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LOCAL FRICTION LAWS FOR GLACIERS:
A CRITICAL REVIEW AND NEW OPENINGS

By L. LLIBOUTRY

(Laboratoire de Glaciologic du CNRS. 2 rue Treés-Cloitres, 38031 Grenoble Cedex, France)

Anstract. “Sliding veloeity” and “friction law™ are- precisely defined. Different scales for tackling
glacier dynamics are introduced. The energy balance in the melting refreezing process is clarified. The
validity of a Glen body as a model for ice rheology is discussed. The assumed model for subglacial water is a
very slightly pervious ice, and a not absolutely watertight ice-bedrock interface, owing to glacial striae and
rock joints. Then autonomous hydraulic regimes and cavities at water vapour pressure have a negligible
influence on the drag, and only the interconnected regime has to be considered.

A more rigorous treatment of Weertman’s model (independent knobs) gives quite different numerical
factors. In general a term increasing with Terzaghi’s effective pressure .V has to be added to the drag. The
double-valued friction law found by Weertman is shown to have been an crror.

Kamb's relations for the model with a vanishing microrelief are considerably simplified. His conjectural
solution cannot be extended to slopes actually found in the microrelief.

The author’s (Lliboutry, 1968) treatment is unsatisfactory and includes an error. With a model consisting
of irregular bumps of similar length, a new friction law is given. The pertinent measure of the bedrock
roughness is then the shadowing function, not the spectral power density.

REsumi. Lois de _frottement local pour les glaciers : revue critique el nowvelles voies de recherche. On définit avec
précision “vitesse de glissement” et “loi de frottement”. On introduit différentes échelles pour aborder la
dynamique d’un glacier. Le bilan d'énergic dans le glissement par fonte et regel est éclaivei. On discute la
validité du corps de Glen comme modeéle pour la loi de comportement de la glace. On admet comme modéle
pour I’eau sous-glaciaire une glace trés légérement perméable, et une interface glace-lit rocheux non absolu-
ment étanche par suite des stries glaciaires et des joints dans la roche.  Alors les régimes hydrauliques
autonomes et les cavités & la pression de la vapeur d’eau ont une influence négligeable sur le frottement, et
seul le régime interconnecté est & considérer.

Un traitement plus rigoureux du modéle de Weertman (bosses indépendantes) donne des facteurs
numeériques complétement différents. En général un terme croissant avec la pression effective .V doit étre
ajouté a la trainée. Les deux déterminations trouvées par Weertman pour la loi de frottement résultaient
d’une erreur.

Les relations de Kamb pour un modéle 4 microrelief extrémement faible sont considérablement simplifiées.
Sa solution conjecturale ne peut étre étendue aux pentes qu’on trouve dans les microreliefs réels.

Notre traitement (Lliboutry, 1968) n’est pas satisfaisant et renferme une erreur. En prenant pour
modéle des bosses irréguliéres de longueurs voisines on donne une nouvelle loi de frottement. La mesure de la
rugosité du lit rocheux pertinente au probléme est alors la fonction d’éclairement, et non pas la densité
spectrale de puissance.

ZUSAMMENFASSUNG. Lokale Reibungsgesetze fiir Gletscher: Eine kritische Riickschau und neue Aspekte. “Gleit-
geschwindigkeit” und *'Reibungsgesetz”” werden streng definiert. Zur Untersuchung der Gletscherdynamik
werden verschiedene Massstibe eingefithrt. Die Energiebilanz beim Vorgang des Schmelzens und Wiederge-
frierens erfahrt eine Klirung und die Giiltigkeit des Glen’sschen Koérpers als ein Modell fiir die Rheologie
des Eises wird diskutiert. Das angenommene Modell fiir subglaziales Wasser ist ein sehr schwach durch-
lassiges Eis und eine nicht véllig wasserdichte Grenzfliche zwischen Eis und Felsbett infolge glazialer Riefen
und Felsfugen. Ferner haben autonome hydraulische Systeme und Hohlrdume mit Wasserdampfdruck einen
vernachlassigbaren Einfluss auf den Gleitwiderstand und nur das Verbundsystem muss beriicksichtigt
werden.

Eine strengere Behandlung des Weertman’schen Modells (unabhingige Buckel) liefert sehr unterschied-
liche numerische Parameter. Allgemein muss ein Glied, das mit Terzaghis effektivem Druck V anwichst,
zum Gleitwiderstand hinzugefiigt werden. Das zweiwertige Reibungsgesetz von Weertman war ein Irrtum.

Kambs Beziehungen fiir ein Modell mit verschwindendem Mikrorelief sind erheblich vereinfacht. Seine
vermuteten Losungen konnen nicht auf Hangneigungen ausgedehnt werden, wie sie im Mikrorelief tatsichlich
vorkommen.

Des Autors Behandlung (Lliboutry, 1968) ist unbefriedigend und enthilt einen Fehler. Ein neues
Reibungsgesetz fiir unregelmassige Buckel von dhnlicher Linge wird aufgestellt. Das entsprechende Mass
firr die Felsbettrauhigkeit ist dann die Fensterfunktion und nicht das Leistungsspektrum.

SETTING DOWN THE PROBLEM
Rationale of modelling

Let us begin with rather philosophical considerations. Glacier dynamics, the application
of the laws of mechanics and physics to glacier flow, is only possible after a composite model
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has been submitted for the real situation. Models must be chosen for the geometry of the
glacier and its bedrock, for the rheology of ice, for the balances at the surface, for the water
circulation, etc. The best model is that which fits the largest number of observations with the
least complexity. While doing this three points must be kept in mind:

I. A model is a simplification of reality which has been constructed with some goal in
view. It must not be used for another purpose without reconsidering again the actual
situation. For instance, in order to calculate the stresses, a bedrock may be replaced
by a perfectly smooth surface, ignoring any scratch or rock joint. We cannot deduce
from this model that the ice-bedrock surface is perfectly watertight.

