Ω ′

d x

)D

= Nfull
κ

Gs
, (2.22)

where the ratio Ω ′/d x is inversely proportional to the spatial gain Gs achieved by the
LHMM, since at the macroscale, h̄ = κ d x. The value of κ is typically determined by
the required number of neighbour points for the kernel interpolation and is related to the
accuracy of the method (Ellero & Adams 2011). Herein, we use κ = 4 (Bian et al. 2012)
(for both macro- and microscales). From (2.22), we can readily identify that, compared
with a fully resolved system, the LHMM entails a reduction in DOFs required for systems
with Gs > 4. In general, the goal of HMM is to model systems with spatial gains orders of
magnitude larger to tackle continuum scale problems with microscopic detailed effects.

Another computational gain associated with the LHMM is the flexibility of using larger
time steps compared with a fully resolved system. The Courant–Friedrichs–Lewy (CFL)
condition determines the stability criterium for the minimum integration time step for
microscales, t′ = dx′/c, where c is the artificial speed of sound. As discussed in the
previous section, for a target macroscopic time scale λMM , the total number of times
steps required is then nfull = λMM/t′ = (cλMM)/dx′. Thus, for instance, to model a
system of the order of seconds with a nanoscopic resolution would typically require
nfull ∝ 1012 time steps. In LHMM, the CFL condition at the macroscale allows the use
of t = d x/c ∝ Gst′, which scales with the spatial gain, so it is, in principle, feasible to
integrate macroscale equations over significantly larger time steps. It is worth noting that a
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slightly smaller macroscopic time steps may be preferred to comply with the characteristic
microscopic relaxation time, as discussed in the previous section. In HMM, the temporal
gain is, in general, limited by the capability of the method to accurately keep track of
the historically dependent stress. This aspect is an important feature of the proposed fully
Lagrangian scheme, allowing the use of larger macroscopic time steps, compared with
Eulerian–Lagrangian settings.

3. Macro and micro descriptions

We conduct a series of different benchmark tests for a simple Newtonian fluid to validate
the consistency and stability of the proposed multiscale method. We consider a macroscale
system under reverse Poiseuille flow (Fedosov, Karniadakis & Caswell 2010) (RPF) in a
domain of size Ly × Lx and evaluate the effect of the stabilizing parameter ε on the range
[0–1]. In RPF schemes, an external force, Fext, is applied in the upper half of the simulation
box, whereas −Fext is imposed in the lower half. Additionally, we evaluate the proposed
LHMM framework on other geometries that induce different local flow types (i.e. shear,
extension and mixed flow) corresponding to a flow in circular- and square-contraction
arrays. The use of arbitrary BC (Moreno & Ellero 2021) at the microscales allows us to
account for different spatial flow configurations. In figure 4, we summarize the type of
flow configurations investigated. For circular arrays, the size of the channel was Ly = 16h̄
and Lx = 20h̄, whereas the size of the contraction is R = 4h̄. The number of particles used
for microscopic simulations ranged from two to four thousand. At the walls, we adopt the
methodology used by Bian et al. (2012), such that the velocity of the wall particles used to
compute the viscous forces is extrapolated to enforce non-slip boundary conditions, v = 0,
at the fluid–wall interface.

To illustrate the flexibility of the proposed LHMM framework at the microscales,
we model various physical problems. We adopt different generic SDPD models for
polymeric and multiphase systems. We must note that these complex fluids are used here
only to showcase our multiscale methodology, thus, a systematic parametric analysis of
the specific systems is out of the scope of this work and will be addressed in future
publications. We must remark that in the current LHHM approach, we consider that the
compositions (i.e. polymer or phases) remain constant during the whole macro–micro
simulation. Therefore, effects such as shear stress-induced migration between the
macroscopic particles is not accounted for. Further generalization of the LHMM to
account for those effects can be attained by including additional evolution equations for
compositional fields (Ellero et al. 2003) discretized at the macroscopic level, such that
microscopic simulations can be generated on the fly accordingly. Stress-driven transport
could be also generalized in our LHMM to include the stress-gradient-induced polymer
migration models (Zhu et al. 2016; Hajizadeh & Larson 2017).

3.1. Oligomer melts
We model non-Newtonian fluids by constructing melts of oligomers of Ns = 8 and
Ns = 16 connected SDPD particles. We use the finitely extensible nonlinear elastic
(FENE) potential of the form Ufene = −1/2ksr2

s ln[1 − (r/rs)
2], where ks and rs are the

bond energy constant and maximum distance, respectively. In our simulations, we fix
ks = 23kBT/r2

s and rs = 1.5dx′. We characterize the oligomers in the system through
its end-to-end vector Rf to determine the mean end-to-end distance 〈Rf 〉2 = 〈|Rf |〉2. The
equilibrium end-to-end radius, Rf , measured from simulations under no flow condition
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Figure 4. Sketch of macro- and microscopic systems investigated. At the macroscale, reverse Poiseuille flow
and flow in arrays (cylindrical and square) are constructed. For microscales, in addition to the standard
Newtonian fluid, complex fluids are modelled as oligomeric solutions and melts, and two immiscible fluids
k and l, undergoing microphase separation.

is Rf = 0.3 ± 0.02 at kBT = 1. For simulations conducted at kBT = 0.1, the measured
Rf = 0.11 ± 0.01. Given the size of the microdomain and oligomers, the microscales are
being sampled on size ratios of approximately 10 < Ω ′/Rf ∼< 13. Polymeric systems
constructed in similar fashion in SDPD (Simavilla & Ellero 2022) have shown that the
polymer relaxation times λp agreed with the Zimm model. Herein, we identify relaxation
times for Ns = 8 of the order of λp ≈ 6tSDPD and for Ns = 16 of the order of λp ≈ 9tSDPD.
The Weissenberg numbers (Wi = γ̇ λp) investigated on the different examples, full micro-
and multiscale, ranged from 0.3 to 100.

