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1. Introduction

The problem of finding an embedding theorem for Abelian monoidal categories is
motivated on the one hand by the Freyd-Mitchell full embedding theorem and
on the other hand by Deligne’s and Doplicher and Roberts’ theories of ‘abstract
Tannakian—Krein’s duality’ ([3, 4]).

By definition, an embedding from one Abelian category to another is a faithful
functor which sends nonzero objects to nonzero objects. According to Freyd and
Mitchell, a small Abelian category admits an exact full embedding into the category
of modules over a ring [11]. This important theorem allows one, for example, to treat
finite diagrams in an Abelian category as diagrams of modules.

In [3], Deligne shows that, under certain technical conditions, an Abelian sym-
metric rigid monoidal category admits an exact monoidal embedding into the cat-
egory of modules over a commutative ring. Hence, by Tannaka-Krein duality,
such a category is equivalent to the category of representations of a groupoid
[3, Theorem 1.12]. Doplicher and Roberts study the case of compact groups and
obtain an analogous result for C*-categories [4].

With the birth of quantum groups ([5]), the theory of monoidal category has a new
motivation. The ‘symmetric’ condition turns out to be too strong and is replaced by a
weaker one, the ‘braided’ condition. The problem of generalizing Deligne’s and
Doplicher and Roberts’ results to braided categories is interesting. Yet, one does
not know what can be a target for such an embedding.
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The situation seems to be simpler if we drop the symmetry, i.e., to find an
embedding for Abelian monoidal categories. A natural candidate for the target
category is the category of bimodules over a ring. In this paper we show that
any small monoidal cateory with an exact tensor product admits a right exact
monoidal embedding into the category of bimodules over a ring. In particular,
a small Abelian rigid monoidal category admits an exact monoidal embedding
(Theorem 3.2).

Unfortunately, this embedding theorem does not seem to help solve the problem
for braided categories, for, according to Schauenburg [13], the category of bimodules
over a ring does not generally possess a braiding. Indeed, he showed that the center of
the category of bimodules over a ring is trivial, i.e., contains only direct sums of the
ring.

Let us briefly explain the main idea of the paper. To find an embedding for a small
Abelian monoidal category, we first extend it to a larger monoidal category which is
cocomplete and has an injective cogenerator, namely, a Grothendieck monoidal
category. Then we extend the latter category to a module category, say over a ring
R. Finally, we construct a monoidal functor from a module category with a monoidal
structure to a bimodule category with the usual tensor product. The construction of
the last functor will be given in Section 2. In Section 3 we explain how to extend
the tensor product on a small Abelian monoidal category to a monoidal structure
on a module category containing this small Abelian monoidal category. In the last
section, we consider an application to the special case of small semisimple categories.
An explicit embedding is described. As a consequence, we show that a small
semisimple symmetric monoidal category with a simple unit object is Tannakian
(Corollary 4.5).

Throughout the paper, the tensor product over a ring R is denoted for short by ®.
® also denotes the tensor product in an abstract monoidal category when no con-
fusion may appear, othewise, we use the signs @ or []. The category of right
R-modules (resp. left R-modules or R — R-bimodules) is denoted by Mody (resp.
rMod or gkModg). Hompg (resp. xRHom or gkHomyg) denotes the set of homomorph-
isms of right R-modules (resp. left R-modules or R — R-bimodules).

1. Abelian Monoidal Categories

1.1. MONOIDAL CATEGORIES

Let A be a category. A monoidal structure on A consists of the following data: a
bifunctor

RRAXA—A X, Y)—XQRY,

called the tensor product, an object 7, called the unit object, for which
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() there exists a natural isomorphism « between the functors
(—®—-)®— and —@—®-),wyzX®Y)®Z—X®(Y®2Z),

called the associativity constraint, such that the following diagram commutes:

oy, y.z®1 X, Y,.®Z.U
(X®®2)9U —— X®(Y®Z)U) — 5 X®(Y®2)® U)
AXQY,Z,U I®uy 7z v
X®Y)®((ZU) rrzed X®(Y®((ZeU)
(1)

(2) there exist natural ismorphisms of functors — ® I, I ® — with the identity
functor: py: X ® I — X and Ax: I ® X — X, called right and left units, such that
the following diagram commutes:

Xeney _wuw | XeUeY)
;Q\\\ ///4;Y @
X®Y

(A, ®,1,0a, 4, p)is called a monoidal category. In the case when a, 4, p are identity
morphisms, we have a strict monoidal category. In the general case, the associativity
constraint o allows one to speak of a tensor product of many objects
X1 ® X ®---® X,, without specifying the order in which the tensor product is
applied (Mac Lane’s coherence theorem [9, VII,2]).

Using (1) and (2), we can show that the following diagrams commute:

X))y —2Lr LI ®Y) (XeY)®l XX . XR((Y®I)

lx@\ %{@ Y Pm )AP Y

X®Y X®Y
3)
and that Ay = p; (cf. [12]).
From the definition of a bifunctor, we have
f®g=018gc(fd)=F®@1o(1®g). “4)
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In particular, using the isomorphism A; = p;, we have, for r, s € End({):

Il —® , JoI —18 |, Ix]

P/[/ll Ar (5)

1 L -1 z - 1.

Pr

Therefore, using Equation (3), we have r o s = s o r. Thus, End(/) is an Abelian group
with respect to composition. Further, this group acts on any set Hom(X, Y) from the
left and the right by means of the isomorphism A and p:

rofi=Ayr®N)iy, for=py(f ®@rpy (6)

We have 1;-f =f-1;=f.