2. A realistic model should lead to the phenomenon or to the numerical value which is
actually observed, but the converse is not true. The reproduction of a phenomenon
(e.g. periodic surges) or obtaining a plausible numerical value (e.g. a correct sliding
velocity) is not proof that the model is realistic. Intermediate values and processes
must be checked too, not only the final result.

3. Once a model has been constructed, even if it is a very rough one, it must be handled
with rigour. Rigour does not mean exact analytical solutions; it means only that
approximations are clearly stated as such. But in glacier sliding theory several analytical
solutions have been guessed without the beginnings of a proof.

In this article we shall give a didactic account of the friction laws trying not to fall into
any of the pitfalls mentioned.

Definition of the sliding velocity

To tackle glacier dynamics, the first model 10 be adopted is the shape of the glacier (or ice
sheet). Its actual shape must be sufficiently smoothed to be represented by an analytical or a
simple geometrical surface, thus allowing calculations.

The boundary conditions for this smoothed glacier are: no stresses on the upper surface,
and some relation giving the shear stress on the smoothed bedrock = as a function of the
sliding velocity 7. This relation, which will be called the friction law, is assumed to vary in a
continuous, smooth way from place to place. Then the flow solution for the smoothed glacier
may be assumed also to be smooth (instabilities producing narrow shear zones, faults, and
cracks are assumed not to exist).

To match the real glacier, the bottom shear stress in the smoothed model must be the
average of the real shear stress on the same geometrical surface. When the real stresses are
replaced by smoothed values, the equilibrium conditions still hold.

For the velocities it is not the same, because the ice is not Newtonian viscous. The real
stresses produce fluctuating strain-rates near the bottom, according to the ice creep law.
This ice creep law does not hold between the average stresses and the average velocities.
Thus the average real sliding velocity at the bottom, say U, differs from U. Since the stress
fluctuations at the bottom in the real glacier lower the viscosity, U > U.

The z-axis being perpendicular to the smoothed bedrock, let @(z) be the locally averaged
real forward velocity, which becomes U on the smoothed bedrock, and u(z) the forward
velocity in the smoothed problem, which becomes U at the bottom. In the case-of a wavy
bedrock with very small slopes (relative to the smoothed bedrock) it has been shown (Lliboutry,
1975) that U—U < U, but that ¢(Z—u)/2z is not at all negligible. Thus, although the addi-
tional sliding U—U (already introduced by Kamb, 1970) may be neglected, the tilt-rate of
bore holes near the bedrock cannot be analysed as this author did, in order to obtain an
appropriate value of the exponent n in Glen’s law.
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The friction law

Glacier dynamics has then been split into two problems.

Problem I: the dynamics of a smoothed glacier, having a basal shear stress (the glacier
Sriction) T, and a sliding velocity U.

Problem II: the friction law, which should give 7y as a function of U/ and of other
local variables. This friction law may be determined, at least theoretically, from considera-
tion of the processes at the bottom of the glacier.

Solving the first problem will give 7y, as a function of the geometry of the smoothed glacier
and (perhaps) of the body velocities. For instance, in the two-dimensional case (with z-axis
upwards, and x-axis forward), when the body stresses, the surface slope (a > 0}, the thickness
h, and the vertical velocity at the surface are all independent of x (a situation called Nye flow,
Lliboutry, 1964-65, Tom. 2, 1971).

Th = pghsin «
& pgha if @ €1, (1)

where pg is the specific weight of ice.

The analysis of a kinematic wave studied by J. Vallot (Lliboutry, 1958, 196465, Tom. 2,
p- 638-40) lead us to the conclusion that Equation (1) fails for a valley glacier: r, depends
on the thickness, slopes, and bends of the valley over a long distance (see also Bindschadler
and others, 1977). Shumskiy (1965) arrived at the same conclusion from the existence of
reverse superficial slopes in ice sheets over large distances. As a matter of fact for a smoothed
ice-sheet with small surface and bottom slopes, in the two-dimensional case, Tp is given by the
relation (Budd, 1968)

btk bth b

l? 3 F'z'f_gz F
Th = pghot-2 ™ J‘ oy dz-+ f dz J- T 945 (2)
b b z

where b(x) is the bottom smoothed profile, 4(x) -} A(x) the smoothed surface profile, and a;’
the longitudinal deviatoric normal stress. It is only when averaging Equation (2) over very
long distances, at least 20 times the glacier thickness, that Equation (1) may be obtained,

Solving the second problem will give 71, as a function of the microrelief of the bedrock, the
characteristics of the bottom ice-debris layer (a moving basal moraine) or the subglacial loose
drift when they exist, the sliding velocity U, the average normal pressure of ice against the
bed po, the pressure p of subglacial water (in the interconnected regime, to be defined later)
or its total amount per unit area (in the autonomous regime, to be defined later), etc.
Weertman has said that our approximate law for fast-sliding glaciers, namely:

™ & f{po—p), (3)

is incomplete because p is unknown. However, it is not the friction law which is incomplete,
it is the modelling of glaciers. If p appears to be a crucial variable in the friction law, then a
model of glacial hydrology which can lead to realistic values of p must be constructed. This is
a third problem of glacier dynamics, needing to be studied and solved separately.

