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Introduction

Throughout this paper A denotes an operator function, holomorphic on a deleted
neighborhood of a complex number Ao, with values in the space Z£(X, Y) of bounded
linear operators between two complex Banach spaces X and Y. In his survey article
(7), I. C. Gohberg has defined for such an arbitrary operator function A the algebraic
multiplicity M(A; Ao) and the reduced algebraic multiplicity RM(A; Ao) of A at Ao. In
earlier papers (e.g., (8, 16)) these notions have been defined and studied for more
restricted classes of operator functions. In (8) Gohberg and Sigal treated the case
when A is finite-meromorphic at Ao, A(A) is bijective for A in some deleted neighbor-
hood of Ao and the constant term Ao in the Laurent expansion of A at Ao is a
Fredholm operator. They proved that in this case

where F is a suitable contour around Ao. A first version of this formula was given by
M. V. Keldys (12) for the case of certain operator polynomials in Hilbert space (cf. 7,
8) and the references given there). In (16) Sigal has shown that in the non-bijective
case (but Ao still Fredholm)

RM(A; \o) = 1^^-. jA'(k)A+(A)dk}, (1)

where A+ is a finite-meromorphic relative inverse of A, constructed in a rather special
way. Further, A+ has the property that the associated projection functions A+A and
AA+ are holomorphic at Ao. In Theorem 1, we extend Sigal's result to a wider class of
operator functions. In fact, we show that RM(A;XO) is finite and formula (1) holds
whenever A is finite-meromorphic at Ao and A+ is any finite-meromorphic relative
inverse of A such that A+A and AA+ are holomorphic at Ao. Theorem 1 applies to
degenerate meromorphic operator functions as well as to finite-meromorphic operator
functions with the property that the constant term in the Laurent expansion is a
semi-Fredholm operator with complemented null space and range. Theorem 1 is used
to prove that the reduced algebraic multiplicity, like the algebraic multiplicity (see 8,
Theorem 5.2), has a certain logarithmic property (Theorem 2).

The authors wish to thank I. C. Gohberg for helpful remarks concerning the
preparation of this revision of (6).
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1. Preliminaries

If Z is a complex Banach space, then ^(AO,Z) denotes the set of all Z-valued
functions 4> that are holomorphic on a deleted neighborhood of \o. If <(>„ is the n-th
coefficient in the Laurent expansion of <f> at Ao, then

»>(<£; Ao) = inf{n:<£„*()}.

Given A in 3€(\o, SE(X, Y)) and an integer m, we let Hm[A; Ao] be the set of all x in X
for which there exists <f> G 3€(\0, X) such that 4>(\)->x as A-»AO and v(A4>\K)^
m + 1. Similarly Km[A; Ao] consists of all y in Y with the property that there exists
<f>G 9€(\O,X) such that v(<f>;ko}> -m and A(A)#(A)-»y as A-»AO. The intersection
of the spaces Hm[A;\o] and the union of the spaces Km[A; Xo] are denoted by
if[A;Ao] and K[A;\O], respectively. The algebraic multiplicity M(A;AO) and the
reduced algebraic multiplicity RM(A; Ao) of A at Ao are given by

oo oo

M(A;AO)=£ dim//m[A;AD]-2 dim *Lm[A; AJ (2)
m=Q m = \

#M(A;AO) = E d i m ^ T T ^ r T - l ! dimK_m[A;Ao] (3)

(whenever these formulas make sense). One verifies easily that these definitions are
equivalent to those given by I. C. Gohberg in (7). His definitions are closer to the
classical definition of the algebraic multiplicity of an eigenvalue of a single operator.
The two sums in (2) are what Gohberg and Sigal have called the zero multiplicity and
the pole multiplicity of A at Ao; the first term in the right hand side of (3) is what Sigal
has called the reduced zero (or factor) multiplicity of A at Ao.

If A is holomorphic at Ao (i.e., v(A; Ao) s= 0), then the pole multiplicity of A at Ao is
zero (cf. 3, Proposition 1.3). Also, if A is meromorphic at Ao (i.e., v(A; Ao) > -oo), then
the pole multiplicity of A at Ao is finite if and only if A is finite-meromorphic at Ao (cf.
3, Propositions 1.3 and 3.3). Finally, it is clear from the definitions that the reduced
zero multiplicity of A at Ao is finite if and only if the dimension of the quotient space
H0[A; XO]IH[A; Ao] is finite. This number plays an important role in (3, 5) and is called
the stability number of A at Ao.

