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Abstract. We show that, with some technical conditions, an Abelian monoidal category admits a
monoidal embedding into the category of bimodules over a ring. The case of semisimple rigid
monoidal categories is studied in more detail.
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1. Introduction

The problem of ¢nding an embedding theorem for Abelian monoidal categories is
motivated on the one hand by the Freyd^Mitchell full embedding theorem and
on the other hand by Deligne’s and Doplicher and Roberts’ theories of ‘abstract
Tannakian^Krein’s duality’ ([3, 4]).

By de¢nition, an embedding from one Abelian category to another is a faithful
functor which sends nonzero objects to nonzero objects. According to Freyd and
Mitchell, a small Abelian category admits an exact full embedding into the category
of modules over a ring [11]. This important theorem allows one, for example, to treat
¢nite diagrams in an Abelian category as diagrams of modules.

In [3], Deligne shows that, under certain technical conditions, an Abelian sym-
metric rigid monoidal category admits an exact monoidal embedding into the cat-
egory of modules over a commutative ring. Hence, by Tannaka^Krein duality,
such a category is equivalent to the category of representations of a groupoid
[3, Theorem 1.12]. Doplicher and Roberts study the case of compact groups and
obtain an analogous result for C�-categories [4].

With the birth of quantum groups ([5]), the theory of monoidal category has a new
motivation. The ‘symmetric’ condition turns out to be too strong and is replaced by a
weaker one, the ‘braided’ condition. The problem of generalizing Deligne’s and
Doplicher and Roberts’ results to braided categories is interesting. Yet, one does
not know what can be a target for such an embedding.
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The situation seems to be simpler if we drop the symmetry, i.e., to ¢nd an
embedding for Abelian monoidal categories. A natural candidate for the target
category is the category of bimodules over a ring. In this paper we show that
any small monoidal cateory with an exact tensor product admits a right exact
monoidal embedding into the category of bimodules over a ring. In particular,
a small Abelian rigid monoidal category admits an exact monoidal embedding
(Theorem 3.2).

Unfortunately, this embedding theorem does not seem to help solve the problem
for braided categories, for, according to Schauenburg [13], the category of bimodules
over a ring does not generally possess a braiding. Indeed, he showed that the center of
the category of bimodules over a ring is trivial, i.e., contains only direct sums of the
ring.

Let us brie£y explain the main idea of the paper. To ¢nd an embedding for a small
Abelian monoidal category, we ¢rst extend it to a larger monoidal category which is
cocomplete and has an injective cogenerator, namely, a Grothendieck monoidal
category. Then we extend the latter category to a module category, say over a ring
R. Finally, we construct a monoidal functor from a module category with a monoidal
structure to a bimodule category with the usual tensor product. The construction of
the last functor will be given in Section 2. In Section 3 we explain how to extend
the tensor product on a small Abelian monoidal category to a monoidal structure
on a module category containing this small Abelian monoidal category. In the last
section, we consider an application to the special case of small semisimple categories.
An explicit embedding is described. As a consequence, we show that a small
semisimple symmetric monoidal category with a simple unit object is Tannakian
(Corollary 4.5).

Throughout the paper, the tensor product over a ring R is denoted for short by �.
� also denotes the tensor product in an abstract monoidal category when no con-
fusion may appear, othewise, we use the signs � or &. The category of right
R-modules (resp. left R-modules or R� R-bimodules) is denoted by ModR (resp.
RMod or RModR). HomR (resp. RHom or RHomR) denotes the set of homomorph-
isms of right R-modules (resp. left R-modules or R� R-bimodules).

1. Abelian Monoidal Categories

1.1. MONOIDAL CATEGORIES

Let A be a category. A monoidal structure on A consists of the following data: a
bifunctor

�:A� A�!A; ðX ;Y Þ 7�!X � Y ;

called the tensor product, an object I , called the unit object, for which
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(i) there exists a natural isomorphism a between the functors

ð� � �Þ � � and ��ð� ��Þ; aX ;Y ;Z: ðX � Y Þ � Z�!X � ðY � ZÞ;

called the associativity constraint, such that the following diagram commutes:

ððX � Y Þ � ZÞ �U ������!
aX ;Y ;Z�1

X � ðY � ZÞÞ �UÞ �����!
aX ;Y ;�Z;U

X � ððY � ZÞ �UÞ

aX�Y ;Z;U

??y ??y 1�aY ;Z;U

ðX � Y Þ � ðZ �UÞ ����������������������������������!
aX ;Y ;Z�;U

X � ðY � ðZ �UÞÞ
ð1Þ

(2) there exist natural ismorphisms of functors �� I , I �� with the identity
functor: rX :X � I �!X and lX : I � X �!X , called right and left units, such that
the following diagram commutes:

ðA;�; I; a; l; rÞ is called a monoidal category. In the case when a; l; r are identity
morphisms, we have a strict monoidal category. In the general case, the associativity
constraint a allows one to speak of a tensor product of many objects
X1 � X2 � 
 
 
 � Xn, without specifying the order in which the tensor product is
applied (Mac Lane’s coherence theorem [9, VII,2]).

Using (1) and (2), we can show that the following diagrams commute:

and that lI ¼ rI (cf. [12]).
From the de¢nition of a bifunctor, we have

f � g ¼ ð1� gÞ � ðf � 1Þ ¼ ðf � 1Þ � ð1� gÞ: ð4Þ

ðX � IÞ � Y aX ;I;Y X � ðI � Y Þ

rX�1 1�lY ð2Þ

X � Y

ðI � X Þ � Y aI;X ;Y I � ðX � Y Þ ðX � Y Þ � I aX ;Y ;I X � ðY � IÞ

lX�1 lX�Y rX�Y 1�rY

X � Y X � Y

ð3Þ
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In particular, using the isomorphism lI ¼ rI , we have, for r; s 2 EndðIÞ:

Therefore, using Equation (3), we have r � s ¼ s � r. Thus, EndðIÞ is an Abelian group
with respect to composition. Further, this group acts on any set HomðX ;Y Þ from the
left and the right by means of the isomorphism l and r:

r 
 f :¼ lY ðr� f Þl
�1
X ; f 
 r:¼ rY ðf � rÞr

�1
X : ð6Þ

We have 1I 
 f ¼ f 
 1I ¼ f .