1.2. THE INTERNAL HOMS

Each object X in A defines a functor X ® —A— A, Y1— X ® Y. If this functor
has a right adjoint, the right adjoint will be denoted by rhom(X, —). We have,
by definition, a natural isomorphism

Hom(X ® Y, Z) 2 Hom(Y,rhom(X, Z2)), VY, Z. (7)
The functor Ihom is define analogously by
Hom(Y ® X, Z) 2 Hom(Y, lhom(X, Z)), VY Y,Z. 8)

The category A is called left closed (resp. right closed or closed) if the functor
lhom(X, —) (resp. rhom(X, —) or both functors) is defined for any X € A. The gen-
eral theory of adjoint functors (cf. [11, Corollary V.3.2]) gives us the following cri-
teria of closedness

LEMMA 1.1. Assume that A is a cocomplete category with a generator. Then the
tensor product on A is closed if and only if it commutes with colimits.

In the general case, the functor lhom(X, —) and rhom(X, —) preserves colimits. If
the category is closed, then we can also speak of the (contravariant) functors
lhom(—, Z) and rhom(—, Z).

LEMMA 1.2. Assume that A is closed. Then the functors |lhom(—, Z) andrhom(—, Z)
preserve colimits (i.e. sending colimits to limits).
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Proof. We have, for any Y € A,
Hom(Y, rhom(li_n)lX,-, 7)) = Hom(li_n}X,» ®Y,Z)
o Hom(li_r)n(X,- ®Y)72)
o l(iin Hom(X;® Y, Z)
o l(igq Hom(Y, rhom(X;, Z2))
=~ Hom(Y, l(iLn rhom(X;, Z)).

Since the above isomorphisms hold for any Y, we conclude that

rhom(lim X;, Z) = limrhom(X;, Z).

The case of lhom(—, Z) is treated quite analogously. O

1.3. RIGID OBJECTS

Setting Z = I and Y = lhom(X, /) in (8), we obtain a morphism evy: lhom(X, I)®
X — I, which corresponds to the identity morphism in Hom(lhom(X, I),
lhom(X, I)). It is obvious that (lhom(X, I), evy) is universal with this property.
By definition, a left dual to an object X is a pair (X*, evy: X* ® X —> I) such that
there exists a morphism dby:7/ — X ® X™ making the following diagrams com-

mutative:
X el (X X)X X+ dedr | X' @ (X ® (X ® XY
‘id l%x.x*_x lidx* “}}‘,X,X*
X U8 ¥ @ (X* @ X) X <ow®ide  (xr @ X))@ X*

©)

The left dual, if it exists, is uniquely determined up to an isomorphism. In this case,
we can identify it with lhom(X, I). Moreover, we have a natural isomorphism

lhom(X,2Z2) >~ Z ® X*. (10)

In particular, the functor Ilhom(X, —) exists if X has a left dual. The diagrams in (9)
also imply that the functor X ® — has a left adjoint: X* ® —, consequently
X ® — commutes with colimits.

The definition of a right dual *X to X is similar. Analogous assertions hold for
objects having right dual. If *X exists, we can identify it with rhom(X, /) and
we have rhom(X, Z) =2 *X ® Z. An object in A is called rigid if it possesses left
and right duals. The category A is called rigid if its objects are rigid.
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1.4. MONOIDAL FUNCTORS

Let(A,®,1,0a,p,A)and (A, ®, 1,4, 0, i) be monoidal categories. A monoidal functor
A —> A consists of a functor F: A—> A, a natural ismorphism ¢xy: FO®(Y) —
F(X ® Y) and an isomorphism #: I — F(I), satisfying the following commutative
diagrams:

(FORF(Y)RF(Z) 8L F(X ® V)QF(Z) 4% (X ® YV)® Z)

: -

FOOR(F(Y)®F(Z)) 185 FNQF(Y ® Z) L4 F(X @ (Y ® Z))

I®F(X) 12, F(DOF(X) FXN®I ELeF(X)®F(I)

A

FX) <% FI® X) FX) «<f2 FXx Q1)

(11)

If an object X in A is rigid, then its image F(X) is rigid in A.

1.5. ABELIAN MONOIDAL CATEGORIES

A monoidal category (A, ®) is called Abelian monoidal if it is Abelian and the tensor
product is an additive bifunctor. In this case, K: = End(/) is a commutative ring and
Hom(X, Y) becomes K — K-bimodule, for any objects X, Y. Notice that the two
actions of K do not generally coincide and A is therefore not necessarily K-linear.

From the discussion in 1.2, if the functor lhom(X, —) is defined, then it is left exact
and the functor X’ ® — is right exact. The same holds for rhom(X, —)and — ® X. If A
is closed, then the contravariant functors lhom(—, Z) and rhom(—, Z) are also left
exact. If an object X has left dual, then the functor X ® — is left exact; hence exact.
In particular, if X is rigid, then all the mentioned above functors are exact. Since
X* =lhom(X,I), for a short exact sequence of rigid objects 0 — X —>
Y — Z — 0 its dual sequence 0 — Z* — Y* — X* — 0 is also exact.

