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Abstract. We construct actions of the spheromorphism group of Neretin (containing Thomp-
son’s group V) on towers of moduli spaces of genus zero real stable curves. The latter consist

of inductive limits of spaces which are the real parts of the Grothendieck–Knudsen compac-
tification of the moduli spaces of punctured Riemann spheres. By a result of M. Davis,
T. Januszkiewicz and R. Scott, these spaces are aspherical cubical complexes whose funda-

mental groups, the ‘pure quasi-braid groups’, can be viewed as analogues of the Artin pure
braid groups. By lifting the actions of the Thompson and Neretin groups to the universal cov-
ers of the towers, we obtain extensions of both groups by an infinite pure quasi-braid group,
and construct an ‘Euler class’ for the Neretin group. We justify this terminology by construct-

ing a corresponding cocycle.
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Introduction

The starting point of this work is to relate geometrically some discrete groups,

namely Thompson’s group V (acting on the Cantor set) and the spheromorphism

group of Neretin N (which is a dyadic analogue of the diffeomorphism group of

the circle, and acts on the boundary of the regular dyadic tree, cf. [10–12, 17], to

the moduli spaces of genus zero curves. More explicitly, let M0;nþ1ðCÞ denote the

moduli space ðCP1Þnþ1nD=PGLð2;CÞ, where CP1 is the complex projective line, D
the thick diagonal. The Grothendieck–Knudsen compactification M0;nþ1ðCÞ has

a concrete realization as an iterated blow-up along the irreducible components

of a hyperplane arrangement in CPn�2. While the interest of the real part

M0;nþ1ðRÞ was revealed in [14], its topology has recently been studied in [5–7].

From a naive point of view, the relevance of M0;nþ1ðRÞ with respect to

Thompson’s or Neretin’s groups relies on the common role played by planar

trees: M0;nþ1ðRÞ is a stratified space, whose strata are labelled by planar trees,
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while dyadic planar trees appear in symbols defining elements of Thompson’s and

Neretin’s groups.

In [9], P. Greenberg builds a classifying space for Thompson’s group F, the

smallest of Thompson’s groups, with total space an inductive limit of ‘bracelet’

spaces, combinatorially isomorphic to the Stasheff associahedra Kn’s. However,

this space is too small to support an action of Thompson’s group V. The idea

to proceed to an analogous construction for V originated in the observation that

a two-sheeted covering space fM0;nþ1ðRÞ of M0;nþ1ðRÞ was tiled by n! copies of

the associahedron Kn.

The first step of our construction consists in building two spaces, fM0;21ðRÞ and

M0;3:21ðRÞ, the towers of moduli spaces of genus zero real curves, defined as induc-

tive limits of spaces fM0;nðRÞ and M0;nðRÞ, respectively (the second of these towers

being a real version of a stabilized moduli space considered by Kapranov in [15]).

The next step is to make not only Thompson’s group V, but also the much larger

spheromorphism group N, act cellularly on the towers:

THEOREM 1. Neretin’s group of spheromorphisms N – and so Thompson’s group

V – acts cellularly on the towers fM0;21ðRÞ and M0;3:21ðRÞ.

By lifting the action of N and V to the universal covers of the towers, we deduce

the existence of nontrivial extensions of V and N by infinite ‘pure quasi-braid groups’

PJ21 or Q3:21 . These are inductive limits of the fundamental groups of the spacesfM0;nðRÞ or M0;nðRÞ. Thus defined, they are analogues of the pure Artin braid

groups Pn (cf. [6, 7]). We prove:

THEOREM 2. The group PJ21 surjects onto Z=2Z. By dividing the extension of

Neretin’s group 1! PJ21 �!AN�!N! 1 by the kernel of the previous surjection,

one obtains a nontrivial central extension of N with kernel Z=2Z: 0! Z=2Z

�! eN�!N! 1:

We view the resulting cohomology class as the analogue for N of the Euler class of

the homeomorphism group of the circle HomeoþðS1Þ, whose corresponding (real)

cocycle is induced by the coboundary of a Z-equivariant function on the universal

cover gHomeoþðS1Þ:
THEOREM 3. There is a ring extension R of Z=2Z and an R-valued Euler-type

cocycle on N ði.e. induced by the coboundary of a Z=2Z-equivariant function on eN Þ
associated with the previous cohomology class on N.

PLAN OF THE ARTICLE

The first section is devoted to the description of the real moduli spaces M0;nþ1ðRÞ,

and of the combinatorics of their stratifications. Section 2 introduces the stabilized
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moduli spaces M0;3:21ðRÞ and fM0;21ðRÞ (or ‘towers’), and the actions of Neretin’s

and Thompson’s groups are defined. In Section 3, we describe the quasi-braid exten-

sion of Neretin’s group, and construct its Euler class.

1. The Compactified Real Moduli Space M0;nþ1ðRÞ

1.1. THE MODULI SPACE OF GENUS ZERO ðnþ 1Þ-STABLE CURVES

DEFINITION 1.1.1 ([13], [14]). Let k be the field C or R. A genus zero ðnþ 1Þ-

stable curve is an algebraic curve C over the field k with ðnþ 1Þ smooth marked

points x0; . . . ; xn such that

(1) each irreducible component of C is isomorphic to a projective line P
1
k, and each

double point of C is ordinary;
(2) the graph of C is a tree;
(3) each component of C has at least three points, double or marked.

The graph of a curve ðC; x0; . . . ; xnÞ is defined as follows: the leaves (or 1-valent
vertices) A0; . . . ;An are in correspondence with the marked points of the curve,

x0; . . . ; xn, and the internal vertices v1; . . . ; vk with the irreducible components

C1; . . . ; Ck. There is an internal edge ½vivj	 if Ci and Cj intersect (in a double point).
Terminal edges ½Aivj	 correspond to pairs ðxi; CjÞ such that xi 2 Cj. The terminal edge
with leaf A0 will be distinguished as the output edge. Figure 1 illustrates the construc-

tion of the graph of a stable curve; the components are represented by circles.

1.1.2. Terminology

By a rooted planar n-tree we shall mean a planar tree with ðnþ 1Þ terminal edges, one

of them being distinguished as the output edge, the others as the input edges. The

terminal vertices of the input edges are called leaves. The root of the tree is the inter-

nal vertex of the output edge. When k ¼ R, the graph of a stable curve should be

thought of as a planar rooted tree.

1.2 EXPLICIT CONSTRUCTION OFM0;nþ1ðRÞ, AS AN ITERATED BLOW-UP OF Pn�2
R

(1) By definition, M0;nþ1ðRÞ ¼ ððRP1Þnþ1nDÞ=ðPGLð2;RÞÞ, where D is the thick

diagonal of ðRP1Þnþ1.

Figure 1.
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LEMMA 1.2.1. M0;nþ1ðRÞ embeds in the ðn� 2Þ-dimensional real projective space as

the complement of a hyperplane arrangement, the braid arrangement.

Proof. Clearly, M0;nþ1ðRÞ ffi ðR
n
n ~DÞ=ðAffð1;RÞÞ, where ~D is the thick diagonal

of R
n, and Affð1;RÞ the affine group of R. There is an embedding

Rn
n ~D

Affð1;RÞ
,!Pn�2

R :¼ P ða1; . . . ; anÞ 2 Rn :
Xn
i¼1

ai ¼ 0

( )

in the ðn� 2Þ-dimensional real projective space, induced by the map sending

ðx1; . . . ; xnÞ 2 R
n
n ~D to ða1; . . . ; anÞ, with ai ¼ xi � ð1=nÞ

Pn
j¼1 xj.

The image of M0;nþ1ðRÞ in Pn�2
R is the complement of the union of hyperplanes

Hi;j : ai ¼ aj. This hyperplane arrangement is called the braid arrangement. So,

M0;nþ1ðRÞ has n!=2 connected components? which are open simplices, called

the projective Weyl chambers Ws: asð1Þ < asð2Þ < 
 
 
 < asðnÞ, where s belongs to
the symmetric group Sn. The projectivisation introduces an identification of the

chambers Ws and Wso, where o is the permutation ð1 2 ... n
n n�1 ... 1Þ. &

EXAMPLE 1.2.2. M0;3ðRÞ is a point, M0;4ðRÞ ¼ RP1nf0; 1;1g (3 chambers),

M0;5ðRÞ is represented on Figure 2 (12 chambers).

