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Abstract

The problem of finding geodesics that avoid certain obstacles in negatively curved manifolds has been
studied in different situations. In this note we give a generalization of the unclouding theorem of
J. Parkkonen and F. Paulin: there is a constant s0 = 1.534 such that for any Hadamard manifold
M with curvature ≤ −1 and for any family of disjoint balls or horoballs {Ca}a∈A and for any point
p ∈ M −

⋃
a∈A Ca if we shrink these balls uniformly by s0 one can always find a geodesic ray emanating

from p that avoids the shrunk balls. It will be shown that in the theorem above one can replace the balls
by arbitrary convex sets.
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0. Introduction

The problem of finding geodesics that avoid certain obstacles in negatively curved
manifolds has been studied in different situations. It found applications in several
areas like the existence of bounded geodesics in manifolds with finite volume [3–5]
and the construction of proper closed invariant subsets of the unit tangent bundle with
large footprints [1, 6].

An interesting theorem [4, Theorem 1.1] of this kind was proved recently by
Parkkonen and Paulin for CAT(−1) metric spaces (an earlier version of the theorem
appeared in [3]). The statement in the Riemannian setting is as follows.

THE UNCLOUDING THEOREM (J. Parkkonen and F. Paulin). There is a constant
s0 = 1.534 such that for any Hadamard manifold M with curvature ≤ −1 and for
any family of disjoint balls or horoballs {Ca}a∈A and for any point p ∈ M −

⋃
a∈A Ca

if we shrink these balls uniformly by s0 one can always find a geodesic ray emanating
from p that avoids the shrunk balls.

Our goal is to show that in the theorem above one can replace the balls by arbitrary
convex sets. To state our theorem first we have to define the meaning of ‘shrinking a
convex set’.
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Let M be an n-dimensional (n ≥ 2) complete and simply connected Riemannian
manifold with sectional curvatures ≤−1. For a convex subset C ⊂ M and a positive
number s > 0 we define the s-kernel of C as

C(s) = {x ∈ C : B(x, s) ⊂ C},

where B(x, s) denotes the open geodesic ball of radius s and centre x . It is easy to see
that the s-kernel is always closed, and possibly empty. Then we have the following
result.

THEOREM. There is a constant s0 > 0 such that for any s > s0 and for any family of
disjoint open convex sets Cn ⊂ M, n ∈ A, and for any point x ∈ M −

⋃
n∈A Cn there

is a geodesic ray emanating from x and avoiding Cn(s) for all n ∈ A.

The constant s0 is chosen such that the area of the geodesic ball B(s0) of radius s0
in H2(−1) is 2π . Since the area of

B(r) = 2π(cosh(r) − 1)

(see [2, Chapter 3]), this yields

s0 = cosh−1(2) < 1.4,

which is slightly better than the constant given in [4].
To understand why such a statement may be true it is helpful to consider the

following example. Let us assume that M is a surface. Fix a point p in M and let us
try to construct a counterexample, that is a family of disjoint open and convex sets not
containing p such that the s-kernels block all the rays from p. It is logical to try to find
‘large’ convex sets that block a lot of rays. The best candidates are half-spaces (one
side of geodesics). Their s-kernels block the same rays as the half-spaces themselves.
So let us assume that we have n points q1, . . . , qn, on the ideal boundary S arranged
in a cyclic order (set qn+1 = q1) and let γi, j be the geodesic connecting qi to q j . Let D
be the connected component of M −

⋃n
i=1 γi,i+1 that contains p and assume that the

boundary of D contains all the geodesics γ1,2, γ2,3, . . . , γn,1. Set Ci be the convex
half-space bounded by γi,i+1 that does not contain p. Then with the exception of the
rays γp,qi all the rays from p are blocked by Ci (s0). To finish the counterexample we
need to find disjoint convex sets in D that will block the rays γp,qi , i = 1, 2, . . . , n.
The smallest convex sets are geodesic balls; therefore we need to place a geodesic ball
of radius s0 (so that the s0-kernels of the balls are not empty) centred on the rays γp,qi ,
i = 1, 2, . . . , n. But that is clearly impossible. From the Gauss–Bonnet theorem we
have Area(D) ≤ (n − 2)π . On the other hand the area comparison theorem (see for
example [2, Theorem 3.7]) yields that the total area of the balls is at least 2nπ .