3.2. Two-phase flow
We also constructed microscale systems constituted by two immiscible phases l and
k. The composition of each phase is denoted as κp, for p = k, l, such that the binary
mixture satisfies κl + κk = 1. We adopt the SDPD scheme proposed by Lei et al. (2016)
for multiphase flows. In this scheme, the momentum equation at microscale (2.11)
incorporates an additional pairwise term Fint that accounts for interfacial forces between
the two phases k and l, such that

Fint
ij = −sijφ(rij)

rij

rij
, (3.1)
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where

sij =

⎧⎪⎨
⎪⎩

skl if ri ∈ Ωk and rj ∈ Ωl,

skk if ri ∈ Ωk and rj ∈ Ωk,

sll if ri ∈ Ωl and rj ∈ Ωl,

(3.2)

and φ(rij) is a shape factor given by

φ = rij[−Ge−(r2
ij/2r2

a) + e−(r2
ij/2r2

b)], (3.3)

where G = 2D+1, with D being the dimension. The range for repulsive and attractive
interactions are defined as 2ra = rb = ρ

−1/D
n , such that a relative uniform particle

distribution is obtained for a given interfacial tension σ . The interaction parameters satisfy
skk = sll = 103skl, and the magnitude can be obtained from the surface tension and particle
density of the system as

sii = 1
2(1 − 10−3)

ρ−2
n

σ

[4 − D]−1([4 − D]π)1/[4−D](−GrD+3
a + rD+3

b )
. (3.4)

Here, we model the multiphase systems considering a viscosity ratio between both phases
ηk/ηl = 1 and interfacial tension σ = 0.5. The characteristic time, λps, for total phase
separation of a phase k with concentrations of 0.2 and 0.5 (starting from a homogeneous
mixture) were identified as ∼ 140tSDPD and ∼ 40tSDPD, respectively. In general, the size
(4h < Ω ′ < 10h) of microscale systems investigated and shear rates used lead to capillary
numbers Ca = (ηγ̇Ω ′)/(2σ) > 10 that are typical for highly deformable and breakable
droplets of the suspending phase (Kapiamba 2022). It has been shown experimentally
that at low Ca numbers, the steady-state morphology of multiphase systems can be
described as a single value function of the flow. However, when microstructural properties
are determined by the balance between break-up and coalescence of the phases, the
morphology can be controlled by the initial conditions of the system, leading to more
than one steady-state morphology (Minale, Moldenaers & Mewis 1997).

4. Results and discussion

The proper estimation of the velocity gradient at macroscales as well as the correct
measurement of the stress tensor from microsystems are key components of the proposed
LHMM. Therefore, we verify that numerical errors associated with particle resolution at
each scale are negligible and that the arbitrary boundary conditions used for microscales
do not introduce spurious artefacts on the stress for complex systems. In Appendices C–E,
we present a detailed validation of both scales discretizations independently.

4.1. Fully microscopically resolved simulations
To validate the accuracy of the proposed LHMM, we conduct RPF simulations of a fully
resolved (micro) Newtonian fluid and oligomeric melts using simulation domains with
length scales of the order of L̄ ∝ 102 dx′ to 103 dx′. For oligomeric melts, we can refer
to the domain size in terms of the end-to-end distance of the coils. As a consequence,
for oligomers with Ns = 16 and Rf ≈ 1.5 dx′, the fully resolved domains correspond to
lengths of the order of 200Rf to 800Rf . These fully resolved systems require between
103 and 106 microscopic particles or DOFs. We must remark that macroscopic domains
using fully resolved microscopic scales can be typically of the order of L̄ > 108 dx′, thus
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Figure 5. (a) Fully microscopically resolved RPF for Newtonian and non-Newtonian fluid. Non-Newtonian
fluids are modelled oligomers with Ns = 16 particles per chain. (b) Closeup of the upper part of an RPF for
different domain sizes evidencing a characteristic non-Newtonian profile. We indicate the total number of
degrees of freedom (particles) required in those simulations along with the box and oligomer size ratio, for
each case. Larger domains will readily require DOF > 1 × 106.

requiring DOF > 109. The computational cost to simulate such large systems quickly
becomes prohibitive, even for efficiently parallelizable codes. The domain size used herein
provides a baseline to evaluate the accuracy of the proposed LHMM framework and is
already large enough to evidence the high computational demand for this type of system.
In figure 5(a), we compare the velocity profiles for a fully resolved Newtonian and an
oligomeric melt. Under the same forcing, the non-Newtonian behaviour of the oligomeric
melt is evidenced by a reduced velocity (larger viscosity) and flattened profile. Solid lines
correspond to the quadratic and fourth-order fitting of the velocities for the Newtonian
and melt, respectively. In figure 5(b), we present the velocity profile of the upper-side
RPF velocity profile obtained for three different domain sizes with fixed ∇vxy|max. As
the domain size increases, the effective velocities of the system change. However, the
non-Newtonian profile is consistently preserved.

In figure 6, we compare the corresponding velocity profiles obtained from fully resolved
microscopic solutions and the proposed LHMM for two oligomeric systems (Ns = 8 and
Ns = 16, with L̄ = 64). The LHMM results correspond to simulations with d x = 3.2 and
dx′ = 0.2. Considering a kernel size h̄ = 4 d x and a microscopic domain Ω ′ = 20 dx′,
the spatial gain for these tests is Gs = 3.2. We evaluate the influence of the stabilizing
parameter ε. In general, we observe that when hydrodynamic contributions are only
accounted for from macro simulations, ε ≈ 1, the effective viscosity of the systems
increases leading to slightly smaller velocities for LHMM. Such an effect is reduced
as ε diminishes. When hydrodynamic, ε ≈ 0, the obtained velocity exhibit instabilities
that are likely related to the macroscopic particle resolution. Since the stresses are
only accounted for from microsimulations when ε = 0, the viscous interactions between
macroscopic particles can experience numerical fluctuations due to the stress calculation
from microscopic transient simulations. However, we must note that even for ε = 0, the
order of magnitude of the viscous stresses is closely related to the fully microscopic
results. The LHMM with ε ≈ 0 reproduces up to a good approximation the characteristic
behaviour of the oligomeric system. Overall, we identify that stabilization parameters
ε > 0.1 provide a reasonable stabilization of the stresses.
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Figure 6. The RPF velocity profiles for two different oligomeric melts with Ns = 8 and Ns = 16 using
different values of the stabilizing parameter ε. Overall, the LHMM schemes capture up to a good approximation
the effect of microscopic oligomer chains in the flow. For Ns = 16, relatively larger deviations are observed as
ε ≈ 0. This is likely because of the noise-to-signal ratio of the computed stress for larger chains. Further
improvement can be achieved by increasing the sampling volume at the microscales.