1.6. EXAMPLE: THE CATEGORY OF BIMODULES OVER A RING

The category of bimodules over a ring is one of the most important examples of
monoidal categories. It turns out that this is a very general model of Abelian
monoidal category. In fact, as we will see in the next section, any closed Abelian
monoidal category can be exactly embedded in a bimodule category. In this
subsection, we show some formulae for the functors lhom and rhom.
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Fix a ring R (or more general a k-algebra R, k is a commutative ring). Consider the
category of R — R-bimodules (for the case of k-algebra, we assume that everythings
are k-linear). It is well known that the tensor product over R makes gkMody into
an Abelian monoidal category. In particular, the associative constraint is given
by the identification (¢ ® b) ® ci—> a ® (b ® ¢). The unit object is R with the natural
actions. We have the following relations between the tensor product and the
Hom-functor:

RHomR(M®RN,P)%RHomR(M,HomR(N,P)) (12)
fr—=F:(Fm)n) = f(m @ n),
=~ pHomgz(N, RHom(M, P)) (13)

i fr(Fm)m) = f(m @ n).

These isomorphisms are natural in all arguments. Thus, we immediately conclude
that

lhom(N, P) = Homg(N, P), (14)

rhom(N, P) = gRHom(N, P). (15)

The following lemma characterizes rigid bimodules and will be used in Section 4.

LEMMA 1.3. Let M be arigid bimodule. Then M considered as left or right R-module
is projective of finite type.
Proof. According to (10), we have

Homg(M, M) = M ® Homg(M, R). (16)

Assume that under this isomorphism, idy is mapped to Y © m; ® ¢, where
@' € Homg(M, R), we have the following identity, which follows from the first dia-
gram in (9): Y\, m;@'(m) = m, for all m € M. Define the following right R-module
homomorphisms

M —R", mi—> (¢'(m), p*(m), ..., ¢"(m)),
R'— M, (ri,r2,...,1r)1—> Zmiri.
i=1
It follows from the previous identity that M is a direct summand of R”, that is,
projective of finite type. Analogously, using isomorphism
rHom(M, M) =~ gHom(M, R) ® M

and the second diagram in (9) we can show that M is a left projective R-module of
finite type. ]
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2. Tensor Structures on Module Categories

Let R be a ring and Mody, be the category of right modules over R. Let © be a tensor
product on Mody with associativity constraint o and left-, right units 4, p. We
assume that the tensor product is (left and right) closed. That is, (cf 1.1) the functors
— ©®© X and X © — possess right adjoints. Consequently, these functors preserves
colimits (cf. Lemma 1.1).

Consider the functor — ® X: Modg —> Modg, which preserves the colimits. By a
theorem of Watts [15], there exists a left action of R on R® X making it an
R — R-bimodule, such that the functor — ® X is naturally equivalent to the functor
—®(ROX): Yi— Y ® (RO X), where ® denotes the tensor product over R. That
is, there is a natural isomorphism

0x(Y):Y®(ROX)— YO X. (17)

For the case X = R, we shall call the action of Ron T: = R ® R the second left action
of R on T, to distinguish it from the first left action subsequently defined.
Explicitly, the left action of R on R® X is given as follows:
— @idy: Endg(R) =2 R— Endgr((R® X))

fi—s £ Oidy. 18

Since © is biadditive, we see that Ox(Y) is also natural on X. Hence RO —:
X — R©® X is a functor form the category Modg to gkModg, commuting with col-
imits. Applying Watts’ theorem again, we have an equivalence of the functors
— O R and — ® T with a left action of R on T, called the first left action:

Uy: X T— RO X, (19)

where the subindex 1 indicates that the first left action of R on T is used to define the
tensor product. The first left action of R on T is explicitly given as follows:

idg © —: Endg(R) =2 R—> gEndg(R ® R) = gEndg(T)
fi—idr Of.

By its definition, the first left action commutes with the other actions of R on T,
making 7" an object in (gg,rModr. We have an R-linear natural isomorphism

cxy:=0y(X)o(dy @ uy): X®:,(Y®,7)— X0 Y. (20)
The associativity constraint o induces an R-linear natural isomorphism

Ay y=(d® CY,Z)C},IyQZOCX, v.z¢xov.z(Cx,y ®id):
XY 1) ZXNT)— X (Y Z1 1)1 T),
(21)

where the action of R is induced from the right action on T (indicated by a dot).
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Analogously, we have R-linear natural isomorphisms A" and p’

/VX::},XOC[_XZI®2 (X®1 T)—)X, (22)

pIX::,OXOCX,[:X®2 I® T)— X. (23)

Thus, we have defined data for a monoidal structure on Modg, namely, the tensor
product of two module X, Y is X ®, (Y ®; 7)), the associative constraint is a
and the left and right units is A" and p’. Using the naturality of ¢, we can show that
these data define a monoidal structure on Modg. More explicitly, using routine dia-
gram chasing, we can show the following lemma.

LEMMA 2.1. Let (A, ®, I, o, p, /) be amonoidal category. Let © be another bifunctor
A x A— A, which is equivalent to @ by means of a natural isomorphism c. Then ©
together with the isomorphism a, p' and 2 defined as in (21), (22) and (23), define
another monoidal structure on A. O

Setting X = Y =Z = R in (21), we obtain an isomorphism of R ®7 R ®7 R—
R-bimodules

/ .
O‘R,R,RﬁT@zzT-—)ﬁT@l ET’ 7

where e, o, * denote the different actions of R on the source and the target of ¥. They
will be referred to as the first, second, and third left actions of R. The right action is
indicated by -. The following lemma shows that o' can be restored from this
isomorphism.

LEMMA 2.2. Let P,Q be R — S-bimodules. Then a natural transformation
c.—Q®P— —QQ of functors Modg —> Mods is given by an R — S-bimodule
homomorphism ¢ = cg: P— Q.