As far as this example is concerned we could have chosen the constant s0 such that
Area(B(s0)) = π in H2(−1) but in the actual proof we need the larger constant.
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1. Proof of the theorem

Denote by S the sphere at infinity (viewed as the set of equivalence classes of
geodesic rays) and equip M ∪ S with the usual truncated cone topology. Then S is
homeomorphic to the sphere and M ∪ S is homeomorphic to the closed ball.

Define the projection map π : M ∪ S − {p} → S such that π(q) = [γpq ], where γpq
denotes the geodesic ray starting from p and passing through q, and for a geodesic ray
γ , [γ ] ∈ S denotes the equivalence class. The following is easy to show.

PROPOSITION 1. If D ⊂ M is open, then π(D) is an open set in S, and if F ⊂ M is
closed and bounded, then π(F) is closed in S.

The proof is obvious.
We shall need the following technical definition. Let p ∈ M be a fixed point and we

call a subset D ⊂ M ∪ S − {p} a cone (with vertex p) if q ∈ D implies that

γpq ∪ {[γpq ]} ⊂ D ∪ {p}.

Since p ∈ M will be fixed throughout the paper we shall sometimes call it a cone
without referring to the vertex p.

Similarly for any set D ⊂ M ∪ S not containing p we define the cone Cone(D) of
the set D as

Cone(D) = {q ∈ M ∪ S − {p} : γpq ∩ D 6= ∅}.

Clearly the cone of an open set is also open. For of any set D ⊂ M ∪ S − {p} the cone
naturally decomposes into three disjoint sets:

Cone+(D) = {q ∈ Cone(D) : [p, q] ∩ D = ∅},

Cone−(D) = {q ∈ Cone(D) − D : [p, q] ∩ D 6= ∅} and D.

Here [p, q] denotes the geodesic segment connecting p and q.
Since the intersection of a cone and a convex set may not be convex or connected

even if the cone is a cone over some convex set, the following technical proposition
will be helpful.

PROPOSITION 2. Let D be a convex set not containing the point p and K be some
cone based at p. Let

D ∩ K =

⋃
i∈A

Di ,

where A is some index set and Di are the connected components of D ∩ K . Then

π(Di ) ∩ π(D j ) = ∅,

for all i 6= j .
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PROOF. Suppose it is not true and

π(Di ) ∩ π(D j ) 6= ∅,

for some i and j . Let

q ∈ π(Di ) ∩ π(D j )

be any point and let qi ∈ Di and q j ∈ D j be points such that π(qi ) = π(q j ) = q.
But then the geodesic segment [qi , q j ] ⊂ D ∩ K and connects Di and D j ; therefore
Di ∪ D j is connected and that is a contradiction. 2

The next proposition is also simple.

PROPOSITION 3. Let C ⊂ M be a convex open set not containing p, let K be some
cone with vertex p and set D = K ∩ C. Suppose there are points x ∈ Cone+(D) and
y ∈ Cone−(D) such that there is a curve α : [0, 1] → Cone(D) with α(0) = x and
α(1) = y. Then α intersects D.

PROOF. For simplicity denote by [q, ∞) the infinite geodesic segment γp,q − [p, q).
Suppose α does not intersect D. Then we can sort the points of [0, 1] into two sets
defined as follows:

R1 = {z ∈ [0, 1] : [p, α(z)] ∩ D 6= ∅} and R2 = {z ∈ [0, 1] : [α(z), ∞] ∩ D 6= ∅}.

From the definition above we have that x ∈ R2 and y ∈ R1. Since α([0, 1]) ⊂ Cone(D)

it is clear that R1 ∪ R2 = [0, 1]. From the assumption that α([0, 1]) ∩ D = ∅ and
from the convexity of D we obtain that R1 ∩ R2 = ∅. Finally since D is open (in the
topology of K ) and the conditions defining the sets R1 and R2 are open conditions we
conclude that R1 and R2 are open subsets of [0, 1]. But this contradicts the fact that
[0, 1] is connected. 2

The following elementary lemma is crucial to the proof.