Parameter Symbol Value

Box size L 1 mm
Density ρ 1000 kg m−3

Viscosity η̄ 1 × 10−3 Pa s
Bulk viscosity ζ̄ 3/5η̄

Speed of sound c 0.1 m s−1

Background pressure p̄b 1 Pa
Resolution d x 5 × 10−4 m
Kernel size h 4 dx′
Time step t̄ 0.0002 s

Table 1. Macroscopic fluid and system parameters.

4.2. The LHMM for complex fluids
Now, we continue evaluating the proposed LHMM on a macroscopic domain with
significantly larger spatio/temporal gain, solving the microscales using the SDPD
equations (2.10)–(2.12). For macroscopic simulations, we consider a fluid with properties
ρ = 1000 kg m−3, η̄ = 1 × 10−3 Pa s, c = 0.1 m s−1, p̄b = 1 Pa. The macroscopic time
and length scales are defined in terms of t̄ = 0.0002 s, d x = 5 × 10−4 m and h̄ =
0.002 m, respectively (see table 1). For microscales, we adopt a resolution dx′ = 2.5 ×
10−10 m, such that the size of the microscopic kernel is h′ = 4 dx′ = 1 × 10−10 m and
Ω ′ = 20 dx′. Therefore, these LHMM simulations correspond to spatial gains Gs ≈ 4 ×
106. From (2.22), we can observe that it implies a reduction in the required DOF of ∝ 106,
compared with the fully microscopically resolved system.

To streamline the construction of the different microscopic systems and presentation of
the results, we conduct microscopic simulations using reduced units (X′ = X′

physical/X′
ref ).

We introduce a reference length (h′
ref = 1.25 × 10−9 m), mass (m′

ref = 1.56 × 10−15 kg)
and time (t′ref = 0.0125 s) scales (see table 2). Henceforth, unless otherwise stated, the
reduced fluid properties of the microscopic simulations are consistently given by ρ′ = 1.0,
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Parameter Symbol Value

Physical resolution dx′ 2.5 × 10−10 m
Physical kernel size h 4 dx′
Reference length scale h′

ref 1.25 × 10−9 m
Reference mass scale m′

ref 1.56 × 10−15 kg
Reference time scale t′ref 0.0125 s
Density ρ′ 1
Viscosity η′ 10
Bulk viscosity ζ ′ 3.5η′
Speed of sound c 40
Background pressure p′

b 50
Resolution dx′ 0.2
Kernel size h 4 dx′
Time step t′ 0.0001
Core size Ω ′ 15 dx′ to 20 dx′
Buffer size Ω0 5 dx′
bc size Ω ′

bc 5 dx′

Table 2. Microscopic fluid and system parameters.

η′ = 10. The particles are initially localized in a square grid with an interparticle distance
dx′ = 0.2. Additionally, for microscopic simulations, we use c′ = 40 and p′

b = 50. The
time step is chosen to satisfy the incompressibility of the system and ensure numerical
stability. We choose the smaller time scale between the CFL condition, t′ = h′/(4(v +
c)), and the viscous time scales, t′ = h′2/(8η′ρ′). Thus, we use t′ = 0.0001 to ensure
lower density fluctuations. At microscales, we account for thermal fluctuation, thus the
energy scale is determined by kBT = 1.0. Following the results reported by Moreno
& Ellero (2021), we construct microscale simulations suitable for arbitrary boundary
conditions with a core size between Ω ′ = 15 dx′ and Ω ′ = 20 dx′ (i.e. the size of the
sample to determine the stresses), whereas the sizes of the boundary condition and buffer
regions are 5 dx′ and 5 dx′, respectively.

In Appendix F (see figure 17), we compile the steady-state velocity profiles obtained for
a Newtonian flow, using the stress tensor computed directly from microscopic subsystems
((2.19) and (2.21)), for various ε. Consistently, in figure 17, we can observe that microscale
simulations can recover the macroscopic stress tensor, leading to the proper modelling of
the flow. This represents an evidence of the robustness of SDPD to capture the ideal solvent
contributions across scales. For comparison, we have included the velocity profile obtained
for a system without microscale contributions.

4.2.1. Oligomeric melt
In figure 7, we show the steady-state results for an RPF flow configuration of oligomeric
melts at different shear rates. We can observe the characteristic shear-thinning effect
induced by the alignment of the chains in the flow. Overall, the magnitude of the
stabilization parameter did not induce any effect on the rheology of the fluid, evidencing
a proper description of the fluid from both macro- and microscales separately. In addition
to the steady-state solution, we were able to capture the characteristic deviations in the
temporal evolution for the oligomer melt (see Appendix G). For the Newtonian fluid, the
velocity profile is consistently reproduced by a quadratic fitting, whereas the microscopic
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Figure 7. The RPF for non-Newtonian fluid, using oligomers with Ns = 8. (a) Comparison between
Newtonian and non-Newtonian for two values of ε = 0.01 and ε = 0.2. The magnitude of the stabilization
parameter does not affect the rheology of the fluid, evidencing a proper description of the fluid from both
macro- and microscales separately. Shear-thinning effect of oligomer melts at different shear rates. The value of
ε = 0.01 is used for low shear rates. As the shear rate increases, the value of ε = 0.2 is used to ensure stability of
the measured stress. (b) Variation of the stress and first normal stress differences for three different macroscopic
particles (i)–(iii). The initial position of the particles is highlighted on the right, (i) in red at y/L = 0.55,
(ii) in black at y/L = 0.35 and (iii) in orange at y/L = 0.1. Microscales are constituted by oligomers with
Ns = 8. The characteristic normal stress differences in the fluid increase due to the microscopic response of
the chains.

effects of the oligomer chains lead to a fourth-order velocity profile in the non-Newtonian
fluid.