In order to model glacier surges, Budd (1975) introduces a so-called “friction law”,
which for a very large ice sheet (s = 1 in Budd’s paper) may be written:

__ Pghe
Th = I+¢Vpgba+(‘i'c—1'c*)s (4)

where (7.—7.*) is an x-independent but time-dependent parameter, ¢ a constant, ¥ the
average velocity from surface to bottom. Equation (4) is not a friction law. In particular,
since in Budd’s theory pgha differs significantly from y, it cannot enter into a friction law.
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Equation (4) is an equation expressing arbitrary feed-back between 71 and " which is substi-
tuted for both the lower boundary condition and the hydrological model. The fact that this
feed-back produces periodic surges, and that ¢ may be chosen in order to match the actual
periodicity of surging glaciers is no proof of its validity, as stated before.

Glacier dynamics at different scales

Only ice sheets resting on a bedrock without any continuous and more or less mobile layer
of drift at the interface will be considered in this article. Let us come back to the problem of
smoothing the glacier shape, or, in other words, of determining which irregularities must be
considered as the roughness, the microrelief of the bedrock, and which ones as the general
shape of the glacier.

Three kinds of irregularities may be found:

1. Protruding obstacles, with a width of the same order of magnitude as their height.
They will be called knobs, whatever may be their size. (Hollows of the same kind may be
neglected, since in general they are infilled with drift.) For these knobs we must choose a
cut-off size Ry.

2. Transverse undulations, with a width one order of magnitude larger than their height,
which will be called bumps. The flow over a bump is more or less two-dimensional, and thus
only the longitudinal profile of the bedrock is significant. As explained by Nye (1969) we
must then choose an averaging length A to smooth the profile. More precisely, we may
first substitute for the actual profile at very large distances (larger than the length of the glacier
if necessary) a curve tending very swiftly to a straight line (z = 0), in order to be able to
define the Fourier transform of the profile b(x), say:

s

b(v) = f b(x) exp (—2imvx) dv, (5)

-7
where v = 1/) is the wave number. Next we may split the full Fourier spectrum by some
cut-off wave number +1/A. According to the fundamental relation of convolution:

Jf(\) b(x—X) dX = J exp (2imvx) f(v) b(v) dv, (6)
the corresponding averaging function f(X) is:
1fA
51 XA
FIEY = fexp (aim XY dv = “"—-‘1"7—/—) (7)

=i\

3. Channels approximately in the direction of low, with a fluctuating width, or undulating
between left and right. For a valley glacier, the valley itself may wind. To take this into
account, a two-dimensional Fourier transform is needed. For sake of simplicity we shall not
consider this case.

In this article only local friction laws will be considered. The height of the biggest knobs
or bumps of the microrelief over the smoothed bedrock is assumed to be an order of magnitude
smaller than the glacier thickness. For this, in general, a cut-off wavelength A as large as the
glacier thickness may be assumed, but a still smaller value (of the order of 30 m for an Alpine
glacier) is necessary for the following reason. In the “interconnected subglacial hydraulic
regime” we shall consider interconnected water bodies at the ice—bedrock interface, with a
negligible head loss between. In order to have more or less the same pressure p in all these
cavities, they must be more or less at the same altitude.
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Starting from the local friction law, for a valley glacier, a first step will be to average the
friction over all the cross-section of the glacier, The interconnected cavities, in our model,
will be connected with a main waterway at altitude {w, where the pressure is py. Then with
pwg denoting the specific weight of water and Jp being the altitude of a cavity with pressure p,

b= pw—pwg(n—<w). (8)

The local friction law, Equation (3), and this relation, Equation (8), have been used by
Reynaud (1973).

A further step, not dealt with in this article, will be to average the friction over a long
distance, taking into account the variation of py (in the steady state, Rothlisberger’s theory
(1972) may be used). For the body of the glacier 7, must be averaged over this long distance
and as said formerly in many cases, () denoting the averages, we may write
{rny = pg {hsinay. This is not the case for a small glacier, where in Equation (2) the last
term on the right side is negligible and ¢’ decreases in the direction of flow from the berg-
schrund to the front. It is also not the case for a winding valley glacier. Thus the way from
the local friction law to the global dynamics of a glacier, to the scale at which kinematic waves
or surges must be studied, is not so simple as commeonly thought.

ASSUMED MODELS
A model for ice rheological law

In temperate glaciers, the peculiar ice fabric with the optical axes clustered in several
(generally four) maxima is found to the very bottom. Duval’s (1977[a], in press) studies have
shown that the creep of ice with this peculiar ice fabric involves:

(1) A reversible creep, logarithmic at first and coming to a stop (at constant stress) after
less than one hour. The final strain is proportional to the stress, almost insensitive to
temperature, and one order of magnitude larger than the standard elasticity which
is relevant for sonic or ultrasonic waves. Phenomenologically it is a delayed elasticity
(Duval’s pseudo-elasticity). Duval explains it by a reversible motion of tilt boundaries
between sub-grains.

(2) Andrade’s transient creep, which is proportional to the one-third power of the time
and to the cube of the stress, strongly temperature-dependent, and irreversible.

(3) A tertiary permanent creep, sometimes at a fluctuating rate because strain-hardening

" and recovery prevail in turn. On the average it follows Glen’s law with » = 3 in the
range of stresses which is found in the body of glaciers. (Experiments for higher stresses
such as are found in the vicinity of a knob are in progress).

