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Abstract. We construct actions of the spheromorphism group of Neretin (containing Thomp-
son’s group V) on towers of moduli spaces of genus zero real stable curves. The latter consist
of inductive limits of spaces which are the real parts of the Grothendieck—Knudsen compac-
tification of the moduli spaces of punctured Riemann spheres. By a result of M. Davis,
T. Januszkiewicz and R. Scott, these spaces are aspherical cubical complexes whose funda-
mental groups, the ‘pure quasi-braid groups’, can be viewed as analogues of the Artin pure
braid groups. By lifting the actions of the Thompson and Neretin groups to the universal cov-
ers of the towers, we obtain extensions of both groups by an infinite pure quasi-braid group,
and construct an ‘Euler class’ for the Neretin group. We justify this terminology by construct-
ing a corresponding cocycle.
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Introduction

The starting point of this work is to relate geometrically some discrete groups,
namely Thompson’s group V' (acting on the Cantor set) and the spheromorphism
group of Neretin N (which is a dyadic analogue of the diffeomorphism group of
the circle, and acts on the boundary of the regular dyadic tree, cf. [10-12, 17], to
the moduli spaces of genus zero curves. More explicitly, let My ,41(C) denote the
moduli space (CP")"™\A/PGL(2, C), where CP' is the complex projective line, A
the thick diagonal. The Grothendieck-Knudsen compactification Mj,,,1(C) has
a concrete realization as an iterated blow-up along the irreducible components
of a hyperplane arrangement in CP"~2. While the interest of the real part
Mo+ 1(R) was revealed in [14], its topology has recently been studied in [5-7].
From a naive point of view, the relevance of My, (R) with respect to
Thompson’s or Neretin’s groups relies on the common role played by planar
trees: Mo,+1(R) is a stratified space, whose strata are labelled by planar trees,
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while dyadic planar trees appear in symbols defining elements of Thompson’s and
Neretin’s groups.

In [9], P. Greenberg builds a classifying space for Thompson’s group F, the
smallest of Thompson’s groups, with total space an inductive limit of ‘bracelet’
spaces, combinatorially isomorphic to the Stasheff associahedra K,’s. However,
this space is too small to support an action of Thompson’s group V. The idea
to proceed to an analogous construction for V' originated in the observation that
a two-sheeted covering space ./{/lvo,nH(R) of Mo,41(R) was tiled by n! copies of
the associahedron K,,.

The first step of our construction consists in building two spaces, ./\A/l/o’zoo(R) and
/Wg_g,zoc (R), the towers ¢ of moduli spaces of genus zero real curves, defined as induc-
tive limits of spaces My ,(R) and M, ,(R), respectively (the second of these towers
being a real version of a stabilized moduli space considered by Kapranov in [15]).
The next step is to make not only Thompson’s group V, but also the much larger
spheromorphism group N, act cellularly on the towers:

THEOREM 1. Neretin’s group of spheromorphisms N — and so Thompson's group
V — acts cellularly on the towers Mg ~(R) and /\7013,2oo(R).

By lifting the action of N and V' to the universal covers of the towers, we deduce
the existence of nontrivial extensions of J and N by infinite ‘pure quasi-braid groups’
PJy= or Q35~. These are inductive limits of the fundamental groups of the spaces
Mo, (R) or My,(R). Thus defined, they are analogues of the pure Artin braid
groups P, (cf. [6, 7]). We prove:

THEOREM 2. The group PJy~ surjects onto 7./27. By dividing the extension of
Neretin’s group 1 — PJyo —> Ay —> N — 1 by the kernel of the previous surjection,
one obtains a nontrivial central extension of N with kernel 7./27.: 0 — 7./27,
—N—N—1.

We view the resulting cohomology class as the analogue for N of the Euler class of
the homeomorphism group of the circle Homeo™(S'), whose corresponding (real)
cocycle is induced by the coboundary of a Z-equivariant function on the universal
cover Homeo™(S)):

THEOREM 3. There is a ring extension R of 7./27. and an R-valued Euler-type
cocycle on N (i.e. induced by the coboundary of a 7,/27-equivariant function on N)
associated with the previous cohomology class on N.

PLAN OF THE ARTICLE

The first section is devoted to the description of the real moduli spaces M ,11(R),
and of the combinatorics of their stratifications. Section 2 introduces the stabilized
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moduli spaces My 32~(R) and ./\//lv(]’zoc (R) (or ‘towers’), and the actions of Neretin’s
and Thompson’s groups are defined. In Section 3, we describe the quasi-braid exten-
sion of Neretin’s group, and construct its Euler class.

1. The Compactified Real Moduli Space Mg ,.1(R)
1.1. THE MODULI SPACE OF GENUS ZERO (1 + 1)-STABLE CURVES

DEFINITION 1.1.1 ([13], [14]). Let k& be the field C or R. A genus zero (n+ 1)-
stable curve is an algebraic curve C over the field & with (n+ 1) smooth marked
points Xy, ..., X, such that

(1) each irreducible component of C is isomorphic to a projective line ]P}{, and each
double point of C is ordinary;

(2) the graph of C is a tree;

(3) each component of C has at least three points, double or marked.

The graph of a curve (C, Xy, ..., x,) is defined as follows: the leaves (or 1-valent
vertices) Ay,...,A, are in correspondence with the marked points of the curve,
Xo,...,Xn, and the internal vertices vy,...,v; with the irreducible components
Ci,...,Cx. There is an internal edge [v;v;] if C; and C; intersect (in a double point).
Terminal edges [4,v;] correspond to pairs (x;, C;) such that x; € C;. The terminal edge
with leaf 4, will be distinguished as the output edge. Figure 1 illustrates the construc-
tion of the graph of a stable curve; the components are represented by circles.

1.1.2. Terminology

By a rooted planar n-tree we shall mean a planar tree with (n + 1) terminal edges, one
of them being distinguished as the output edge, the others as the input edges. The
terminal vertices of the input edges are called leaves. The root of the tree is the inter-
nal vertex of the output edge. When k = R, the graph of a stable curve should be
thought of as a planar rooted tree.

1.2 EXPLICIT CONSTRUCTION OF My,1((R), AS AN ITERATED BLOW-UP OF P:~2

(1) By definition, Mo,1(R) = (RP'Y"™"\A)/(PGL(2, R)), where A is the thick
diagonal of (RP')"*!.

Figure 1.
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pz P3
braid arrangement in sz_ HO.S(]R)
Figure 2.

LEMMA 1.2.1. Mg ,4+1(R) embeds in the (n — 2)-dimensional real projective space as
the complement of a hyperplane arrangement, the braid arrangement.

Proof. Clearly, Mo,,.1(R) = (R"\ A)/(Aff(1, R)), where A is the thick diagonal
of R", and Aff(1, R) the affine group of R. There is an embedding

R"\A

— e, pr2_p . ay) €R": ;=
Aff(l,R);) & (ar,...,ay) € R ;a 0

in the (n — 2)-dimensional real projective space, induced by the map sending
(x1,...,x,) € R”"\ A to (ay, ..., a), with a; = x; — (1/m) >0 x;.

The image of My,11(R) in P % is the complement of the union of hyperplanes
H;;: a; = a;. This hyperplane arrangement is called the braid arrangement. So,
Mon+1(R) has n!/2 connected components® which are open simplices, called
the projective Weyl chambers W’: asqy < asp) < -+ < agn, Where o belongs to
the symmetric group X,. The projectivisation introduces an identification of the
chambers W° and W’®, where w is the permutation (rll nfl . O
EXAMPLE 1.2.2. Mg;(R) is a point, Moa(R) = RP'\{0,1,00} (3 chambers),
M s(R) is represented on Figure 2 (12 chambers).