PROPOSITION 1.2.3 ð½13; 14	Þ. There is a projective smooth variety M0;nþ1ðRÞ and

an iterated blow-down map p : M0;nþ1ðRÞ �! Pn�2
R which desingularizes the braid

arrangement.

Proof. We content ourselves to recall the construction, as performed in [3].

Denote by B0 the set of n points pi: a1 ¼ 
 
 
 ¼ bai ¼ 
 
 
 ¼ an (b being the symbol of
omission), B1 the set of lines ðpipjÞ: a1 ¼ 
 
 
 ¼ bai ¼ 
 
 
 ¼ baj ¼ 
 
 
 ¼ an, and more

generally, by Bk the set of k-planes a1 ¼ 
 
 
 ¼cai1 ¼ 
 
 
 ¼ daikþ1 ¼ 
 
 
 ¼ an,

i1 < 
 
 
 < ikþ1, for k ¼ 0; . . . ; n� 3 (they are the irreducible components of the braid

arrangement, in the sense of Coxeter groups: this will become clear in Section 1.3).

Along components of Bk, hyperplanes Hi;j do not meet transversely. So, the process

of desingularization of the nonnormal crossing divisor
S

i;j Hi;j is the following:

Figure 2.

?Note the difference with the complex case: M0;nþ1ðCÞ is connected.

52 CHRISTOPHE KAPOUDJIAN

https://doi.org/10.1023/A:1023669603024 Published online by Cambridge University Press

https://doi.org/10.1023/A:1023669603024


Points of B0 are first blown-up, and we obtain the blown-up space X1 as well as

the blow-down map X1�!
p1

Pn�2
R . The proper transforms of the lines ð pipjÞ (i.e. the

closures of p�11 ðð pipjÞnf pi; pjgÞ) become transverse in X1, consequently they can be

blown-up in any order to produce X2�!
p2

X1�!
p1

Pn�2
R ; again the proper transforms

of the planes ðpipjpkÞ become transverse in X2, and are blown-up in any order.

Finally we get the composite of blow-down maps

M0;nþ1ðRÞ :¼ Xn�2�!
pn�2

. . . �!
p3

X2�!
p2

X1�!
p1

Pn�2
R :

We shall denote by p : M0;nþ1ðRÞ �!Pn�2
R the composition of the iterated blow-ups.

(2) Each blow-up along a smooth algebraic subvariety produces a smooth excep-

tional divisor in the new variety, which is isomorphic to the projective normal bundle

over the subvariety. We denote by bBk the set of proper transforms inM0;nþ1ðRÞ of

the exceptional divisors produced by blowing-up the (proper transforms in Xk of the)

components of Bk: they are smooth irreducible hypersurfaces of M0;nþ1ðRÞ, and

meet transversely. So the union
Sn�3

k¼0
bBk is the set of irreducible components of a

normal crossing divisor D̂.

EXAMPLE 1.2.4. M0;3ðRÞ is a point, M0;4ðRÞ is isomorphic to RP1 (decomposed

into three one-dimensional cells). Contrarily toM0;4ðRÞ, allM0;nðRÞ with n5 5 are

nonoriented.

In Figure 2, we illustrate how M0;5ðRÞ is obtained by blowing-up the four

points p1; . . . ; p4 of the braid arrangement. Each exceptional divisor produced by a

blow-up process is isomorphic to a real projective line, and is represented by a hexa-

gon, whose opposite sides must be identified by the antipodal map. Note that the

exceptional divisors truncate the neighboring simplices, so that M0;5ðRÞ is tiled by

12 pentagons. Topologically,M0;5ðRÞ is the connected sum of 5 projective real planes.

(3) The real algebraic variety M0;nþ1ðRÞ is both a stratified space and a cellular

complex: the codimension k strata are the nonempty intersections of k irreducible

components of the divisor D̂, while the (closed) cells are obtained by intersecting

the strata with one of the n!=2 closures of the preimages p�1ðWsÞ. The open cells

are then defined as the complements of all closed strict subcells in a given closed cell.

Since the divisor D̂ is normal, the strata are smooth closed subvarieties of

M0;nþ1ðRÞ.

Remark 1:2:5: The construction of the complex algebraic variety M0;nþ1ðCÞ is

similar. The strata of complex codimension k are the nonempty intersections of k

irreducible components of the divisor D̂. However, the construction does not equip

the strata with a natural cell decomposition.

(4) Each codimension k cell M is coded by a planar tree that we now define: If

M ¼ p�1ðWsÞ \D1 \ 
 
 
 \Dk is nonempty, then all the components Da,

a ¼ 1; . . . ; k are produced by a blow-up along a set which must be of the form

asðiaÞ ¼ asðiaþ1Þ ¼ 
 
 
 ¼ asðjaÞ, for some 14 ia < ja 4 n.
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Let Tðs; ði; jÞÞ denote the planar rooted n-tree with one output edge and n input

edges, labelled from the left to the right by sð1Þ; . . . ; sðnÞ, with a unique internal edge,
as drawn in Figure 3.

Define a contraction of a tree as the operation consisting of collapsing an internal

edge on a single vertex. Introduce the partial order on the set of n-planar trees:

T4T 0 if T 0 is obtained from T through a sequence of contractions.

DEFINITION 1.2.6. The tree attached to the (closed) cell M ¼ p�1ðWsÞ\

D1 \ 
 
 
 \Dk (or to the open cell M) is defined as TðsÞ ¼ infa¼1;...;kTðs; ðia; jaÞÞ;
where ðia; jaÞ is associated with the component Da as explained in (4). We denoteM
(resp. M) byMðT; sÞ (resp. MðT; sÞ).

NOTATION 1.2.7. TðsÞ, with s 2 Sn, will denote a rooted planar n-tree with leaves

labelled from sð1Þ to sðnÞ, leftmost first, and reading from left to right, whereas T

will refer to the same tree, with the canonical labelling of the leaves, from 1 (on the

left) to n (on the right).

We list without proof:

FACT 1. The cell M ¼ p�1ðWsÞ \D1 \ 
 
 
 \Dk is nonempty if and only if the col-

lection of sets Sa ¼ fia; ia þ 1; . . . ; jag, attached to each Da, for a ¼ 1; . . . ; k, is nested in
the following sense:

8a; b; either Sa \ Sb ¼ ;; or Sa � Sb or Sb � Sa:

Note that the tree TðsÞ ¼ infa¼1;...;kTðs; ðia; jaÞÞ exists if and only if the collection

ðSaÞa¼1;...;k is nested.

EXAMPLE 1.2.8 (Figure 4).

Figure 3.
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FACT 2. The codimension of a cellMðT; sÞ is equal to the number of internal edges of

the tree T. Indeed, the set of internal edges of T is in one-to-one correspondence with

the codimension 1 components D1; . . . ;Dk containing MðT; sÞ. In particular, dyadic

trees label the 0-cells of M0;nþ1ðRÞ, and trees without internal edges label its

maximal cells.

Remark 1:2:9: In view of Section 1.1, we may think of each cellMðT; sÞ as the set
of stable curves whose associated planar tree is TðsÞ. Then Fact 1 becomes

completely clear.

1.3. COXETER GROUP FORMULATION, FOLLOWING DAVIS, JANUSZKIEWICZ

AND SCOTT

Following [6], we now formulate the condition guaranteeing a collection is nested in

group theoretic terms, namely in terms of the symmetric group Sn.

Denote by S ¼ fs1; . . . ; sn�1g the set of canonical Coxeter generators of Sn: si is
the transposition ði; iþ 1Þ. Let T be a rooted planar n-tree (with the canonical label-

ling of its n leaves). To each vertex v except the root of T, a proper subset

Tv ¼ fsi; siþ1; . . . ; sj�1g of S is associated, corresponding to a connected subgraph
GTv

of the Coxeter graph of Sn: i; iþ 1; . . . ; j are the labels of the leaves of T which

are the descendants of v.

Denote by Vert�ðTÞ the set of vertices of T, distinct from the root. The collection

T ¼ fTv; v 2 Vert
�ðTÞg is a nested collection in the following sense:

DEFINITION 1.3.1 ([6]). A collection T of proper subsets of S will be called nested
if the following conditions are satisfied:

ð1Þ The Coxeter subgraph GT is connected for all T 2 T .
ð2Þ For any T;T 0 2 T , either T � T 0, T 0 � T, or GT[T 0 is not connected.

It is clear that there is a bijection T$ T between the set of rooted planar n-trees

with at least one internal edge and the set of nested collections of the symmetric

group Sn.