1.2. THE INTERNAL HOMS

Each object X in A de¢nes a functor X ��:A�!A, Y 7 �!X � Y . If this functor
has a right adjoint, the right adjoint will be denoted by rhomðX ;�Þ. We have,
by de¢nition, a natural isomorphism

HomðX � Y ;ZÞ ffi HomðY ; rhomðX ;ZÞÞ; 8 Y ;Z: ð7Þ

The functor lhom is de¢ne analogously by

HomðY � X ;ZÞ ffi HomðY ; lhomðX ;ZÞÞ; 8 Y ;Z: ð8Þ

The category A is called left closed (resp. right closed or closed) if the functor
lhomðX ;�Þ (resp. rhomðX ;�Þ or both functors) is de¢ned for any X 2 A. The gen-
eral theory of adjoint functors (cf. [11, Corollary V.3.2]) gives us the following cri-
teria of closedness

LEMMA 1.1. Assume that A is a cocomplete category with a generator. Then the
tensor product on A is closed if and only if it commutes with colimits.

In the general case, the functor lhomðX ;�Þ and rhomðX ;�Þ preserves colimits. If
the category is closed, then we can also speak of the (contravariant) functors
lhomð�;ZÞ and rhomð�;ZÞ.

LEMMA 1.2. Assume thatA is closed. Then the functors lhomð�;ZÞ and rhomð�;ZÞ
preserve colimits (i.e. sending colimits to limits).

I � I r�1 I � I 1�s I � I

rI rI lI lI ð5Þ

I r I s I :
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Proof. We have, for any Y 2 A,

HomðY ; rhomðlim
�!
Xi;ZÞÞ ffi Homðlim

�!
Xi � Y ;ZÞ

ffi Homðlim
�!
ðXi � Y Þ;ZÞ

ffi lim
 �

HomðXi � Y ;ZÞ

ffi lim
 �

HomðY ; rhomðXi;ZÞÞ

ffi HomðY ; lim
 �

rhomðXi;ZÞÞ:

Since the above isomorphisms hold for any Y , we conclude that

rhomðlim
�!
Xi;ZÞ ffi lim

 �
rhomðXi;ZÞ:

The case of lhomð�;ZÞ is treated quite analogously. &

1.3. RIGID OBJECTS

Setting Z ¼ I and Y ¼ lhomðX ; IÞ in (8), we obtain a morphism evX : lhomðX ; IÞ�
X �! I , which corresponds to the identity morphism in HomðlhomðX ; IÞ;
lhomðX ; IÞÞ. It is obvious that ðlhomðX ; IÞ; evX Þ is universal with this property.
By de¢nition, a left dual to an object X is a pair ðX�; evX :X� � X �! IÞ such that
there exists a morphism dbX : I �!X � X� making the following diagrams com-
mutative:

The left dual, if it exists, is uniquely determined up to an isomorphism. In this case,
we can identify it with lhomðX ; IÞ. Moreover, we have a natural isomorphism

lhomðX ;ZÞ ffi Z � X�: ð10Þ

In particular, the functor lhomðX ;�Þ exists if X has a left dual. The diagrams in (9)
also imply that the functor X �� has a left adjoint: X� � �, consequently
X �� commutes with colimits.

The de¢nition of a right dual �X to X is similar. Analogous assertions hold for
objects having right dual. If �X exists, we can identify it with rhomðX ; IÞ and
we have rhomðX ;ZÞ ffi �X � Z. An object in A is called rigid if it possesses left
and right duals. The category A is called rigid if its objects are rigid.

X dbX�1 ðX � X�Þ � X X� id�dbX X� � ðX � ðX � X�Þ

id aX ;X� ;X idX� a�1
X� ;X ;X�

X idX�evX X � ðX� � X Þ X evX�idX� ðX� � X Þ � X�

ð9Þ
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1.4. MONOIDAL FUNCTORS

Let ðA;�; I ; a; r; lÞ and ð �AA; ���; �II; �aa; �rr; �llÞ be monoidal categories. A monoidal functor
A�! �AA consists of a functor F:A�! �AA, a natural ismorphism xX ;Y :FðX Þ ���ðY Þ �!
FðX � Y Þ and an isomorphism Z: �II �!FðIÞ, satisfying the following commutative
diagrams:

If an object X in A is rigid, then its image FðX Þ is rigid in �AA.

1.5. ABELIAN MONOIDAL CATEGORIES

A monoidal category ðA;�Þ is called Abelian monoidal if it is Abelian and the tensor
product is an additive bifunctor. In this case, K :¼ EndðIÞ is a commutative ring and
HomðX ;Y Þ becomes K � K-bimodule, for any objects X ;Y . Notice that the two
actions of K do not generally coincide and A is therefore not necessarily K-linear.

From the discussion in 1.2, if the functor lhomðX ;�Þ is de¢ned, then it is left exact
and the functorX �� is right exact. The same holds for rhomðX ;�Þ and�� X . IfA
is closed, then the contravariant functors lhomð�;ZÞ and rhomð�;ZÞ are also left
exact. If an object X has left dual, then the functor X �� is left exact; hence exact.
In particular, if X is rigid, then all the mentioned above functors are exact. Since
X� ¼ lhomðX ; IÞ, for a short exact sequence of rigid objects 0�!X �!
Y �!Z�! 0 its dual sequence 0�!Z� �!Y � �!X� �! 0 is also exact.

1.6. EXAMPLE: THE CATEGORY OF BIMODULES OVER A RING

The category of bimodules over a ring is one of the most important examples of
monoidal categories. It turns out that this is a very general model of Abelian
monoidal category. In fact, as we will see in the next section, any closed Abelian
monoidal category can be exactly embedded in a bimodule category. In this
subsection, we show some formulae for the functors lhom and rhom.

ðFðX Þ ���FðY ÞÞ ���FðZÞ x ���1 FðX � Y Þ ���FðZÞ x FððX � Y Þ � ZÞ

�aa FðaÞ

FðX Þ ���ðFðY Þ ���FðZÞÞ 1 ���x FðX Þ ���FðY � ZÞ x FðX � ðY � ZÞÞ

�II ���FðX Þ Z�1 FðIÞ ���FðX Þ FðX Þ ����II 1�Z FðX Þ ���FðIÞ

�ll x �rr x

FðX Þ FðlÞ FðI � X Þ FðX Þ FðrÞ FðX � IÞ

ð11Þ
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Fix a ringR (or more general a k-algebra R, k is a commutative ring). Consider the
category of R� R-bimodules (for the case of k-algebra, we assume that everythings
are k-linear). It is well known that the tensor product over R makes RModR into
an Abelian monoidal category. In particular, the associative constraint is given
by the identi¢cation ða� bÞ � c 7 �! a� ðb� cÞ. The unit object is R with the natural
actions. We have the following relations between the tensor product and the
Hom-functor:

RHomRðM �R N;PÞ ffi RHomRðM;HomRðN;PÞÞ ð12Þ

f 7 �! �ff : ð�ff ðmÞÞðnÞ ¼ f ðm� nÞ;

ffi RHomRðN; RHomðM;PÞÞ ð13Þ

f 7 �! ~ff : ð~ff ðnÞÞðmÞ ¼ f ðm� nÞ:

These isomorphisms are natural in all arguments. Thus, we immediately conclude
that

lhomðN;PÞ ffi HomRðN;PÞ; ð14Þ

rhomðN;PÞ ¼ RHomðN;PÞ: ð15Þ

The following lemma characterizes rigid bimodules and will be used in Section 4.