’

According to Duval, when the deviatoric stresses =
total strains after less than one hour are modified by

Aeij = Amij'[(2up) +[At1+Bij2] A(7"7y), (9)
where 7 is the effective stress defined by

G — é Z ('Tijr)z. (IO)

i j
In the following Duval’s pseudo-elasticity, Andrade’s transient creep, and the fluctuations
of the tertiary creep rate will be ignored, although for fast sliding velocities they are not
negligible. In particular pseudo-elasticity (and perhaps also a fluctuating creep-rate) could
explain the jerky sliding observed by Vivian and Bocquet (1972) in a large cavity under
Glacier d’Argentiére. There the glacier slides suddenly by about 2 cm at instants several
hours apart. To explain this phenomenon by a stick-slip movement, a Young modulus of the

change by A7y’ at time t = o, the
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order of 105 N would be necessary. The elastic Young modulus of ice is g.2 x 105 N, but
Duval’s “pseudo-elastic”” modulus is the correct value.

In general the sliding velocities are of the order of 10 cm per day or less. Since (as we
shall see) the bumps which afford most of the friction have a length between 10 cm and 1 m,
Andrade’s transient creep should not modify the friction over bumps very much. Nevertheless
when sliding over knobs occurs, it could.

Another fact is the variability of the parameter B at the melting point according to grain
size, salt content, and, above all, liquid-water content (Duval, 1977[b]). The heat dissipation
within the bottom ice should continuously increase its water content. Since this is obviously
not the case (at the snout the liquid-water content of bottom ice remains low), active ice cannot
be perfectly impervious, but must allow water to exude to the ice-bedrock interface. This is
consistent with the fact that, from the analysis of the air entrapped in the bubbles, Berner and
others (1978) have estimated the amount of water which migrates downwards through
Gornergletscher to be about 4 cm per year. Thus an equilibrium between water production
and its exudation should be obtained after a short length. A periodic variation between the
up-slope and down-slope sides of an obstacle should remain; it will not be taken into account.

This drainage should purify bottom ice, and we may neglect its salinity (Lliboutry, 1976).
Finally, in active bottom ice, grain size also should reach a steady value. Thus B may be
considered as a constant for the bottom ice of all active temperate glaciers.

To summarize, the model for bottom ice will be a Glen body that is a material with the
following rheological law:

&y = (Bf2) =" 1y, (11)
where B and n arc constants. For n = 1 (a Newtonian viscous ice), and no ice-bedrock
separation, since all the equations and boundary conditions are linear, 7y should be propor-
tional to the sliding velocity 7. For B = 7.=% and n — oo (a perfectly plastic ice), without
ice-bedrock separation, =i, = 7¢, but if 7, 3 p, there is extensive ice-bedrock separation
and it is well known that the solid friction law Equation (3) becomes roughly valid.

Energy balance in the melting—refreezing process

By saying that “there is no ice-bedrock separation”, we mean that there only exists
between ice and rock a water film of micrometric thickness. This water film is a consequence
of the melting-refreezing process which allows ice to slide over minute obstacles. Nye (1973)
has calculated its thickness in the case of a microrelief with a sine profile, assuming the slopes
to be small and the ice to be Newtonian viscous. He has shown that a water film of the order
of 1 mm, with water flowing in the direction of glacier flow everywhere, as assumed by
Weertman (1972), would be unstable. We shall here complete Nye’s calculation by showing
how the Newtonian energy lost by the corresponding sliding at velocity Uy, that is Urry per
unit area and time, turns into heat.

Let us consider a bedrock profile

b(x) = a cos wx, aw € 1, (12)
and ice with a Newtonian viscosity n. The normal pressure on the bedrock for a total sliding
velocity 7 is found to be (Lliboutry, 1975)

pn = poo—2nUapw? sin wx, (13)
whence a drag
p = nlaapw?, (14)
where
wy?

(15)

it arra———
p w?tw,?
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The constant wy, to which corresponds the controlling wavelength Ay, will be defined later.
We may write

["ap — [-‘rp, U(a—ap) = va’ (16)
U7y and U’y being the slidings by plasticity and by melting-refreezing respectively. The ice
velocity in the upward direction at the ice—bedrock interface is found to be,

w)z_o = — Uapw sin wx, (17)
whence a melting-rate per unit width,
dg p .
B U(a—ayp) w sin wx, : (18)

p and py denoting the density of ice and water respectively.
Now the discharge per unit width of a water film of thickness ¢ is
£ dpy B

— — — 3
q Toun, O e anlapw? cos wx, (19)

nw being the viscosity of water. Whence, comparing Equations (18) and (19), Nye’s value
of t is found by solving
t3 I
=L : (20)
127w Pw 2Mwwy?
The heat dissipation within the water film, due to the viscosity of water, is — ¢(dpn/dx), and,

on average:
dpn £ dpn\? p I I .
e g i g j 3)z
< T > 127y <( dx > pw 2Mwwy? 2 U]

P ,
i Tll("‘f! (2])
Pw

according to Equation (14), (15), and (16). Thus go", of the Newtonian energy which is lost
appears as heat in the water film.

To account Tor the missing 10%,, consider 1 g of ice which melts at pressure py (given by
Equation (13)) and temperature T = T —Cpn, absorbing latent heat £.. This gramme of
water with a heat capacity cy warms from T to 7', where it refreezes at pressure py’ giving
latent heat L'. Next this ice, with a heat capacity ¢, cools from 7' to T, where it melts again,
and so on. Melting and refreezing took place along the same flow line, which is partially in
ice, partially in the water film (Fig. 1), and thus the process is strictly periodic. The total
production of heat during a cycle per gramme of ice is then —L—¢w(T'—T) 4L +¢(T'—T).
Now, from classical thermodynamics:

dL L

T i (22)
dT T/1 1

dpn L (Fw‘;) | Vel

Fig. 1. Flow lines in the regelation ice and in the water film of micrometric thickness. In the melting—refreezing process of
sliding, the heat balance of the periodic changes of state, of the cooling of the ice and the warming of the water, amounts
to 10%, of the Newtonian energy which is lost. The main part is lost by viscous dissipation in the waler film.
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Thus the heat production per cycle and gramme of ice is:

L
L'—LA(a—en)(T'—T) = =(T'=T) = (pn—pn) (%*Piw) . (24)

In the interval (x, x+dx), per unit width and time, according to Equation (18), it freezes
pU(a—ap) w sin wx dx grammes of ice. This ice melts for an opposite value of sin wx, and
then in Equation (24), according to Equation (13),

pn—pn’ = 4nUapw? sin wx. (25)
The heat production per unit area and time is
Al2
1 w kO ; .
5 (pn—pn") ;—; pUla—ap) w sin wx dx
2 .
= (1-£) vta—ay) g0
Pw
P
= (I_E) Utry, (26)

according to Equations (14) and (16).

A model for subglacial water

The total frictional heat, Ury per unit area and time, which is dissipated in the sliding
process, produces water. For 7, = 1 bar and U = 30 m/year, it amounts to 1 cm of water
per year. Part of it appears within the lower part of the glacier, but it exudes next at the ice—
bedrock interface. A geothermal flux having a standard value of 107 cal cm=2s~!
(42 mJ m=2 s7') melts 0.44 cm of water per year., Lastly melt water from the surface should
percolate through the glacier, according to Berner and others (1978). Thus water arrives
normally at the ice-bedrock interface at a rate of the order of 5 cm/year. It must flow off in
some way. Incidentally, this water takes away the salts which would otherwise concentrate
in the lee of the bumps and impede the melting-refreezing process (Lliboutry, 1976).

This is understandable because the ice—bedrock interface is never absolutely watertight
as stated by Weertman (1972). There are always glacial striae and joints in the bedrock.
With a head loss of about 10-2 bar/m (corresponding to a channel at mean ice pressure pe,
in the direction of the surface slope), in order to drain 1 m? of interface where water arrives
at a rate of 5 cmfyear, a channel with a diameter of 0.5 mm is enough, and a channel with a
diameter of 1.6 cm can drain 1 km2 Actual bedrocks are much more scratched than this.
Thus we may assume that in the steady state the head losses in the outlets are insignificant.
They are entirely at the pressure p given by Equation (8).

Locally the pressure against bedrock fluctuates: it is higher on the upward face of any
bump, lower on the leeward face. If there is no ice-bedrock separation these fluctuations
depend upon the geometry and the sliding velocity only. If the leeward area has no scratch
or outlet at all (because it is small enough or under exceptionally favourable circumstances),
the local pressure may be as low as the vapour pressure at the melting point (that is practically
nil), but it cannot be negative. Thus the solution of the low problem may be:

(a) No cavity at first. Nevertheless through the water film of micrometric thickness the
excess water which appears continuously at the interface progressively forms a water pocket,
the volume of which increases with time. This water separates the moving glacier from the
bedrock and from the motionless regelation ice adhering to it, which is continuously formed
by the melting-refreezing process. Thus a cawvity, as we shall call it, infilled with water and
motionless regelation ice, forms progressively. Its volume is a given function of time in the
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flow problem. For a given obstacle, the uniform hydrostatic pressure in the cavity is deter-
mined by this volume and the sliding velocity. This case will be called an autonomous hydraulic
regime (Lliboutry, 1976).

(b) A cavity at zero pressure, with water vapour only at first, but progressively infilled
with water and regelation ice.

In the more frequent case of an outlet, the local pressure against bedrock cannot be less
than p as given by Equation (8). Then two other cases may occur.

(c) No cavity forms. The extra water formed at the interface migrates towards the cavities
where the pressure is lower (theory shows that these cavities form at the lee of the knobs with
the transition obstacle size, for which U7, = Uy). All the regelation ice moves with the glacier.

(d) A cavity infilled with water and regelation ice at pressure p exists. In this case p is
given, and the volume of the cavity adjusts accordingly. This case will be called the inter-
connected hydraulic regime (Lliboutry, 1976).

In cases (b) and (d) the cavity, which has a fixed volume, becomes progressively infilled
with motionless regelation ice. Then, in our opinion, this regelation ice adheres to the moving
glacier and is dragged off. (During this process, some drift which has been collected by the
cavity becomes imbedded within the bottorn layer of a glacier.) A new cavity forms in the
lee of the obstacle, and, at first, it may evolve in the autonomous regime (case (a)).

In case (a) the increasing cavity must sooner or later find an outlet. Then either the cavity
disappears (case (c)), or it takes a fixed size, the regime becoming interconnected (case (d)).
Thus case (a) and cases (¢) or (d) may exist in turn in the lee of most obstacles. Case (b)
should be a rare circumstance which may appear after a sudden rise of the sliding velocity.

Simple estimations made in Lliboutry (1978) show that, in the autonomous regime, behind
very small knobs, the rate of production of regelation icein a cavity is much higher than that
of water. For the transition size they are of the same order of magnitude. (These results
differ from those in Lliboutry (1976) because the rate of water arrival is assumed to be
5 cm/year instead of 0.5 cm/year.) For all these sizes the length of the cavity should increase
atarate dL/d¢ ~ §{’. Within a few days at most an outlet should be reached and the regime
ceases o be autonomous.

On the other hand, in the lee of a large knob the infilling of an autonomous cavity by
regelation ice is a matter of months or years. Since its maximum size (that is, when it becomes
interconnected) should not be very large compared to the size of the knob, the existence of an
autonomous cavity in the lee of a large knob does not consistently affect the drag.