Figure 4.
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1.4. COMBINATORICS OF THE CELLULATION OFM0;nþ1ðRÞ AND OF ITS TWO-SHEETED

COVER fM0;nþ1ðRÞ

1.4.1. Associahedra

LEMMA 1.4.1. Each Ks ¼ p�1ðWsÞ is combinatorially isomorphic to the Stasheff

associahedron Kn ðcf. ½18	Þ.

Proof. This is so because the cell decompositions of both objects are the same.

Recall that for each n5 2, Kn is a convex ðn� 2Þ-dimensional polytope, whose faces

are labelled by rooted planar n-trees. If fðT Þ and fðT 0Þ are faces (or cells) of Kn, then

fðT Þ � fðT 0Þ if and only if T4T 0 in the sense of Section 1.2 (4). Following the

notation of Definition 1.2.6, the correspondence fðTÞ !MðT; sÞ establishes a
combinatorial isomorphism between Kn and p�1ðWsÞ. &

EXAMPLE 1.4.2. K2 is a point, K3 a segment, K4 a pentagon (Figure 5).

1.4.2. The Two-sheeted Cover fM0;nþ1ðRÞ

Consider the two-sheeted cover Sn�2�!Pn�2
R , where Sn�2 is the ðn� 2Þ-dimensional

unit sphere of fða1; . . . ; anÞ 2 Rn:
Pn

i¼1 ai ¼ 0g.

Apply now the process of iterated blow-ups described in Section 1.2 to Sn�2 with

its lifted braid arrangement, and denote by fM0;nþ1ðRÞ the resulting space. This yields

a commutative diagram:fM0;nþ1 ��! M0;nþ1ðRÞ

  

Sn�2 ��! Pn�2
R

where the horizontal arrows are the obvious two-sheeted covering maps, and the ver-

tical ones are the blow-down maps. Since Sn�2 is tiled by n!Weyl chambers, the cov-

ering space fM0;nþ1ðRÞ will be tiled by n! copies of the associahedron Kn. We denote

Figure 5.
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again by MðT; sÞ a cell of fM0;nþ1ðRÞ. If o is the permutation 1 2 ... n

n n�1 ... 1

	 

, the

cells MðT; sÞ and MðT; s � oÞ of fM0;nþ1ðRÞ cover the same cell of M0;nþ1ðRÞ.

1.4.3 Combinatorics of the Cellulation of fM0;nþ1ðRÞ and M0;nþ1ðRÞ

Let TðsÞ be a rooted planar n-tree, and v an internal vertex. The tree TðsÞ splits in v

into two subtrees. Apply a reflection to the subtree which does not contain the out-

put edge – this results in inversing the labelling of its input edges – before gluing both

pieces back together to form a new planar n-tree, denoted ~HvTðsÞ (cf. Figure 6, for an
example). Let T 0 and s0 be respectively the tree and the permutation such that
T 0ðs0Þ ¼ ~HvTðsÞ.

PROPOSITION 1.4.3 (adapted from [7]). Two cells MðT; sÞ and MðT 0; s0Þ in the

double cover fM0;nþ1ðRÞ coincide if and only if TðsÞ � T 0ðs0Þ, where � is the equiva-

lence relation generated by TðsÞ � ~HvTðsÞ for any vertex v distinct from the root. In

other words, TðsÞ � T 0ðs0Þ if and only if there exist v1 2 Vert
�ðTÞ,

vi 2 Vert
�ð ~Hvi�1 . . .

~Hv1TðsÞÞ, i ¼ 2; . . . ; r, such that T 0ðs0Þ ¼ ~Hvr . . .
~Hv1TðsÞ.

Remark 1:4:4: If, moreover, one allows v to be the root in the identification

TðsÞ � ~HvTðsÞ, then one obtains the combinatorial structure of the cellulation of
M0;nþ1ðRÞ. But the latter admits a more symmetric description if one uses unrooted

ðnþ 1Þ-trees, labelled by permutations in Snþ1. In [7], this combinatorics is expressed

in the language of polygons; it can be translated in terms of trees, dual to the

polygons.

Proof. The rule TðsÞ � ~HvTðsÞ comes from the projectivisation of the normal

bundle over the blown-up components. Indeed, suppose we blow-up the component

asðiÞ ¼ asðiþ1Þ ¼ 
 
 
 ¼ asðjÞ; the equations of the blow-up are:

lkðasðlÞ � asðiÞÞ ¼ llðasðkÞ � asðiÞÞ; k; l ¼ iþ 1; . . . ; j; ½liþ1 : . . . : lj	 2 RPj�i�1;

ða1; . . . ; anÞ 2 Sn�2. Since ½liþ1 : . . . : lj	 ¼ ½�liþ1 : . . . : �lj	, it follows that a point of
the exceptional divisor close to the cell asð1Þ < asð2Þ < 
 
 
 < asðiÞ < 
 
 
 < asðjÞ <


 
 
 < asðnÞ is close also to the cell asð1Þ < asð2Þ < 
 
 
 < asðjÞ < 
 
 
 <

Figure 6.
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asðiÞ < 
 
 
 < asðnÞ. This gives the identification rules for the codimension 1 cells, and

since the other cells are intersections of codimension 1 cells, the complete rule follows

easily. &

EXAMPLE 1.4.5 (Figure 6).

1.5. TRANSLATION OF THE IDENTIFICATION RULES IN TERMS OF NESTED

COLLECTIONS AND COXETER GROUPS

Let T be a planar rooted n-tree, v a vertex of T distinct from the root, Tv ¼

fsi; siþ1; . . . ; sj�1g the corresponding subset of generators of Sn (cf. Section 1:3).

Denote by oTv
or ov the involution

i iþ1 ... j

j j�1 ... i

	 

. It is the longest element of STv

(the symmetric group generated by Tv) for the word metric.

If T is a nested collection (corresponding to an n-planar tree T), then for each Tv,

Tw in T , define jTv
Tw the connected subset of S ¼ fs1; . . . ; sn�1g by:

jTv
Tw ¼

ovTwov; if Tw � Tv; or equivalently; w is a descendant of v;
Tw; if not:

�

PROPOSITION 1.5.1. Under the correspondence T$ T , T 0 $ T 0 between rooted

n-trees and nested collections ðcf. Section 1:3Þ, T 0ðs0Þ ¼ ~HvTðsÞ if and only if T 0 ¼ jTv
T

and s0 ¼ soTv
, where jTv

T is the nested collection f jTv
Tw;Tw 2 T g.

EXAMPLE 1.5.2. With the example of Figure 6,

s ¼ id; s0 ¼ oTv
¼

2 3 4 5
5 4 3 2

� �
; Tv ¼ fs2; s3; s4g; Tw ¼ fs2g:

The only subset changed under jTv
is Tw: jTv

Tw ¼ oTv
TwoTv

¼ fs4g.

A reformulation of the results of Section 1.4.3 is

THEOREM A (Davis–Januszkiewicz–Scott [6]). The two-sheeted covering spacefM0;nþ1 is Sn-equivariantly homeomorphic to the geometric realization jSnN j of the
following poset SnN :

ð1Þ Its elements are the equivalence classes of pairs ðT ; sÞ, with T a nested collection,

and s in Sn, for the equivalence relation defined by ðT ; sÞ � ðT 0; s0Þ if and only if

there exists a subset T 00 � T such that s0 ¼ soT 00 and T 0 ¼ jT 00T . Here

oT 00 ¼ oT1 . . .oTr
if T 00 ¼ fT1; . . . ;Trg ðit can be supposed i4 j if Ti � TjÞ, and

jT 00 ¼ jTr
. . . jT1 .

ð2Þ The partial order is defined by ½T ; s	4 ½T 0; s0	 if and only if there exists some

T 00 � T such that s0 ¼ soT 00 and T 0 � jT 00T .
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Moreover, the free involution ~a : fM0;nþ1! fM0;nþ1 ðlifted from the antipodal involu-

tion of Sn�2Þ, is combinatorial, and given on the poset SnN by ½T ; s	 7! ½ jST ; soS	,

with S ¼ fs1; . . . ; sn�1g. Since M0;nþ1 ¼ fM0;nþ1= ~a, M0;nþ1 inherits a natural cell

decomposition with poset SnN = ~a.

2. Towers of Genus Zero Real Stable Curves and Action of Thompson’s

and Neretin’s Groups

2.1. CONSTRUCTION OF THE TOWERSM0;3:21ðRÞ AND fM0;21ðRÞ

We shall use below Kapranov’s interpretation of fM0;nþ1ðRÞ as the moduli space of

collections Cðx0; x1; . . . ; xn;oÞ, where Cðx0; x1; . . . ; xnÞ is a stable ðnþ 1Þ-pointed real
curve of genus zero, and o is an orientation of the component of C which contains x0
(cf. [14]).