Proof. We have the following commutative diagram:

M®P %+ M®Q

NP %, N®Q
For N = M = R and a morphism f;: R—> R or right R-modules, f;(r): = sr, we have

c(sp) = cr(s @ p) = s(cr(1 ® p)) = sc(p),

i.e. ¢ is a left R-module morphism. By definition, ¢ is a right S-module morphism,
hence it is an R — S-bimodule morphism. Now let M = R and N be arbitrary. For
n € N, choose f,: R—> N, f,(s) = ns, thus f is a morphism of right R-modules. Then
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we have, plugging /" and cy in the above diagram, cy(n ® p) = (f ® idg)cr(1 ® p) =
n® c(p). O

Setting X = R and Y = [ in (23), we have a natural isomorphism
p:=pocrr:I® T— R. (25)
Analogously, we have a natural isomorphism
Vi=2docrr I ® T— R. (26)

The coherent constraints (1), (2), imply the following condition for the
isomorphisms o', 1, p':

(o @ id7)(idr ®1 &)o' @1 id7) = (idr ®3 o )(id7 ®, o), (27)
(V' ®1id7r)(p’ @, idr) = id; ®; o’ (28)
For any right R-modules M, N, we have a sequence
Homg(M, N) J9%®5 'Homp_g(M & T., N®; T.) 9%~ , Homg(M, N.)

S »f ®idri ~id; @ f ®idr =/.
(29)

Here ;Homg(M ®, T., N ®, T') denotes the set of R — R-bimodule morphisms, the
left actions of R on whose source and target are given by the second left action
of R on T. According to the isomorphism in (22), the composition of the above
morphisms is an isomorphism, hence the map

Homg(M, N) — HOMr(M @ T,N ®, T) (30)

is injective.

Consider now the functor w: Modg — grModg, X 1—> X ®; T, where the left
action of Ron X ®; T is given by the second left action of R on 7. We have a natural
isomorphism

Exy =ogyy X @17 (YR T)— XY T)®.T.

o(X) @ w(Y) (X @ (Y @ 1)),

n=p 'R —IQ.T. (31)
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LEMMA 2.3. With the notation as above, (v, &) is a monoidal functor from the
monoidal category (Modg, — ®>(—®1 T), 1,0/, 2, p') to the bimodule category
(rModg, ®).

Proof. One has to check the diagrams in (11) for ¢ and 5 given in (31). Plugging
¢x,v.z =g y.y into the hexagon in (11) and noticing that in gModg, the
associativity constraint can be considered as the identity map, we get a pentagon
for of (the morphism & of the hexagon in (11) reduces to the identity map). In turns
out that (by virtue of Lemma 2.2), the commutativity of this pentagon follows from
(27) or, in other words, this pentagon for o is precisely the pentagon in (1) for
o and R, X, Y,Z. Analogously, the first square in (11) for 5 follows from (28)
or the triangle in (2) for ¢/. Finally, the second square in (11) for 5 follows from
the second triangle in (3). O

Remark. Although our monoidal category (Modg, ©®) is not assumed to be strict,
the functor w maps it into an almost strict monoidal category.

Solving Equations (27) and (28) allows us to classify closed monoidal structures on
Modpg. This seems to be an interesting problem.

THEOREM 2.4. Let ® be a monoidal structure on Modg. Then the functor
w:Modr — gModg, X1i—> X ®; T is a monoidal right exact embedding.

Proof. We have seen that o is monoidal, faithful, and right exact. It remains to
show that w(X) 22 0 whenever X 22 0. That is, X © R0 for all X 220. Let X
be such that X ® R =2 0. Then

0 =Hom(X ©® R, X) =2 Hom(R, rhom(X, X)).
Therefore, rhom(X, X) = 0. But then
Hom(X, X) =2 Hom(/, rhom(X, X)) = 0.
Thus, X 22 0. O

Let now A be a monoidal category which, as an Abelian category, is cocomplete
with a progenerator (i.e. small projective generator [11]) and, as a monoidal
category, is closed. Let P be a progenerator of A. Then A is equivalent to
Modpg, where R = End(P), by the functor F = Hom(P, —). Since F is an equivalence,
it carries the monoidal structure on A over to Modg. Thus, we have

COROLLARY 2.5. Let (A, ®) be an Abelian monoidal category, which is cocomplete
and closed and has a progenerator P. Then the functor w: X — Hom(P, PO X)isa
monoidal functor from A to gModg, where R = End(P). This functor is a right exact
embedding. It is exact if P is left flat with respect to the tensor product on A. An
analogous assertion holds for the functor X — Hom(P, X © P).
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Remark. For an object X in A, the actions of R on w(X) are given as follows. For
A€ R=End(P), f € o(X) =Hom(P, PO X),

i =@ oidy)f, fi=fol

Since P is a generator, i.e., Hom(P, X) # 0 for all X" 22 0, the functor w is exact if
and only if R is flat with respect to the tensor product ®. This is not alway the case.
Take, for example, the category sModg, where S is a ring not flat over Z. Then
for R = S°P? ®7 S, sModg is equivalent to Modg. The tensor product is taken over
S, therefore M ®s R =M ®5(S°? ®7, S) =2 M ®7 S. Thus R is not flat.

3. An Embedding Theorem for Small Abelian Monodial Categories

Using the result of the previous section, we show in this section that a small Abelian
monoidal category with exact tensor product can be embedded in the category of
bimodules over a ring. Our tactic is to embed C in a bigger category which is
cocomplete with a projective generator.