The conclusion of this study is that in the calculation of the friction the autonomous
regime and case (b) may be ignored.

There is some field evidence (Hodge, 1976; personal communications to the author from
H. Rothlisberger and I, Gillet) that the subglacial water pressure p may reach the overburden
p=in June, when the run-off is at a maximum. The superficial melt water from snow should
then invade the ice-bedrock’interface and interrupt any existing autonomous regime. Since
most glaciers, in the ablation zone, have a sudden enhancement of the sliding velocity in June
which is obviously connected with this phenomenon, it may be a common circumstance.
On the other hand in the autumn, when subglacial run-off stops, the waterways being still
large, p should lower in many cases down to atmospheric pressure.

Several models for the bedrock geomelry

Different geometrical models for the microrelief lead to quite different friction laws. 'I'wo limiting
cases may be considered, for which an exact analytical solution exists if n = 1 (Newtonian
viscous model of ice).

(1) Independent knobs. "I'his model consists of perfectly smooth knobs of any size on a smooth
plane, the knobs being sufficiently distant from each other to allow a calculation of the stresses
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around each knob as if it were alone. The normal pressure on the plane at some distance
from any knob is then almost equal to the normal pressure po = pi+H (pi = pgh being the
overburden of ice, H the atmospheric pressure).

(2) Bumps with vanishing slopes. This model assumes irregular undulations with very small
slopes over all the bedrock (the “slopes’ are relative to the smoothed reference profile, of
course). The normal pressure then fluctuates everywhere.

In both cases non-dimensional models within some range are mainly considered (i.e. Nye’s
(1970) “ideal profiles”; Kamb (1970) calls them “white roughness”, which is a confusing
term since neither the amplitudes nor the slopes are “white”). A non-dimensional model is a
random surface which has the same “appearance” (that means the same statistical properties)
at any scale within this range.

The lower limit of the range is the size for which any obstacle becomes drowned within the
micrometric water film. We shall see that its precise value is unimportant because the
obstacles near this limit give negligible drag. The upper limit of the range comes from the
splitting of the real bedrock into a smoothed reference bedrock and a microrelief, as said
before.

Let us assume that (a) thermal conductivities of ice and bedrock A and Ky are equal,
(b) the limiting size has no influence, and (c) there is no ice-bedrock separation. Then, mere
dimensional analysis (Lliboutry, 1976) affords Weertman’s (1957) friction law

L i/ln+1)
=k () O, (27)

where C is the lowering of the melting point per unit pressure, A = A} = A%, and &y is a
constant; the other parameters and variables have been already defined.
Nevertheless in general the two last assumptions, (b) and (c), are unfounded.

FRICTION LAW OVER INDEPENDENT KNOBS

Weertman’s (1957) model of bedrock with cubic knobs, since it includes sharp edges, does
not allow a simple calculation of the stresses and strains even when ice is assumed to be
Newtonian viscous. Thus we shall instead consider hemispherical knobs. The successive
steps will be:

1. Drag of a perfectly smooth sphere embedded within a Glen body, without cavitation
and without melting-refreezing.

The same, but taking the melting—refreezing process into account.

Drag of a single hemispherical knob on a plane, always without cavitation.

The same, when cavitation occurs.

Friction law over a bedrock model consisting of hemispherical knobs of any size lying
on a plane, and which is non-dimensional.

S

Drag of a sphere embedded within a Glen body
The body forces (gravity) are neglected. The boundary conditions are:

The sphere, of radius R, is a stream surface and there is no shear against it.
At infinity the velocity is Up and the stresses are hydrostatic.

The centre of the sphere is taken as origin, and the direction of the velocity at infinity as
axis. Spherical coordinates r, §, ¢ are chosen (8 = o is the leeward pole, § == the upward
pole). Since there is axial symmetry, and any stream line lies in a plane ¢ = constant, there
exists a stream function ¢(r, ). For a Glen body it obeys an elaborate non-linear equation
including partial derivatives up to the fourth order, which would be very time-consuming to
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solve numerically. Nevertheless a method has been given in Lliboutry and Ritz (1978) which
allows us to compute an approximate analytical solution for ¢(r, #) and for the stresses even
with a desk computer. _

Strain-rates and stresses are given as adjusting polynomials in 1/r, sin 6, and cos 6. They
satisfy the equations of incompressibility, of equilibrium and the boundary conditions. The
total viscous dissipation rate (which equals UpD, D being the drag) is a minimum only within
the class of polynomials which is considered, and Glen’s law is only approximately satisfied.
Stream lines so found are given in Figure 2, and normal stresses o, (for r — R) and o4 in
Figure g,

In Weertman’s (1957) calculation, as well as in the subsequent ones of the present author,
there is a confusion between the fluctuating normal stress on the sphere oy = 6,4+ 0n" and its
deviatoric part op’, the only one to produce strain-rates. At the leeward pole, with a
Newtonian viscous fluid (n = 1), 7n being the viscosity:

on’ = 2nUy/R, Gyt pow = qUp/R. (28)
With a Glen material, when n — g
/ Upy? Up\!
On = 1.8 _]{ s GO+PCC = 4.1 E"‘R .. (29)
At the upward pole op’ and 6,4 p o have opposite values. The corresponding drags are,
forn = 1:
D = gnRenUy/R, (30)
for n = 3:
U\
D = 8.87R? (B_p) ; (31)

The enhancement of the drag with n = 3 comes from the strong enhancement of the
fluctuations of ,. At a large distance from the sphere, the medium behaves as an almost
rigid enclosure, and the medium is expelled from the upward side to the leeward side by a
“head loss”, at a velocity larger than Up. With a Newtonian viscous material, this is no
longer the case, and the medium is dragged everywhere with a velocity smaller than Uy (see
Fig. 2). Itcanbe shown (Lliboutry and Ritz, 1978) that the critical value for n which separates
both behaviours is n = §.