Given A in X(\o, <£{X, Y)), an operator function A+ in 3€(\o, 2(Y, X)) is said to be
a relative inverse of A near \0 if, for A in some deleted neighborhood of Ao,

A(A) = A(A)A+(A)A(A), A+(A) = A+(A)A(A)A+(A).

If A+ is a relative inverse of A near Ao, the functions P and Q given by P(A) =
A+(A)A(A) and <2(A) = A(A)A+(A) are called the projection functions associated with
A and A+. Obviously P and Q are projection valued and holomorphic on a deleted
neighborhood of Ao. When P and Q are holomorphic at Ao, then in many respects the
behaviour of A at Ao is determined by that of A+ and conversely (cf. 4, 5, 6).

2. Main results

For an arbitrary degenerate operator F, we let tr F denote the trace of F (cf. (11),
Section III. 4.3).
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Theorem 1. Let A be finite-meromorphic at Ao, and suppose that there exists a
finite-meromorphic relative inverse A+ of A near \o such that the associated projection
functions are holomorphic at Ao. Then RM(A; Ao) is finite and

RM(A; Ao) = t r j^ r j A'(\ )A+(\ )d\ }, (4)

where F is a sufficiently small circle centred at Ao.

Proof. We use the reduction method described in Subsection 1.5 of (5). Let P and
Q be the projection functions associated with A and A+. Then P and Q are
holomorphic on an open neighborhood U of Ao and for A ^ A G l / the operator P(A)
is a projection of X along N(A(A)) and Q(\) is a projection of Y onto R(A(\)).
Define

£(A) = P(AO)P(A) + (Ix - P(AO))(/X -

F(A) = Q(AO)Q(A) + (IY - Q(K))(IY

Then £(A) and F(A) are bijective for A in some neighborhood V of \o. For Ao^ A £ V,
put

= F(A)A(A)£"'(A), B+(A) = E(A)A+(A)F-'(A).

Then N(B(A)) = N(P(AO)) and R(B(\)) = R(Q(X.O)). With respect to the decompositions
of X and Y associated with the projections P(AO) and Q(AO), one may write

J3(A) = 0©C(A), AO*AGV. (5)

Here C(A) is the restriction of B(A) to R(P(\0)) considered as an operator into R(Q(ko)).
Observe that C(A) is bijective. Also, one can show that

B+(A) = 0©C-'(A), A ^ A G V . (6)

By (5), Theorem 1.10 and Proposition 1.7, the conditions on A imply that C is
finite-meromorphic at Ao and the constant term in the Laurent expansion of C at Ao is
Fredholm. But then one can apply the theory developed in (8) to show that M(C; Ao)
is finite and

M(C; Ao) = t r j^r

for some sufficiently small circle F centred at Ao. Observe that B+ is meromorphic at
Ao. It follows from formula (6) that C"1 has the same property. Hence H[C; Ao] = (0)
by (2), Theorem 2.4. But then (5), Lemma 1.6 implies that RM(A; Ao) = M(C\ Ao).
Using formulas (5) and (6) and the definition of the trace it is easy to show that

It remains to prove that the right hand sides of (4) and (7) are equal. For this purpose
we employ a slight modification of an argument used in (16), Section 4 (cf. 8, Section
4). Omitting the variable A, we have

A'A+ = F~XBE' E'lB*F + F" 'B' B+F + {F-l)'BB+F.
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All three terms in the right hand side of this equality are finite-meromorphic at Ao and,
in fact, the last one is holomorphic at Ao. Using the properties of the trace and
comparing Laurent expansions, one can easily prove that for finite-meromorphic
operator functions H and J one has

(cf. 8). Thus we obtain

} fe I } { ^ I B'B+dX
Now the first integral in the right hand side is zero because the integrand is
holomorphic at Ao, and so the proof is complete.

An operator function A will be called block-diagonable at Ao if A satisfies the
conditions of Theorem 1. To justify this terminology we mention that A satisfies the
conditions of Theorem 1 if and only if A is equivalent at Ao in the sense of (7) to a
(block-)diagonable operator function D of the following type:

where r and s are integers, rS0< s, and

(1) {Pr, • • •, Ps} and {Qn . . . , Qs} are sets of mutually disjoint projections of X and
V, respectively,

(2) D, is a bijective operator in S£{Xh Y,), where X; = i?(i>,) and Yt = R(Qi),
i = r,...,s,

(3) dim R(Pi) < °° for iV 0.

