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New characterizations of the unit vector
basis of c0 or �p

Peter G. Casazza, Stephen J. Dilworth, Denka Kutzarova, and
Pavlos Motakis

Abstract. Motivated by Altshuler’s famous characterization of the unit vector basis of c0 or �p among
symmetric bases (Altshuler [1976, Israel Journal of Mathematics, 24, 39–44]), we obtain similar
characterizations among democratic bases and among bidemocratic bases. We also prove a separate
characterization of the unit vector basis of �1 .

1 Introduction

Let (X , ∥ ⋅ ∥) be a Banach space with dual space (X∗, ∥ ⋅ ∥∗), let (e i) be a semi-
normalized basic sequence in X, and let α = ∑n

i=1 a i e i and β = ∑m
i=1 b i e i , where

bm ≠ 0, belong to span((e i)). Define

α ⊗ β =
n
∑
i=1

a i(
m
∑
j=1

b j e(i−1)m+ j)(1.1)

and α ⊗ 0 = 0. Note that (span((e i)),⊗) is a noncommutative semigroup with
identity element e1. However, the semigroup multiplication is not continuous.

If (e i) is equivalent to the unit vector basis (u.v.b.) of c0 or �p (1 ≤ p < ∞), then
there exists K > 0 such that for all α, β ∈ span((e i)),

1
K
∥α∥∥β∥ ≤ ∥α ⊗ β∥ ≤ K∥α∥∥β∥.(1.2)

The following is the main open question related to this note.

Question 1.1 Let (e i) be a semi-normalized basis for X satisfying (1.2). Is (e i)
equivalent to the u.v.b. of c0 or �p for some 1 ≤ p < ∞?

We prove below that Question 1.1 has a positive answer when (e i) is either
bidemocratic, almost greedy, or invariant under spreading. However, we do not
know the answer in general or for other natural classes of bases such as the class of
unconditional bases.
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Suppose that (e i) is a symmetric basis for X and that both X and [(e∗i )] have
a unique symmetric basic sequence up to equivalence. Altshuler [3] proved that
(e i) is equivalent to the u.v.b. of c0 or �p . This theorem was recently extended to
subsymmetric bases [6]. In Section 3, we adapt Altshuler’s proof to give an answer
to Question 1.1 for bidemocratic bases (see Section 2 for the definition of democratic
and bidemocratic bases) by imposing on (e i) a condition that is formally weaker
than (1.2). In Section 4, we provide a new characterization of �1 which implies a
solution to Question 1.1 under additional assumptions. The proof uses Szemerédi’s
theorem on arithmetic progressions. In Section 5, we use the latter characterization
to provide an answer to Question 1.1 for the class of democratic bases.

The final section contains results about subsequences. We prove that Question 1.1
has a positive solution if (e i) is invariant under spreading or, more generally, if
every subsequence of (e i) satisfies (1.2). Using infinite Ramsey theory, we also prove
a related characterization of basic sequences which are saturated by subsequences
equivalent to the u.v.b. of c0 or �p .

2 Notation and terminology

We use standard Banach space theory notation and terminology as in [13]. We also
require some terminology and results from the theory of greedy bases which we briefly
review here. For further information on this topic, we refer the reader to [2, 15].

Let (e i) be a semi-normalized basic sequence in X. For finite A ⊂ N, let λ(A) =
∥∑i∈A e i∥. The fundamental function (Φ(n)) of (e i) is defined by

Φ(n) = sup{λ(A)∶ ∣A∣ ≤ n}.

We say that (e i) is democratic with constant Δ if Φ(∣A∣) ≤ Δλ(A) for all finite
A ⊂ N. Democratic bases were introduced in [12] in order to prove the celebrated
characterization of greedy bases as unconditional and democratic.

We say that (e i) is unconditional for constant coefficients if there exists C > 0 such
that, for all finite A ⊂ N and all choices of signs ±,

1
C

λ(A) ≤ ∥∑
i∈A
±e i∥ ≤ C λ(A).

Now suppose that (e i) is a Schauder basis for X with biorthogonal functionals
(e∗i ) ⊂ X∗. Let (Φ∗(n)) be the fundamental function of (e∗i ). We say that (e i) is
bidemocratic if

Φ∗(n) ≍ n
Φ(n) .