Weertman’s crude estimation for a cube L3 was (substituting B by B/g(n+1)/2 since he
writes é = Bo? for a uniaxial pressure, and the effective variables are then y = /3¢,

T = o/y/3):
U, B Dja\n
N g(nti/z 1z ]

whence, putting L3 = ($)nRs, for n = 3:

Up\
D = 2.935mR* | 5 ) . (33)

The drag was underestimated by a factor 3. This is consistent with the fact that the
variations of ,, which are roughly twice the variations of an’, were ignored.

(32)

Drag of a sphere, taking the melling—refreezing process into account
For a Newtonian viscous body and a sphere it has been found that

on = —po+37(Up/R) cos 6. (34) -
The corresponding melting temperature is
T(R) = Tw+t39C(Up/R) cos 6. ' (35)
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| Asymptote

Y

f e —
q=0,9
/ E—.
Nor T
/Q' \
e, [q=0,|

Fig. 2. Stream lines and velocities in the equatorial plane, when a Glen material flows around a sphere without friction and
without cavitation. Dotted lines: n 1 (Newtonian viscosity). Full lines: n — 3. Values of q are in terms of R2U
(R — radius of the sphere, U — wvelocily at infinity). Note the “extrusion flow’ when n 3.

/
/)
Fig. 5. Underpressure on the sphere and on a meridian plane, taking (U|BR)* as unit. Only one quarter of the sphere is repre-
vented. The velocity at infinity is parallel to the horizontal axis of the figure. :
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Now, Py (cos ) being the Legendre polynomials, the harmonic function which takes the

valae T(R) — 4P, L 4.P, AP;+ ... on the sphere and vanishes at infinity is known to be
o r re : r3 ‘
inside the spherc Tint = 4, z P44, y P, 44, o P+
(36)
R R R4

outside the sphere Ty — A, = P44, s P44, = P+

Since P, = cos 0, these expressions reduce to the first term, and we finally find a refreezing
or melting velocity normal to the surface of the sphere:

_ 3nUpC(Kp+24%)
ur(R, ) = T cos 6. (37)
This radial velocity is consistent with a uniform forward velocity of the sphere
gnUpC(Rp+2K7)
e (38)
LpR
Thus in the Newtonian viscous case the motion of a sphere by plasticity and its motion by
melting-refreezing are perfectly decoupled. Putting

Uy

D
anR2 7 (39)
U = Up+ Up with
cR
I.]p == 2_17 3 (40)
3C(Kb+2Ki) a
L’f = TE. (4‘1)

In the case of a Glen body with n # 1, 6n+pe is no longer proportional to cos 6. In
T(R), the odd coefficients A, Ag, ..., do not vanish. Then the sliding by plasticity and by
melting-refreezing are no longer decoupled. For large values of R we may write as a first
approximation, neglecting the melting-refreezing process:

Up = BR(alk)", (42)

with k = 4.4 when n = 3. For small values of R we may write as a first approximation,
neglecting the plastic deformation, Equation (41). For the transition size R,, for which
Uy = Uy, both relations are at best only approximate.

Drag of a single hemisphere

Without the melting-refreezing process the flow solution around a sphere is also the flow
solution around a hemispherical knob lying on a smooth plane. The boundary condition of no
shear stress against the plane is fulfilled. But this is no longer true when the melting-refreezing
process is taken into account. The heat sinks and sources which were in the lower hemisphere
have disappeared, and new heat sources and sinks have been created in the plane boundary.

If the stresses were the ones calculated without melting-refreezing, the heat-flow lines
would have the appearance sketched in Figure 4b. Melting takes place on the plane on the
down-stream side of the knob, because (although in the case of a Glen body it-is warmer than
at infinity), this area is still colder than the nearby leeward face of the hemisphere, where
refreezing happens. Thus there is a supply of heat, and melting. On the up-stream side of the
knob it is the reverse: there is some refreezing against the plane.
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A

Fig. 4. Skelch of the isothermal surfaces and heal stream lines: (a) around a sphere; (b) around a hemispherical knob.

Thus the two processes of plastic flow and melting-refreezing around a hemispherical knob
are not decoupled. This is true even for a Newtonian viscous model of ice. (This point was
missed in Lliboutry (1978).) The numerical solution of the problem would be lengthy, and
so the former values of Uy and Uy will be kept, as a very rough approximation. It will nevertheless
be better than Weertman’s calculation, in which the heat transmission around the knob was
ignored: the sliding by the melting-refreezing process was then underestimated by a factor

of about three.

Putting
C(K K
B, = Bk, C, = ﬂ_:gi‘l (43)
P
Equation (41)-(42) becomes

U = B,s"R+C,a/R. (44)

Up = Ut for the transitional size R = Ry, and the corresponding value of s is oy where

U z/(n+1) Clu 2\n-1
] [ T i,

o (2\/(310[)) S A (U) | we
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Weertman’s estimation of B, was §# — 27 times too large ; his estimation of €, was about
3 times too small. Thus his estimation of R, was about five times too small. ;

TasLe I. NUMERICAL VALUES OF THE PARAMETERS
(1 bar = 105 Pa; 1 year = 3.155 7% 107 5)

n = exponent in Glen’s law = g

B = coefficient in Glen’s law [for n = 1, B = (viscosity)~*] = 0.30 bar=3 year—1 — 0.95 % 107 Pa—3 5t
Lp = melting heat per unit volume = 3 000 bar = 3 108 ] m=3
C = lower of melting point per unit pressure, when the water is air-free (Harrison, 1972) = 0.007 4 deg bar-!