In addition to the differences in the velocity profile for oligomeric melts, another
relevant characteristic that can be analysed for this non-Newtonian fluid is the evolution of
their stresses. In figure 7(b), we present the variation of the shear stress and first normal
stress difference for three macroscopic particles (highlighted in red, black and orange) at
Wi = 30, for oligomer melts with Ns = 8. The particles are initially localized at positions
across the domain such that they experienced different magnitudes of stress. As described
in figure 7, a shear-thinning behaviour can be evidenced in the magnitude of π̄xy when
the shear rate increases. Additionally, the emergence of first normal stress differences is
observed for the macroscopic particles due to the microscopic response of the chains.

4.2.2. Multiphase flow
Using the same RPF setting at the macroscales, we can easily investigate other physical
systems with different microscopic features. In figure 8, we compile the results obtained
for multiphase flows using two phases l and k, with compositions κl = 0.1 and κl = 0.5.
In these simulations, the two phases are initially mixed and the phase separation takes
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Figure 8. (a) Typical velocity profile for RPF coupled with multiphase flow at microscale, using two different
compositions of the phase l, κl = 0.2 and κl = 0.5. (b) Comparison of the steady-state velocity profile obtained
for a Newtonian fluid and two schemes of LHMM simulations. The phase separation at microscales results in
a shear-thinning behaviour of the macroscopic flow. For comparison, we include the steady profile for a system
without historical tracking of the microscale. In that situation, the formation of microstructures with larger
relaxation times is never reached, and the fluid behaves similar to the Newtonian fluid.

places concurrently with the imposition of the flow. As a result, the macroscopic shear
affects the morphology of the microstructure formed, leading to a different response of the
mixture. The characteristic size of the microstructure depends on the phase composition.
Low concentrations of l phase favour spherical to elongated droplet transitions, whereas
at intermediate concentrations, the increase in the shear rate induces transitions of the
microstructure from disordered spinodal to lamella-like structures.

In figure 8, we also compare the steady-state velocity profile obtained for a Newtonian
fluid and the multiphase case with κl = 0.5. For comparison, we have included the
profile for a multiphase system where the microstructure at the beginning of each
macroscopic time step is reinitialize as fully mixed. This assumption is consistent with
microstructural evolution reaching its equilibrium condition on time scales much smaller
than the macroscopic time step. However, for these types of systems, it will imply that
the historical evolution of the microstructure is neglected. In general, we observe that the
microphase separation results in a shear-thinning behaviour for the multiphase systems
modelled. Remarkably, we can observe that the thinning behaviour roots in the proper
history tracking of the microstructure. In systems without memory, the formation of
microstructures with larger relaxation times is never reached, and the fluid resembles the
Newtonian behaviour of their individual phases.

4.3. Flow through complex geometry
Now, we evaluate the proposed LHMM framework on geometries that induces different
local flow types (i.e. shear, extension and mixed flow) for both oligomer melts and
multiphase flows. For these large macroscopic domains, a direct validation with the
fully microscopically resolved systems is computationally taxing. Therefore, for complex
geometries, we first validated the simple Newtonian fluid in the LHMM scheme, with
respect to the corresponding Newtonian fluid as modelled from a macroscopic simulation
(using only SPH simulations) (see Appendix F, figure 18). Overall, we identify that the
LHMM consistently captures the behaviour of the ideal fluid, on the range of parameters
evaluated.
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4.3.1. Oligomeric melt
In figure 9, we present the steady velocity and stresses for an oligomeric melt (Ns = 16),
passing a cylindrical array at Wi = 0.4. For the cylindrical contraction, we use a domain
of size 19 d x × 27 d x and the radius of the cylinder R = 6 d x. The size of the macroscopic
kernel 4d x = 64 and the microscopic domain size Ω ′ = 8 are defined such that the overall
spatial gain of these simulations is Gs = 8 with an aspect ratio between the cylinder R
and the coil size Rf of nearly 300 times. The flow at the macroscale is induced by an
external forcing fext = 0.58 acting on the fluid particles. Fully microscopically resolved
simulations of these systems would require over 107 particles for a two-dimensional
system, in contrast to the 106 particles used for LHMM. Figure 9(a) compares the velocity
and stress contours between a Newtonian and oligomeric melt. In general, we identify
alterations in the steady profiles arising from the enhanced viscosity of the oligomer melts.
The characteristic shear thinning response of the melt (as discussed in previous sections)
to the spatially changing velocity gradient induces a modest but evident break in symmetry
for both velocity and stress. In figure 9(b), we plot the profiles along the vertical line at the
entrance of the domain. The higher viscosity of the oligomeric melts is consistent with the
typical flattened velocity profile observed and the larger stress. The stress profiles along a
vertical and horizontal line are also presented in figure 9(c,d) to illustrate the larger stress
contribution due to the oligomeric chains and the change in the generated stress along the
channel.