CONSTRUCTION 2.1.1. (1) Embedding M0;nþ1ðRÞ ,!M0;2ðnþ1ÞðRÞ: if Cðx0; x1
. . . ; xnÞ 2M0;nþ1ðRÞ is a stable curve, then graft a new circle at any marked point xi,

i5 0, with two marked points on it, y2i�1 and y2i for i 6¼ 0, and y0 and y2nþ1 for i ¼ 0.

We obtain a new stable 2ðnþ 1Þ-curve, and it is uniquely defined.

(2) Embedding fM0;nþ1ðRÞ ,! fM0;2nþ1ðRÞ: if Cðx0; x1; . . . ; xn;oÞ is in the double
cover fM0;nþ1ðRÞ, we may expand unambiguously all the points xi except x0, to obtain

a curve Cðx0; y1; y2; . . . ; y2n�1; y2n;oÞ in fM0;2nþ1ðRÞ.

Remark 2:1:2: The map Cðx0; x1; . . . ; xnÞ 7! Cðx0; x1; . . . ; xi�1; yi; yiþ1; xiþ1;
. . . ; xnÞ is a section of a forgetful map M0;nþ2ðRÞ !M0;nþ1ðRÞ, and is called

‘stabilization’ by Knudsen (cf. [16]). It is a smooth map.

PROPOSITION 2.1.3. The embedding expn : M0;nðRÞ ,!M0;2nðRÞ is a morphism of

cellular complexes. The inductive limit M0;3:21ðRÞ ¼ lim
�!
n

M0;3:2nðRÞ inherits a ðlocally

nonfiniteÞ CW-complex structure. The same is true when the moduli spaces are

replaced by their two-sheeted covering spaces fM0;nþ1ðRÞ, with embeddings gexpn:fM0;nþ1ðRÞ ,! fM0;2nþ1ðRÞ, defining a tower fM0;21ðRÞ ¼ lim
�!
n

fM0;2nþ1ðRÞ.

Remark 2:1:4: We may view both towers as pointed spaces, with base-point

represented by the unique point ofM0;3ðRÞ ¼ fM0;2þ1ðRÞ.

Proof. Both embeddings being composed of stabilization maps, they are smooth

embeddings. We give a proof for the covering spaces fM0;nþ1ðRÞ. IfMðT; sÞ is a cell
of fM0;nþ1ðRÞ, then expnðMðT; sÞÞ is the cell MðexpnðTÞ, expnðsÞÞ, where expnðTÞ is
the planar rooted tree obtained from T by expanding each of its leaf with two new

edges, and expnðsÞ is the permutation t 2 S2n defined by tð2i� 1Þ ¼ 2sðiÞ � 1,
tð2iÞ ¼ 2sðiÞ, i ¼ 1; . . . ; n. Sincegexpn : fM0;nþ1ðRÞ ,! fM0;2nþ1ðRÞ is smooth and maps

cells onto cells, the proof is done. &
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Remark 2:1:5: (1) In the proof above we have introduced a group homo-

morphism expn : Sn�!S2n : s 7! t ¼ expnðsÞ, called the expansion morphism.

(2) More generally, if 14 i4 n, there is an expansion map expn;i : Sn! Snþ1,

such that if s belongs to Sn, then expn;iðsÞ is the natural extension of s to

f1; . . . ; nþ 1g after replacing fig at the source by fi; iþ 1g, and fsðiÞg at the target
by fsðiÞ; sðiÞ þ 1g, and imposing expn;iðsÞðiÞ ¼ sðiÞ, expn;iðsÞðiþ 1Þ ¼ sðiÞ þ 1.
(3) If T is a planar rooted n-tree, then expn;iðTÞ, for 14 i4 n, will denote the

ðnþ 1Þ-tree resulting from T by expanding its ith leaf with two new edges.

(4) When we use an iterated expansion map, we denote it by exp : Sn! Snþ�.

Similarly, we denote by expðTÞ an iterated expansion of a tree T.

2.2. ACTION OF THE NERETIN GROUP ON THE MODULI TOWERS

2.2.1 The Groups N and V

Let T2 be the dyadic complete planar rooted tree (all its vertices except the leaf of the

output edge are 3-valent). Let a be a rooted planar dyadic n-tree, viewed as a finite
subtree of T2. Its internal vertices are 3-valent, and its leaves are canonically labelled

from 1 to n, leftmost first, and reading from left to right. For each i ¼ 1; . . . ; n, view

the ith leaf of a as the root of a dyadic complete planar tree T a
i , so that

a [ T a
1 [ 
 
 
 [ T

a
n is the dyadic complete planar rooted tree T2.

A symbol is a triple ða1; a0; qsÞ, where a0; a1 are rooted dyadic n-trees for some

n5 2, s 2 Sn, and qs is a collection of tree isomorphisms qi : T
a0
i ! T a1

sðiÞ,

i ¼ 1; . . . ; n. Equivalently, qs is a family ðskÞk2N in the product
Q

k2N S2k:n such that
s0 ¼ s and skþ1 may differ from exp2k:nðskÞ by a product of elementary transposi-
tions of the form ð2i� 1; 2iÞ. If skþ1 ¼ exp2k:nðskÞ for all k 2 N, we say that the sym-

bol locally preserves the orientation of the tree T2, and we denote it by ða1; a0; sÞ.

DEFINITION 2.2.1 (Groups N and V, cf. [4,11,17]). Denote the boundary at infi-

nity of the tree T2 by @T2, endowed with its natural topology.

(1) Let ða1; a0; qsÞ be a symbol. Since f@T
a0
i gi¼1;...;n and f@T

a1
i gi¼1;...;n form two par-

titions of @T2, the collection ðqiÞi¼1;...;n induces a homeomorphism of @T2, called a

spheromorphism. The set N of all spheromorphisms is a subgroup of Homeoð@T2Þ,

namely the Spheromorphism group of Neretin.

(2) One says that two symbols are equivalent if they define the same sphero-

morphism. One denotes by ½a1; a0; qs	 the spheromorphism associated with the

symbol ða1; a0; qsÞ.
(3) One says that the symbol ða01; a

0
0; q
0
s0 Þ is an expansion of ða1; a0; qsÞ if both sym-

bols are equivalent and a0 (equivalently, a1) is a subtree of a00 (equivalently, of a
0
1).

(4) The set of spheromorphisms induced by locally orientation-preserving sym-

bols is a countable subgroup of N, namely Thompson’s group V.

Remark 2:2:2: (1) Given two spheromorphisms, one can always find symbols of

the form ða1; a0; qsÞ and ða2; a1; rtÞ which represent them. It follows that the
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composite ½a2; a1; rt	½a1; a0; qs	 of spheromorphisms is equal to ½a2; a0; sts	, where sts
is the collection ðsi ¼ rsðiÞqi : T

a0
i ! T a2

t�sðiÞÞi¼1;...;n.

(2) Using the material introduced in Remark 2.1.5, V may be described as the set

of equivalence symbols ða1; a0; sÞ, for the relation generated by ða1; a0; sÞ � ðexpn;sðiÞ
ða1Þ; expn;iða0Þ; expn;iðsÞÞ, for 14 i4 n.

(3) With more intricate notations, one could describe similarly the equivalence of

symbols defining spheromorphisms.

2.2.2. Thompson’s and Neretin’s Groups Acting on the Towers

Let g ¼ ½a1; a0; qs	 be in N, ½MðT; tÞ	 be a cell of fM0;21ðRÞ, represented in somefM0;2nþ1ðRÞ.

Represent the cell by a symbol ðT2n ;T; tÞ, where T2n is the dyadic tree with 2n leaves,
which labels the base-point of the tower, viewed in fM0;2nþ1ðRÞ. After making an expan-

sion of the symbol defining g if necessary, it can be supposed that the trees ai, i ¼ 0; 1,
are planar 2n-trees, with a0 ¼ T2n . Compose both symbols in the following way:

ða1; a0 ¼ T2n ; qsÞðT2n ;T; tÞ ¼ ða1;T; s � tÞ:

Interpretation of the symbol ða1;T; s � tÞ as a label of a cell in an appropriate moduli

space: after making expansions (as in the case of Thompson’s group symbols, cf.