In the first three paragraphs of this section, we recall the notion of ind-categories.
This will be the main ingredient for our embedding. References on ind-categories
are [1] and [2, Appendix].

3.1. THE CATEGORY Ind —C

A category | is called a filtering category if to every pair 7, i of objects from | there
exists an object ’, such that Hom(i, ") and Hom(#, i”) are both not empty, and
for every pair of morphisms f, f': i —> 7, there exists a morphism g: i/ —> j equalizing
them, i.e. gf = gf’.

Let C be an Abelian category. The category Ind — C of ind-objects of C consists of
functors X:1 — C, where | is any small filtering category. Alternatively, denoting
Xi:= X(i), i € |, an ind-object of C is a directed system indexed by a small filtering
category |. For two objects X = {Xj};q; and Y = {¥}};c,, their hom-set is

Hom(X, Y): = liin(liin Hom(X;, Yj)>. (32)

1 J

The following lemma will be useful when dealing with hom-sets of ind-objects:
LEMMA 3.1 (cf. [2, Appendix, Cor. 3.2]). Let X, Y be ind-objects and X — Y a
morphism. Then there is a cofinial functor k: |1 — J, such that f can be represented,

up to isomorphism, by a small filtering system of morphisms {fi: Xi — Yi)}icl-

A functor k between filtering systems |, J is called cofinal if, for any j € J, there is
an i€l and a morphism j— k(i) and for jeJ, i€l and two morphism
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J — x(i), there is a morphism i — i’ such that the composed morphisms j — «(i') are
equal.

C is fully embedded in Ind — C by a constant functor. On the other hand, Ind — C
is fully embedded in Fun(C°P, Set). For an ind-object X = {X}},|, define the functor

Lx: Y — lim Hom(Y, X}). (33)
By Yoneda’s Lemma and the fact that Hom(—, X)) commutes with colimits, we have

Hom(X, Y) = Hom(Lx, Ly). In fact, from definition, Ly is isomorphic to lim Ly, in
Fun(C°P, Set). Therefore, i

Hom(Ly, Ly) = liln Hom(Ly,, Ly),
(by Yoneda’s Lemma) = lim Ly(X)
= lim(lim Hom(X;, ¥))).

The category Ind — C is closed under filtering direct limits (cf. [2, Appendix. 4.4] or
[1, 1.8]).

Note, however, that the direct limit computed in C (if it exists) is generally dif-
ferent from the one computed in Ind — C.

3.2. EXTENSION OF FUNCTORS

Let F: C — D be a functor. A functor Ind — F:Ind — C — ind — D is defined as
follows:

Ind — F({Xi};c)): = {F(Xi)}ier- (34)
The action of Ind — F on hom-sets is defined in a straightforward manner:

Ind — F: Hom(X, Y) = lim(lim Hom(X;, Y;)) —

4 J

Hom(Ind — F(X), Ind — F(Y)) = lim(lim Hom(f (X;), /(Y))))-

i J

According to [1, Pro 1.8.6.3], Ind — F commutes with directed inductive limits.

3.3. IND-CATEGORY FOR ABELIAN CATEGORIES

Assume now that C is Abelian. Then the functor Ly is left exact for any ind-object
X = {Xi};c)- Indeed, in the category of sets, the filtering direct limits preserves left
exact sequences, hence for a left exact sequence in C*: 0 — Y — Y — Y/,
we have the following left exact sequences:

0 — Hom(Y, X;) — Hom(Y’, X;) — Hom(Y", X)),
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i € I. Taking the limit, we have
0— Lx(Y) — Lx(Y") — Lx(Y").

Conversely, let L be a functor C°® — Ab. By Yoneda’s Lemma, for any X € C,
Hom(Hom(—, X), L(—)) =2 L(X). Consider the system C:={(X,5)|X €C,
n € L(X)}. Morphisms (X, n) — (X, ) are those from Hom(X, X’), which com-
mute with #, %/, in the sense that L(f)(s') = 5. Then L is isomorphic to the functor

Yi— lim Hom(Y, X).

(X.meCp,

If L is left exact, then C| is a filtering system. In fact, given (X, n) and (X’, %), since
left exact functors preserve direct sums, we can take the object (X”,#”) to be
X® X ,n®n). For any two morphisms f, f": (X,n)— (X', %), let g: X' — Y
be the coequalizer of f and f”. Since F is left exact (from C°P to Ab), we can take
{:=L(g)"'(1). Then (Y, ) is the required pair with g equalizing f and f".

Thus, a functor from C°® — Ab is left exact if and only if it has the form the same
asin (33). The category of left exact functor Lex(C°P, Ab) is naturally equivalent with
Ind — C (cf [2, Appendix 4.5]). We know that the category Lex(C°P, Ab) is a
Grothendieck category, i.e. complete, cocomplete with a generator and the filtering
limits preserve exact sequences. Injective envelopes exist in such a category and
an injective cogenerator exists (cf. [11, Chapter II] or [14, Chapter V, X]).