LEMMA 1.3. LetM be a rigid bimodule. ThenM considered as left or right R-module
is projective of ¢nite type.
Proof. According to (10), we have

HomRðM;MÞ ffiM �HomRðM;RÞ: ð16Þ

Assume that under this isomorphism, idM is mapped to
Pn
i¼1mi � ji, where

ji 2 HomRðM;RÞ, we have the following identity, which follows from the ¢rst dia-
gram in (9):

Pn
i¼1mij

iðmÞ ¼ m, for all m 2M. De¢ne the following right R-module
homomorphisms

M�!Rn; m 7 �! ðj1ðmÞ;j2ðmÞ; . . . ;jnðmÞÞ;

Rn�!M; ðr1; r2; . . . ; rnÞ 7�!
Xn
i¼1

miri:

It follows from the previous identity that M is a direct summand of Rn, that is,
projective of ¢nite type. Analogously, using isomorphism

RHomðM;MÞ ffi RHomðM;RÞ �M

and the second diagram in (9) we can show that M is a left projective R-module of
¢nite type. &
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2. Tensor Structures on Module Categories

Let R be a ring and ModR be the category of right modules over R. Let� be a tensor
product on ModR with associativity constraint a and left-, right units l; r. We
assume that the tensor product is (left and right) closed. That is, (cf 1.1) the functors
�� X and X �� possess right adjoints. Consequently, these functors preserves
colimits (cf. Lemma 1.1).

Consider the functor �� X :ModR�!ModR, which preserves the colimits. By a
theorem of Watts [15], there exists a left action of R on R� X making it an
R� R-bimodule, such that the functor �� X is naturally equivalent to the functor
�� ðR� X Þ: Y 7 �!Y � ðR� X Þ, where � denotes the tensor product over R. That
is, there is a natural isomorphism

yX ðY Þ:Y � ðR� X Þ �!Y � X : ð17Þ

For the caseX ¼ R, we shall call the action ofR on T :¼ R� R the second left action
of R on T , to distinguish it from the ¢rst left action subsequently de¢ned.

Explicitly, the left action of R on R� X is given as follows:

�� idX :EndRðRÞ ffi R�!EndRððR� X Þ:Þ

f 7 �! f � idX :
ð18Þ

Since � is biadditive, we see that yX ðY Þ is also natural on X . Hence R��:
X 7 �!R� X is a functor form the category ModR to RModR, commuting with col-
imits. Applying Watts’ theorem again, we have an equivalence of the functors
�� R and �� T with a left action of R on T , called the ¢rst left action:

mX :X �1 T �!R� X ; ð19Þ

where the subindex 1 indicates that the ¢rst left action of R on T is used to de¢ne the
tensor product. The ¢rst left action of R on T is explicitly given as follows:

idR ��:EndRðRÞ ffi R�! REndRðR� RÞ ¼ REndRðT Þ

f 7 �! idR � f :

By its de¢nition, the ¢rst left action commutes with the other actions of R on T ,
making T an object in ðR�ZRÞModR. We have an R-linear natural isomorphism

cX ;Y :¼ yY ðX Þ � ðidX � mY Þ:X � 2ðY � 1T Þ �!X � Y : ð20Þ

The associativity constraint a induces an R-linear natural isomorphism

a0X ;Y ;Z:¼ðid� cY ;ZÞc
�1
X ;Y�ZaX ;Y ;ZcX�Y ;ZðcX ;Y � idÞ:

ðX �2 ðY �1 T ÞÞ �2 ðZ �1 T
Þ �!X �2 ððY �2 ðZ �1 T ÞÞ �1 T
Þ;

ð21Þ

where the action of R is induced from the right action on T (indicated by a dot).
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Analogously, we have R-linear natural isomorphisms l0 and r0

l0X :¼ lX � cI;X : I �2 ðX �1 T Þ �!X ; ð22Þ

r0X :¼ rX � cX ;I :X �2 ðI �1 T Þ �!X : ð23Þ

Thus, we have de¢ned data for a monoidal structure on ModR, namely, the tensor
product of two module X ;Y is X �2 ðY �1 T ÞÞ, the associative constraint is �aa
and the left and right units is l0 and r0. Using the naturality of c, we can show that
these data de¢ne a monoidal structure on ModR. More explicitly, using routine dia-
gram chasing, we can show the following lemma.

LEMMA 2.1. Let ðA;�; I; a; r; lÞ be a monoidal category. Let� be another bifunctor
A� A�!A, which is equivalent to � by means of a natural isomorphism c. Then �
together with the isomorphism �aa, r0 and l0 de¢ned as in (21), (22) and (23), de¢ne
another monoidal structure on A. &

Setting X ¼ Y ¼ Z ¼ R in (21), we obtain an isomorphism of R�Z R�Z R�
R-bimodules

a0R;R;R: �"
1

�
"

2

T �2 �"
3

T
 �! �
"

3

�
"

1

T �1 �"
2

T ; ð7Þ

where �; �; � denote the different actions of R on the source and the target of C. They
will be referred to as the ¢rst, second, and third left actions of R. The right action is
indicated by 
. The following lemma shows that a0 can be restored from this
isomorphism.

LEMMA 2.2. Let P;Q be R� S-bimodules. Then a natural transformation
c:�� P�! ��Q of functors ModR�!ModS is given by an R� S-bimodule
homomorphism c ¼ cR:P�!Q.
Proof. We have the following commutative diagram:

For N ¼M ¼ R and a morphism fs:R�!R or right R-modules, fsðrÞ:¼ sr, we have

cðspÞ ¼ cRðs� pÞ ¼ sðcRð1� pÞÞ ¼ scðpÞ;

i.e. c is a left R-module morphism. By de¢nition, c is a right S-module morphism,
hence it is an R� S-bimodule morphism. Now let M ¼ R and N be arbitrary. For
n 2 N, choose fn:R�!N, fnðsÞ ¼ ns, thus f is a morphism of right R-modules. Then

M � P cM M �Q

f f�idQ

N � P cN N �Q
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we have, plugging f and cN in the above diagram, cNðn� pÞ ¼ ðf � idQÞcRð1� pÞ ¼
n� cðpÞ: &

Setting X ¼ R and Y ¼ I in (23), we have a natural isomorphism

r0:¼ r � cR;I : I �1 T �!R: ð25Þ

Analogously, we have a natural isomorphism

l0:¼ l � cI;R: I �2 T �!R: ð26Þ

The coherent constraints (1), (2), imply the following condition for the
isomorphisms a0; l0; r0:

ða0 �1 idT ÞðidT �1 a0Þða0 �2 idT Þ ¼ ðidT �3 a0ÞðidT �2 a0Þ; ð27Þ

ðl0 �1 idT Þðr0 �2 idT Þ ¼ idI �1 a0: ð28Þ

For any right R-modules M;N, we have a sequence

Here 2HomRðM �1 T
;N �1 T
Þ denotes the set of R� R-bimodule morphisms, the
left actions of R on whose source and target are given by the second left action
of R on T . According to the isomorphism in (22), the composition of the above
morphisms is an isomorphism, hence the map

HomRðM;NÞ �! 2HomRðM �1 T ;N �1 T Þ ð30Þ

is injective.
Consider now the functor o:ModR�! RModR, X 7 �!X �1 T , where the left

action of R on X �1 T is given by the second left action of R on T . We have a natural
isomorphism

xX ;Y :¼ a
0

R;X ;Y : ðX �1 � T Þ �2 ðY �1 T :Þ �! ðX �2 ððY �1 T ÞÞ �1 � T :�� ��
oðX Þ � oðY Þ oðX �2 ðY �1 T ÞÞ;

Z ¼ r�1 : � R: �! I �1 � T : ð31Þ

HomRðM; NÞ idM��
2HomR�RðM �1 T :; N �1 T :Þ idI�� HomRðM; N:Þ

f f � idT idI � f � idT ¼ f :

ð29Þ
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LEMMA 2.3. With the notation as above, ðo; xÞ is a monoidal functor from the
monoidal category ðModR;��2 ð� �1 T Þ; I; a0; l

0; r0Þ to the bimodule category
ðRModR;�Þ.
Proof. One has to check the diagrams in (11) for x and Z given in (31). Plugging

xX ;Y ;Z ¼ a0R;X ;Y ;Z into the hexagon in (11) and noticing that in RModR, the
associativity constraint can be considered as the identity map, we get a pentagon
for a0 (the morphism �aa of the hexagon in (11) reduces to the identity map). In turns
out that (by virtue of Lemma 2.2), the commutativity of this pentagon follows from
(27) or, in other words, this pentagon for a0 is precisely the pentagon in (1) for
a0 and R;X ;Y ;Z. Analogously, the ¢rst square in (11) for Z follows from (28)
or the triangle in (2) for a0. Finally, the second square in (11) for Z follows from
the second triangle in (3). &

Remark. Although our monoidal category ðModR;�Þ is not assumed to be strict,
the functor o maps it into an almost strict monoidal category.

Solving Equations (27) and (28) allows us to classify closed monoidal structures on
ModR. This seems to be an interesting problem.

THEOREM 2.4. Let � be a monoidal structure on ModR. Then the functor
o:ModR�! RModR, X 7 �!X �1 T is a monoidal right exact embedding.
Proof. We have seen that o is monoidal, faithful, and right exact. It remains to

show that oðX Þ 6ffi 0 whenever X 6ffi 0. That is, X � R 6ffi 0 for all X 6ffi 0. Let X
be such that X � R ffi 0. Then

0 ¼ HomðX � R;X Þ ffi HomðR; rhomðX ;X ÞÞ:

Therefore, rhomðX ;X Þ ¼ 0. But then

HomðX ;X Þ ffi HomðI ; rhomðX ;X ÞÞ ¼ 0:

Thus, X ffi 0. &

Let now A be a monoidal category which, as an Abelian category, is cocomplete
with a progenerator (i.e. small projective generator [11]) and, as a monoidal
category, is closed. Let P be a progenerator of A. Then A is equivalent to
ModR, where R ¼ EndðPÞ, by the functor F ¼ HomðP;�Þ. Since F is an equivalence,
it carries the monoidal structure on A over to ModR. Thus, we have

COROLLARY 2.5. Let ðA;�Þ be an Abelian monoidal category, which is cocomplete
and closed and has a progenerator P. Then the functor o:X 7 �!HomðP;P � X Þ is a
monoidal functor from A to RModR, where R ¼ EndðPÞ. This functor is a right exact
embedding. It is exact if P is left £at with respect to the tensor product on A. An
analogous assertion holds for the functor X 7 �!HomðP;X � PÞ.
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Remark. For an object X in A, the actions of R on oðX Þ are given as follows. For
l 2 R ¼ EndðPÞ, f 2 oðX Þ ¼ HomðP;P � X Þ,

lf ¼ ðl� idX Þf ; f l ¼ f � l:

Since P is a generator, i.e., HomðP;X Þ 6¼ 0 for all X 6ffi 0, the functor o is exact if
and only if R is £at with respect to the tensor product �. This is not alway the case.
Take, for example, the category SModS, where S is a ring not £at over Z. Then
for R ¼ Sop �Z S, SModS is equivalent to ModR. The tensor product is taken over
S, therefore M �S R ¼M �S ðSop �Z SÞ ffiM �Z S. Thus R is not £at.

3. An Embedding Theorem for Small Abelian Monodial Categories

Using the result of the previous section, we show in this section that a small Abelian
monoidal category with exact tensor product can be embedded in the category of
bimodules over a ring. Our tactic is to embed C in a bigger category which is
cocomplete with a projective generator.

In the ¢rst three paragraphs of this section, we recall the notion of ind-categories.
This will be the main ingredient for our embedding. References on ind-categories
are [1] and [2, Appendix].

3.1. THE CATEGORY Ind� C

A category I is called a ¢ltering category if to every pair i; i0 of objects from I there
exists an object i00, such that Homði; i00Þ and Homði0; i00Þ are both not empty, and
for every pair of morphisms f ; f 0: i�! i0, there exists a morphism g: i0 �! j equalizing
them, i.e. gf ¼ gf 0.

Let C be an Abelian category. The category Ind� C of ind-objects of C consists of
functors X: I�!C, where I is any small ¢ltering category. Alternatively, denoting
Xi:¼ XðiÞ; i 2 I, an ind-object of C is a directed system indexed by a small ¢ltering
category I. For two objects X ¼ fXigi2I and Y ¼ fYjgj2J, their hom-set is

HomðX;YÞ:¼ lim
 �
i

lim
�!
j

HomðXi;YjÞ

 !
: ð32Þ

The following lemma will be useful when dealing with hom-sets of ind-objects:

LEMMA 3.1 (cf. [2, Appendix, Cor. 3.2]). Let X;Y be ind-objects and f :X�!Y a
morphism. Then there is a co¢nial functor k: I�!J, such that f can be represented,
up to isomorphism, by a small ¢ltering system of morphisms ffi:Xi �!YkðiÞgi2I.