Remark 2.2.2, 2), though T is not necessarily a dyadic tree), replace ða1;T; s � tÞ
by a symbol of the form ðexpða1Þ ¼ T2m ; expðTÞ; expðs � tÞÞ, for some m5 n 2 N

(exp denoting the appropriate iterated expansion map, cf. Remark 2.1.5, 4), so that

expðs � tÞ belongs to S2m . Thus, MðexpðTÞ; expðs � tÞÞ is a cell of fM0;2mþ1ðRÞ.

EXAMPLE 2.2.3 (Figure 7).

DEFINITION 2.2.4 (Action of N on the cells of the tower). With the previous

notations, the action of g 2 N on the set of cells of fM0;21ðRÞ is defined by

g½MðT; tÞ	 :¼ ½MðexpðTÞ; expðs � tÞÞ	:

THEOREM 2.2.5. Denoting by Cell ð fM0;21ðRÞÞ the set of cells of the towerfM0;21ðRÞ, the map

N� CellðfM0;21ðRÞÞ �!CellðfM0;21ðRÞÞ

Figure 7.
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introduced above is well-defined, and induces a cellular left action of Neretin’s group

N on the tower fM0;21ðRÞ: ~g : N�!Homeocellð fM0;21ðRÞÞ:

Remark 2:2:6: There is an equivalent definition of the group N acting on the

boundary of the regular dyadic unrooted tree T 2. Thus defined, N naturally contains

AutðT 2Þ, the automorphism group of the tree T 2. The cells of M0;3:21ðRÞ being

labelled also by unrooted trees, one defines similarly a cellular action

�g : N�!HomeocellðM0;3:21ðRÞÞ. In [15], Kapranov has noticed that the AutðT 2Þ acts

on the stratified complex towerM0;3:21ðCÞ. In fact, we could prove that this action

extends to N, and restricts on the real tower to the action of Theorem 2.2.5.

Proof. We have to prove the independence of the definition of g½MðT; tÞ	 (with
the notations used in Definition 2.2.4) with respect to the label of the cell and the

symbol representing g.

(1) We first check MðT; tÞ ¼MðT 0; t0Þ ¼)MðexpðTÞ; expðs � tÞÞ ¼MðexpðT 0Þ;
expðs � t0ÞÞ. It is clear that we can restrict ourselves to the case where T 0 ¼ jTv

T
and t0 ¼ tov, for some v 2 Vert�ðTÞ (we use the correspondence T$ T , T 0 $ T 0
between planar trees and nested families, cf. Section 1.3). To simplify the notations,

we may suppose that ov is of the form

ov ¼
1 2 . . . k
k k� 1 . . . 1

� �
¼ oð1;...;kÞ

Using the iterated expansion homomorphism exp : S2n ! S2m , we may write

expðs � t0Þ ¼ expðs � tÞ expðovÞ. By induction it is enough to consider the case

m ¼ nþ 1; then with the canonical labelling of expðT Þ,

expðovÞ ¼
1 2 . . . 2l� 1 2l . . . 2k� 1 2k

2k� 1 2k . . . 2k� 2lþ 1 2k� 2lþ 2 . . . 1 2

� �
:

Denoting by ~v the vertex v seen in the expanded tree expðTÞ, expðovÞ differs from

o ~v ¼
1 2 . . . 2l� 1 2l . . . 2k� 1 2k

2k 2k� 1 . . . 2k� 2lþ 2 2k� 2lþ 1 . . . 2 1

 !

¼ oð1;...;2kÞ

by the product of the k transpositions o~v1 . . .o~vk , where o~vi is simply oi ¼

ð2i� 1; 2iÞ, and ~vi is the ith leaf of T seen in expðTÞ (two terminal edges emanate from

each ~vi in expðTÞ). It follows that

expðT 0Þ ¼ jT~v1
. . . jT~vk

jT~v
expðT Þ;

expðs � t0Þ ¼ expðs � tÞo~vo~vk . . .o~v1 ;

where in fact the operations jT~vi
have no effect. By Theorem A (see 1.5), the expected

implication is proved.
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(2) Independence with respect to the choice of the symbol defining g: it suffices to

replace the symbol ða1; a0 ¼ T2n ; qsÞ by its expansion exp2n ða1; a0 ¼ T2n ; qsÞ, and

check that the result of the product exp2nða1; a0 ¼ T2n ; qsÞ exp2nðT2n ;T; tÞ defines the
same cell as the symbol ða1;T; s � tÞ. Now exp2n ða1;T2n ; qsÞ ¼ ðexp2n ða1Þ;T2nþ1 ; ~q ~sÞ,

where ~s may differ from exp2n ðsÞ (because g lies in N, not necessarily in V) by a pro-

duct of transpositions oi ¼ ð2i� 1; 2iÞ: ~s ¼ exp2n ðsÞoi1 . . .oir . So,

ð�Þ : ¼ exp2nða1;T2n ; qsÞ exp2nðT2n ;T; tÞ

¼ ðexp2nða1Þ; exp2nðTÞ; exp2n ðsÞoi1 . . .oir exp2n ðtÞÞ:

But exp2nðtÞoi ¼ otðiÞ exp2nðtÞ, so that

ð�Þ ¼ ðexp2n ða1Þ; exp2n ðTÞ; exp2n ðsÞ exp2nðtÞot�1ði1Þ . . .ot�1ðirÞÞ

¼ ðexp2n ða1Þ; exp2n ðTÞ; exp2n ðs � tÞot�1ði1Þ . . .ot�1ðirÞÞ:

Since ðexp2n ða1Þ; exp2n ðTÞ; exp2nðs � tÞ ot�1ði1Þ . . .ot�1ðirÞÞ labels the same cell as the

symbol ðexp2nða1Þ; exp2nðTÞ; exp2nðs � tÞÞ (in the appropriate finite moduli space),
we see that the cell defined by exp2nða1; a0 ¼ T2n ; qsÞ exp2nðT2n ;T; tÞ coincides indeed
in the inductive limit with the cell defined by ða1; a0 ¼ T2n ; qsÞðT2n ;T; tÞ.
(3) Once the action is proved to be well-defined, it is straightforward to check that

it is cellular. &

2.3. EXTENSIONS OF THOMPSON’S AND NERETIN’S GROUPS BY AN INFINITE PURE

QUASI-BRAID GROUP

It is shown in [5] thatM0;nþ1ðRÞ (or fM0;nþ1ðRÞ) is an aspherical space: its universal

cover cM0;nþ1ðRÞ is contractible. The universal cover of fM0;21ðRÞ is the inductive

limit of the covers cM0;2nþ1ðRÞ, and will be denoted cM0;21ðRÞ.

NOTATION 2.3.1. Denote by PJn (resp. Qn) the fundamental group of fM0;nþ1ðRÞ

(resp. M0;nðRÞ). Since fM0;nþ1ðRÞ is a double-cover of M0;nþ1ðRÞ, there is a (non-

split) extension 1! PJn! Qnþ1! Z=2Z! 0. Define the infinite pure quasi-braid

group to be PJ21 ¼ p1ð fM0;21ðRÞÞ ¼ lim
�!
n

PJ2n .

Each transformation ~gðgÞ : fM0;21ðRÞ �! fM0;21ðRÞ, with g 2 N, can be lifted to

the universal cover cM0;21ðRÞ.

DEFINITION-PROPOSITION 2.3.2. The set AN of lifted transformations ~gðgÞ,
g 2 N, is a subgroup of the cellular homeomorphism group of cM0;21ðRÞ.

The kernel of the natural epimorphism AN�!N is the automorphism group of the

universal covering map cM0;21ðRÞ �! fM0;21ðRÞ, PJ21 . We define the quasi-braid

extension of N to be the short exact sequence 1! PJ21 �!AN�!N! 1. By

restriction, one obtains a similar extension 1! PJ21 �!AV�!V! 1:
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Remark 2:3:3: Considering Neretin’s group acting on the tower M0;3:21ðRÞ

(cf. Remark 2.2.6), one would obtain a similar extension by the group Q3:21 ¼

lim
�!
n

Q3:2n . However, the expansion morphism Qn ,!Q2n maps Qn into PJ2n�1, so

that Q3:21 is an inductive limit of groups PJ3:2n�1. Thus, the extension should be

isomorphic to the previous one.

3. An Analogue of the Euler Class for Neretin’s Group of Spheromorphisms

Recall that the elements of V and N are described by symbols involving trees and

permutations. In this section, we shall give a similar description of the groups AV

and AN (Section 3.2), the role of the permutation groups Sn now being played by

the quasi-braid groups Jn (described in Section 3.1). The precise description of AN

will enable us to define a nontrivial central extension for N–the ‘Euler class’ of N.