3.4. EXTENSION OF MONOIDAL STRUCTURES

Assume now that C is a monoidal category. Thus, we have a bifunctor
©®:C x C— C, which induces a bifunctor ®:Ind - C x Ind - C — Ind — C.
Explicitly, for ind-objects X = {X;} and Y = {Y}}, we set

X©Y:=limlm X, © ¥;. (35)

i J

It is easy to see that this functor defines a monoidal structure on Ind — C, with the
unit object being the unit object in C. In fact, for any ind-object X, we have:

XOI=1lmX;0I=1limX; =X
Assume now that C is Abelian. Since in Ind — C directed limits preserve exact
sequences, the tensor product in Ind — C is left (right) exact whenever the tensor

product in C is. Indeed, by Lemma 2.2, any left exact sequence 0 — X —
X' — X” can be ‘uniformly’ represented by a filtering system

0—X,— X — X, i€l

Thus, assuming that the tensor product on C is left exact, for any object Y; of C, the
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sequence
0—X,0Y,—X0Y,—X'0Y, icljel,

is exact. Since filtering limits preserve exact sequences, we have a left exact sequence
0—X0Y,—X0Y,—X0Y;,jeJ.

Taking the limit in j, we obtain a left exact sequence

0—XOoY—=XoY—X'0Y.

In particular, the tensor product on Ind — C is exact if the tensor product on C is.

Assume now that C is also rigid. Then objects of C considered as objects of
Ind — C by the constant functor are rigid in Ind — C, too, and the left (right) dual
to X is X* (resp. *X). Since Ind — C is complete, i.e., limits exist, the functors
lhom and rhom are definable. In fact, we define

lhom(X, Y):= limY ® X7,
thom(X, Y): = im*X ® Y.

l

The verification is left to the reader. Thus, if C is rigid, Ind — C is closed.

3.5. AN EMBEDDING THEOREM FOR SMALL ABELIAN MONOIDAL CATEGORIES WITH
EXACT TENSOR PRODUCT

Let C be a small, Abelian monoidal category with the exact tensor product. Set
A = Ind — C. Then we see in the previous section that A is a monoidal Grothendieck
category with the exact tensor product. Let J be an injective cogenerator in A, which
exists due to the fact that A is a Grothendieck category.

Let R:= End(J). Consider the functor

Hom(—, J): A°® — rMod.

Since J is injective, the functor is exact and since J is a cogenerator, the functor is
faithful. Moreover, the functor is full on the full category of subobjects of J®",
n < oo (cf. [11,1V.4.1]). The object J can be chosen so that every object of C satisfies
this condition. Therefore, the induced embedding C°® — gMod is exact and fully
faithful.

The tensor product on A induces a bifunctor on a subcategory of xMod, which
contains R — a progenerator of gRMod. Notice that Homaer(J, J) =2 gHom(R, R).
Therefore, we can extend the tensor product, which is considered as a functor
on the full subcategory of xkModg, consisting of one object R, to a colimit preserving
functor on the whole category gkMod (cf. [11, V.5.2, p106]). The explicit construction
is given as follows.
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First, we define the tensor product on the direct sum of R. For any sets S, T, set
RSCORT = (R® R)**T. Then, for any module M, take a resolution

RS L RT 5 m—so
and define RY[JM to be the cokern of RY[f:
RYORS — RYORT — RYOM — 0.

Analogously, we define M[JRY and then M[JN. Lemma V.5.2.1 of [11] ensures that
the above construction does not depend on the choice of resolution. The associativity
constraint is defined first on the direct sums of R and then projected onto the other
objects.

From the construction of [], we see that if M and N are finitely presented modules,
then M ® N =2 M[JN. On the other hand, we know that if an object X of C has a
resolution of the form 0 — X —> JS — J7 where S, T are finite sets, then the
R-module M = Hom(X, J) is a finitely presented R-module.

This condition may not be satisfied for any injective cogenerator. However, it can
be achieved by increasing the cogenerator. We take the direct sum of all objects
from C and then take its injective envelope. Denote the object obtained by J;. Then
J @ J; is also an injective cogenerator, in which every object of C can be embedded.
For any X € C, let iy be an embedding in J & J; and let X’ be the cokern of iy,
i.e., we have an exact sequence 0 — X — J & J; — X' —> 0. Now, let J, be
the injective envelope of the direct sum of all X’ where X runs in C. Let
J:=J&J, ®J,. Then, for any X € C, we have a resolution by J:

0—Xc—nJ—wJasX s JdJ

Since [J preserves colimits and since any module is a filtering direct limit of finite
presented modules (cf. [14, 1.5]), we have, for any R-module M = lim M;, M; are
finitely presented R-modules, /

IOM = I01lim M; = lim(/(JM;) = lim M; = M.
Thus, 7 is the unit object in xkMod with respect to the tensor product [].
Applying the result of the previous section, we have a monoidal functor
w: RMod — gModp, Mi— MR,

which is a right exact embedding. Compose o with the functor Hom(—, J), we get a
right exact functor from A°? to xfModg, whose restriction on C°? is a right exact
monoidal embedding. The last functor is given by X1— Hom(X ® J,J). Thus
we have proved:

THEOREM 3.2. Let C be a small Abelian monoidal category with the tensor product
being exact. Then C°° admits a right exact monoidal embedding into the category
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rModg for some ring R. The functor is given explicitly by X — Hom(J, X © J) fora
suitably chosen injective cogenerator J in Ind — C.

If C is an Abelian rigid monoidal category then the tensor product is exact and the
theorem above applies. In this case we have Hom(X © J,J) = Hom(J, *X © J).
Thus, composing the embedding with the contravariant exact functor X — X*,
we obtain an embedding for C: X — Hom(J, X ©® J). Moreover, the embedding
is exact. Indeed, let 0— X — Y — Z— 0 be an exact sequence. Applying
the left dual functor, we have an exact sequence 0 — Z* — Y* — X* — 0.
Let F denote the embedding functor. Then we have a right exact sequence of
R-modules:

F(Z*) — F(Y*) — F(X*) — 0. (36)

Since F is a monoidal functor, F(X*) = F(X)* = lhom(F(X), R). Therefore F(X) =
rhom(F(X*), R). Applying the left exact functor Hom(—, R), we obtain a left exact
sequence 0 — F(X) — F(Y) — F(2).