LEMMA 4. Let M be an n-dimensional complete and simply connected Riemannian
manifold with sectional curvatures ≤−1. Consider the geodesic triangle 4pqr ,
where p ∈ M and q, r ∈ M ∪ S. Suppose that there is a point x ∈ [p, q] such that
B(x, s0) ∩ [p, r ] = ∅. Then the geodesic segment [r, q] intersects B(x, s0).

There are probably many different ways to prove this but let us argue in the spirit
of the example given in the Introduction.

PROOF. For every t ∈ [r, q] consider the segment [p, t]. The union of these segments
is a ruled surface F =

⋃
t∈[r,q]

[p, t]. Since the second fundamental form of F cannot
be definite with respect to any normal, by the Gauss theorem we conclude that the
sectional curvature of F (with the metric inherited from M) is ≤−1.

Let us assume that on the contrary [r, q] ∩ B(x, s0) = ∅. Let

BF (x, s0) = {y ∈ F : distF (x, y) ≤ s0}
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be the geodesic ball of radius s0 and centre x on the surface F . Observe that

BF (x, s0) ⊂ B(x, s0) ∩ F.

Therefore we have [r, q] ∩ BF (x, s0) = ∅, where the geodesic segment [r, q]

considered as a geodesic segment in M is also a geodesic segment in F . From the
Gauss–Bonnet formula applied for the surface F we have that the F-area of the triangle
4pqr is less than π . On the other hand the triangle 4pqr contains a half-ball BF (x, s0)

whose F-area is greater than or equal to π by the standard area comparison principle
[3, Theorem 3.7] and that is a contradiction. 2

The following proposition also plays an important role.

PROPOSITION 5. Let M be an n-dimensional complete and simply connected
Riemannian manifold with sectional curvatures ≤−1. Let C be an open convex set
with C(s) 6= ∅ for some s ≥ s0. Suppose that there is a disjoint open convex set D such
that there is a point q ∈ D with the property that the geodesic segment [p, q] intersects
C(s). Then dist(p, D) > dist(p, C).

PROOF. Suppose the statement is not true and let us assume that

dist(p, D) ≤ dist(p, C).

Let x ∈ [p, q] ∩ C(s) be any point and r ∈ ∂ D be a point such that

dist(r) ≤ dist(p, C).

Consider the geodesic ball B(x, s) and the cone Cone(B(x, s)). Then

either r ∈ Cone(B(x, s)) or r /∈ Cone(B(x, s)).

If r /∈ Cone(B(x, s)), then the geodesic segment [p, r ] does not intersect B(x, s)
and Lemma 4 implies that the geodesic segment [r, q] intersects B(x, s). But that is
a contradiction since the geodesic segment [r, q] ⊂ D and B(x, s) ⊂ C and the sets
D, C were disjoint.

If r ∈ Cone(B(x, s)) then r ∈ Cone+(B(x, s)) since

dist(p, r) ≤ dist(p, C) ≤ dist(p, B(x, s)),

and obviously q ∈ Cone−(B(x, s)). Now, if the geodesic segment [r, q]

⊂ Cone(B(x, s)), then by Proposition 3 we have that [r, q] intersects B(x, s) and the
contradiction arises the same way as before. On the other hand if the geodesic segment
[r, q] leaves the cone then there is a point r ′

∈ [r, q] ⊂ D such that r ′ /∈ Cone(B(x, s))
and we can repeat the previous argument with r ′ in place of r to obtain a contradiction.
This concludes the proof of the proposition. 2
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PROOF OF THEOREM. First we show that it is enough to prove the theorem for finitely
many bounded convex sets.

Let us assume on the contrary that we have a family Cn , n ∈ A, of disjoint open
convex sets, a constant s > s0 and a point p ∈ M −

⋃
n∈A Cn such that every geodesic

ray emanating from p intersects Cn(s) for some n ∈ A.
Let s0 < s′ < s. Then clearly for any set D and for any q ∈ D(s),

B(q, s − s′) ⊂ D(s′).