(We write an ≍ bn if there exists C > 0 such that an/C ≤ bn ≤ Can for all n ∈ N.)
It is known that if (e i) is bidemocratic, then both (e i) and (e∗i ) are democratic
and unconditional for constant coefficients [8, Proposition 4.2]. Moreover, every
subsymmetric basis is bidemocratic [13, Proposition 3.a.6].

Remark 2.1 As is well known, if (e i) is bidemocratic and (Φ(n)) is bounded, then
there exists C > 0 such that ∥∑n

i−1 ±e i∥ ≤ C for all n ≥ 1 and for all choices of signs.
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Hence (e i) is equivalent to the u.v.b. of c0. On the other hand, if (e i) is bidemocratic
and Φ(n) ≍ n, then (Φ∗(n)) is bounded. Hence, (e∗i ) is equivalent to the u.v.b. of c0.
By duality, (e i) is equivalent to the u.v.b. of �1.

Example 2.2 (1) For 1 < p < ∞, let (e i) be the u.v.b. of p-convexified Tsirelson space
Tp [10]. Then (e i) is democratic and unconditional and Φ(n) ≍ n1/p . Since (n1/p) has
the upper regularity property (see [8, p. 586]), it follows from [8, Proposition 5.4] that
(e i) is bidemocratic. Moreover, from the special properties of block bases in Tp [7,
Corollary II.5], it follows that there exists K > 0 such that for all α, β ∈ span((e i)),

∥α∥∥β∥ ≤ K∥α ⊗ β∥.(2.1)

(2) Let (e i) be a subsymmetric basis and suppose that all subsymmetric block bases
of (e i) are equivalent to (e i). Altshuler [4] constructed the first symmetric example
of this type (other than the u.v.b. of c0 or �p). A second symmetric example was
constructed in [7]. Recently, the first example of a subsymmetric basis of this type,
which in addition is not symmetric, was constructed in [6].

It was proved in [6, Lemma 17] that if (e i) is any subsymmetric basis of this type,
then there exists K > 0 such that for all α∗ , β∗ ∈ span((e∗i )),

∥α∗∥∗∥β∗∥∗ ≤ K∥α∗ ⊗ β∗∥∗ .

Remark 2.3 Suppose that (e i) is a basis that satisfies (1.2) with constant K.
Then, there exists a constant K̃ such that for every n ∈ N and α ∈ span((e i)),
α∗ ∈ span((e∗i )),

∥α∥n ≤ K̃n∥αn∥ and ∥α∗∥n
∗ ≤ K̃n∥α∗n∥∗ .(2.2)

Note that the left inequality follows simply by iterating (1.2). For the right one,
assume without loss of generality that (e i) is normalized and monotone. First, make
the following easy observation. If a = ∑m

i=1 a i e i and a∗ = ∑m
i=1 b i e∗i with am ≠ 0 and

bm ≠ 0, then, for all n ∈ N, a∗n(an) = (a∗(a))n .
Next, take an a∗ = ∑m

i=1 b i e∗i and n ∈ N. By monotonicity, find a norm-one
a = ∑�

i=1 a i e i with � ≤ m such that a∗(a) = ∥a∗∥∗. Assume first that � < m. For ε > 0,
let aε = a + εem and note that ∣a∗(aε)∣ ≥ (1 − ε)∥a∗∥∗, while ∥aε∥ ≤ 1 + ε. Therefore,

(1 − ε)n∥a∗∥n
∗ ≤ ∣a∗(aε)∣n = ∣a∗n(an

ε )∣ ≤ ∥a∗n∥∗∥an
ε ∥∗ ≤ Kn(1 + ε)n∥a∗n∥,

and let ε→0. If � = m, the argument is slightly simpler and does not require the
perturbation of a.

3 Bidemocratic bases

The main theorem of this section is the following.

Theorem 3.1 Suppose that (e i) is a bidemocratic basis for X that satisfies (1.2). Then
(e i) is equivalent to the u.v.b. of c0 or �p .

The above is an immediate consequence of the next proposition and Remark 2.3.
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Proposition 3.2 Suppose that (e i) is a bidemocratic basis for X that satisfies (2.2).
Then (e i) is equivalent to the u.v.b. of c0 or �p .