3.1. QUASI-BRAID GROUPS Jn

3.1.1 Let Jn be the group defined in [6] by generators and relations, with generators

aT for each strict subset T of S ¼ fs1; . . . ; sn�1g such that the corresponding graph
GT is connected, and relations:

. a2T ¼ 1 for each T

. aTaT 0 ¼ ajTT 0aT if T
0 � T

. aTaT 0 ¼ aT 0aT if GT[T 0 is not connected.

These relations are those verified by the involutions oT. So, there is a well-defined

homomorphism f : Jn! Sn, aT 7!oT, which is surjective since for Ti ¼ fsi ¼
ði; iþ 1Þg, fðaTi

Þ ¼ si.

THEOREM B (Davis–Januszkiewicz–Scott, [6]). The universal cover cM0;nþ1 of the

two-sheeted cover eM0;nþ1 is Jn-equivariantly homeomorphic to the geometric reali-

zation jJnN j of the poset JnN :

ð1Þ Its elements are the equivalence classes of pairs ðT ; aÞ, with T a nested collection,

and a in Jn, for the equivalence relation defined by ðT ; aÞ � ðT 0; a0Þ if and only if

there exists a subset T 00 � T such that a0 ¼ aaT 00 and T 0 ¼ jT 00T . Here

aT 00 ¼ aT1 . . . aTr
if T 00 ¼ fT1; . . . ;Trg ðit can be supposed i4 j if Ti � TjÞ, and

jT 00 ¼ jTr
. . . jT1 .

ð2Þ The partial order is defined by ½T ; a	4 ½T 0; a0	 if and only if there exists some

T 00 � T such that a0 ¼ aaT 00 and T 0 � jT 00T .

Moreover, there is a natural Jn-left-equivariant map JnN ! SnN given by

½T ; a	 ! ½T ;fðaÞ	, the Jn-action on SnN being defined by a : ½T ; s	 7! ½T ;fðaÞs	.
The kernel PJn :¼ Kerf is the fundamental group of eM0;nþ1, and there is a short

exact sequence 1! PJn�! Jn�!Sn! 1:
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3.1.2 Describing the Morphism PJn! PJ2n and Defining Jn! J2n

The formalism contained in Theorem B enables us to describe the morphism

PJn ! PJ2n induced by the embedding gexpn : fM0;nþ1 ,!fM0;2nþ1. Each a ¼ aT1 . . .
aTr

in PJn projects onto oT1 . . .oTr
¼ 1 in Sn. We interpret a as the homotopy class

of the edge loop

g ¼ ðidn! oT1 ! oT1oT2 ! 
 
 
 ! oT1oT2 . . .oTr
¼ idnÞ

in the dual cell complex of jSnN j ffi fM0;nþ1.

By definition of the embedding gexpn : fM0;nþ1 ,!fM0;2nþ1, the loop g is mapped
onto the loop

gexpnðgÞ ¼ðid2n! expðoT1 Þ ! expðoT1 Þ expðoT2 Þ ! 
 
 
 ! expðoT1 Þ

expðoT2 Þ . . . expðoTr
Þ ¼ id2nÞ:

We need, however, to make it precise what a path of the form id2n! expðoTÞ is:

Suppose for simplicity that oT is of the form

oT ¼
1 2 . . . k
k k� 1 . . . 1

� �
;

so that

expðoTÞ ¼
1 2 . . . 2k� 1 2k

2k� 1 2k . . . 1 2

� �
is the product oexpðTÞoð1;2Þ . . .oð2k�1;2kÞ, with oð2i�1;2iÞ the transposition s2i�1. The
path idn! oT once embedded in jS2nN 0

j, and after a suitable translation to make

its extremities coincide with the barycenters of the cells id2n and expðoTÞ (which are

adjacent because exp is cellular, and meet along a codimension nþ 1 cell), becomes

the straight line joining the barycenters. We claim this line is homotopic to the edge

path

id2n! oexpðTÞ ! oexpðTÞoð1;2Þ ! 
 
 
 ! oexpðTÞoð1;2Þ 
 
 
oð2k�1;2kÞ:

Indeed, the path above passes through cells which all share a same codimension

nþ 1 cell, and the line id2n ! expðoTÞ crosses the same cell.

Now aT may be lifted in J2n to expðaTÞ :¼ aexpðTÞað1;2Þ . . . að2k�1;2kÞ, where að2i�1;2iÞ :
¼ aTi

, with Ti ¼ fs2i�1g. Finally define expðaÞ as the product expðaT1 Þ . . . expðaTr
Þ. We

now claim:

PROPOSITION 3.1.1. ð1Þ. The map Jn! J2n: a 7! expðaÞ, is a well-defined group

homomorphism. More generally, each expansion map exp : Sn! Snþ� has a canonical

lift Jn ! Jnþ�.

ð2Þ Its restriction to PJn is the morphism ðgexpnÞ� : PJn! PJ2n induced at the funda-

mental group level by the embedding gexpn : fM0;nþ1 ,!fM0;2nþ1.

ð3Þ The morphisms ðgexpnÞ� are injective for all n5 2.
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Proof. (1) We must check that exp preserves the relations of the group Jn: For

simplicity, suppose GT ¼ ð1; . . . ; jÞ and compute expðaTÞ
2:

expðaTÞ
2
¼ aexpðTÞað1;2Þ . . . að2j�1;2jÞaexpðTÞað1;2Þ . . . að2j�1;2jÞ:

Now observe that in J2n, for all i4 j,

aexpðTÞað2i�1;2iÞ ¼ a2ðj�iþ1Þ�1;2ðj�iþ1ÞaexpðTÞ:

This fact joint to the commutation property of að1;2Þ; . . . ; að2j�1;2jÞ among each other
allows to write expðaTÞ ¼ að1;2Þ . . . að2j�1;2jÞaexpðTÞ, and it comes easily expðaTÞ

2
¼ 1.

Then let T 0 � T be such that GT 0 ¼ ð1; . . . ; iÞ, i4 j, and check the relation

aTaT 0aT ¼ ajTT 0 is preserved by exp.
Compute

expðaTÞ expðaT 0 Þ expðaTÞ

¼ ½að1;2Þ . . . að2j�1;2jÞaexpðTÞ	:½aexpðT 0Það1;2Þ . . . að2i�1;2iÞ	:½aexpðTÞað1;2Þ . . . að2j�1;2jÞ	

¼ ½að1;2Þ . . . að2j�1;2jÞ	: aexpðTÞaexpðT 0Þ
�

aexpðTÞ
�
:½að2ðj�iþ1Þ�1;2ðj�iþ1ÞÞ . . . að2j�1;2jÞ	�

� ½að1;2Þ . . . að2j�1;2jÞ	

¼ ½að1;2Þ . . . að2j�1;2jÞ	:ajexpðTÞ expðT 0Þ:½að1;2Þ . . . að2ðj�iÞ�1;2ðj�iÞÞ	 ¼ ð�Þ:

But

jexpðTÞ expðT
0 Þ ¼ ð2ð j� iþ 1Þ � 1; . . . ; 2jÞ;

so that

ajexpðTÞ expðT 0 Þ:½að1;2Þ . . . að2ð j�iÞ�1;2ðj�iÞÞ	

¼ ½að1;2Þ . . . að2ð j�iÞ�1;2ð j�iÞÞ	:ajexpðTÞ expðT 0Þ;

and finally,

ð�Þ ¼ að2ð j�iþ1Þ�1;2ð j�iþ1ÞÞ . . . að2j�1;2jÞajexpðTÞ expðT 0Þ ¼ expðajexpðTÞ expðT 0ÞÞ;

which ends the proof of the first assertion of (1).

If now one performs, say, one simple expansion from the ith label, corresponding

to the expansion map expn;i : Sn! Snþ1, then there exists a lift Jn! Jnþ1: if

a ¼ aTr
. . . aT2aT1 2 Jn, then (supposing aT1 ¼ að1;...;jÞ to simplify the notations), define

first expðaT1Þ ¼ að1;...;j;jþ1Þaði;iþ1Þ if i belongs to the support of T1 (if not, don’t modify
aT1 ), next define similarly expðaT2 Þ by expanding the oT1 ðiÞth label, and so on. Finally

one obtains expðaÞ :¼ expðaTr
Þ . . . expðaT1 Þ 2 Jnþ1, which projects onto Snþ1 on the

expansion (from the ith label) of the permutation o ¼ oTr
. . .oT2oT1 2 Sn. Again,

it can be checked that the relations in the groups Jn and Jnþ1 are preserved by this

expansion map, which proves it is well-defined.