PROPOSITION 1.2.3 ([13, 14]). There is a projective smooth variety Mg ,+1(R) and
an iterated blow-down map p: Mo,11(R) — P2 which desingularizes the braid

arrangement.

Proof. We content ourselves to recall the construction, as performed in [3].
Denote by B the set of n points p;: @ =---=a; = --- = a, (" being the symbol of
omission), B; the set of lines (p;p;): ay =---=a;=---=a =--- = a,, and more
generally, by %, the set of k-planes ay=---=a; =---=a,,,K = =ay,
ii <+ <iry,fork=0,...,n— 3 (they are the irreducible components of the braid

arrangement, in the sense of Coxeter groups: this will become clear in Section 1.3).
Along components of By, hyperplanes H;; do not meet transversely. So, the process
of desingularization of the nonnormal crossing divisor U,-J H;; is the following:

*Note the difference with the complex case: My .1 (C) is connected.
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Points of B, are first blown-up, and we obtain the blown-up space X as well as
the blow-down map X, N Py 2. The proper transforms of the lines ( pipj) (i.e. the
closures of 77!(( PP\ pi,pj})) become transverse in X, consequently they can be
blown-up in any order to produce X, x 1 N P?{{z; again the proper transforms
of the planes (p;pjpx) become transverse in X>, and are blown-up in any order.
Finally we get the composite of blow-down maps

2

Mowii(R) ==X, 225 . 50, 5 x5 i
We shall denote by p: My ,41(R) —> P} the composition of the iterated blow-ups.
(2) Each blow-up along a smooth algebraic subvariety produces a smooth excep-
tional divisor in the new variety, which is isomorphic to the projective normal bundle
over the subvariety. We denote by B the set of proper transforms in Mj,,11(R) of
the exceptional divisors produced by blowing-up the (proper transforms in X of the)
components of By: they are smooth irreducible hypersurfaces of Mon1(R), and
meet transversely. So the union Uz;é By is the set of irreducible components of a
normal crossing divisor D.

EXAMPLE 1.2.4. Mg;(R) is a point, M 4(R) is isomorphic to RP' (decomposed
into three one-dimensional cells). Contrarily to My 4(RR), all M ,(R) with n > 5 are
nonoriented.

In Figure 2, we illustrate how M, s(R) is obtained by blowing-up the four
points py,...,ps of the braid arrangement. Each exceptional divisor produced by a
blow-up process is isomorphic to a real projective line, and is represented by a hexa-
gon, whose opposite sides must be identified by the antipodal map. Note that the
exceptional divisors truncate the neighboring simplices, so that My s(RR) is tiled by
12 pentagons. Topologically, My 5(IR) is the connected sum of 5 projective real planes.

(3) The real algebraic variety My ,41(R) is both a stratified space and a cellular
complex: the codimension k strata are the nonempty intersections of k irreducible
components of the divisor D, while the (closed) cells are obtained by intersecting
the strata with one of the n!/2 closures of the preimages p~!(W7). The open cells
are then defined as the complements of all closed strict subcells in a given closed cell.
Since the divisor D is normal, the strata are smooth closed subvarieties of
Mo pt1(R).

Remark 1.2.5. The construction of the complex algebraic variety My,,41(C) is
similar. The strata of complex codimension k are the nonempty intersections of k
irreducible components of the divisor D. However, the construction does not equip
the strata with a natural cell decomposition.

(4) Each codimension k cell M is coded by a planar tree that we now define: If
M=p{(We)nD;N---ND; is nonempty, then all the components D,,
o=1,...,k are produced by a blow-up along a set which must be of the form
Ao(iy) = Ao(iy+1) = - -+ = Ag(j,), for some 1 < i, < j, < n.
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a(n)

As(i) Aai+1)Aa(h)

Figure 3.

Let T(o, (i,j)) denote the planar rooted n-tree with one output edge and » input
edges, labelled from the left to the right by (1), . .., o(n), with a unique internal edge,
as drawn in Figure 3.

Define a contraction of a tree as the operation consisting of collapsing an internal
edge on a single vertex. Introduce the partial order on the set of n-planar trees:
T < T if T’ is obtained from 7 through a sequence of contractions.

DEFINITION 1.2.6. The tree attached to the (closed) cell M = p={(W7)N
DyN---N Dy (or to the open cell M) is defined as T(o) = inf,—;__xT(0, (ix, ),
where (i, j,) is associated with the component D, as explained in (4). We denote M

(resp. M) by M(T, o) (resp. M(T, 0)).
NOTATION 1.2.7. T(o), with ¢ € Z,,, will denote a rooted planar n-tree with leaves
labelled from (1) to o(n), leftmost first, and reading from left to right, whereas T
will refer to the same tree, with the canonical labelling of the leaves, from 1 (on the
left) to n (on the right).

We list without proof:
FACT 1. The cell M = p=Y(W°)N Dy N---N Dy is nonempty if and only if the col-

lection of sets S, = {iy, iy + 1,...,j,}, attached to each D,, foro. = 1,... k, is nested in
the following sense:

Vo, f, either Sy N Sg =10, or S, C Sp or Sp C S,.

Note that the tree T(c) = infy—1 1 1(0, (iy,j.)) exists if and only if the collection
(S2),—1..x is nested.

EXAMPLE 1.2.8 (Figure 4).
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Figure 4.

FACT 2. The codimension of a cell M(T, o) is equal to the number of internal edges of
the tree T. Indeed, the set of internal edges of T is in one-to-one correspondence with
the codimension 1 components Dy, ..., Dy containing M(T,c). In particular, dyadic
trees label the 0-cells of Mo, 1(R), and trees without internal edges label its
maximal cells.

Remark 1.2.9. In view of Section 1.1, we may think of each cell M(T, o) as the set
of stable curves whose associated planar tree is 7(c). Then Fact 1 becomes
completely clear.

1.3. COXETER GROUP FORMULATION, FOLLOWING DAVIS, JANUSZKIEWICZ
AND SCOTT

Following [6], we now formulate the condition guaranteeing a collection is nested in
group theoretic terms, namely in terms of the symmetric group X,,.

Denote by S = {01,...,0,_1} the set of canonical Coxeter generators of Z,: g; is
the transposition (i,i + 1). Let 7 be a rooted planar n-tree (with the canonical label-
ling of its n leaves). To each vertex v except the root of 7, a proper subset
T, ={0i,0i41,...,0j—1} of S is associated, corresponding to a connected subgraph
Gr, of the Coxeter graph of X,: i,i+ 1,...,j are the labels of the leaves of T" which
are the descendants of v.

Denote by Vert*(T) the set of vertices of T, distinct from the root. The collection
T ={T,, v € Vert*(T)} is a nested collection in the following sense:

DEFINITION 1.3.1 ([6]). A collection 7 of proper subsets of S will be called nested
if the following conditions are satisfied:

(1) The Coxeter subgraph G is connected for all T € 7.
(2) Forany T,7' € T, either TC T', T’ C T, or G 7u7 is not connected.

It is clear that there is a bijection T <> 7 between the set of rooted planar n-trees

with at least one internal edge and the set of nested collections of the symmetric
group X,.
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1.4. COMBINATORICS OF THE CELLULATION OF Mo,nﬂ(R) AND OF ITS TWO-SHEETED
COVER My,.11(R)

Figure 5.

1.4.1. Associahedra

LEMMA 1.4.1. Each K° = p~Y(W?) is combinatorially isomorphic to the Stasheff
associahedron K, (cf. [18]).