Proof For n ≥ 1, let λ(n) = ∥∑n
i=1 e i∥ and λ∗(n) = ∥∑n

i=1 e∗i ∥∗. Note that if
α = ∑n

i=1 e i and k ≥ 1, then αk = ∑nk

i=1 e i . So (2.2) applied to α yields

[λ(n)]k ≤ Kk λ(nk).(3.1)

Similarly (2.2) applied to α∗ = ∑n
i=1 e∗i gives

[λ∗(n)]k ≤ Kk λ∗(nk).

Since (e i) is bidemocratic, there exists C > 0 such that

n
λ(n) ≤ λ∗(n) ≤ C n

λ(n) .

Hence,

[ n
λ(n)]

k

≤ CKk nk

λ(nk) ,

i.e.,

λ(nk) ≤ CKk[λ(n)]k .(3.2)

By the proof (see page 60) of [13, Theorem 2.a.9], (3.1) and (3.2) imply that λ(n) ≍
n1/p for some 1 ≤ p ≤ ∞. Since (e i) is bidemocratic, it follows that Φ(n) ≍ n1/p and
Φ∗(n) ≍ n1/q , where q = p/(p − 1). By Remark 2.1, if p = 1 or p = ∞, then (e i) is
equivalent to the u.v.b. of �1 or c0, respectively.

So suppose that 1 < p < ∞. Consider α = ∑m
i=1 a i e i ∈ span((e i)). By (2.2), ∥α∥n ≤

Kn∥αn∥ for each n ≥ 1. Note that

αn = ∑
i1+⋅⋅⋅+im=n

a i1
1 a i2

2 ⋯a im
m ( ∑

j∈A(i1 , . . . , im)

e j),

where

∣A(i1 , . . . , im)∣ = (
n

i1 . . . im
).

Hence,

∥αn∥ ≤ ∑
i1+⋅⋅⋅+im=n

∣a i1
1 a i2

2 ⋯a im
m ∣λ(∣A(i1 , . . . , im)∣)

≤ ∑
i1+⋅⋅⋅+im=n

∣a i1
1 a i2

2 ⋯a im
m ∣Φ(∣A(i1 , . . . , im)∣)

≤ C ∑
i1+⋅⋅⋅+im=n

∣a i1
1 a i2

2 ⋯a im
m ∣(

n
i1 . . . im

)
1/p

https://doi.org/10.4153/S0008439523000176 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000176


New characterizations of the unit vector basis of c0 or �p 1077

(for some C > 0)

≤ C(n + 1)m/q( ∑
i1+⋅⋅⋅+im=n

∣a i1
1 a i2

2 ⋯a im
m ∣p(

n
i1 . . . im

))
1/p

by Hölder’s inequality. Hence,

∥α∥n ≤ KnC(n + 1)m/q(
m
∑
i=1
∣a i ∣p)

n/p

.

Taking the nth root and then the limit as n →∞ gives

∥
m
∑
i=1

a i e i∥ ≤ K(
m
∑
i=1
∣a i ∣p)

1/p

.(3.3)

Since (e∗i ) also satisfies (2.2) and Φ∗(n) ≍ n1/q , the same argument gives

∥
m
∑
i=1

a i e∗i ∥
∗

≤ K(
m
∑
i=1
∣a i ∣q)

1/q

.(3.4)

Hence, by duality, (e i) is equivalent to the u.v.b. of �p . ∎

The following corollary replaces (2.2) by a weaker condition but adds an assump-
tion about the fundamental function.

Corollary 3.3 Let 1 < p < ∞. Suppose that (e i) is a bidemocratic basis for X such that
Φ(n) ≍ n1/p . Suppose also that there exists K > 0 such that for all α ∈ span((e i)) and
α∗ ∈ span((e∗i )),

∥α∥2 ≤ K∥α2∥ and ∥α∗∥2
∗ ≤ K∥α∗2∥∗ .(3.5)

Then (e i) is equivalent to the u.v.b. of �p.

Proof Iteration of (3.5) yields ∥α∥n ≤ Kn∥αn∥ and ∥α∗∥n
∗ ≤ Kn∥α∗n∥∗ when n is

a power of 2. This is enough to prove (3.3) and (3.4) and conclude the proof as
above. ∎

4 A characterization of �1

Theorem 4.1 Let (e i) be a semi-normalized basis for X. Suppose that there exists
K > 0 such that, for all α, β ∈ span((e i)),

∥α ⊗ β∥ ≤ K∥α∥∥β∥,(4.1)

and also that

lim sup 1
n

Ave
±
∥

n
∑
i=1
±e i∥ > 0.(4.2)

Then (e i) is equivalent to the u.v.b. of �1.
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Remark 4.2 Note that (1.2) implies that λ(n) ≍ n1/p for some 1 ≤ p ≤ ∞ (see (5.1)).
If p = 1 and (e i) is unconditional for constant coefficients, then (4.2) is satisfied. So
Theorem 4.1 gives a positive answer to Question 1.1 in this case.