A functor k between ¢ltering systems I;J is called co¢nal if, for any j 2 J, there is
an i 2 I and a morphism j�!kðiÞ and for j 2 J, i 2 I and two morphism
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j �!
�!

kðiÞ, there is a morphism i�! i0 such that the composed morphisms j �!
�!

kði0Þ are
equal.

C is fully embedded in Ind� C by a constant functor. On the other hand, Ind� C
is fully embedded in FunðCop;SetÞ. For an ind-object X ¼ fXigi2I, de¢ne the functor

LX:Y �! lim
�!

HomðY ;XiÞ: ð33Þ

By Yoneda’s Lemma and the fact that Homð�;X Þ commutes with colimits, we have
HomðX;YÞ ffi HomðLX;LYÞ. In fact, from de¢nition, LX is isomorphic to lim

�!
i

LXi in
FunðCop;SetÞ. Therefore,

HomðLX;LYÞ ¼ lim
 �
i

HomðLXi ;LYÞ;

ðby Yoneda’s LemmaÞ ¼ lim
 �
i

LYðXiÞ

¼ lim
 �
i

ðlim
�!
j

HomðXi;YjÞÞ:

The category Ind� C is closed under ¢ltering direct limits (cf. [2, Appendix. 4.4] or
[1, I.8]).

Note, however, that the direct limit computed in C (if it exists) is generally dif-
ferent from the one computed in Ind� C.

3.2. EXTENSION OF FUNCTORS

Let F :C�!D be a functor. A functor Ind� F: Ind� C�! ind�D is de¢ned as
follows:

Ind� FðfXigi2IÞ:¼ fF ðXiÞgi2I : ð34Þ

The action of Ind� F on hom-sets is de¢ned in a straightforward manner:

Ind� F:HomðX;YÞ ¼ lim
 �
i

ðlim
�!
j

HomðXi;YjÞÞ �!

HomðInd� FðXÞ; Ind� FðYÞÞ ¼ lim
 �
i

ðlim
�!
j

Homðf ðXiÞ; f ðYjÞÞÞ:

According to [1, Pro I.8.6.3], Ind� F commutes with directed inductive limits.

3.3. IND-CATEGORY FOR ABELIAN CATEGORIES

Assume now that C is Abelian. Then the functor LX is left exact for any ind-object
X ¼ fXigi2I. Indeed, in the category of sets, the ¢ltering direct limits preserves left
exact sequences, hence for a left exact sequence in Cop: 0�!Y �!Y 0 �!Y 0,
we have the following left exact sequences:

0�!HomðY ;XiÞ �!HomðY 0;XiÞ �!HomðY 00;XiÞ;
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i 2 I. Taking the limit, we have

0�!LXðY Þ �!LXðY 0Þ �!LXðY 0Þ:

Conversely, let L be a functor Cop
�!Ab. By Yoneda’s Lemma, for any X 2 C,

HomðHomð�;X Þ;Lð�ÞÞ ffi LðX Þ. Consider the system CL:¼ fðX ; ZÞjX 2 C;
Z 2 LðX Þg. Morphisms ðX ; ZÞ �!ðX 0; Z0Þ are those from HomðX ;X 0Þ, which com-
mute with Z; Z0, in the sense that Lðf ÞðZ0Þ ¼ Z. Then L is isomorphic to the functor

Y 7 �! lim
�!

ðX ;ZÞ2CL

HomðY ;X Þ:

If L is left exact, then CL is a ¢ltering system. In fact, given ðX ; ZÞ and ðX 0; Z0Þ, since
left exact functors preserve direct sums, we can take the object ðX 00; Z00Þ to be
ðX � X 0; Z� Z0Þ. For any two morphisms f ; f 0: ðX ; ZÞ �!ðX 0; Z0Þ, let g:X 0 �!Y
be the coequalizer of f and f 0. Since F is left exact (from Cop to Ab), we can take
z:¼ LðgÞ�1

ðZ0Þ. Then ðY ; zÞ is the required pair with g equalizing f and f 0.
Thus, a functor from Cop

�!Ab is left exact if and only if it has the form the same
as in (33). The category of left exact functor LexðCop;AbÞ is naturally equivalent with
Ind� C (cf [2, Appendix 4.5]). We know that the category LexðCop;AbÞ is a
Grothendieck category, i.e. complete, cocomplete with a generator and the ¢ltering
limits preserve exact sequences. Injective envelopes exist in such a category and
an injective cogenerator exists (cf. [11, Chapter II] or [14, Chapter V, X]).

3.4. EXTENSION OF MONOIDAL STRUCTURES

Assume now that C is a monoidal category. Thus, we have a bifunctor
�:C� C�!C, which induces a bifunctor �: Ind� C� Ind� C�! Ind� C.
Explicitly, for ind-objects X ¼ fXig and Y ¼ fYjg, we set

X� Y:¼ lim
�!
i

lim
�!
j

Xi � Yj: ð35Þ

It is easy to see that this functor de¢nes a monoidal structure on Ind� C, with the
unit object being the unit object in C. In fact, for any ind-object X, we have:

X� I ¼ lim
�!
i

Xi � I ¼ lim
�!
i

Xi ¼ X:

Assume now that C is Abelian. Since in Ind� C directed limits preserve exact
sequences, the tensor product in Ind� C is left (right) exact whenever the tensor
product in C is. Indeed, by Lemma 2.2, any left exact sequence 0�!X�!
X0 �!X00 can be ‘uniformly’ represented by a ¢ltering system

0�!Xi �!X 0i �!X
00
i ; i 2 I:

Thus, assuming that the tensor product on C is left exact, for any object Yj of C, the
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sequence

0�!Xi � Yj �!X 0i � Yj �!X
00
i � Yj; i 2 I; j 2 J;

is exact. Since ¢ltering limits preserve exact sequences, we have a left exact sequence

0�!X� Yj �!X0 � Yj �!X00 � Yj; j 2 J:

Taking the limit in j, we obtain a left exact sequence

0�!X� Y�!X0 � Y�!X00 � Y:

In particular, the tensor product on Ind� C is exact if the tensor product on C is.
Assume now that C is also rigid. Then objects of C considered as objects of

Ind� C by the constant functor are rigid in Ind� C, too, and the left (right) dual
to X is X� (resp. �X ). Since Ind� C is complete, i.e., limits exist, the functors
lhom and rhom are de¢nable. In fact, we de¢ne

lhomðX;YÞ:¼ lim
i
 �

Y� X�i ;

rhomðX;YÞ:¼ lim
i
 �

�X � Y:

The veri¢cation is left to the reader. Thus, if C is rigid, Ind� C is closed.