Proof. This is so because the cell decompositions of both objects are the same.
Recall that for each n > 2, K, is a convex (n — 2)-dimensional polytope, whose faces
are labelled by rooted planar n-trees. If f{(T) and f{(T") are faces (or cells) of K, then
AT) Cc AT') if and only if T < T’ in the sense of Section 1.2 (4). Following the
notation of Definition 1.2.6, the correspondence A(T) — M(T, o) establishes a
combinatorial isomorphism between K, and p~!(W7). O

EXAMPLE 1.4.2. K5 is a point, K3 a segment, K4 a pentagon (Figure 5).

1.4.2. The Two-sheeted Cover ./\A/l/o,mq(R)

Consider the two-sheeted cover S"~> — P2, where S"~2 is the (n — 2)-dimensional
unit sphere of {(ay,...,a,) € R": Y I, a; =0}

Apply now the process of iterated blow-ups described in Section 1.2 to S"~2 with
its lifted braid arrangement, and denote by M0,n+1(R) the resulting space. This yields
a commutative diagram:

MO,nH B Mo,n+1(R)

l l

Sn72 - Ple72

where the horizontal arrows are the obvious two-sheeted covering maps, and the ver-
tical ones are the blow-down maps. Since S"=2 is tiled by n! Weyl chambers, the cov-
ering space My ,+1(R) will be tiled by n! copies of the associahedron K,. We denote

https://doi.org/10.1023/A:1023669603024 Published online by Cambridge University Press


https://doi.org/10.1023/A:1023669603024

SYMMETRIES OF THE MODULAR TOWER 57

Ag Ao
- oo
v
af Nag T a1 a6
v v a
ag a5 a5 2
A1 A6 a Ay Ag o}
w a3 4 B a3
A
Agq A5 5 A4
Ao Az
A3

Az

Figure 6.

again by M(T,0) a cell of Mo,s1(R). If © is the permutation (! 2 - 1), the

cells M(T, o) and M(T, o o w) of MO,nH(R) cover the same cell of My, 1(R).

1.4.3 Combinatorics of the Cellulation of /\A/l/o,nH(R) and M ,+1(R)

Let T(o) be a rooted planar n-tree, and v an internal vertex. The tree 7(o) splits in v
into two subtrees. Apply a reflection to the subtree which does not contain the out-
put edge — this results in inversing the labelling of its input edges — before gluing both
pieces back together to form a new planar n-tree, denoted V, Tl (o) (cf. Figure 6, for an
example). Let T’ and ¢’ be respectively the tree and the permutation such that
T'(¢") = V,1(0).

PROPOSITION 1.4.3 (adapted from [7]). Two cells M(T, o) and M(T',d") in the
double cover My ,+1(R) coincide if and only if T(c) ~ T'(d’), where ~ is the equiva-
lence relation generated by T(o) ~ V, Tt (o) for any vertex v distinct from the root. In
other words, T(a)~T'(¢") if and only if there exist v, € Vert*(T),
vi € Vert*(V,, ...V, T(0)), i =2,...,r, such that T'(¢") =V, ...V, T(c).

Remark 1.4.4. If, moreover, one allows v to be the root in the identification
T(c) ~ V,T(0), then one obtains the combinatorial structure of the cellulation of
Mo .+ 1(R). But the latter admits a more symmetric description if one uses unrooted
(n + 1)-trees, labelled by permutations in X, . In [7], this combinatorics is expressed
in the language of polygons; it can be translated in terms of trees, dual to the
polygons.

Proof. The rule T(¢) ~ V,T(¢) comes from the projectivisation of the normal
bundle over the blown-up components. Indeed, suppose we blow-up the component

Ag(i) = do(it1) = - - - = Ag(j); the equations of the blow-up are:
Moty — o) = Aaogey — doi)s Kyl =i+ 1,00, [higr oo 4] € RPFTL
(aj,...,ay) € S"=2. Since [Aig1 ...t Al =[—Aig1 ...t =], it follows that a point of

the exceptional divisor close to the cell as1) < o) < - < o) < -+ < dg(j) <
co- < e 1s close also  to  the cell gy <) < <dpp) < - <
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gy < -+ < Agm. This gives the identification rules for the codimension 1 cells, and
since the other cells are intersections of codimension 1 cells, the complete rule follows
easily. O

EXAMPLE 1.4.5 (Figure 6).

1.5. TRANSLATION OF THE IDENTIFICATION RULES IN TERMS OF NESTED
COLLECTIONS AND COXETER GROUPS

Let T be a planar rooted n-tree, v a vertex of T distinct from the root, T, =
{0i,0it1,...,0j-1} the corresponding subset of generators of X, (cf. Section 1.3).
Pl

Denote by wr, or w, the involution (j ik ’l) It is the longest element of X7,

(the symmetric group generated by 7)) for the word metric.
If 7 is a nested collection (corresponding to an n-planar tree 7), then for each T,
T, in T, define jr, T, the connected subset of S = {gy,...,0,_1} by:

A T T,w,, if T, C Ty, or equivalently, w is a descendant of v,
Jrfw = T,, if not.

PROPOSITION 1.5.1. Under the correspondence T <> T, T' <> T between rooted
n-trees and nested collections (cf. Section 1.3), T'(¢') = V,T(0) if and only if T' = j1, T
and ¢’ = owrt,, where j7, T is the nested collection {j7, T\, T\, € T}.

EXAMPLE 1.5.2. With the example of Figure 6,

O-Zida G/ZwTu=<§ 43'_ ;‘. ;)7 Tv={62;03;04}; Twz{UZ}-

The only subset changed under jr, is T, jr, T = o1, Twor, = {04}
A reformulation of the results of Section 1.4.3 is

THEOREM A (Davis-Januszkiewicz—Scott [6]). The two-sheeted covering space
Mo ps1 is Zy-equivariantly homeomorphic to the geometric realization |Z,N'| of the
following poset L, N :

(1) Its elements are the equivalence classes of pairs (T, 0), with T a nested collection,
and o in X, for the equivalence relation defined by (T ,6) ~ (T, d") if and only if
there exists a subset T" CT such that ¢ =owr and T =jT. Here
o =or,...or, if T"={T,...,T,} (it can be supposed i <j if T; C T}), and
Jrr =t T

(2) The partial order is defined by [T,c] <[T’,d'] if and only if there exists some
T" C T such that ¢ = owy and T’ C jrT.
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Moreover, the free involution a: /(/lvo‘,H_l — /\A/l/o_,nH (lifted from the antipodal involu-
tion of S"7?), is combinatorial, and given on the poset TN by [T,cl [jsT,cws],
with S ={o1,...,0,_1}. Since /\70,,,“ = /\A/l/o7n+1/&, Mo_,,“ inherits a natural cell
decomposition with poset Z,N /a.

2. Towers of Genus Zero Real Stable Curves and Action of Thompson’s
and Neretin’s Groups

2.1. CONSTRUCTION OF THE TOWERS Mj 32~ (R) AND Mg 2 (R)

We shall use below Kapranov’s interpretation of /\70,,”1(1[%) as the moduli space of

collections C(xy, xi, ..., X;, ®), where C(xg, X1, ..., X,) is a stable (n + 1)-pointed real
curve of genus zero, and w is an orientation of the component of C which contains x
(cf. [14)).

CONSTRUCTION 2.1.1. (1) Embedding Mo,.41(R) = Moo 1y(R): if C(xo, X1
<oy Xn) € Mou1(R) is a stable curve, then graft a new circle at any marked point x;,
i = 0, with two marked points on it, y»;_1 and y,; for i # 0, and yy and y,1; fori = 0.
We obtain a new stable 2(n + 1)-curve, and it is uniquely defined.

(2) Embedding Mo 41 (R) = Mo an1(R): if C(x0, X1, ..., %, ) is in the double
cover Mv()?n.i,_] (R), we may expand unambiguously all the points x; except xo, to obtain
a curve C(Xg,yl s V2 v oy YVon—1,)2n, a)) in M0,2n+1(R).