Since ⋃
n∈A

π(Cn(s)) = S,

we have ⋃
q∈∪{Cn(s) : n∈A}

π(B(q, s − s′)) = S.

Since the projection of an open set is open and S is compact there are finitely many
points qi , i = 1, . . . , m, such that qi ∈ Cn(s) for some n ∈ A and

m⋃
i=1

π(B(qi , s − s′)) = S.

Let
l = max{dist(p, qi ) : i = 1, . . . , m} + s + 1,

and A′
⊂ A such that n ∈ A′ if qi ∈ Cn(s) for some i = 1, . . . , m. Clearly A′ is a finite

subset of A.
For n ∈ A′ set C ′

n = Cn ∩ B(p, l). Clearly C ′
n is bounded open and convex, and if

qi ∈ Cn(s), then qi ∈ C ′
n(s) as well. Therefore B(qi , s − s′) ⊂ C ′

n(s
′) and⋃

n∈A′

π(C ′
n(s

′)) = S.

To summarize: we have produced a finite family of disjoint bounded open convex
sets C ′

n , n ∈ A′, and a positive number s0 < s′ such that every geodesic ray emanating
from p intersects C ′

n(s
′) for some n ∈ A′.

Therefore it is enough to show that the theorem is valid for such a family and
from now on we assume that we have a finite family Ci , i = 1, . . . , n, of disjoint,
bounded, open and convex sets, a constant s > s0 and a point p ∈ M −

⋃n
i=1 Cn such

that every geodesic ray emanating from p intersects Ci (s) for some i = 1, . . . , n, that
is

⋃n
i=1 π(Ci (s)) = S.

We are going to select different convex sets

Ca1, Ca2, . . . , Cai , . . .
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from the family {C j }
n
j=1 and construct subsets

S ⊃ S1 ⊃ S2 · · · ⊃ Si ⊃ · · ·

that are open and connected in the topology of S such that the following properties are
satisfied:

(1) π(Cai (s)) ∩ Si−1 6= ∅;
(2) Si ⊂ Si−1 ∩ (π(Cai ) − π(Cai (s))) and there are points qi ∈ Cai (s) and ri ∈ ∂Si

such that π(qi ) ∈ ∂Si and [p, ri ] ∩ B(qi , s) = ∅;
(3) Di = Cai ∩ Cone(Si ) is open, Cone(Di ) = Cone(Si ) and Cone+(Di )

∩ C j (s) = ∅ for all j = 1, . . . , n; and
(4) Si ∩ π(Ca j (s)) = ∅ for all j ≤ i .

Our goal is to show that this process never stops and this is a contradiction since we
have only finitely many Ci to select from.

We start by selecting the first set. Let Ca1 be the set of the family {C j }
n
j=1 with

the smallest distance from p. Since the family is finite there has to be a set with the
smallest distance, and if there is more than one set with minimal distance, choose one
of them.

Next we construct the set S1 satisfying the second property. Since Ca1 is open and
Ca1(s) is a closed bounded set from Proposition 1 we obtain that

π(Ca1) − π(Ca1(s))

is open and since S is locally connected all connected components are open as well.
Let S1 be a connected component of

π(Ca1) − π(Ca1(s))

such that

∂(S1) ∩ π(Ca1(s)) 6= ∅ and ∂(S1) ∩ ∂π(Ca1) 6= ∅.

Naturally we have to show that such component exists.
To this end we show that if S1 is any connected component of π(Ca1) − π(Ca1(s))

we have ∂S1 ∩ π(Ca1(s)) 6= ∅. Suppose it is not true. Since π(Ca1(s)) is a closed
subset of S and therefore compact there is an open set B ⊂ S such that B ∩ S1 = ∅

and π(Ca1(s)) ⊂ B. Since S1 was a connected component of

π(Ca1) − π(Ca1(s)),

we have

(π(Ca1) − π(Ca1(s))) − S1

is also open, and therefore

B ′
= B ∪ ((π(Ca1) − π(Ca1(s))) − S1)
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is open and disjoint from S1. Since

π(Ca1) ⊂ B ′
∪ S1

and B ′ and S1 are disjoint we have decomposed π(Ca1) into the union of two disjoint
open sets,

π(Ca1) = (π(Ca1) ∩ S1) ∪ (π(Ca1) ∩ B ′),

and that is a contradiction since π(Ca1) as the projection of a connected set must be
connected.