Since the category of bimodules over a ring is cocomplete, the embedding can be
extended to a functor Ind — F:Ind — A— rModg, which is also exact and
monoidal. Explicitly, this functor has the form, for X = {X;};:

Ind — F(X) = lim Hom(J, X; © J). G7)

THEOREM 3.3. Let C be a small Abelian monoidal rigid category. Then C admits an
exact monoidal embedding into the category of bimodules over a ring. Further, the
embedding is extendable to an exact embedding of the category Ind — C, which com-
mutes with colimits.

Proof. What remains to be proved is that the functor Ind — F is faithful or,
equivalently, that ind — F(X) £ 0 whenever X # 0.

First, we remark that since Ind — F is exact, Ind — F(X) 22 0, whenever X possesses
a subobject (or a quotient object) Y, with Ind — F(Y) 22 0.

The following fact in Ind — C is well known (cf. [6, Cor. I1.3.2]). If an ind-object X
is a subobject of an object X € C, then X contains a subobject Y € C. Indeed, let
irX—> X be a monomorphism in Ind — C and j: ¥ — X be a nonzero morphism,
Y € C, then ioj: Y — X is nonzero and is a morphism in C, for C is a full sub-
category of Ind — C. j(Y) is therefore in C and, on the other hand, a subobject
of X.

A direct consequence of this fact and the preceding remark is that the image under
Ind — F of any nonzero ind-object, which is a subobject of an object from C, is
nonzero.

Let now X € Ind — C be a nonzero object. There exists a nonzero morphism
j: Y —lhom(X, ), Y € C. Since

Hom(X,*Y) =2 Hom(Y ® X, I) =2 Hom(Y, lhom(X, 1)),

there exists a nonzero morphism k: X — *Y, corresponding to j in the above
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isomorphisms. Imk is a nonzero subobject of * Y, hence Ind — F(Imk) 2 0, and, con-
sequently, Ind — F(X) 22 0. O

4. Semisimple Abelian Rigid Monoidal Categories

In this section we consider a simple case, where the construction in the previous
section can be explicitly given. Let C be a small semisimple rigid monoidal category.
Thus, objects of C are direct sums of simple objects X;,i € Z, and the rings
R; = End(X;) are skew-fields, where Z is a set.

For any object X € C, we have End(X) = Hom(/, X ® X™*). If I is simple, then the
dimension of End(X) over K = End(]) is equal to the number of copies of [ in the
decomposition of X ® X*.

PROPOSITION 4.1. Let C be a semisimple rigid monoidal category with a simple unit
object. Then, for any object X € C, End(X) is finite-dimensional over End(1), in par-
ticular, objects of C are finite direct sums of simple objects.

Proof. Assume the contrary that End(X) is infinite dimensional over K = End(/).
Let e, s € S be a basis for this space and f;, s € S be the corresponding morphisms
in Hom(Z, X ® X*). Let F;: = Im(f;) be subobjects of X ® X*. The linear indepen-
dence of e, s € § implies that the intersection of any finite subset of F; is zero.
Let now F be an exact monoidal embedding of C into xRMody as in Theorem 3.3.
Then the above property of Fy is preserved under F, that is for any finite subset
K of S (,ex F(Fy) = 0. This property of submodules F(F;) of F(X ® X*) implies that
Y ses F(Fy) = @5 F(Fy). On the other hand, since each Fj is a direct summand of
X ® X* F(Fj) is a direct summand of F(X ® X*). Thus F(X ® X*) contains as direct
summand a free module of infinite rank. This contradicts with the fact that
F(X ® X*) is a projective module of finite rank when considered as a left of right
R-module (cf. Lemma 1.3). ]

If every object of C is a finite sum of simple object, the category A = Ind — C is
easy to characterize. Each object of A is a direct sum of copies of X;,i € Z. An
injective cogenerator can be chosen to be J = @, ; X;. Our embedding F is then

Mi—> Hom(@Xj, MO (@z‘@)) = H@ Hom(X;, M O Xj), (38)
J k j ok

in the category of R — R-bimodules, where R = End(J) = []; R;. Each R; being an
endomorphism ring of a simple object is a skew-field (non-commutative field).
Recall that the right action of R on F(M) = Hom(J, M ® J) is given by the com-
position (f, A)i—> f o A,f € F(M), A € F, and the left action of R on F(M) is given
by the composition (4, f)1I—> (idyy © V) o f.
By the isomorphism in (38), we see that, as right R-module, F(M) is a direct prod-
uct of M/: = @, Hom(X;, M ® Xj), where each M is a right R;-module. On the other
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hand, as left R-module, M’ is a direct sum of M7;: = Hom(X;, M © Xy), each M/, isa
left Ri-module.

From now on, in addition to the above assumptions on C, we shall assume that C is
K-linear, where K = End(/), and that End(X;) = K for all simple object X;. Thus, for
objects X and Y, the two actions of K on Hom(X, Y) coincide, and we shall denote
by h(X, Y) the dimension over K of this vector space. Note, however, that the actions
of R = End(J) over on Hom(J, M © J) are generally different.