4.3.2. Multiphase flow
The capabilities of the method to track history-dependent effects are further shown
using multiphase flows in a square cavity array. In figure 10, we include the velocity
and stress profile for a Newtonian and a biphasic fluid, averaged over the same
macroscopic time span. For the biphasic fluid, the microscale simulations are initialized
as homogeneously mixed phases, with κk = 0.5, that undergo microphase separation
as they flow through the channel. As a result, multiphase flows are characterized
by the emergence of microstructures that can evolve with the simulation, therefore
carrying historical information during their transport across the channel. The formation
of such microstructures is additionally affected by the spatially variable velocity gradient
experienced by each macroscopic particle. Consistently, as the particles move within the
domain, the state of the microstructure determines their stress response, affecting the
macroscopic flow. In figure 10(a), we can observe that the Newtonian fluid has reached a
nearly symmetric steady condition for both velocity and stresses. However, the multiphase
fluid exhibit a significantly different flow behaviour and stress distribution. Further
estimation of the root-mean-squared (r.m.s.) velocity and stresses fluctuation allows us
to elucidate that the temporal stability of the velocity and stress are responsible for the
observed flow patterns. Figure 10(b) evidences the persistent fluctuations on multiphasic
systems, due to the continuous evolution of the microstructure. Different from simple
Newtonian fluids, multiphase flows are likely to require larger simulation times to reach a
steady-state condition (in the statistical sense). In Appendix H, we present the evolution of
the velocity and stress (and r.m.s. fluctuations) for multiphase flow at different time steps,
evidencing that multiphasic systems have not yet reached a steady condition. We must
highlight that when comparing the stress evolution between Newtonian and multiphase
flows, the latter is characterized by larger relaxation times (λps) that typically exceed a
single microscopic simulation. The LHMM used herein allows us to naturally account
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Figure 9. Comparison of the velocity and hydrodynamic stresses contours (a) between a Newtonian and
oligomeric melt around a cylinder (at Wi = 0.4). In a domain of size 19 d x × 27 d x with a radius of cylinder
of R = 6 d x. (b) Comparison of the velocity profile along a vertical line at the entrance of the channel.
Microscopic features of the chains at the microscales induce the deviation of the Newtonian behaviour leading
flattened velocity profile. (c,d) Stress variation along (a,c) vertical and (a,d) horizontal slices are presented to
compare the response of both fluids.

for such large relaxation times while keeping the modelling of microscopic simulations
computationally feasible.

It is important to note that depending on the characteristic size rmicro of the
microstructure, the size of the microscopic domain must be large enough for the
microstructure to be commensurate, this is Ω ′ > rmicro. Since certain physical systems can
exhibit microstructures constantly varying in size (e.g. continuously growing aggregates),
the definition of Ω ′ poses some important challenges, requiring a systematic analysis of
the specific physical phenomena investigated. However, these aspects related to varying
microstructural size are out of the scope of the present work and will be addressed in
future publications. Here, we have focused on showcasing the capabilities and flexibility
of the proposed approach.
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Figure 10. Comparison of the velocity and stress π̄xy on a square-contraction array for Newtonian and
multiphase flows. (a) Steady-state velocity and stress contours and (b) root-mean-squared velocity and stress
fluctuations.

5. Conclusions and future work

Herein, we proposed a fully Lagrangian heterogeneous multiscale methodology (LHMM),
suitable to model complex fluids across large spatial/temporal scales. This methodology
offers the advantage of capturing microscopic effects at the macroscopic length scales,
with a lower cost than solving the full microscale problem in the whole domain. The
LHMM discretizes both macro- and microscale using the smoothed dissipative particle
dynamics method, taking advantage of its thermodynamic consistency and GENERIC
compliance. The LHMM uses the velocity field of the macroscales to define the boundary
conditions of microscale subsystems that are localized at the positions of the macroscopic
particles. Subsequently, those microscale subsystems provide a microscopically derived
stress τ that is pushed to the macroscales to close the momentum equation and
continue their temporal solution. This way, the stress information is explicitly carried
by the macroscopic Lagrangian points and memory effects related to the evolution
of the microstructure are preserved. We tested the LHMM using both Newtonian
and non-Newtonian fluids evidencing its capability to capture complex fluid behaviour
such as those of polymer melts and multiphase flows under complex geometries. The
LHMM was developed using the highly parallelizable LAMMPS libraries. An important
feature is that both macro- and microscale can be fully parallelized separately. This
has significant advantages compared with fully microscopically resolved systems, which
required intensive communication between subdomains of the system. In LHMM, each
microscopic simulation is executed separately reducing communication bottlenecks.
Further generalization and improvement of the proposed LHMM framework can be
achieved to construct microscopic simulations on-the-fly. Additional scalar fields at the
macroscale (Ellero et al. 2003) can be adopted to trigger microscopic simulations only in
certain macroparticles that satisfy location or characteristic threshold conditions. Before
this activation, the macroscopic particles could be modelled using only the Newtonian
approximation to the stress, and consequently, no memory-related features would need
to be accounted for. Such generalization will be addressed in future publications.
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Applications of the LHMM include various complex systems such as colloidal suspensions
or biological flows.

Algorithm 1: Lagrangian heterogeneous multiscale coupling
LHMM coupling()
/* define set of parameters for MS simulations */
N // number of microscale simulation
λ′ // total time steps at microscales
λ̄ // time frequency for sampling the stress
Ω ′ // domain size for microscales
Ω // domain size for macroscales
ε // stabilizing parameter for macroscopic viscous

contributions
π̄ = 0 // initialize stress tensor
for t̄ = 0 to t̄ = ttotal do

macroscales(t̄, λ̄, π̄ ,ε)
for I = 0 to I = N do

Retrieve ∇vI
π̄ I = microscales(t′, λ′, ∇vI)

end
end

/* Macroscale simulation */
Macroscales macroscales(t̄, λ̄, π̄ ,ε)

for t̄ to t̄ = λ̄ do
for I,J ∈ N̄ do

SDPD (π̄ ,ε)
∇vI = ∑

J FIJrIJvI
end
t̄ = t̄ + t̄

end
/* Microscales simulations with arbitrary-boundary

conditions approach */
Microscales microscales(∇vI , Ω ′)

for t′ = 0 to t′ = λ′ do
for i, j ∈ N′ do

// the velocities of particles at Ω ′
bc is

prescribed from macro
for i ∈ Ω ′

bc do
v′ = r′

i∇vI
end
SDPD (Ω ′

bc)
end
π̄ I = Irving-Kirkwood()
t′ = t′ + t′

end
return π̄ I

Supplementary material. The data that support the findings of this study are available from the
corresponding author, N.M., upon reasonable request.
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Appendix A. Algorithm of LHMM

Algorithm of the proposed Lagrangian heterogeneous multiscale method. The core of the
algorithm consist of the coupling loop and the calculation of macro- and microscales
separately. Both macro- and microscales can be parallelizable independently.