Remark  2.1.2. The map C(xg, X1, ..., Xy) > C(X0, X1, - - - » Xi—1, Vis Vit1, Xit1,
..., X,) is a section of a forgetful map My, 2(R) = Mo,41(R), and is called
‘stabilization’ by Knudsen (cf. [16]). It is a smooth map.

PROPOSITION 2.1.3. The embedding exp,: Mg ,(R) — Mg ,(R) is a morphism of
cellular complexes. The inductive limit Mog,zm (R) = lim /\7073_2n(R) inherits a (locally
nonfinite) CW-complex structure. The same is true' when the moduli spaces are
replaced by their two-sheeted covering spaces /\A/l/o‘nH(R), with embeddings exp,:
Mo 1(R) = Mo2n1(R), defining a tower Moo= (R) = lim Mg z11(R).

Remark 2.1.4. We may view both towers as pointed spaces, with base-point
represented by the unique point of My 3(R) = Moo41(R).

Proof. Both embeddings being composed of stabilization maps, they are smooth
embeddings. We give a proof for the covering spaces M ,4+1(R). If M(T, o) is a cell
of M’O,M(R), then exp,(M(T, o)) is the cell M(exp,(T), exp,(c)), where exp,(T) is
the planar rooted tree obtained from 7 by expanding each of its leaf with two new
edges, and exp,(c) is the permutation t € Xy, defined by (2i—1) =20() — 1,
1(2i)) = 26(i), i =1, ..., n. Since exp,,: Mg 11(R) = Mg 2,21(R) is smooth and maps
cells onto cells, the proof is done. O
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Remark 2.1.5. (1) In the proof above we have introduced a group homo-
morphism exp,: X, — Xa,: o0+ T = exp,(0), called the expansion morphism.

(2) More generally, if 1 <i<n, there is an expansion map exp,;: L, = Zy11,
such that if o belongs to X,, then exp,(o) is the natural extension of ¢ to
{1,...,n+ 1} after replacing {i} at the source by {i,i+ 1}, and {o(i)} at the target
by {a(i), (i) + 1}, and imposing exp, (0)(i) = (i), exp, ()i + 1) = () + 1.

(3) If T is a planar rooted n-tree, then exp, (7), for 1 <i < n, will denote the
(n + 1)-tree resulting from 7T by expanding its ith leaf with two new edges.

(4) When we use an iterated expansion map, we denote it by exp: X, — X,1s.
Similarly, we denote by exp(7) an iterated expansion of a tree 7.

2.2. ACTION OF THE NERETIN GROUP ON THE MODULI TOWERS
2.2.1 The Groups N and V

Let T, be the dyadic complete planar rooted tree (all its vertices except the leaf of the
output edge are 3-valent). Let o be a rooted planar dyadic n-tree, viewed as a finite
subtree of 75. Its internal vertices are 3-valent, and its leaves are canonically labelled
from 1 to n, leftmost first, and reading from left to right. For each i =1, ..., n, view
the ith leaf of o as the root of a dyadic complete planar tree 77, so that
aUTFU---UTY is the dyadic complete planar rooted tree 75.

A symbol is a triple (o, 0, ¢,), Where oy, o; are rooted dyadic n-trees for some
n>2 oeX, and ¢, is a collection of tree isomorphisms g;: T} — T,
i=1,...,n. Equivalently, ¢, is a family (o) in the product [ ], 2ok, such that
0o = o and o4 may differ from expy ,(ox) by a product of elementary transposi-
tions of the form (2i — 1, 2i). If gx4+1 = expyx ,(0x) for all k£ € N, we say that the sym-
bol locally preserves the orientation of the tree T, and we denote it by (o1, o, 7).

DEFINITION 2.2.1 (Groups N and V, cf. [4,11,17]). Denote the boundary at infi-
nity of the tree 7, by 07>, endowed with its natural topology.

titions of J7T3, the collection (¢;),_, _, induces a homeomorphism of 97, called a
spheromorphism. The set N of all spheromorphisms is a subgroup of Homeo(073),
namely the Spheromorphism group of Neretin.

(2) One says that two symbols are equivalent if they define the same sphero-
morphism. One denotes by [u, o, q,] the spheromorphism associated with the
symbol (a1, %, gs).

(3) One says that the symbol (¢}, o, ¢},) is an expansion of (o, a, ¢5) if both sym-
bols are equivalent and o (equivalently, o) is a subtree of o (equivalently, of a}).

(4) The set of spheromorphisms induced by locally orientation-preserving sym-
bols is a countable subgroup of N, namely Thompson’s group V.

Remark 2.2.2. (1) Given two spheromorphisms, one can always find symbols of
the form (oq, a9, ¢;) and (o, oy, r;) which represent them. It follows that the
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composite [z, o, rc][e1, %o, gs] of spheromorphisms is equal to [, o, S;5], Where s;,
is the collection (si = ro)qi: T;* = Tyop)imt,...n-

(2) Using the material introduced in Remark 2.1.5, " may be described as the set
of equivalence symbols (a1, %, 0), for the relation generated by (a1, %, &) ~ (€XP,, 4(;
(o1), €xp,, {(0), €xp,, (9)), for 1 < i< n.

(3) With more intricate notations, one could describe similarly the equivalence of
symbols defining spheromorphisms.

2.2.2. Thompson’s and Neretin’s Groups Acting on the Towers
Let g = [o1, 2, ¢5] be in N, [M(T,7)] be a cell of /\A/l/o,zoo(R), represented in some
Mo 214 1(R).

Represent the cell by a symbol (T2, T, 1), where T is the dyadic tree with 2" leaves,
which labels the base-point of the tower, viewed in MOJHH (R). After making an expan-
sion of the symbol defining g if necessary, it can be supposed that the trees o;, i = 0, 1,
are planar 2"-trees, with oy = T5:. Compose both symbols in the following way:

(051,050 - T2”7 qG)(T2"7 Ta T) = (OC], T7 00 T)'

Interpretation of the symbol (o1, T, 0 o 1) as a label of a cell in an appropriate moduli
space: after making expansions (as in the case of Thompson’s group symbols, cf.
Remark 2.2.2, 2), though T is not necessarily a dyadic tree), replace (x;, 7,0 o 1)
by a symbol of the form (exp(c;) = Tom,exp(T),exp(o o 7)), for some m =n e N
(exp denoting the appropriate iterated expansion map, cf. Remark 2.1.5, 4), so that
exp(o o 1) belongs to Zy.. Thus, M(exp(T),exp(c o 1)) is a cell of MO_Q"HLl(R).

EXAMPLE 2.2.3 (Figure 7).

DEFINITION 2.2.4 (Action of N on the cells of the tower). With the previous
notations, the action of g € N on the set of cells of My ~(R) is defined by

gl M(T, )] := [M(exp(1), exp(c o 7))].

THEOREM 2.2.5. Denoting by Cell(./a/o,zx(R)) the set of cells of the tower
Mo 2=(R), the map

N x Cell(My2~(R)) —> Cell(My.~(R))

_ (123 expansion (12314
)>\ /;\ ”_[321) > /g\ 4\..”"3(‘")"(4312]
1 1453 T 1y

2 3 1 3 4

23 4

Figure 7.
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introduced above is well-defined, and induces a cellular left action of Neretin's group
N on the tower Mg 2(R): 7: N— Homeocen(Mj 2= (R)).

Remark 2.2.6. There is an equivalent definition of the group N acting on the
boundary of the regular dyadic unrooted tree 7T ,. Thus defined, N naturally contains
Aut(7 ), the automorphism group of the tree 7,. The cells of My 32~(R) being
labelled also by unrooted trees, one defines similarly a cellular action
7: N — Homeoce (Mo 32~(R)). In [15], Kapranov has noticed that the Aut(7 ) acts
on the stratified complex tower My 3~(C). In fact, we could prove that this action
extends to N, and restricts on the real tower to the action of Theorem 2.2.5.