3.5. AN EMBEDDING THEOREM FOR SMALL ABELIAN MONOIDAL CATEGORIES WITH

EXACT TENSOR PRODUCT

Let C be a small, Abelian monoidal category with the exact tensor product. Set
A ¼ Ind� C. Then we see in the previous section that A is a monoidal Grothendieck
category with the exact tensor product. Let J be an injective cogenerator in A, which
exists due to the fact that A is a Grothendieck category.

Let R:¼ EndðJÞ. Consider the functor

Homð�; JÞ:Aop
�! RMod:

Since J is injective, the functor is exact and since J is a cogenerator, the functor is
faithful. Moreover, the functor is full on the full category of subobjects of J�n,
n <1 (cf. [11, IV.4.1]). The object J can be chosen so that every object of C satis¢es
this condition. Therefore, the induced embedding Cop

�! RMod is exact and fully
faithful.

The tensor product on A induces a bifunctor on a subcategory of RMod, which
contains R ^ a progenerator of RMod. Notice that HomAopðJ; JÞ ffi RHomðR;RÞ.
Therefore, we can extend the tensor product, which is considered as a functor
on the full subcategory of RModR, consisting of one object R, to a colimit preserving
functor on the whole category RMod (cf. [11, V.5.2, p106]). The explicit construction
is given as follows.
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First, we de¢ne the tensor product on the direct sum of R. For any sets S;T , set
RS&RT ¼ ðR� RÞS�T . Then, for any module M, take a resolution

RS �!
f
RT �!

g
M�! 0

and de¢ne RU&M to be the cokern of RU&f :

RU&RS �!RU&RT �!RU&M�! 0:

Analogously, we de¢neM&RU and thenM&N. Lemma V.5.2.1 of [11] ensures that
the above construction does not depend on the choice of resolution. The associativity
constraint is de¢ned ¢rst on the direct sums of R and then projected onto the other
objects.

From the construction of&, we see that ifM andN are ¢nitely presented modules,
then M �N ffiM&N: On the other hand, we know that if an object X of C has a
resolution of the form 0�!X �! JS �! JT where S;T are ¢nite sets, then the
R-module M ¼ HomðX ; JÞ is a ¢nitely presented R-module.

This condition may not be satis¢ed for any injective cogenerator. However, it can
be achieved by increasing the cogenerator. We take the direct sum of all objects
from C and then take its injective envelope. Denote the object obtained by J1. Then
J � J1 is also an injective cogenerator, in which every object of C can be embedded.
For any X 2 C, let iX be an embedding in J � J1 and let X 0 be the cokern of iX ,
i.e., we have an exact sequence 0�!X �! J � J1�!X 0 �! 0. Now, let J2 be
the injective envelope of the direct sum of all X 0 where X runs in C. Let
�JJ:¼ J � J1 � J2. Then, for any X 2 C, we have a resolution by �JJ:

Since & preserves colimits and since any module is a ¢ltering direct limit of ¢nite
presented modules (cf. [14, I.5]), we have, for any R-module M ¼ lim

�!
i

Mi, Mi are
¢nitely presented R-modules,

I&M ffi I& lim
�!
i

Mi ffi lim
�!
i

ðI&MiÞ ffi lim
�!
i

Mi ¼M:

Thus, I is the unit object in RMod with respect to the tensor product &.
Applying the result of the previous section, we have a monoidal functor

o: RMod�! RModR; M 7 �!M&R;

which is a right exact embedding. Compose o with the functor Homð�; �JJÞ, we get a
right exact functor from Aop to RModR, whose restriction on Cop is a right exact
monoidal embedding. The last functor is given by X 7 �!HomðX � J; JÞ: Thus
we have proved:

THEOREM 3.2. Let C be a small Abelian monoidal category with the tensor product
being exact. Then Cop admits a right exact monoidal embedding into the category

42 PHUØ NG HO“ ' HA’ I

https://doi.org/10.1023/A:1016076714394 Published online by Cambridge University Press

https://doi.org/10.1023/A:1016076714394


RModR for some ring R. The functor is given explicitly by X �!HomðJ;X � JÞ for a
suitably chosen injective cogenerator J in Ind� C.

If C is an Abelian rigid monoidal category then the tensor product is exact and the
theorem above applies. In this case we have HomðX � J; JÞ ffi HomðJ; �X � JÞ.
Thus, composing the embedding with the contravariant exact functor X �!X�,
we obtain an embedding for C: X �!HomðJ;X � JÞ. Moreover, the embedding
is exact. Indeed, let 0�!X �!Y �!Z�! 0 be an exact sequence. Applying
the left dual functor, we have an exact sequence 0�!Z� �!Y � �!X� �! 0.
Let F denote the embedding functor. Then we have a right exact sequence of
R-modules:

FðZ�Þ �!FðY �Þ �!FðX�Þ �! 0: ð36Þ

Since F is a monoidal functor, FðX�Þ ffi FðX Þ� ¼ lhomðFðX Þ;RÞ. Therefore FðX Þ ffi
rhomðFðX�Þ;RÞ. Applying the left exact functor Homð�;RÞ, we obtain a left exact
sequence 0�!FðX Þ �!FðY Þ �!FðZÞ:

Since the category of bimodules over a ring is cocomplete, the embedding can be
extended to a functor Ind� F: Ind� A�! RModR, which is also exact and
monoidal. Explicitly, this functor has the form, for X ¼ fXigi2I:

Ind� FðXÞ ¼ lim
�!
i

HomðJ;Xi � JÞ: ð37Þ

THEOREM 3.3. Let C be a small Abelian monoidal rigid category. Then C admits an
exact monoidal embedding into the category of bimodules over a ring. Further, the
embedding is extendable to an exact embedding of the category Ind� C, which com-
mutes with colimits.
Proof. What remains to be proved is that the functor Ind� F is faithful or,

equivalently, that ind� FðXÞ 6¼ 0 whenever X 6¼ 0.
First, we remark that since Ind� F is exact, Ind� FðXÞ 6ffi 0, whenever X possesses

a subobject (or a quotient object) Y, with Ind� FðYÞ 6ffi 0.
The following fact in Ind� C is well known (cf. [6, Cor. II.3.2]). If an ind-object X

is a subobject of an object X 2 C, then X contains a subobject Y 2 C. Indeed, let
i:X�!X be a monomorphism in Ind� C and j:Y �!X be a nonzero morphism,
Y 2 C, then i � j:Y �!X is nonzero and is a morphism in C, for C is a full sub-
category of Ind� C. jðY Þ is therefore in C and, on the other hand, a subobject
of X.

A direct consequence of this fact and the preceding remark is that the image under
Ind� F of any nonzero ind-object, which is a subobject of an object from C, is
nonzero.