For details see (8), Theorem 3.1; (4), Section 4; or (5), last paragraph of Section 1. The
class of block-diagonable operator functions includes all degenerate meromorphic
operator functions and also all finite-meromorphic operator functions with the pro-
perty that the constant term in the Laurent expansion is a semi-Fredholm operator
with complemented null space and range. This is immediate from (5), Theorem 1.10
and the results of (3), Sections 6 and 7.

If A is block-diagonable at Ao, and A* is any relative inverse of A near Ao with
holomorphic associated projection functions, then A+ is automatically finite-
meromorphic at Ao (cf. 5, Theorems 1.10 and 2.1). This fact will be used in the proof of
the next theorem.

Theorem 2. Let A G 3€(XO, %{X, Y)) and B G X(XO, 2(Z, X)), where X, Y and Z
are complex Banach spaces. Suppose that A and B are block-diagonable at Ao and
that

X = H[A;XO]@K[B;XO]. (9)

Then AB is block-diagonable at Xo and

RM(AB;XO)= RM(A;XO) +RM(B; Xo). (10)
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Proof. From (3), Section 6 and (5), Section 1 we know that there exist projection
functions PA, PB, QA and QB, holomorphic at Ao, such that

N(PA(A)) = H[A; A], N(Pfl(A)) = H[B, A],
; A], K(QB(A)) = K[B;\],

for A in some neighborhood of Ao. The condition expressed in formula (9) implies that
PA and QB may be taken to be equal. A proof of this is sketched in (14).

For A in a deleted neighborhood of Ao, we have

H[A;\]=N(A(k)),
K[B;X] = R(B(\)).

Using the proof of (1), Theorem 1.3 one can establish the existence of relative
inverses A* and B+ of A and B near Ao such that (omitting the variable A)

AA+ = QA, A+A = PA = QB = BB\ B+B = PB.

Since A and B are block-diagonable at Ao, the functions A* and B+ are both finite-
meromorphic at Ao. Thus the same is true for their product B+A+. A straightforward
computation shows that B+A* is a relative inverse of AB near Ao with associated
projection functions PB and QA. Hence AB is block-diagonable at Ao. It remains to show
that (10) is satisfied.

By Theorem 1 we have, for some sufficiently small circle F centred at Ao,

RM(AB; Ao) = trj^r [ (AB)'B+A+dX.

= t r f e I ****** } + ̂ 1 **'***" }.
Using BB+A* = A+ and B+A+A = B* together with formula (8) and Theorem 1, one
obtains the desired result.

Theorem 2 is a generalisation of earlier results which have appeared in (8, 13,15).
In all these results, it was assumed that A(X) and B(A) are bijective for A in some
deleted neighborhood of Ao, whereas our theorem also applies, for example, when
A(A) is injective and B(A) is surjective for A near Ao (for in this case results in (3,4, 5)
imply that H[A; Ao] = (0) and K[B;\O] = X). We conclude this paper with some
examples which suggest that Theorem 2 cannot be generalised much further.

Let P be a projection of rank one of a complex Banach space Y and let
X = R{I - P). For A £ C, let B(A) be the injection of X into Y. Choose an integer k
and, for A * 0, let

A(A)=/-P+(A-A O )*P.

Then A and B are block-diagonable at Ao and H[A; Ao] = (0). Observe that
A(A)B(A) = / - P , and so RM(AB; Ao) = 0. However RM(A;\O)= k and
RM{B; Ao) = 0. This shows that in Theorem 2 the hypothesis (9) cannot be replaced
by H[A; \o] HK[B; Ao] = (0). A similar example shows that (9) cannot be replaced by
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In (9) Gohberg and Sigal considered products of block-diagonable operator
functions whose values are Fredholm operators. For the holomorphic case, Theorem
1 in their paper states that

RM(AB; Ao) =s RM(A; Ao) + RM(B\ Ao).

This, however, is not correct. For instance, define A(\) and B(A) on C2 by

where k is a positive integer. Then RM(A; 0) = RM(B; 0) = 0, whereas RM(AB;0) =
k. With minor modifications the proof in (9) holds for the case when A(A) is injective
and JB(A) is surjective for A near Ao.
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