Appendix B. Approximation to the ideal stress

Whereas the ideal effects are expected to occur in the fluid at all scales, the non-ideal
interactions are only evident at microscales by the disruption of the flow field due to
the presence of any microstructures. Considering that the Newtonian (ideal) stress, in the
absence of complex microscopic effects, is given by π̄o = 2ηd̄ (d̄ being the rate-of-strain
tensor computed from microscopic information), we can rewrite the hydrodynamic stress
contribution in the form

〈π̄h〉 = 1
Ω ′

∫
Ω ′

2ηd′ dΩ ′

︸ ︷︷ ︸
ideal

+ 1
Ω ′

∫
Ω ′

π̄h(r) − 2ηd′ dΩ ′

︸ ︷︷ ︸
non-ideal

. (B1)

Now, if we consider that ideal stress contributes homogeneously over the whole domain,
a mean-field approximation holds and the ideal term of (B1) can be written in terms
of macroscopic variables, πo = 2ηd = 〈π̄o〉. (Notice that the overbar notation of d is
omitted since is not a multiscale contribution, in contrast to d̄ that is a macroscopic rate
of strain determined from microscopic variables.) Thus, we can now introduce a hybrid
macro–micro formulation of (B1) given by

〈π̄h〉 = ε2ηd︸ ︷︷ ︸
macro

+ 1
Ω ′

∫
Ω ′

π̄h(r) − ε2ηd̄ dΩ ′

︸ ︷︷ ︸
micro

. (B2)

This scheme is a generalized framework that allows us to incorporate ideal hydrodynamics
interactions of the fluid from both scales. Given (2.2) and (B2), we can now express τ in
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Lagrangian HMM of complex fluids

(2.1) as

τ = −pI +

⎛
⎜⎜⎝ επo︸︷︷︸

macroscopic

+
[
π̄h − επ̄o + π̄∗ + π̄k

]
︸ ︷︷ ︸

microscopic

⎞
⎟⎟⎠ . (B3)

We must note that in the case where the non-ideal hydrodynamic contributions are
negligible at the microscale, the expression (B3) can be simplified as (2.4). The principal
difference between (B3) and (2.4) is that the former requires the microscopic computation
of hydrodynamic stresses at the flow conditions for both ideal (Newtonian), π̄o(v′, t′),
and complex fluid, π̄h(v′, t′). The latter, in contrast, only involves the simulation of the
hydrodynamic contributions of the investigated fluid.

The ideal stress (π̄o
I ) contribution of the hydrodynamic interactions can be computed

in different ways. Since the ideal stress tensor from microscales corresponds to the fluid
in the absence of non-ideal and non-hydrodynamic effects, an alternative is to conduct
microscale simulations for a simple fluid at the velocity-field conditions of the particle
I, and directly compute π̄o

I . However, this approach entails a two-fold increase in the
computational cost, requiring keeping track of two microscale systems per each macro
particle. Another alternative is to obtain an estimate of d̄ using the projection of the
macroscopic velocity gradient (∇vI) at the microscale

〈∇v̄i〉 =
∑

j

((r′
j∇vI − r′

i∇vI) ⊗ r′
ijFij). (B4)

Thus, using the projection (B4), the rate-of-strain tensor d̄ can be estimated leading to an
ideal stress of the form

π̄o
I (x, t) = 2η

1
N′

t

N′
t∑

n=1

[∑
i

1
2
(〈∇v̄i(n)〉 + 〈∇v̄i(n)〉T)wIK(ri(n) − x)

]
. (B5)

Appendix C. Macroscopic particle resolution, velocity gradient and stress tensor
interpolation

We determine the minimal macroscopic resolution required to capture the characteristic
velocity profile in a reverse Poiseuille flow (RPF). We validate the convergence of
the velocity field in a domain of size 0.25Ly × Ly with Ly = 64, for different particle
resolutions Ly/d x = [16, 20, 24, 32]. The obtained velocity profiles are presented in
figure 11. From these tests, we identify that even at lower resolutions, Ly/d x = 16, the
accuracy of the profile is acceptable for practical purposes. Hereinafter, we evaluate
the proposed LHMM using macroscopic resolutions Ly/d x = 16 and 20, as a good
compromise between minimal numerical error and lower computational cost.

As discussed in the coupling section, we used (2.17) to compute the macroscopic
velocity gradient. We verified this approximation to ∇v in a RPF, for a macroscopic
domain of size 10 d x × 50 d x. In figure 12, we present the velocity and components of
the velocity gradients (i.e. ∇yvx and ∇xvx) measured, along with the theoretical solutions.
Overall, we identified that (2.17) provides a good approximation of the macroscopic
velocity gradient required to define the boundary conditions of the microscale simulations.
Even though more refined alternatives to compute ∇v exist (Zhang & Batra 2004), such
refinements are out of the scope of the present work.
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Figure 11. Velocity field for RPF configurations for four different macroscopic (ε = 1) particle resolutions,
corresponding to a total number of particles N = [64, 100, 144, 256].
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Figure 12. Imposed velocity field and the corresponding gradient for macroscales (solid line), compared with
the computed values for each particle I in a domain 10 d x × 50 d x. This case corresponded to a full macroscale
Newtonian fluid with ε = 1.