Let now X 2 Ind� C be a nonzero object. There exists a nonzero morphism
j:Y �! lhomðX; IÞ, Y 2 C. Since

HomðX; �Y Þ ffi HomðY � X; IÞ ffi HomðY ; lhomðX; IÞÞ;

there exists a nonzero morphism k:X�!�Y , corresponding to j in the above
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isomorphisms. Imk is a nonzero subobject of �Y , hence Ind� FðImkÞ 6ffi 0, and, con-
sequently, Ind� FðXÞ 6ffi 0. &

4. Semisimple Abelian Rigid Monoidal Categories

In this section we consider a simple case, where the construction in the previous
section can be explicitly given. Let C be a small semisimple rigid monoidal category.
Thus, objects of C are direct sums of simple objects Xi; i 2 I , and the rings
Ri ¼ EndðXiÞ are skew-¢elds, where I is a set.

For any object X 2 C, we have EndðX Þ ffi HomðI;X � X�Þ. If I is simple, then the
dimension of EndðX Þ over K ¼ EndðIÞ is equal to the number of copies of I in the
decomposition of X � X�.

PROPOSITION 4.1. LetC be a semisimple rigid monoidal category with a simple unit
object. Then, for any object X 2 C, EndðX Þ is ¢nite-dimensional over EndðIÞ, in par-
ticular, objects of C are ¢nite direct sums of simple objects.
Proof. Assume the contrary that EndðX Þ is in¢nite dimensional over K ¼ EndðIÞ.

Let es; s 2 S be a basis for this space and fs; s 2 S be the corresponding morphisms
in HomðI;X � X�Þ. Let Fs:¼ ImðfsÞ be subobjects of X � X�. The linear indepen-
dence of es; s 2 S implies that the intersection of any ¢nite subset of Fs is zero.
Let now F be an exact monoidal embedding of C into RModR as in Theorem 3.3.
Then the above property of Fs is preserved under F, that is for any ¢nite subset
K of S

T
s2K FðFsÞ ¼ 0. This property of submodules FðFsÞ of FðX � X�Þ implies thatP

s2S FðFsÞ ¼
L
s2S FðFsÞ. On the other hand, since each Fs is a direct summand of

X � X� FðFsÞ is a direct summand of FðX � X�Þ. Thus FðX � X�Þ contains as direct
summand a free module of in¢nite rank. This contradicts with the fact that
FðX � X�Þ is a projective module of ¢nite rank when considered as a left of right
R-module (cf. Lemma 1.3). &

If every object of C is a ¢nite sum of simple object, the category A ¼ Ind� C is
easy to characterize. Each object of A is a direct sum of copies of Xi; i 2 I . An
injective cogenerator can be chosen to be J ¼

L
i2I Xi. Our embedding F is then

M 7 �!Hom
M
j

Xj;M �
M
k

Xk

 ! !
ffi
Y
j

M
k

HomðXj;M � XkÞ; ð38Þ

in the category of R� R-bimodules, where R ¼ EndðJÞ ffi
Q
i Ri. Each Ri being an

endomorphism ring of a simple object is a skew-¢eld (non-commutative ¢eld).
Recall that the right action of R on FðMÞ ¼ HomðJ;M � JÞ is given by the com-

position ðf ; lÞ 7�! f � l; f 2 FðMÞ; l 2 F , and the left action of R on FðMÞ is given
by the composition ðl; f Þ 7�!ðidM � lÞ � f .

By the isomorphism in (38), we see that, as right R-module, FðMÞ is a direct prod-
uct ofMj :¼

L
kHomðXj;M � XkÞ, where eachMj is a rightRi-module. On the other
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hand, as leftR-module,Mj is a direct sum ofMjk:¼ HomðXj;M � XkÞ, eachMjk is a
left Rk-module.

From now on, in addition to the above assumptions onC, we shall assume thatC is
K-linear, where K ¼ EndðIÞ, and that EndðXiÞ ffi K for all simple object Xi. Thus, for
objects X and Y , the two actions of K on HomðX ;Y Þ coincide, and we shall denote
by hðX ;Y Þ the dimension overK of this vector space. Note, however, that the actions
of R ¼ EndðJÞ over on HomðJ;M � JÞ are generally different.

Let cjik be the multiplicity of Xj in Xi � Xk. Then we have

hðXj;Xi � XkÞ ¼ c
j
ik: ð39Þ

According to Proposition 4.1, for i; k ¢xed, there are only ¢nitely many j such that
cjik 6¼ 0. On the other hand, since C is semisimple and rigid, we have

hðXj;Xi � XkÞ ¼ hðXi � Xk;XjÞ ¼ hðXk;Xj � X�i Þ ¼ c
k
ji� ;

where we use the notation Xi� :¼ X�i . Therefore, for i and j ¢xed, there are only
¢nitely many k, such that cjik 6¼ 0. Analogously, we can show that for k and j ¢xed,
there are only ¢nitely many i such that cjik is nonzero.

The following equation is easy to check:

hðXi;Xm � Xn � XjÞ ¼
X
k

hðXi;Xm � XkÞhðXk;Xn � XjÞ: ð40Þ

In fact, both sides of this equation are equal to
P
k c
i
mkc

k
nj. Since each object of C is a

direct sum of ¢nitely many simple objects, we deduce

hðXi;M �N � XjÞ ¼
X
k

hðXi;M � XkÞhðXk;N � XjÞ ð41Þ

for all objects M;N.
According to Lemma 1.3, FðMÞ is projective of ¢nite type as left or right

R-module. Recall that R is a product of ¢elds Ri and as right R-module, FðMÞ
is a product of Ri-modules.

LEMMA 4.2. Let R be a product of ¢elds Ri, R ¼
Q
i Ri. Let P ¼

Q
i Pi be projective of

¢nite rank over R. Then the dimension of Pi over Ri is uniformly bounded by a positive
integer.
Proof. For any two R-modules of the form P ¼

Q
i Pi, Q ¼

Q
i Qi, where Pi and Qi

are Ri modules, we have

HomRðP;QÞ ¼
Y
i

HomRðP;QiÞ ¼
Y
i

HomRi ðPi;QiÞ: ð42Þ

Let now P ¼
Q
i Pi be projective of ¢nite type. Then P is a direct summand ofRd for a

certain positive integer d. In particular, we have a surjective homomorphism
Rd �!P. According to (38), we see that for all i, rankRiPiW d. &
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COROLLARY 4.3. Let Ri ffi K, for all i. For any object M in C, the ranks of
Mj ¼

L
kHomðXj;M � XkÞ over K are bounded by a certain positive number.