(2) Let a ¼ aT1aT2 . . . aTr
2 PJn ¼ Kerf, g the combinatorial loop attached to a,

based at idn. We claim that loop gexpnðgÞ lifts to the path ð1! expðaT1Þ !

 
 
 ! expðaT1Þ . . . expðaTr

ÞÞ, where 1! expðaTÞ is defined to be
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1! aexpðTÞ ! aexpðTÞað1;2Þ ! 
 
 
 ! aexpðTÞað1;2Þ 
 
 
 að2k�1;2kÞ:

Indeed, applying f to this path gives precisely the loopgexpnðgÞ, as described in the
preliminary of Proposition 3.1.1, for the embeddinggexpn : fM0;nþ1 ,!fM0;2nþ1. It ends

at expðaT1 Þ . . . expðaTr
Þ ¼ expðaÞ, so ðgexpnÞ�ðaÞ ¼ expðaÞ.

(3) We use the fact that the embedding gexpn has a retraction
rn : fM0;2nþ1ðRÞ ! fM0;nþ1ðRÞ;

which is the composite of the forgetful maps fM0;2nþ1ðRÞ !fM0;2nðRÞ ! 
 
 
 ! fM0;nþ1ðRÞ (cf. [16]: the map M0;nþ1ðCÞ !M0;nðCÞ is a univer-

sal family of n-pointed stable curves). &

3.2. DESCRIPTION OF THE EXTENDED GROUP AN

The group AN has a description similar to the group N, by replacing the symmetric

group Sn and the expansion maps exp : Sn! Snþ� by the quasi-braid groups Jn and

the maps exp : Jn ! Jnþ� (cf. 3.1.1) respectively.

DEFINITION-PROPOSITION 3.2.1. ð1Þ By a quasi-braided symbol we mean a

triple ða1; a0; qsÞ, where a0, a1 are finite rooted dyadic n-trees for some n5 2, s belongs

to some Jn, and qs is a family ðskÞk2N in the product
Q

k2N J2k:n, such that s0 ¼ s and

skþ1 may differ from exp2k:nðskÞ by a product of quasi-braid transpositions of the form

að2i�1;2iÞ.
ð2Þ Two such symbols are said to be equivalent if they have a common expansion, this

notion being defined as in Remark 2:2:2ð3Þ,

ð3Þ The group AN is isomorphic to the set of equivalence classes of quasi-braided

symbols endowed with the product induced by the obvious composition of symbols.

Proof. Easy. &

Remark. The elements of AV � AN will be represented by symbols (a1; a0; sÞ,
where a0; a1 are rooted dyadic n-trees for some n 5 2, an s belongs to Jn (compare

with Section 2.2.1).

3.3. A STABLE LENGTH, AND A CENTRAL EXTENSION FOR N

Let a ¼ aT1 . . . aTr
be in the freemonoid freely generated by the generators of Jn. Define

its length to be ‘nðaÞ ¼ rþ jT1j þ 
 
 
 þ jTrj, where jTij is the length of the graph GTi
.

PROPOSITION 3.3.1 (stable length). The length ‘n induces a well-defined group

homomorphism ‘n : Jn! Z=2Z, ‘nðaÞ ¼ rþ jT1j þ . . .þ jTrj mod2. Moreover, the

collection f‘n; n5 1g is compatible with the direct system fJn; expng, and induces a

stable length ‘1 : J21 ! Z=2Z. More generally, the length is compatible with the

dyadic expansion maps Jn! Jnþ� ðcf. Proposition 3:1:1; 1:Þ.
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The restriction of ‘1 to the infinite pure braid group PJ21 is still nontrivial. Finally,

the stable length ‘1 can be extended to AV, but not to the whole group AN.

Proof. The last two relations in the presentation of Jn preserve the length ‘n. The

first one (a2T ¼ 1) preserves the length mod 2 only. So ‘n : Jn ! Z=2Z is a well-

defined group homomorphism.

On the other hand, if aT ¼ að1;...;kÞ is in Jn and one performs a simple expansion

from the first leaf (to simplify the notations), then

expðaTÞ ¼ að1;...;kþ1Það1;2Þ 2 Jnþ1;

and

‘nðaTÞ ¼ 1þ k mod 2; ‘nþ1ðexpðaTÞÞ ¼ kþ 1þ 1þ 2þ 1 ¼ ‘nðaTÞmod 2:

Further observe that the pure braid p ¼ að1;2Það2;3Það1;2Það1;2;3Þ 2 PJ4 has a stable

length equal to 1mod 2.

Let now g ¼ ½a1; a0 ¼ T2n ; s	 be in AV, with s 2 J2n . Then ‘1ðgÞ :¼ ‘1ðsÞ is well-
defined, since expanding the symbol defining gwould replacesby some expansion of it.
The impossibility to extend ‘1 to AN is essentially equivalent to Theorem 3.3.2

below. &

Let now Ker ‘1 be the kernel of the restriction of ‘1 to PJ21 .

THEOREM 3.3.2 (Analogue of the Euler class for N). The quasi-braid extension

1! PJ21 ! AN ! N! 1 induces a nontrivial central extension

1! Z=2Z ffi PJ21=Ker ‘1�! eN :¼ AN=Ker ‘1�!N! 1;

which defines a nontrivial cohomology class Eu 2 H 2ðN;Z=2ZÞ.

Proof. Let g ¼ ½a1; a0 ¼ T2n ; qs	 be in AN (s 2 J2n ), and p 2 PJ21 , represented by

½a1; a1; p1	, with p1 2 PJ2n . It follows that g
�1pg is represented in PJ2n � PJ21 by

s�1p1s, and

‘1ðg
�1pgÞ ¼ ‘1ðs�1p1sÞ ¼ �‘1ðsÞ þ ‘1ðp1Þ þ ‘1ðsÞ ¼ ‘1ðpÞ;

thanks to Proposition 3.3.1. This proves that ½AN;PJ21	 � Ker ‘1: so, Ker ‘1 is

normal in AN, and the extension is central.

Suppose the extension is trivial: the embedding i: Z=2Z! AN would admit a

retraction r. We prove it is impossible, by writing the generator of the kernel

Z=2Z ffi PJ21=Ker ‘1 as a product of commutators in AN=Ker ‘1, i.e. finding a

pure quasi-braid with length 1mod 2 which is a product of commutators in AN.

Conventions: In the proof below, we shall simplify the representation of a symbol

where both trees are the same by a single tree-symbol, and figure out the permutation

by arrows indicating its action on the leaves of the tree; moreover, when the permu-

tation occuring in a symbol representing an element of V is the identity, it will be

omitted in the representation of the symbol.
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Let t 2 V � N be the transposition defined by the single tree-symbol

the leaves a and b being permuted. Let a 2 AutðT2Þ � N be defined by the single

tree-symbol

(the permutations of the leaves indicated by the arrows must be composed from

bottom to top, see also the definition of ~a below). Set

and it appears that g and a are conjugated by the ‘translation’

Precisely, we have g ¼ dad�1, or equivalently, t ¼ ½d; a	.
We now lift t, d and a to AN in an obvious way: t is lifted in ~t (same symbol cou-

pled with að12Þ 2 J3), d in ~d (same symbol coupled with 1 2 J3), and a lifted in ~a (same
symbol coupled with the sequence a0 ¼ 1, a1 ¼ 1, a2 ¼ að12Þ,

Clearly, the same relation as in N holds in AN: ~t ¼ ½~d; ~a	 2 AN.
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On the other hand,

may also be written as the product t ¼ t1t2, where t1 exchanges the leaves 1 and 3
(keeping 2 and 4 fixed) and t2 exchanges the leaves 2 and 4 (keeping 1 and 3 fixed).
We note abusively t1 ¼ ð13Þ, t2 ¼ ð24Þ. Introducing s 2 V defined by s ¼ ð12Þð34Þ,
we have t2 ¼ st1s, and t ¼ ½t1; s	.
We then lift t1 and s to AN by ~t1 ¼ að123Þ, ~s ¼ að12Það34Þ. Now ½ ~t1; ~s	 differs from

~t ¼ ½~d; ~a	 ¼ ½~a; ~d	 by a pure quasi-braid

p ¼ ½ ~t1; ~s	½~d; ~a	 ¼ ½að123Þ; að12Það34Þ	 expðað12ÞÞ

¼ ½að123Þ; að12Það34Þ	að12Það34Það1234Þ ¼ að123Það12Það34Það123Það1234Þ:

The miracle is that ‘1ðpÞ ¼ 1mod 2 as desired. &

COROLLARY 3.3.3. The 2-cycle o defined by the relation ½t1; s	½a; d	 ¼ 1 2 N is

nontrivial and verifies ðEu; ½o	Þ ¼ 1, where Eu 2 H 2ðN;Z=2ZÞ is the cohomology class

of the extension of N.