At the macroscales, the divergence of the stress tensor ∇ · τ considers the SDPD
interpolation of the microscopically informed tensor, π̄ IJ , and the stabilizing parameter,
ε, according to (2.8). The accuracy of such interpolation without the numerical errors
associated with the actual microscales subsystems is estimated using the analytical
solution of a Newtonian fluid. This allows us to manufacture microscopic solutions of
π to solve micro–macro simulations. The analytical solution of the stress tensor is given
by

πh = η(∇v + ∇Tv) + (ζ − 2η/D)∇ · vI. (C1)

Thus, we can compute ∇ · πh using the velocity gradients determined on macroscales. In
figure 13, we present the velocity profile for systems with various values of ε, for different
Re, corresponding to magnitudes of the maximum velocity gradient ∇yvx|max = 1.2 and
8. When ε = 1, the ideal contributions are computed entirely from macroscales, which
offers the most stable approach as it does not suffer from interpolation error of the stress.
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Figure 13. Velocity field for macroscales for different values of ε, using the manufactured microscopic
solution of a Newtonian fluid, from the analytical solution for the stress tensor, πh = η(∇v + ∇Tv) + (ζ −
2η/D)∇ · vI . The dashed line indicates the theoretical parabolic profile. The results correspond to two systems
with different maximum velocity gradient, ∇yvx|max.

This condition is suitable for dispersed systems in a Newtonian matrix undergoing
affine deformations. However, when ε � 0, the ideal contributions are fully accounted
for at microscales, making this condition the most general, and thus could be relevant
in most complex cases considering non-Newtonian materials (Einarsson et al. 2018)
or non-affine polymer deformations (Simavilla et al. 2023). However, there is a major
limitation associated with using only microscopic simulations to determine both ideal and
non-ideal contributions (ε = 0). This limitation is related to the numerical stability of
the method, due to fluctuations in the spatial and temporal averaging process, leading to
small variations in the velocity profiles. Therefore, it is recommendable to always consider
a non-vanishing contribution of the Newtonian solvent in the macro description. At the
evaluated Reynolds numbers and velocity gradients, the flow can be adequately modelled
using only the manufactured microscopic solutions (ε ≈ 0), that is, the macroscopic stress
tensor can be recovered from microscale systems with minimal interpolation errors at the
macroscale. In general, we observe that at modest values of ε, it is possible to fully recover
the behaviour of the fluid.

Appendix D. Microscales under rigid rotations

As presented by Moreno & Ellero (2021), complex flow patterns can be easily
implemented at the microscales to determine the stresses. In LHMM, each microscale
system may experience temporal variations of the applied velocity gradient, even under
steady flow conditions, as they travel within an inhomogeneous macroscopic domain along
Lagrangian trajectories. The velocity gradients imposed on microscopic simulations are
then referred to a fixed reference frame in the macro domain (see figure 14a). The use of
this reference frame leads to microscopic systems that experience transitions from simple
shear to mixed shear-extension as the macroscopic particle rigidly rotates. This transition
of course should originate from an affine rotation on the measured stress. However, it
should not generate any change in the state of stress of the system. As a consequence, an
important attribute to verify from the boundary condition scheme of Moreno & Ellero
(2021) is that rigid rotations on the velocity field applied on the boundary condition
domain do not alter the microstructure and rheological properties of the fluid.
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Figure 14. Effect of rigid rotation for an oligomeric microscale system using arbitrary boundary condition
scheme. (a) Schematic of a macroscopic particle undergoing rigid rotation and the corresponding applied
velocity gradient as the particle moves. For comparison, we include the corresponding velocity field when the
reference frame is aligned with the particle velocity. (b) Variation of the mean orientation angle and (c) mean
end-to-end distance Rf of the oligomer coils of size Ns = 8, in a simulation domain that is rotating from pure
shear to α = π/4 and finally under no flow. Here, λ′ denotes the relaxation time of the system.

As a validation test, we construct microscale simulations for oligomeric systems and
determine the response of the system as the applied field experiences a large rigid rotation
of 45◦ (α = π/4). We consider a generalized velocity field over the boundary region of
the form

v =
⎛
⎝ ε̇x γ̇xy 0

γ̇yx −1
2 ε̇(1 + q)y 0

0 0 −1
2 ε̇(1 − q)z

⎞
⎠ , (D1)

where q is a free parameter, and ε̇ and γ̇x are the strain and shear rate, respectively. The
values of ε̇, γ̇x, γ̇y and q define the flow configuration (Bird et al. 1987). The velocity
gradient rotated by an angle α is given by ∇v̄(α) = Q(α) · ∇v̄ · QT(α), where Q is the
rotation matrix. We conduct the following simulation in three stages: (i) we initially apply a
simple shear boundary condition until the systems stabilize; (ii) sudden rotation (α = π/4)
on the velocity gradient is applied, letting the system evolve over three folds its relaxation
time (λ′); and (iii) the velocity field is suspended to let the systems reach equilibrium
no-flow condition.

In figure 14(b,c), we present the variation of the mean orientation angle (θ = |θ −
2(α + θ‖)|) and the mean end-to-end distance (Rf ) of the oligomer coils, where θ is
the angle between the end-to-end vector and the x axis (in the fixed reference frame),
θ‖ is the angle formed by the end-to-end vector and the v when α = 0, and θ◦ is the
mean angle under no flow condition. Since at microscopic scales the orientation time
can be affected by the thermal fluctuations of the system, in figure 14, we compare
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Figure 15. Characteristic viscosity η/η0 of the complex fluid adopted as a function of the imposed shear rate
γ̇ . Here, η0 is the input solvent viscosity (or viscosity of the Newtonian fluid) and η is the measured total fluid
viscosity. (a) Oligomer melt with Ns = 16 and (b) biphasic flow with two different compositions (κl = 0.2 and
κl = 0.5). Multiphase flow is modelled using two initial condition that lead to different effective viscosities.

the coil state for two different temperatures. In general, we identify the rotation in the
velocity field effectively induces an affine alignment of the mean orientation angle with
the flow, thus as α increases, the coils rotate to preserve θ . Similarly, the measured
size of the coils remains unchanged during the sudden rotation of the flow. Therefore, the
transition of pure shear to mixed flow does not induce additional stresses on the coils. The
reduction of Rf at the final stage of the simulation (under no-flow condition) is evidence
that the stretching of the coils is effectively induced by the imposed flow. Additionally,
under no-flow condition, the mean angle of the coils converges to 45 consistent with
randomly distributed chains (angle averaged over the first quadrant). In figure 14(b), the
coil reorientation response induced by the large sudden change in α occurs on time scales
smaller than the microscopic relaxation time λ′. In practice, in an LHMM simulation, large
changes in the flow orientation (α) are not likely to occur in a single macroscopic time step.
Therefore, we expect that orientational relaxation will always occur at time scales smaller
than the overall time of a microscopic simulation.