Proof We may assume that ∥e i∥ ≤ 1 for all i ≥ 1. By assumption, there exist an
infinite M ⊆ N and δ > 0 such that

Ave
±
∥

m
∑
i=1
±e i∥ > δm

for all m ∈ M. By Elton’s “�n
1 theorem” [9], there exist δ1 > 0 and c > 0 such that for

each m ∈ M there exists Am ⊂ {1, 2, . . . , m}, with ∣Am ∣ ≥ δ1m, such that for all scalars
(a i)i∈Am ,

c ∑
i∈Am

∣a i ∣ ≤
�����������
∑

i∈Am

a i e i

�����������
≤ ∑

i∈Am

∣a i ∣.

Let k ∈ N. By Szemerédi’s theorem [14], when m is sufficiently large Am contains
an arithmetic progression of length k, {n1 , n1 + d , n1 + 2d , . . . , n1 + (k − 1)d}. Let
n1 = bd + r, where 1 ≤ r ≤ d. Fix scalars (a i)k

i=1 and ε > 0, and set

α =
k
∑
i=1

a i eb+i and βε = er + ε
d
∑

i=r+1
e i .

Note that

α ⊗ βε =
k
∑
i=1

a i en1+(i−1)d + εy

for some y ∈ span((e i)). Thus, applying (4.1),

c
k
∑
i=1
∣a i ∣ − ε∥y∥ ≤ ∥α ⊗ βε∥ ≤ K∥α∥∥βε∥ ≤ K(1 + (d − r)ε)∥α∥.

Taking the limit as ε → 0, we get

∥α∥ ≥ c
K

k
∑
i=1
∣a i ∣.

Let n = ⌊k/3⌋. There exists s ∈ N such that [(s − 1)n + 1, sn] ⊂ [b + 1, b + k]. We may
assume that an ≠ 0. Then, applying (4.1) again,

∥
n
∑
i=1

a i e i∥ ≥
1
K
∥es ⊗

n
∑
i=1

a i e i∥ =
1
K
∥

n
∑
i=1

a i e(s−1)n+i∥ ≥
c

K2

n
∑
i=1
∣a i ∣.

Since k (and hence n) are arbitrary, it follows that (e i) is equivalent to the u.v.b.
of �1. ∎

Corollary 4.3 Suppose that (e i) satisfies (4.1) and is unconditional for constant
coefficients and that λ(n) ≍ n. Then (e i) is equivalent to the u.v.b. of �1.
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Remark 4.4 Corollary 4.3 does not admit an �p version for p > 1. To see this, let
q = p/(p − 1). As observed in Example 2.2, the u.v.b. (e i) of T∗q is unconditional and
bidemocratic with ϕ(n) ≍ n1/p . Moreover, (2.1) dualizes due to the special property
of block bases of Tq [7, Corollary II.5]. In particular, (e i) satisfies (4.1). Thus,
Corollary 4.3 does not admit an �p version for p > 1.

5 Democratic bases

Democratic bases are more general than bidemocratic bases. In this section, we prove
a characterization of the u.v.b. of �p or c0 among democratic bases.

The characterization involves the notion of quasi-greedy basis which we now recall.
Let (e i) be a basis for X. For x ∈ X and δ > 0, let

G(x , δ) = {i ∈ N∶ ∣e∗i (x)∣ ≥ δ} and Gδ(x) = ∑
i∈G(x ,δ)

e∗i (x)e i .

Then (e i) is quasi-greedy if there exists A > 0 such that for all x ∈ X and for all δ > 0,
∥Gδ(x)∥ ≤ A∥x∥. Quasi-greedy bases were introduced in [12] in connection with the
Thresholding Greedy Algorithm. While unconditional bases are quasi-greedy, there
are also important examples of conditional quasi-greedy bases [1, 12, 16]. However,
quasi-greedy bases are always unconditional for constant coefficients [16]. We refer
to [8] for the definition of an almost greedy basis. Almost greediness of a basis is proved
in [8] to be equivalent to being quasi-greedy and democratic.