Proof. We have to prove the independence of the definition of g[M(T, t)] (with
the notations used in Definition 2.2.4) with respect to the label of the cell and the
symbol representing g.

(1) We first check M(T,t) = M(T',7")= M(exp(T),exp(o o 1)) = M(exp(T’),
exp(o o 7')). It is clear that we can restrict ourselves to the case where 7' = j7, 7
and 7 = tw,, for some v € Vert*(T) (we use the correspondence T < 7, T' < T’
between planar trees and nested families, cf. Section 1.3). To simplify the notations,
we may suppose that w, is of the form

12 ..k
QD=\k k=1 ... 1)T@0h

Using the iterated expansion homomorphism exp: Xon — Zom, we may write
exp(o o ') = exp(o o 7)exp(w,). By induction it is enough to consider the case
m = n + 1; then with the canonical labelling of exp(7’),

=[] 2 ... 2—1 21 L 2k—1 2k
P =\ o —1 2k ... 2k—2041 2k —2A+2 ... 1 2 )

Denoting by v the vertex v seen in the expanded tree exp(7), exp(w,) differs from

1 2 2/—-1 2/ o 2k—=1 2k
Wy =
2k 2k—1 ... 2k—=21+2 2k-2I+1 ... 2 1

= w(1,..2k)

by the product of the k transpositions oy, ...w;, where wg is simply w; =
(2i — 1, 2i), and v; is the ith leaf of T seen in exp(7) (two terminal edges emanate from
each v; in exp(7)). It follows that

exp(T) =z, - - -Jr, it exp(7),

exp(o o 1) = exp(g o V)ww;, . . . W3,

where in fact the operations j7; have no effect. By Theorem A (see 1.5), the expected
implication is proved.
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(2) Independence with respect to the choice of the symbol defining g: it suffices to
replace the symbol (0,09 = Ton,¢q,) by its expansion exp,.(oi, o9 = T, qs), and
check that the result of the product expy.(o, 9 = Ton, ¢5) €xpy(Tan, T, 1) defines the
same cell as the symbol (a1, T, 0 7). Now expu(ay, Ton, qs) = (expan(et1), Tont1, G5),
where ¢ may differ from exp,:(o) (because g lies in N, not necessarily in V) by a pro-
duct of transpositions w; = (2i — 1,2i): ¢ = expu(0)w; ... w;. So,

(%) : = expan(at1, Ton, gg) €Xpou(Ton, T, T)
= (expa(a1), €Xpon(T), eXpan(0)wy, . . . @;, €XPi(T)).
But expa(t)w; = wq(;) expy(1), so that
() = (expan (1), €xpan(T), €XPan () €XPou (D)W1) - - - W1 )
= (exPyr (1), eXP2r(T), €XP2(0 0 D1y - 1.

Since (expyi(et1), €Xpai(T),€XPyi(0 0 T) Wp-1sy) - - - -1(;,)) labels the same cell as the
symbol (expy (o)), expy(T), exp(a o 1)) (in the appropriate finite moduli space),
we see that the cell defined by expa (o, %9 = Tan, ¢5) €xpau(Tan, T, 1) coincides indeed
in the inductive limit with the cell defined by (o, 00 = Ton, go)(Ton, T, 7).

(3) Once the action is proved to be well-defined, it is straightforward to check that
it 1s cellular. OJ

2.3. EXTENSIONS OF THOMPSON’S AND NERETIN’S GROUPS BY AN INFINITE PURE
QUASI-BRAID GROUP

It is shown in [5] that Mg, 1(R) (or MO,,,+1(R)) is an aspherical space: its universal
cover My ,+1(R) is contractible. The universal cover of Mg ~(R) is the inductive
limit of the covers M 241(R), and will be denoted M 2(R).

NOTATION 2.3.1. Denote by PJ, (resp. Q) the fundamental group of /\A/l/(),nH(R)
(resp. Mo ,(R)). Since Mo,nH(R) is a double-cover of My ,41(R), there is a (non-
split) extension 1 — PJ, — Q1 — 7./27. — 0. Define the infinite pure quasi-braid
group to be PJyx = nl(/\A/l/o,zoo(R)) = limPJy.

Each transformation 7(g): /\A/l/o,zoo(R) — /\A/l/o,zx (R), with g € N, can be lifted to
the universal cover /\//l\o,zoo (R).

DEFINITION-PROPOSITION 2.3.2. The set Ay of lifted transformations y(g),
g € N, is a subgroup of the cellular homeomorphism group of /(/l\oyzoo(R).

The kernel of the natural epimorphism Ay —> N is the automorphism group of the
universal covering map ./\//l\o’zoo(R)—>M0,2w(R), PJy<. We define the quasi-braid
extension of N to be the short exact sequence 1 — PJyo —> Ay—> N — 1. By
restriction, one obtains a similar extension 1 — PJyo —> Ay — V — 1.
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Remark 2.3.3. Considering Neretin’s group acting on the tower My32x(R)
(cf. Remark 2.2.6), one would obtain a similar extension by the group O3y~ =
limQs . However, the expansion morphism Q, < Q,, maps Q, into PJy,_;, SO

that Q3,~ is an inductive limit of groups PJ3,._;. Thus, the extension should be
isomorphic to the previous one.

3. An Analogue of the Euler Class for Neretin’s Group of Spheromorphisms

Recall that the elements of V" and N are described by symbols involving trees and
permutations. In this section, we shall give a similar description of the groups Ay
and Ay (Section 3.2), the role of the permutation groups X, now being played by
the quasi-braid groups J, (described in Section 3.1). The precise description of Ay
will enable us to define a nontrivial central extension for N—the ‘Euler class’ of N.

3.1. QUASI-BRAID GROUPS J,

3.1.1 Let J, be the group defined in [6] by generators and relations, with generators
or for each strict subset 7 of S = {oy,...,0,-1} such that the corresponding graph
G is connected, and relations:

e ot =1foreach T
® oTlT = Oj. 70T if7"cT
e oo = oot if Gpur 18 not connected.

These relations are those verified by the involutions wr. So, there is a well-defined
homomorphism ¢:J, - X,, ar+—> wr, which is surjective since for 7; = {g; =

(ia [ + 1)}a (t)(ocT,') = 0;.

THEOREM B (Davis—Januszkiewicz—Scott, [6]). The universal cover /\70”“ of the
two-sheeted cover My 41 is Jy-equivariantly homeomorphic to the geometric reali-
zation |J,N| of the poset J,N :

(1) Its elements are the equivalence classes of pairs (T ,a), with T a nested collection,
and o in J,, for the equivalence relation defined by (T ,0) ~ (T',&) if and only if
there exists a subset T" CT such that o =aoy and T =jpT. Here
apr =ap, ...or, if T ={T,...,T,} (it can be supposed i <j if T; C T;), and
Jrr =t Jnie

(2) The partial order is defined by [T,o] < [T',o'] if and only if there exists some
T" C T such that o = ooy and T' C jrT.

Moreover, there is a natural J,-left-equivariant map J N — Z,N given by

[T,0] = [T, dp()], the J,-action on Z,N being defined by o: [T, o] [T, p(a)o].