D.1. Complex fluid characterization
Before proceeding with the validation of the LHMM, we characterize the modelled fluids
at the microscale (oligomer melt and multiphase flow) and corroborate that they effectively
exhibit a complex rheological response. In figure 15, we present the response of both
oligomer melt and multiphase fluid under simple shear. The oligomer melt exhibits the
characteristic shear thinning behaviour, induced by the alignment of the coils in the system
as the shear rate increases (Simavilla & Ellero 2022). The relaxation time λp for the two
models of chains used (Ns = 8 and Ns = 16) are λp ≈ 6tSDPD and λp ≈ 9tSDPD.

The flow constituted by two liquid phases (l and k) also shows a reduction in the viscosity
as the capillary number of the system increases. At the lowest Ca modelled, the low
affinity between phases induces the formation of interfaces raising the overall viscosity
of the system. As the capillary number increases, the mixing of the phases or alignment is
favoured leading the system to the viscosities of the individual phases. For multiphase flow,
the characteristic time λps of phase separation is a relevant time scale that can determine
the stress level of the system. In general, the flow can affect the rate and trajectory of the
phase separation leading to metastable microstructures (Minale et al. 1997), or completely
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Figure 16. Temporal evolution of the microscopic stress for a binary system with κl = 0.5, for four different
shear rates. Systems with initial condition as fully mixed phases (blue) and completely phase separated (orange)
are compared. Here, λps is the characteristic time for full phase separation to occur. At lower shear rates, the
effect of microstructure formation can affect the effective stress measured. In contrast, for large shear rates,
both systems exhibit similar shear thinning behaviour, independent of their initial condition.

inhibiting the phase separation to occur. For comparison, in figure 15(b), we consider two
different initial conditions: (i) fully phase-separated system and (ii) fully mixed phases.
In scenario (i), the phase k is modelled as a phase-separated droplet that is subjected
to a shear flow, corresponding to the condition where λps has been reached (complete
phase separation has occurred). In contrast, in scenario (ii), both phases are randomly
distributed in the domain when the shear flow is imposed. Thus, the stress evolution of
the systems occurs on time scales smaller than λps. Overall, we observe that at low shear
rates, the viscosity of the system is strongly related to the extent of the phase separation.
However, for high shear rates (large Ca), the effects of interface formation are significantly
reduced and the system exhibits the characteristic simple-phase viscosity. In figure 16, we
have included the temporal variation of the stress for four different capillary numbers to
highlight the differences in the stress evolution for systems undergoing phase separation.
In general, multiphase systems with longer relaxation times require a detailed tracking of
their microstructure to ensure an adequate description of the stress and macroscopic flow
response. Examples of such complex systems include biological aggregations (cells and
proteins), where clusters can extend over several spatial and temporal time scales.

Appendix E. Temporal evolution of stress in binary mixture

The evolution of the stress for binary systems with different initial conditions. Lower
capillary numbers, where interfacial interactions play an important role, lead to different
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Figure 17. Imposed velocity field for macroscales for different values of ε and using the proposed micro–macro
coupling. As a comparison, a system without microscales stress cannot recover the desired velocity
profile.
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Figure 18. Flow around cylinder LHMM and full macro.

stresses as the system evolve. Thus, memory effects of the fluid are relevant to properly
account for the correct flow behaviour. In contrast, systems with larger Ca exhibit similar
stress trajectories independently of their initial state.

Appendix F. LHHM validation for Newtonian fluid

Effect of the stabilization parameter ε for Newtonian fluid. The LHMM is able to
recover the behaviour of the fluid up to a good approximation over the whole range of ε

investigated. We highlight that the contribution of microscales is fundamental to model the
fluid properly. For comparison, in figure 17, we present the results for an RPF configuration
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Figure 19. Start-up flow in RPF configurations for Newtonian and non-Newtonian fluids. The oligomer melt
corresponds to chains with Ns = 8. The best fitting of the velocity profile is illustrated by the continuous line
at the same time step for both fluids. For Newtonian fluid is consistent with the expected quadratic profile,
whereas for the oligomer melt, the microscopic effect leads to a fourth-order velocity profile.
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Figure 20. Stabilization of velocity and stress for Newtonian and multiphase flows. (a) Comparison of velocity
profiles at different time steps between Newtonian and multiphase system. (b) The r.m.s. velocity and stress for
multiphase systems at different time steps.
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without microscales contributions π̄IJ = 0. In this case, the macroscopic contributions
alone fail to account for the stress of the fluid, leading to incorrect velocities profiles.
Additionally, in figure 18, we compare the velocity profiles of Newtonian fluid modelled
from LHMM and full macro representations. Consistently, LHMM recovers the velocity
profiles even for complex flow configurations.

Appendix G. Velocity profile evolution for oligomer melts

In addition to the steady-state solution, we were able to capture the characteristic
deviations in the temporal evolution for the oligomer melt. In figure 19, we compare the
velocity profile stabilization for the RPF for both Newtonian and non-Newtonian fluids
under the same flow conditions. In figure 19, the solid lines correspond to the best fitting
of the velocity at the same time step for both fluids. For the Newtonian fluid, the velocity
profile is consistently reproduced by a quadratic fitting, whereas the microscopic effects
of the oligomer chains lead to a fourth-order velocity profile in the non-Newtonian fluid.

Appendix H. Velocity and stress evolution for multiphase systems

The evolution of the velocity and stress profiles in the square contraction array
for multiphase flows (figure 20) evidences that for these complex systems, a fully
developed steady-state has not been reached. The dynamic formation and destruction of
microstructures is responsible for the constant evolution of the stress.
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