Let c{k be the multiplicity of X; in X; ©® Xj. Then we have

h(X;, X; © Xy) = ¢ (39)

According to Proposition 4.1, for i, k fixed, there are only finitely many j such that
¢, #0. On the other hand, since C is semisimple and rigid, we have

h(X;, X; © Xi) = h(X; © Xi, X)) = h(Xs, X; © X}) = &),

where we use the notation Xj:= X/. Therefore, for i and j fixed, there are only
finitely many k, such that cfk # 0. Analogously, we can show that for k£ and j fixed,
there are only finitely many 7 such that c{:k is nonzero.

The following equation is easy to check:

h(X, X © X, © X)) = Y h(X;, X, © X)h(X, X, © Xj). (40)
k

In fact, both sides of this equation are equal to >, cfnkcﬁj. Since each object of Cisa
direct sum of finitely many simple objects, we deduce

WX, MON © X)) = " I(X;, M © X)h(X, N © X)) (41)
k

for all objects M, N.

According to Lemma 1.3, F(M) is projective of finite type as left or right
R-module. Recall that R is a product of fields R; and as right R-module, F(M)
is a product of R;-modules.

LEMMA 4.2. Let Rbe aproduct of fields R;, R =[], Ri. Let P = [, P; be projective of
finite rank over R. Then the dimension of P; over R; is uniformly bounded by a positive
integer.

Proof. For any two R-modules of the form P =[], P;, O = [[; Oi, where P; and Q;
are R; modules, we have

Homg(P, Q) = H Homgr(P, 0)) = H Homg,(P;, O)). (42)

Let now P = [], P; be projective of finite type. Then Pis a direct summand of R? for a
certain positive integer d. In particular, we have a surjective homomorphism
R?Y — P. According to (38), we see that for all 7, rankg P; < d. O
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COROLLARY 4.3. Let R; = K, for all i. For any object M in C, the ranks of
M =@, Hom(X;, M © X)) over K are bounded by a certain positive number.

THEOREM 4.4. Let C be a semisimple Abelian rigid monoidal category with simple

unit object, whose endomorphism ring is denoted by K. Assume that, for any simple

object, its endomorphism ring is isomorphic to K. Then for any object X, there exists

a positive number d, such that the dimension over K of End(X") does not exceed d".
Proof. We have

dimgEnd(X®") = h(X®", X°") = h(I, X°" © X*°").
Since [ is simple, we have

h(I, X°" © X*©") < Y " h(I, X" 0 X*°" © X))
k

< max (Z hX;, X°" 0 X*" © Xk))-
! k

For an object M in C, set

dyr: = max (Z hX;, M © Xk)>.
! %

By virtue of Corollary 4.3, d,, is well defined, i.e., finite. On the other hand, using
(41), we have

D WX, MON O Xi) =Y _ h(X;, M ® X)h(X;, N © Xk)
k Lk
< Zh(Xi, M O X))dy < dydy.
/

Therefore dyon < dydy. Consequently, A(I, X©" © X*©") < did%. = (dxdyx+)". The
proof is complete. O

Theorem 4.4 has the following interesting consequence. First, recall that given a
symmetry in C, we can define, for each object X, its categorical dimension
dimX to be the morphism [/ — X o X* S xox> I, an element of
K = End(/). This dimension is an additive (with respect to direct sums) and ten-
sor-multiplicative function on X, cf. [3, Sect. 7].

COROLLARY 4.5. Assume that C satisfies the condition of Theorem 4.4 and that,
moreover, C is symmetric and its nonzero objects have nonzero dimension. Then,
if char K = 0, for any object X of C, there exists an integer n, for which N, (X) —
the nth antisymmetric tensor power of X is zero. Consequently, C is Tannakian.
Proof. The symmetry induces an algebra homomorphism p, from the group
algebra K[S,], S, is the symmetric group, to End(X®") for any object X. Since
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the dimension of K[S,] over K is n!, Theorem 4.4 ensures that starting form some #,
the representation is not faithful. Thus, there exists a minimal central idempotent
of K[S,] which is mapped to zero by homomorphism p,,.

Since charK = 0, K[S,] is semisimple and its minimal central idempotents define
direct summands of End(X®") by means of p,. It is well known that minimal central
idempotents of K[S,] are in one-to-one correspondence with partitions of #, see,
e.g. [8]. Using the additivity and tensor multiplicativity of the categorical dimension,
we can compute the dimension of the direct summand of X" corresponding to a
minimal central idempotent in terms of the dimension of X and the corresponding
partition. More explicitly, let X; be the direct summand of X" defined by the mini-
mal central idempotent ¢;, where 4 is a partition of n. Then we have

dimx, =[] dimd + (). 43)
reli] h(ic)
where the product is taken over all blocks k of the diagram [1] defined by A and ¢(k)
denotes the content of x (the diffencence between the number of boxes left to k
and the number of the boxes above ), /() denotes the hook-length of k (the number
of boxes right to- and below « including x itself-counted only one time), see also
[10,7].

Now, the fact that for some 7, there exists a partition 4, such that ¢; is mapped to
zero by p,,, implies that the dimension of X should be an integer. By the assumption
that the dimension of any object is nonzero and by the obvious fact that the
dimension of the unit object is 1, it follows that the dimension of any nonzero object
is a positive integer. In this case, for an object M with dimension m, we have
dim A,, X =0, therefore /\,, X = 0. The fact that C is Tannakian now follows from
Deligne’s theorem [3, Thm. 7.1]. O
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