THEOREM 4.4. Let C be a semisimple Abelian rigid monoidal category with simple
unit object, whose endomorphism ring is denoted by K. Assume that, for any simple
object, its endomorphism ring is isomorphic to K. Then for any object X, there exists
a positive number d, such that the dimension over K of EndðXnÞ does not exceed dn.
Proof. We have

dimKEndðX�nÞ ¼ hðX�n;X�nÞ ¼ hðI;X�n � X��nÞ:

Since I is simple, we have

hðI;X�n � X��nÞW
X
k

hðI ;X�n � X��n � XkÞ

W max
i

X
k

hðXi;X�n � X��n � XkÞ

 !
:

For an object M in C, set

dM :¼ max
i

X
k

hðXi;M � XkÞ

 !
:

By virtue of Corollary 4.3, dM is well de¢ned, i.e., ¢nite. On the other hand, using
(41), we haveX

k

hðXi;M �N � XkÞ ¼
X
l;k

hðXi;M � XlÞhðXl;N � XkÞ

W
X
l

hðXi;M � XlÞdNW dMdN :

Therefore dM�NW dMdN . Consequently, hðI;X�n � X��nÞW dnXd
n
X� ¼ ðdXdX� Þ

n: The
proof is complete. &

Theorem 4.4 has the following interesting consequence. First, recall that given a
symmetry in C, we can de¢ne, for each object X , its categorical dimension
dimX to be the morphism I �!

db
X � X� �!

t
X� � X �!

ev
I , an element of

K ¼ EndðIÞ. This dimension is an additive (with respect to direct sums) and ten-
sor-multiplicative function on X , cf. [3, Sect. 7].

COROLLARY 4.5. Assume that C satis¢es the condition of Theorem 4.4 and that,
moreover, C is symmetric and its nonzero objects have nonzero dimension. Then,
if char K ¼ 0, for any object X of C, there exists an integer n, for which

V
nðX Þ ^

the nth antisymmetric tensor power of X is zero. Consequently, C is Tannakian.
Proof. The symmetry induces an algebra homomorphism rn from the group

algebra K ½Sn�, Sn is the symmetric group, to EndðX�nÞ for any object X . Since
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the dimension of K ½Sn� over K is n!, Theorem 4.4 ensures that starting form some n,
the representation is not faithful. Thus, there exists a minimal central idempotent
of K ½Sn� which is mapped to zero by homomorphism rn.

Since charK ¼ 0, K ½Sn� is semisimple and its minimal central idempotents de¢ne
direct summands of EndðX�nÞ by means of rn. It is well known that minimal central
idempotents of K ½Sn� are in one-to-one correspondence with partitions of n, see,
e.g. [8]. Using the additivity and tensor multiplicativity of the categorical dimension,
we can compute the dimension of the direct summand of X�n corresponding to a
minimal central idempotent in terms of the dimension of X and the corresponding
partition. More explicitly, let Xl be the direct summand of X�n de¢ned by the mini-
mal central idempotent el, where l is a partition of n. Then we have

dimXl ¼
Y
k2½l�

dimX þ cðkÞ
hðkÞ

; ð43Þ

where the product is taken over all blocks k of the diagram ½l� de¢ned by l and cðkÞ
denotes the content of k (the diffencence between the number of boxes left to k
and the number of the boxes above k), hðkÞ denotes the hook-length of k (the number
of boxes right to- and below k including k itself-counted only one time), see also
[10,7].

Now, the fact that for some n, there exists a partition l, such that el is mapped to
zero by rn, implies that the dimension of X should be an integer. By the assumption
that the dimension of any object is nonzero and by the obvious fact that the
dimension of the unit object is 1, it follows that the dimension of any nonzero object
is a positive integer. In this case, for an object M with dimension m, we have
dim

V
m X ¼ 0, therefore

V
m X ¼ 0. The fact that C is Tannakian now follows from

Deligne’s theorem [3, Thm. 7.1]. &

Acknowledgements

The author would like to thank Professors M. Artin, B. Pareigis and P. Smith for
useful discussions. This work is supported by the Mathematical Sciences Research
Institute and was presented at the conference on quantum groups in Morelia,
Mexico. The author would also like to thank the organizers and the Institute of
Mathematics, UNAM for the hospitality during the conference.

References

1. Artin, M., Grothendieck, A. and Verdier, J. L.: The¤ orie des topos et cohomologie e¤ tale
des sche¤ mas, In: Se¤ minaire de Ge¤ ome¤ trie Alge¤ brique du Bois-Marie 1963^1964 (SGA 4),
Lecture Notes in Math. 269, Springer, Berlin, 1973.

2. Artin, M. and Mazur, B.: EtaleHomotopy, Lecture Notes in Math. 100, Springer, Berlin,
1969.

3. Deligne, P.: Cate¤ gories tannakiennes. In: P. Cartier et al. (eds), The Grothendieck
Festschrift, volume II, Progr. Math. 87, Birkha« user, Boston, MA, 1990, pp. 111^195.

ABELIAN MONOIDAL CATEGORIES 47

https://doi.org/10.1023/A:1016076714394 Published online by Cambridge University Press

https://doi.org/10.1023/A:1016076714394


4. Doplicher, S. and Roberts, J. E.: A new duality theory for compact groups, Invent.Math.
98(1) (1989), 157^218.

5. Drinfel’d, V. G.: Quantum groups, Proc. ICM, Berkeley, 1987.
6. Gabriel, P.: Des cate¤ gories abe¤ liennes, Bull. Soc. Math. France 90 (1962), 323^448.
7. Phung Ho Hai: Hecke symmetries, J. Pure Appl. Algebra 152 (2000), 109^121.
8. James, G. D.: The Representation Theory of Symmetric Groups, Lecture Notes in Math.,

Springer, Berlin, 1978.
9. Mac Lane, S.: Categories, for the Working Mathematician, Springer, Berlin, 1971.

10. Macdonald, I. G.: Symmetric Functions and the Hall Polynomials, Oxford Univ. Press,
New York, 1979 (2nd edn, 1995).

11. Mitchell, B.: Theory of categories, Pure Appl. Math. 17, Academic Press, New York,
1965.

12. Pareigis, B.: Lectures on quantum groups, Available at www.mathematik.uni-
muenchen.de/�pareigis, 1994.

13. Schauenburg, P.: The monoidal center construction and bimodules, J. Pure Appl.
Algebra 158(2^3) (2001), 325^346.

14. Stenstro« m, B.: Rings of Quotients, Grundlehren Math. Wiss., Springer-Verlag, New
York, 1975.

15. Watts, C. E.: Intrinsic characterizations of some additive functors, Proc. Amer. Math.
Soc. 11 (1960), 5^8.

48 PHUØ NG HO“ ' HA’ I

https://doi.org/10.1023/A:1016076714394 Published online by Cambridge University Press

https://doi.org/10.1023/A:1016076714394