Theorem 5.1 Let (e i) be a quasi-greedy democratic (i.e., almost greedy) basis for X
which satisfies (1.2). Then (e i) is equivalent to the u.v.b. of c0 or �p .

Proof By considering α = ∑m
i=1 e i and β= ∑n

i=1 e i , (1.2) implies that, for all m, n ∈N,

1
K

λ(m)λ(n) ≤ λ(mn) ≤ Kλ(m)λ(n).(5.1)

Hence, by [13], λ(n) ≍ n1/p for some 1 ≤ p ≤ ∞. Since (e i) is democratic, it follows
that Φ(n) ≍ n1/p .

If (Φ(n)) is bounded, then, since (e i) is unconditional for constant coefficients,
there exists C > 0 such that ∥∑n

i=1 ±e i∥ ≤ C for all n ≥ 1 and all choices of signs. Hence,
(e i) is equivalent to the u.v.b. of c0.

If ϕ(n) ≍ n, then by the democratic assumption and unconditionality for constant
coefficients, it follows that

Ave
±
∥

n
∑
i=1
±e i∥ ≍ n.

Hence, by Theorem 4.1, (e i) is equivalent to the u.v.b. of �1.
So suppose that 1 < p < ∞. The sequence (n1/p)has the “upper regularity property”

for 1 < p < ∞ (see [8, p. 586]). So (e i) is quasi-greedy and democratic and (Φ(n)) has
the upper regularity property. Hence, by [8, Proposition 4.4], (e i) is bidemocratic. In
particular, Φ∗(n) ≍ n1/q , where q = p/(p − 1).
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The proof is now concluded as in Proposition 3.2. More precisely, the left-hand
inequality of (1.2) gives an upper p-estimate for (e i) and (2.3) gives an upper
q-estimate for (e∗i ). ∎

6 Subsequences

In this section, we use results from the theory of spreading models initiated by Brunel
and Sucheston [5]. We start with a brief review. A basic sequence (e i) is invariant
under spreading (IS) if there exists C > 0 such that

1
C
∥

n
∑
i=1

a i e i∥ ≤
�����������

n
∑
j=1

a j e i j

�����������
≤ C ∥

n
∑
i=1

a i e i∥

for all n ≥ 1, i1 < ⋯ < in , and scalars (a i)n
i=1.

We say (e i) generates a spreading model if there exists a Banach space (Y , ∥ ⋅ ∥Y)
with basis (s i) such that

∥
n
∑
i=1

a i s i∥
Y
= lim

i1→∞
i1<⋯<in

�����������

n
∑
j=1

a j e i j

�����������

for all n ≥ 1 and scalars (a i)n
i=1. It was proved in [5] that every basic sequence has a

subsequence (x i) which generates a spreading model. Note that (s i) is IS with C = 1.
Moreover, (s2i − s2i−1) is suppression 1-unconditional [5]. Note that an IS sequence
(e i) is equivalent to the spreading model (s i) generated by a subsequence of (e i).
Hence (e2i − e2i−1) is IS and unconditional.

Theorem 6.1 Suppose that (e i) is IS and satisfies (1.2). Then (e i) is equivalent to the
u.v.b. of c0 or �p .

Proof As remarked above, (e2i − e2i−1) is IS and unconditional. Because, for every
choice of scalars a1 , . . . , an ,

(
n
∑
i=1

a i e i) ⊗ (e2 − e1) =
n
∑
i=1

a i(e2i − e2i−1),

(1.2) yields that (e i)i is equivalent to (e2i − e2i−1). Therefore, (e i)i is almost greedy
and, thus, by Theorem 5.1, the result follows. ∎

To state the next result, we first make some clarifying remarks to avoid a possible
source of confusion. For any given semi-normalized basic sequence (e i), we defined
a multiplication ⊗ on span((e i)) by (1.1). We must emphasize, however, that for a
different choice of basic sequence, ( f i) say, the corresponding multiplication will also
be different. But to avoid cumbersome notation, we use the same symbol ⊗ for both.
Likewise, when we say in the next result that all subsequences of (e i) satisfy (1.2), it is
to be understood that the constant K in (1.2) will depend on the subsequence, i.e., we
are not assuming a priori that there is a uniform K for all subsequences. (Of course,
as the result shows, a uniform K does in fact exist.)
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Theorem 6.2 Let (e i) be a semi-normalized basic sequence. Suppose that every
subsequence of (e i) satisfies (1.2). Then (e i) is equivalent to the u.v.b. of c0 or �p .