The kernel PJ, := Ker¢ is the fundamental group of ./\;lo,,,ﬂ, and there is a short

exact sequence 1 - PJ, — J,— X, — 1.
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3.1.2 Describing the Morphism PJ, — PJ,, and Defining J, — Jo,

The formalism contained in Theorem B enables us to describe the morphism
PJ, — PJ,, induced by the embedding exp,,: /\N/lo,,,ﬂ — //\710,2,1“. Each a =ar, ...
o, in PJ, projects onto wr, ...wr, = 1 in X,. We interpret o as the homotopy class
of the edge loop

Y= (idn — O, = OT,0T7, —=> - —=> OT,OT, ...0OT, = id,l)

in the dual cell complex of |X,N| = T/lo,nﬁ ) .
By definition of the embedding exp,,: Mo 11 <> Moant1, the loop y is mapped
onto the loop

é;(f)n(y) :(id2n — eXp(le) - exp(le)eXp(sz) — > exp(le)
exp(wr,) . . .exp(or,) = iday,).

We need, however, to make it precise what a path of the form id,, — exp(wy) is:
Suppose for simplicity that w7 is of the form

(12 Lk
CT=\k k=1 ... 1)
so that
1 2 . 2%k—1 2%
xpen)={o 1 % .. 1 2

is the product wexpy(1,2) - .. ®2k—1,2k), With w12 the transposition o2;_1. The
path id, — w7 once embedded in |Z,, N Ol, and after a suitable translation to make
its extremities coincide with the barycenters of the cells id, and exp(wr) (which are
adjacent because exp is cellular, and meet along a codimension n + 1 cell), becomes
the straight line joining the barycenters. We claim this line is homotopic to the edge
path

12y = Wexp(1) = Dexp(@(1,2) =+ > Dexp(T)D(1,2) * * * D(2k—1,26)-

Indeed, the path above passes through cells which all share a same codimension
n+ 1 cell, and the line id;, — exp(wyr) crosses the same cell.

Now o7 may be lifted in J, to exp(ar) := dexp(n)%(1,2) - - - %2k—1,2k)» Where a1 2 :
= ar,, with T; = {o2;_1}. Finally define exp(«) as the product exp(ar,) ... exp(ar,). We
now claim:

PROPOSITION 3.1.1. (1). The map J, — Jy,: o> exp(a), is a well-defined group
homomorphism. More generally, each expansion map exp : X, — X1, has a canonical
lift J, — Jpis.

(2) Its restriction to PJ, is the morphism @5”)*: PJ, — PJyy, induced at the funda-
mental group level by the embedding exp,: Mo i1 = Moons1.

(3) The morphisms (exp,,), are injective for all n = 2.
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Proof. (1) We must check that exp preserves the relations of the group J,,: For
simplicity, suppose Gr = (1, ..., ) and compute exp(cz)’:
eXP(a7)’ = Gexp(1)%(1,2) - - - A2j-1.2)exp(DA(12) - - - H2—1,2)-

Now observe that in Jy,, for all i <,

Oexp(T)(2i—1,2i) = 02(j—it+1)—1,2(—i+1)Lexp(T)-

This fact joint to the commutation property of o 2), ..., %@2j-1,2) among each other
allows to write exp(or) = 01,2) - - - %2j—1,2)%xp(7)> and it comes easily exp(ocr)2 =1.
Then let 77 C T be such that Gy =(1,...,i), i</, and check the relation
aror o = o, 70 is preserved by exp.

Compute

exp(er) exp(az) exp(or)
= [(1.2) - - - %2j—1,2) Pexp(D)]-[texp(1)%(1,2) - - - %2i12)]-[Lexp(1)%(1,2) - - - %2j-127)]
= [011,2) - - - %2j—1,29 ] (rexp(ry texp(T) texp()) [ 1)—1,2G-41)) - - - A2j-1,29] %
X [0y - - - 22j-1,2)]
= [21.2) - - - %2 1,2)] By exp(r)-L81.2) - - - 22(--1.26-ip)] = ()
But
Jeprexp(T') = 2(j —i+ 1) —1,...,2)),
so that

Ljepry exp(T7)-L%(1,2) - - - O2(j=i)—1,2—i)]
= [o1,0) - - - 02(j=1)=1,20=i)]- Hjexpry exp(T7)

and finally,
() = @i+ 1)=12(=i+1)) - - - %212 Fjexpry exp(T") = EXP( Ly exp(77),

which ends the proof of the first assertion of (1).

If now one performs, say, one simple expansion from the ith label, corresponding
to the expansion map exp,;: X, — X,;1, then there exists a lift J, — Jyy: if
o =or,...onor € J,, then (supposing oy, = o, ; to simplify the notations), define
first exp(or,) = oq1,...jj+1)%,i+1) if i belongs to the support of T (if not, don’t modify
or, ), next define similarly exp(ar,) by expanding the wr, (i)th label, and so on. Finally
one obtains exp(a) := exp(ar,)...exp(ar,) € Jy41, which projects onto X,,; on the
expansion (from the ith label) of the permutation w = oy, ... w07, € Z,. Again,
it can be checked that the relations in the groups J, and J,;; are preserved by this
expansion map, which proves it is well-defined.

(2) Let . = aq,ar, ...ar, € PJ, = Ker ¢, y the combinatorial loop attached to o,
based at id,. We claim that loop exp,(y) lifts to the path (1 — exp(ar,) —
-+ — exp(ar,)...exp(ar,)), where 1 — exp(ar) is defined to be
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1 — Uexp(T) = Pexp()(1,2) = *** —> Olexp(T)%(1,2) * * * %(2k—1,2k)-

Indeed, applying ¢ to this path gives precisely the loop ézﬁn(y), as described in the
preliminary of Proposition 3.1.1, for the embedding exp,,: Mg 41 < Mg 2u41. It ends
at exp(ary) . . exp(err,) = exp(a), 50 (€XP,), (%) = exp(@).

(3) We use the fact that the embedding exp,, has a retraction

Fu: Mo2nr1(R) = Mo,i(R),

which is  the composite of the forgetful maps /qo_z,m(R) —
Mo2n(R) = -+ = Mgr1(R) (cf. [16]: the map Mg ,,11(C) — Mg,(C) is a univer-
sal family of n-pointed stable curves). O

3.2. DESCRIPTION OF THE EXTENDED GROUP Ay

The group Ay has a description similar to the group N, by replacing the symmetric
group X, and the expansion maps exp: X, — X,.. by the quasi-braid groups J,, and
the maps exp: J, = J,1. (cf. 3.1.1) respectively.

DEFINITION-PROPOSITION 3.2.1. (1) By a quasi-braided symbol we mean a
triple (o1, 00, q5), where oy, o are finite rooted dyadic n-trees for some n = 2, o belongs
to some J,, and q, is a family (6x)ren in the product [ [icn Jor . such that 6y = o and
ak+1 may differ from expx ,(ox) by a product of quasi-braid transpositions of the form
00(2i—1,2i)-

(2) Two such symbols are said to be equivalent if they have a common expansion, this
notion being defined as in Remark 2.2.2(3),

(3) The group Ay is isomorphic to the set of equivalence classes of quasi-braided
symbols endowed with the product induced by the obvious composition of symbols.

Proof. Easy. O

Remark. The elements of Ay C Ay will be represented by symbols (a1, «, 0),
where o9, o] are rooted dyadic n-trees for some n > 2, an ¢ belongs to J, (compare
with Section 2.2.1).

3.3. A STABLE LENGTH, AND A CENTRAL EXTENSION FOR N

Leta = ar, ...ar, bein the free monoid freely generated by the generators of J,,. Define
its length to be ¢,(«) = r + |T1| + - - - + |T,|, where |T}| is the length of the graph Gr..