Proof. This is an immediate application of the following standard lemma in

homological algebra:

LEMMA 3.3.4. Let G be a perfect group, A! Ĝ! G a central extension of G with

kernel an Abelian group A, c 2 H 2ðG;AÞ the associated cohomology class. If o is a

2-cycle of G associated with a relation 1 ¼
Q

i½gi; hi	 in G, then ðc; ½o	Þ ¼ a 2 A, where a

is computed as a ¼
Q

i½ĝi; ĥi	, for any choices of lifts ĝi, ĥi of gi, hi.

So, in our case, ðEu; ½o	Þ ¼ ‘1ðpÞ ¼ 1mod 2. &

3.4. EULER-TYPE COCYCLE

Let R be the ring of Z=2Z-valued sequences, divided by the ideal of almost zero

sequences: R ¼ ðZ=2ZÞN=ðZ=2ZÞðNÞ. Denote by 1R its unit.

For each f in AN defined by a symbol of the form ða1; a0 ¼ T2n ; qsÞ (cf. Sec-

tion 3:2), there is a family ðskÞk5 n, sk 2 J2k , with sn ¼ s and skþ1 differing
from exp2kðskÞ by a product of quasi-braid transpositions. So there is a well-
defined function ‘ : AN ! R; f 7! ‘ð f Þ; where ‘ð f Þ is represented by the

sequence ‘ð f Þk ¼ ‘1ðskÞ 2 Z=2Z for k5 n and, say, ‘ð f Þk ¼ 0 for

k ¼ 0; . . . ; n� 1.
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Denote by

j : Z=2Z ¼ PJ21=Ker ‘1 ,!R and i : Z=2Z ¼ PJ21=Ker ‘1 ,! eN
the natural embeddings: 1R ¼ jð1Z=2ZÞ, 1 :¼ ið1Z=2ZÞ.

LEMMA 3.4.1. For all f in AN and p 2 PJ21 , ‘ð pf Þ ¼ ‘ð pÞ þ ‘ð f Þ, and ‘ induces a

function ~‘ : eN ¼ AN=Ker ‘1 ! R such that for all ~f 2 eN, ~‘ð1: ~f Þ ¼ 1R þ ~‘ð ~fÞ:

Proof. Choose n such that f is represented by a symbol ðT1;T2n ; qsÞ, and p by

ðT1;T1; aÞ, where a belongs to PJ2n . Thus, pf ¼ ½T1;T2n ; qt	 with t ¼ tn ¼ as,
tk ¼ expðk�nþ1ÞðaÞsk, k5 n (where expðk�nþ1Þ denotes the ðk� nþ 1Þ times iterated

expansion morphism). Since ‘1ðexp
ðk�nþ1ÞðaÞÞ ¼ ‘1ðaÞ 8k5 n, the proof is done.

Note that ‘ðpÞ ¼ jð‘1ðaÞÞ. &

Since N is perfect, the injection j : Z=2Z ,!R induces an injective morphism

j� : H
2ðN;Z=2ZÞ ,!H 2ðN;RÞ.

THEOREM 3.4.2. The image by j� of the Euler class Eu 2 H 2ðN;Z=2ZÞ is the

cohomology class of the well-defined cocycle c : N�N! R defined by

cðf; gÞ ¼ ~‘ð ~f ~gÞ � ~‘ð ~fÞ � ~‘ð ~gÞ, where ~f and ~g are any lifts in eN of f and g in N, respectively.

Proof. First the fact that the cocycle c is well-defined follows from the equivariant

relation of Lemma 3.4.1.

Let o be a 2-cycle of N. It is associated with a relation
Qp

i¼1½fi; gi	 ¼ 1 2 N, and

may be written

o ¼
Xp
i¼1

ðfi; giÞ � ðgi; fiÞ � ðgi fi; ðgi fiÞ
�1
Þ þ ð figi; ðgi fiÞ

�1
Þþ

þ
Xp�1
i¼1

ð½f1; g1	 . . . ½fi; gi	; ½fiþ1; giþ1	Þ:

It follows that ð½c	; ½o	Þ ¼ ~‘ð
Qp

i¼1½
efi; egi	Þ, for any lifts efi, egi in eN of fi, gi. NowQp

i¼1½
efi; egi	 ¼ amodKer ‘1, for some a 2 PJ21 , and e‘ðQp

i¼1½
efi; egi	Þ ¼ ‘ðaÞ ¼ jð‘1ðaÞÞ.

But by Lemma 3.3.4, ‘1ðaÞ ¼ ðEu; ½o	Þ, so that ð½c	; ½o	Þ ¼ jððEu; ½o	ÞÞ ¼ ðj�Eu; ½o	Þ.
Since H2ðN;RÞ ¼ HomðH2ðNÞ;RÞ, this proves indeed ½c	 ¼ j�Eu. &

3.5. THE ANALOGY WITH THE EULER CLASS OF HOMEOMORPHISM GROUPS

OF THE CIRCLE

(1) Thompson’s group T (acting continuously on the circle) has an Euler class (cf.

[8]), which is the restriction to T of the Euler class of the group HomeoþðS1Þ of orien-

tation-preserving homeomorphisms of the circle. The latter is the class of the central

extension 0! Z! H gomeoþðS1Þ ! HomeoþðS1Þ ! 1 obtained by lifting to R (the

universal covering space of S1) the homeomorphisms of the circle. The boundary

@T2 of the dyadic infinite tree is the dyadic analogue of the circle. Since it is totally
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disconnected, it is not possible to go further in the analogy between the Euler class of

T and the so-called Euler class of N. However, both are of topological nature, the

latter being related to the nontriviality of the homotopy type of fM0;21ðRÞ.

(2) A deeper analogy relies on the relation with the Euler class of HomeoþðS1Þ in

bounded cohomology.

Indeed, recall from [2] that the embeddding of coefficients Z ,!R maps the inte-

gral Euler class of HomeoþðS1Þ to the class of the real cocycle euð f; gÞ ¼

tð ~f � ~gÞ � tð ~f Þ � tð ~gÞ, where ~f; ~g are lifts of f; g, respectively, in H gomeoþðS1Þ, and
tð ~f Þ ¼ limn!þ1

~f nð0Þ=n is the translation number of Poincaré. The cocycle eu is

induced by the boundary of the unbounded function t on H gomeoþðS1Þ, and the class
of eu stands in the bounded cohomology group H 2

b ðHomeo
þðS1Þ;RÞ. We believe the

analogy with our class Eu is suggestive, when replacing Z,R and t byZ=2Z,R and ~‘

respectively.

(3) In [12] we have introduced an analogue of the Virasoro extension of DiffþðS1Þ,

the orientation-preserving diffeomorphism group of the circle, for the discrete group

N, and called the associated cohomology class the combinatorial analogue of the God-

billon–Vey class. We believe it is different from the Euler class Eu we have just

defined. Both classes Eu and Gv are the analogues of classes existing in Thompson’s

group T: indeed, H2ðT;ZÞ ¼ Zgv Zeu, where gv is the discrete Godbillon–Vey

class, and eu the Euler class of T, cf. [8]. This analogy is mysterious, since the embed-

ding T ,!N factors through Thompson’s group V, which has no cohomology in

degree 2.

4. Concluding Remarks

(1) We believe that the restriction of our Euler class is trivial on PGLð2;Q2Þ (this

results from tedious computations). In particular, our Euler class is not related with

the Euler cocycle of J. Barge constructed on PSLð2; kÞ, for every field k, with values

in the Witt group WðkÞ (cf. [1]).

(2) A central question concerns the relative natures of the three groups concerned

or evoked in the paper: the diffeomorphism group of the circle DiffþðS1Þ, Thomp-

son’s group T, and Neretin’s group of spheromorphisms N, which possess deep

and mysterious cohomological analogies. We would like to find a unified way to

understand this triangle of groups.
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