We also have to show that there is a connected component S1 of

π(Ca1) − π(Ca1(s))

such that

∂(S1) ∩ ∂π(Ca1) 6= ∅.

This is quite straightforward. Let r1 ∈ ∂π(Ca1) be any point. Since Ca1 is
bounded the infinite geodesic segment [p, r1] intersects the boundary of Ca1 , and if
x ∈ [p, r1] ∩ ∂Ca1 is an intersection point then there is an ε > 0 such that

π(B(x, ε)) ∩ πCa1(s) = ∅ (Ca1(s) is a compact set).

Then B(x, ε) ∩ Ca1 is open and convex, r1 ∈ ∂π(B(x, ε) ∩ Ca1) and

π(B(x, ε) ∩ Ca1) ⊂ π(Ca1) − π(Ca1(s))

is an open and connected set (the projection of a connected set is connected). Choose
S1 to be the connected component that contains π(B(x, ε) ∩ Ca1).

Since

∂S1 ∩ π(Ca1(s)) 6= ∅,

let q1 ∈ Ca1(s) be any point such that

π(q1) ∈ ∂S1 ∩ π(Ca1(s)).

Such a point must exist because Ca1(s) is a compact set. Then [p, r1] ∩ B(q1, s) = ∅

otherwise r1 is in the interior of π(B(q1, s)), and since B(q1, s) ⊂ Ca1 the point r1
would belong to the interior of π(Ca1) and that contradicts the choice of r1. Therefore
the set S1 and the points q1, r1 satisfy the second property.

Set D1 = Ca1 ∩ Cone(S1). This is open since it is the intersection of two open
sets, and since S1 ⊂ π(Ca1) one obtains that Cone(D1) = Cone(S1). The important
part is to show that Cone+(D1) ∩ C j (s) = ∅ for all j = 1, . . . , n. Suppose it is not
true and there is a C j such that Cone+(D1) ∩ C j (s) 6= ∅. This means that there is
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a point q ∈ D1 ⊂ Ca1 such that the geodesic segment [p, q] intersects C j (s). Then
Proposition 5 implies that dist(p, Ca1) > dist(p, C j ) but that is a contradiction since
Ca1 was chosen with minimal distance from p. This verifies the third property.

Finally the fourth property follows easily from the fact that

S1 ⊂ π(Ca1) − π(Ca1(s)).

Let us now assume that we have chosen Ca1, . . . , Cai and constructed the sets
S1, . . . , Si satisfying the four properties. Let A ⊂ {1, . . . , n} be the set such that if
a ∈ A, then

π(Ca(s)) ∩ Si 6= ∅.

Since

n⋃
i=1

π(Ci (s)) = S,

the set A 6= ∅. Choose Cai+1 from the family {Ca}a∈A with the minimal distance from
p. Again if there is more than one such set, choose one of them. It is clear that the first
property is satisfied.

We now deal with the construction of Si+1 and the verification of the second
property. Let C ′

ai+1
be a connected component of Cai+1 ∩ Cone(Di ) such that

Cai+1(s) ∩ C ′
ai+1

6= ∅.

Since C ′
ai+1

is connected from Proposition 3 we obtain that

C ′
ai+1

⊂ Cone+(Di ) or C ′
ai+1

⊂ Cone−(Di ).

Taking into consideration the third property we obtain that C ′
ai+1

⊂ Cone−(Di ).
The set Si+1 is going to be a connected component of

Si ∩ (π(C ′
ai+1

) − π(Cai+1(s))).

First we show that Si 6⊂ π(C ′
ai+1

). Suppose it is not true. Then there are points
qi ∈ Cai (s) and

ri ∈ ∂Si

satisfying the second property and

ri , π(qi ) ∈ Cl(π(C ′
ai+1

)).