PROPOSITION 3.3.1 (stable length). The length ¢, induces a well-defined group
homomorphism ¢,:J, — 7./27, L, (o) =r+ |T1| + ...+ |T,| mod2. Moreover, the
collection {£,, n = 1} is compatible with the direct system {J,, exp,}, and induces a
stable length ly: Jyo — 7./277.. More generally, the length is compatible with the
dyadic expansion maps J, — Ju+. (cf. Proposition 3.1.1, 1.).
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The restriction of €y, to the infinite pure braid group PJy~ is still nontrivial. Finally,
the stable length (o, can be extended to Ay, but not to the whole group Ay.

Proof. The last two relations in the presentation of J, preserve the length ¢,,. The
first one (¢2 = 1) preserves the length mod2 only. So ¢,:J, — 7./27 is a well-
defined group homomorphism.

On the other hand, if a7 = a1 ) is in J, and one performs a simple expansion
from the first leaf (to simplify the notations), then

exp(or) = o1, k+1)%(1,2) € Jnt1s
and

ly(ar) =1+ kmod2, ¢, (exp(ar) =k+1+1+24+1=¢,(xp)mod?2.

Further observe that the pure braid p = o 2)02,3)%1,2)%1,23) € PJs has a stable
length equal to 1 mod 2.

Let now g = [a1,090 = Ton, 0] be in Ay, with ¢ € Jyi. Then £o(g) := loo(0) is well-
defined, since expanding the symbol defining g would replace o by some expansion of it.

The impossibility to extend ¢, to Ay is essentially equivalent to Theorem 3.3.2
below. 0

Let now Ker / be the kernel of the restriction of /o, to PJy.

THEOREM 3.3.2 (Analogue of the Euler class for N). The quasi-braid extension
1 - PJyo — Ay — N — 1 induces a nontrivial central extension

| > 7./27,2 PJys [Ker o, —> N := Ay/Ker log — N — 1,

which defines a nontrivial cohomology class Eu € H*(N, 7./27.).

Proof. Let g = [, 090 = T, g5] be in Ay (6 € Ju), and p € PJr=, represented by
[oeg, oy, p1], with p; € PJy.. 1t follows that g~!pg is represented in PJy C PJyx by
¢ 'pio, and

‘eoo(gilpg) = ‘goo(ailplo') = —Aoo(0) + Lo (P1) + Loo(0) = Les(p),

thanks to Proposition 3.3.1. This proves that [Ay, PJo~] C Ker £y so, Ker £y is
normal in Ay, and the extension is central.

Suppose the extension is trivial: the embedding i: 7/27 — Ay would admit a
retraction r. We prove it is impossible, by writing the generator of the kernel
7.]27, = PJys [Ker €y, as a product of commutators in Ay/Ker/y, i.e. finding a
pure quasi-braid with length 1 mod 2 which is a product of commutators in Ay.

Conventions: In the proof below, we shall simplify the representation of a symbol
where both trees are the same by a single tree-symbol, and figure out the permutation
by arrows indicating its action on the leaves of the tree; moreover, when the permu-
tation occuring in a symbol representing an element of V' is the identity, it will be
omitted in the representation of the symbol.
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Let 7 € V' C N be the transposition defined by the single tree-symbol

a“b,

the leaves @ and b being permuted. Let o € Aut(7>) C N be defined by the single
tree-symbol

(the permutations of the leaves indicated by the arrows must be composed from
bottom to top, see also the definition of & below). Set

and it appears that y and « are conjugated by the ‘translation’

RNV

Precisely, we have y = dad ™!, or equivalently, t = [, o).

We now lift 7, 6 and o to Ay in an obvious way: 7 is lifted in 7 (same symbol cou-
pled with a2y € J3), 6 in 5 (same symbol coupled with 1 € J3), and « lifted in & (same
symbol coupled with the sequence ap = 1, ay = 1, o = 012,

g =1¢€ VS

b o =1€/4

2 o =012) € Js

o3 = exp(12))012) € J16

Okt = explog)oli2), k €N): 7= Aps1 = exp@A(12) € Joks2

Clearly, the same relation as in N holds in Ay: T = [5, a] € Ay.
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On the other hand,

l 2.3 4
T = RO g

may also be written as the product T = 7;1,, where 7| exchanges the leaves 1 and 3
(keeping 2 and 4 fixed) and 7, exchanges the leaves 2 and 4 (keeping 1 and 3 fixed).
We note abusively t; = (13), 75 = (24). Introducing ¢ € V' defined by ¢ = (12)(34),
we have 7, = g1,0, and 7 = [1, d].

We then lift 7; and o to Ay by 71 = o(123), ¢ = x(12)%34). Now [71,6] differs from
T= [3, a] = [a, 5] by a pure quasi-braid

p =1[11,6100, a] = [o123), 212 %34)] eXp(2(12)
= [06(123), 06(12)05(34)]06(12)06(34)06(1234) = 0l(123)%(12)04(34) %(123)%(1234) -

The miracle is that ¢,,(p) = 1 mod 2 as desired. O

COROLLARY 3.3.3. The 2-cycle o defined by the relation [ty,0][e,0]=1¢€ N is
nontrivial and verifies (Eu, [w]) = 1, where Eu € H*(N, 7./27.) is the cohomology class
of the extension of N.

Proof. This is an immediate application of the following standard lemma in
homological algebra:

LEMMA 3.34. Let G be a perfect group, A — G — G a central extension of G with
kernel an Abelian group A, ¢ € H*(G, A) the associated cohomology class. If o is a
2-cycle of G associated with a relation 1 = [][gi, hi] in G, then (c,[w]) = a € A, where a
is computed as a = [[/[g;, i;i],for any choices of lifts g;, h: of gi, hi.

So, in our case, (Eu,[w]) = x(p) = 1 mod 2. O

3.4. EULER-TYPE COCYCLE

Let R be the ring of Z/27-valued sequences, divided by the ideal of almost zero
sequences: R = (7,/27)" /(Z./27)"Y. Denote by 1z its unit.

For each f in Ay defined by a symbol of the form (a;, 09 = Ton,¢,) (cf. Sec-
tion 3.2), there is a family (ox);>,, ok € Jx, with 6, =0 and oyy differing
from expy(or) by a product of quasi-braid transpositions. So there is a well-
defined function ¢: Ay — R, fr4L4(f), where /¢(f) is represented by the
sequence U(f) = loolox) € 2/27 for k=n and, say, 4(f),=0 for
k=0,....,.n—1.
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Denote by
j: 7.)27 = PJy< [Ker o, — R and i: 7,/27, = PJy~ /Ker by, < N
the natural embeddings: 1z = j(12/,22), 1 := i(17,22).

LEMMA 3.4.1. For all fin Ay and p € PJy~, K(pf) = E(p) + U f), and ¢ induces a
function (:N= Ay/Kerls — R such that for allfe N, E(l f) Iz + €(f)

Proof. Choose n such that fis represented by a symbol (7}, Ty, ¢,), and p by
(Ty, Ty, o), where o belongs to PJy. Thus, pf=[Ti, T, g:] with 7 =1, = a0,
7 = exp " D(a)or, k = n (where exp®"+D denotes the (k —n + 1) times iterated
expansion morphism). Since £q(exp*"+tD(a)) = £oo(®) Yk = n, the proof is done.
Note that £(p) = j(£eo(2)). O

Since N is perfect, the injection j: //27 — R induces an injective morphism
Ju: HX(N,7./27) — H*(N,R).