The proof requires the following lemma.

Lemma 6.3 Let (e i) be a semi-normalized basic sequence which satisfies (1.2). Then
all sequences of the form (emn+i)n

i=1 (m, n ∈ N) are uniformly equivalent to (e i)n
i=1, i.e.,

there exists C > 0 such that for all m, n ∈ N and all scalars (a i)n
i=1,

1
C
∥

n
∑
i=1

a i e i∥ ≤ ∥
n
∑
i=1

a i emn+i∥ ≤ C ∥
n
∑
i=1

a i e i∥ .

Proof This follows at once from (1.2) along with the observation that

em+1 ⊗ (
n
∑
i=1

a i e i) =
n
∑
i=1

a i emn+i .

∎

Proof of Theorem 6.2 By Theorem 6.1, it suffices to prove that (e i) is IS. Let (y i) be
a subsequence of (e i) which generates a spreading model (Y , ∥ ⋅ ∥Y) with basis (s i).
We define a subsequence (x i) of (e i) inductively. For 1 ≤ i ≤ 3, let x i = e i . For the
inductive step, suppose that n ≥ 1 and that (x i)3n

i=1 have been defined with x i = eN(i),
where (N(i))3n

i=1 is strictly increasing. Choose m ∈ N with m3n > N(3n) and define
x3n+i = em3n+i for 1 ≤ i ≤ 3n . Thus, x i has now been defined for 1 ≤ i ≤ 2 ⋅ 3n .

Now choose p > (m + 1)3n such that

1
2

�����������

3n

∑
i=1

a i s i

�����������Y
≤
�����������

3n

∑
i=1

a i yp+i

�����������
≤ 2
�����������

3n

∑
i=1

a i s i

�����������Y
(6.1)

for all scalars (a i)3n

i=1. This is possible because (y i) generates the spreading model with
basis (s i). Define x2⋅3n+i = yp+i for 1 ≤ i ≤ 3n . This completes the inductive definition
of x i = eN(i) for 1 ≤ i ≤ 3n+1. Note that

N(3n + 1) = m3n + 1 > N(3n)

and

N(2 ⋅ 3n + 1) ≥ p + 1) > (m + 1) ⋅ 3n = N(2 ⋅ 3n).

Hence, (N(i))3n+1

i=1 is strictly increasing as desired.
By assumption, (x i) satisfies (1.2) for some K > 0. Hence, by Lemma 6.3,

(x3n+i)3n

i=1 = (em⋅3n+i)3n

i=1 is uniformly equivalent to (e i)3n

i=1. Again, by Lemma 6.3,
(x3n+i)3n

i=1 is uniformly equivalent to (x2⋅3n+i)3n

i=1, which in turn is uniformly
equivalent to (s i)3n

i=1 by (6.1). So (e i)3n

i=1 is uniformly equivalent to (s i)3n

i=1, i.e., (e i) is
equivalent to (s i) as desired. ∎

We conclude with a characterization of basic sequences that are saturated by
subsequences equivalent to the u.v.b. of c0 or �p .
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Let [N]ω denote the collection of increasing sequences (nk)∞k=1 of natural numbers
endowed with the product topology.

Theorem 6.4 Let (e i) be a semi-normalized basic sequence. The following are
equivalent:
(a) Every subsequence of (e i) contains a further subsequence equivalent to the u.v.b.

of c0 or �p .
(b) Every subsequence of (e i) contains a further subsequence satisfying (1.2) for some

K > 0.

Proof (a)⇒ (b) is obvious. Suppose (b) holds. Let ( f i) be any subsequence of (e i).
Let

B = {(nk)∞k=1 ∈ [N]ω ∶ ( fnk)∞k=1 satisfies (1.2) for some K > 0}.
Then B is easily seen to be a Borel set. Hence, by the infinite Ramsey theorem of
Galvin and Prikry [11], there exists (nk)∞k=1 ∈ [N]ω such that either every subsequence
of (nk)∞k=1 belongs to B or every subsequence belongs to the complement of B. The
latter contradicts (b). By Theorem 6.2, the former implies that ( fnk) is equivalent to
the u.v.b. of c0 or �p . ∎
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