Since C ′
ai+1

is bounded one can find points

q ′
∈ Cl(C ′

ai+1
) and r ′

∈ Cl(C ′
ai+1

)
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such that π(q ′) = π(qi ) and π(r ′) = π(ri ). Since C ′
ai+1

⊂ Cone−(Di ) we have that
qi ∈ [p, q ′

]. By the second property the geodesic segment [p, r ′
] ⊂ [p, ri ] does not

intersect the ball B(qi , s). Applying Lemma 4 we obtain that

[r ′, q ′
] ⊂ Cl(C ′

ai+1
) ⊂ Cl(Cai+1)

intersects B(qi , s) ⊂ Cai . Therefore the convex sets Cai+1 and Cai intersect and that is
a contradiction.

Let

r ∈ Si − π(C ′
ai+1

) and q ∈ C ′
ai+1

∩ Cai+1(s)

be arbitrary points and let α : [0, 1] → Si be a curve such that α(0) = r and α(1)

= π(q). Let

t1 = inf{t ∈ [0, 1] : α([t, 1]) ⊂ π(C ′
ai+1

)}

and

t2 = inf{t ∈ [0, 1] : α(t) ∈ π(C ′
ai+1

∩ Cai+1(s)) and α([t, 1]) ⊂ π(C ′
ai+1

)}.

Since π(C ′
ai+1

) is an open neighbourhood of π(C ′
ai+1

∩ Cai+1(s)) in the topology of Si
it is clear that t1 < t2. Let Si+1 be the connected component of

Si

⋂
(π(C ′

ai+1
) − π(Cai+1(s)))

that contains the curve α(t1, t2) and set ri+1 = α(t1), and let

qi+1 ∈ C ′
ai+1

∩ Cai+1(s)

be any point such that π(qi+1) = α(t2). Such a point must exist since Cai+1(s) is
compact.

We must show now that the second property is satisfied with this choice. Clearly
Si+1 is open and connected in S. It is also clear that

ri+1 ∈ ∂π(C ′
ai+1

),

and therefore ri+1 ∈ ∂Si+1. If

B(qi+1, s) ∩ [p, ri+1] 6= ∅,

that would mean that

ri+1 ∈ π(B(qi+1, s)).

Denote by D′ the connected component of Cai+1 ∩ Cone(Di ) such that ri+1 ∈ π(D′).
Taking into account the fact that D′ and therefore π(D′) are open we have that

π(D′) ∩ π(C ′
ai+1

) 6= ∅.
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Since by Proposition 5 the projections of different connected components must be
disjoint we conclude that

D′
= C ′

ai+1
and ri+1 ∈ Int(C ′

ai+1
).

That contradicts the fact that ri+1 ∈ ∂π(C ′
ai+1

).
We now move on to verification of the third property. Define the set

Di+1 = Cone(Si+1) ∩ Cai+1 .

Since by the construction Si+1 ⊂ π(Cai+1),

Cone(Di+1) = Cone(Si+1).

Suppose there is a set C j such that

Cone+(Di+1) ∩ C j (s) 6= ∅.

Then on the one hand by Proposition 5

dist(p, Cai+1) > dist(p, C j ),

and on the other hand

π(C j (s)) ∩ Si 6= ∅.

Therefore j ∈ A and this is a contradiction since Cai+1 was chosen out of the sets
{Ca}a∈A with the minimum distance.

Now we verify the fourth property. The set Si+1 was constructed to be a connected
component of

Si

⋂
(π(C ′

ai+1
) − π(Cai+1(s))),

which implies that

Si+1 ∩ π(Cai+1(s)) = ∅.

On the other hand since Si+1 ⊂ S j for j ≤ i and from the fourth property we know
that

S j ∩ π(Ca j (s)) = ∅,

for all j ≤ i we obtain

Si+1 ∩ π(Ca j (s)) = ∅,

for all j ≤ i + 1.
Finally, combining the first and the last properties one obtains that the selected sets

are all different. This shows that the construction never stops, which is a contradiction
and the proof of the theorem is complete.

https://doi.org/10.1017/S0004972708000336 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000336


424 A. Borbély [12]
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