THEOREM 3.4.2. The image by j. of the Euler class Eu € H*(N,7./27) is the
cohomology  class of the well-defined cocycle c¢:NxN— R defined by
cf,g) = Z(fg) E(f) E(g) wheref and g are any lifts in N of fand g in N, respectively.
Proof. First the fact that the cocycle ¢ is well-defined follows from the equivariant
relation of Lemma 3.4.1.
Let w be a 2-cycle of N. It is associated with a relation [%_[f;,g] =1 € N, and
may be written

P
o= (fi.8) — (@) — (i (€S + (figi (&) )+
i=1

p—1
+Y (i, ail I & Ui, gD
i=1

It follows that ([c], [®]) = E(H 1[}‘,, gi]), for any lifts f,, g, in N of fi, gi. Now
I l[]‘,, gil = amod Ker £, for some o € PJyx, and E(H ][f,, giD) = (o) = j(Lo(2)).
But by Lemma 3.3.4, £,.(2) = (Eu, [w]), so that ([¢c], [®]) = J((Eu, [w])) = (. Eu, [®]).
Since H*(N, R) = Hom(H,(N), R), this proves indeed [c] = j,Eu. O

3.5. THE ANALOGY WITH THE EULER CLASS OF HOMEOMORPHISM GROUPS
OF THE CIRCLE

(1) Thompson’s group T (acting continuously on the circle) has an Euler class (cf.
[8]), which is the restriction to T of the Euler class of the group Homeo™(S') of orien-
tation-preserving homeomorphisms of the circle. The latter is the class of the central
extension 0 — 7 — Homeo™(S') — Homeo™"(S!) — 1 obtained by lifting to R (the
universal covering space of S') the homeomorphisms of the circle. The boundary
0T, of the dyadic infinite tree is the dyadic analogue of the circle. Since it is totally
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disconnected, it is not possible to go further in the analogy between the Euler class of
T and the so-called Euler class of N. However, both are of topological nature, the
latter being related to the nontriviality of the homotopy type of /\A/l/o,zoc (R).

(2) A deeper analogy relies on the relation with the Euler class of Homeo™*(S!) in
bounded cohomology.

Indeed, recall from [2] that the embeddding of coefficients Z < R maps the inte-
gral Euler class of Homeo™(S') to the class of the real cocycle eu(f,g)=
r(fo g) — r(f) — 1(g), where ﬁg are lifts of f, g, respectively, in Homeo*(S!), and
7( f ) = lim,— 1o f"(O) /n is the translation number of Poincaré. The cocycle eu is
induced by the boundary of the unbounded function r on Homeo™(S"), and the class
of eu stands in the bounded cohomology group Hlf(Homeo+(Sl), R). We believe the
analogy with our class Eu is suggestive, when replacing 7/, R and t by /27, R and /
respectively.

(3) In[12] we have introduced an analogue of the Virasoro extension of Diff(S"),
the orientation-preserving diffeomorphism group of the circle, for the discrete group
N, and called the associated cohomology class the combinatorial analogue of the God-
billon—Vey class. We believe it is different from the Euler class Fu we have just
defined. Both classes Eu and Gv are the analogues of classes existing in Thompson’s
group T: indeed, H*(T,7) = 7.gv @ Zeu, where gv is the discrete Godbillon—Vey
class, and eu the Euler class of T, cf. [8]. This analogy is mysterious, since the embed-
ding T N factors through Thompson’s group V, which has no cohomology in
degree 2.

4. Concluding Remarks

(1) We believe that the restriction of our Euler class is trivial on PGL(2,Q,) (this
results from tedious computations). In particular, our Euler class is not related with
the Euler cocycle of J. Barge constructed on PSL(2, k), for every field k, with values
in the Witt group W(k) (cf. [1]).

(2) A central question concerns the relative natures of the three groups concerned
or evoked in the paper: the diffeomorphism group of the circle Diff"(S'), Thomp-
son’s group 7, and Neretin’s group of spheromorphisms N, which possess deep
and mysterious cohomological analogies. We would like to find a unified way to
understand this triangle of groups.

Acknowledgements

This work has its origin in a seminar whose motivation was to understand the rela-
tions between Thompson’s groups and geometric operads. The author is grateful to
V. Sergiescu, who initiated this seminar, for many discussions concerning the present
paper. He is thankful to T. Januszkiewicz, G. McShane, Yu. Neretin, C. Roger, and
R. Scott for various comments or helpful remarks concerning the paper or its first
version.

https://doi.org/10.1023/A:1023669603024 Published online by Cambridge University Press


https://doi.org/10.1023/A:1023669603024

SYMMETRIES OF THE MODULAR TOWER 73

References

1.
2.
3.

10.

12.

13.

15.

16.

Barge, J.: Cocycle d’Euler et K>, K-Theory 7(1) (1993), 9-16.

Barge, J. and Ghys, E.: Cocycles d’Euler et de Maslov, Math. Ann. 294 (1992), 235-265.
Beilinson, A. and Ginzburg, V.: Infinitesimal structure of moduli spaces of G-bundles,
Internat. Math. Res. Notices No. 4 (1992), 63-74.

. Cannon, J., Floyd, W. J. and Parry, W. R.: Introductory notes on Richard Thompson’s

groups, Enseign. Math. (2) 42(3-4) (1996), 215-256.

. Davis, M., Januszkiewicz, T. and Scott, R.: Nonpositive curvature of blow-ups, Selecta

Math. (N.S.) 4(4) (1998), 491-547.

. Davis, M., Januszkiewicz, T. and Scott, R.: Fundamental groups of minimal blow-ups

(Preliminary version), Final version to appear in Adv. in Math.

. Devadoss, S.: Tessellations of moduli spaces and the mosaic operad, In: Homotopy Invari-

ant Algebraic Structures (Baltimore, M D, 1998), Contemp. Math. 239, Amer. Math. Soc.,
Providence, RI, 1999, pp. 91-114.

. Ghys, E. and Sergiescu, V.: Sur un groupe remarquable de difféomorphismes du cercle,

Comment. Math. Helv. 62(2) (1987), 185-239.

. Greenberg, P.: Les espaces de bracelets, les complexes de Stasheff et le groupe de Thomp-

son. Papers in honor of José Adem (Spanish), Bol. Soc. Mat. Mexicana (2) 37(1-2) (1992),
189-201.

Kapoudjian, C.: Sur des analogues p-adiques du groupe des difféeomorphismes du cercle,
These de doctorat, Université LYON-I, décembre 1998.

. Kapoudjian, C.: Simplicity of Neretin’s group of spheromorphisms, Ann. Inst. Fourier

(Grenoble) 49(4) (1999), 1225-1240.

Kapoudjian, C.: Virasoro-type extensions for the Higman-Thompson and Neretin
groups, Quart. J. Math. Oxford 53(3) (2002), 295-317.

Kapranov, M.: Chow quotients of Grassmannians. I, In: 1. M. Gel'fand Seminar, 29-110,
Adv. Soviet Math. 16(2) Amer. Math. Soc., Providence, RI, 1993, pp.

. Kapranov, M.: The permutoassociahedron, Mac Lane’s coherence theorem and asympto-

tic zones for the KZ equation, J. Pure Appl. Algebra 85(2) (1993), 119-142.

Kapranov, M.: Stabilization of moduli spaces of rational curves (private communication
to V. Sergiescu).

Knudsen, F.: The projectivity of the moduli space of stable curves. II. The stacks My ,.
Math. Scand. 52(2) (1983), 161-199.

. Neretin, Y.: Combinatorial analogues of the group of diffeomorphisms of the circle. (Rus-

sian), Izv. Ross. Akad. Nauk Ser. Mat. 56(5) (1992), 1072—108S5; translation in Russian
Acad. Sci. Izv. Math. 41(2) (1993), 337-349.

. Stasheft, J.: The prehistory of operads, In: J.-L. Loday, J. D. Stasheff, A. A. Voronov

(eds.), Operads: Proceedings of Renaissance Conferences, Contemp. Math. 202, Amer.
Math. Soc., Providence, 1997.

https://doi.org/10.1023/A:1023669603024 Published online by Cambridge University Press


https://doi.org/10.1023/A:1023669603024