0.74 % 1077 deg Pa-!

K = thermal conductivity of ice = 660 bar m? deg~! year™' — 2.09 N deg—!s~!
Ky = thermal conduetivity of rock & 837 bar m? deg~* year~! — 2.65 N deg~1 s
D (BR\!Un : :

k= m(m) » D being the drag on a sphere of radius R. k = 4.4 when 2 = 3

By = Bk~" = 3,67 x 1073 bar~? year—!
=N 3C(Kv+2K;) = -3 m2 —1 -1

C = Sty "= 8.63 X 1073 m? bar~! year
C. — C(Kh+K[) . 1 m?

R "~ 300 bar year

Ubiguity of cavitation with this model
The numerical values given in Table I will be adopted. Then, if U is in metres per year,

oy = 9.4 U4 bar, Ry = 016U~ m. (45")

When there is no cavitation, the normal pressure on the sphere is a minimum at the lee-
ward pole, where it is po—1.346. It increases progressively to reach P« at the equator
(6 = m/2). Since po = 5 to 30 bar in Alpine glaciers, and in general the sliding velocity is
larger than 10 m/year, it follows that ice-bedrock separation must occur in general behind
hemispherical knobs a few centimetres high, even without an interstitial water pressure p.
Taking this water pressure into account, cavitation becomes ubiquitous in a large range
[R,, R;] which includes R,.

In order to calculate the drag in this case, the following new approximations will be made:

(1) Instead of a cavity progressively increasing when p increases, a hit-or-miss model will
be adopted: no cavitation at all when poo—p — N > 5, and cavitation over the whole
leeward side when NV < . ‘

(2) Although the heat sources are consistently changed, the same value of U is kept.

(3) The stream lines, strain-rates, and stresses on the up-stream side of the knob are
assumed to remain more or less the same. Then Equation (44) relating I/ and o still
holds, o being defined as a mean over-pressure on the up-stream face of the knob
(half-drag on a hemisphere D/4, divided by the cross-section wh2[2).

It follows that:

(a) The extreme values of R for which cavitation stops are the roots of Equation (44),
where ¢ = NV and U is a constant:

U = B.N*R+C,\N|R. (46)
(b) The total drag (D/2) on a hemisphere with cavitation is
D =R
2 = 3 (e+N). (47)
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Friction law over the non-dimensional model

Finally a plane with hemispherical knobs of any size is considered. We assume that they
are disposed at random, and that the number of knobs per unit area in the range [R, R+dR]
is p dR/nR3 as long as R, < R < Rm. It is zero outside [R,, Rm]. The total area which is
covered per unit area i§ then p In (Rm/R,). The roughness parameter p is small enough for
the knobs to be considered as independent from each other in the flow problem. The case of
superimposed knobs is then uncommon enough to be ignored. If for instance R, = 1 pm and
Ry — 10 m, we need pu < 1/16; we shall see that 1/200 < p < 1/100 leads to realistic values
for the friction.

In order to pass from the case of a single knob to this model, a final approximation or,
rather, an unproved assumption is made. In the case of a single knob and no gravity forces
the state of stress at infinity was a hydrostatic one. Now, still without gravity forces, we must
assume a shear stress Ty, at infinity upwards. Then, for a Glen material, the viscosity is no
longer infinite at infinite distances, and this may change the whole flow. The question
remains open.

With this assumption, the total friction in the interconnected regime (N the same for all
cavities) may be obtained summing up the drags mR?c for the knobs without cavitation and
mR*(c+N)/2 for the knobs with cavitation. R is given as a double-valued function of ¢ by
Equation (44) (where U is a constant). Splitting the sum in two at the value 6 = gy allows
us to integrate by parts. (Weertman’s trick of discretizing the sizes is useless.) For a detailed
calculation, the reader may refer to Lliboutry (1978).

Three distinct cases must be considered:

(1) No cavitation at all

Then
Rwm R
d
™ = | 7R . %R'—J 5 (48)
R
and we finally obtain

- U 2/(n+1) l . I s
e 2———\/},(3[&)] [n+1+42In2—2E(1)]—n —_BlRM] : (49)

where
¥
2

E(Y) = jd_}llnm.

o

For n = 3, E(1) = o0.071 08, and

o/ = 3.708(B,C,) U —3(B,Ru)*UY, (50)
or numerically, with the values of Table I, in the metre-bar-year system,
o/ = 49-4Ut—19.4(U[Rm)* (51)

It appears that, in contrast to the Newtonian viscous case (Nye, 1970), at small sliding
velocities the limiting size Ry cannot be ignored. The drag of the large obstacles (R > Ry)
is not negligible, because ¢ only decreases like R~'/%.

(2) Cauvitation in the range [R,, R,]

This happens when
( U i/n N U 2/in+1)
) < <(avmm) o
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or, numerically, if Ry = 10 m, when

3.0l < N < gq3UL

Then
R, R, Ry
pdR 2 (6+N) pdR pdR
Th—fﬂRzG — +—wa — + | 7R T
o R, R,

and it is found that

Th U Hint 4 g U e
el vl [ ) B o

+N ["-Jr—'ﬂn 2-+In
2 2

U
\/(BICI) Nnt+njz| -
Forn = g:

mv/p = 1.854(B,C,) U —3(B,Ry) U+
+N[2.694+1In (Ul2+/(B,C,))—2 In N,

or numerically, in the metre-bar-year system,

7ofp = 24.7U —19.4(U/Ra) + N[7.18-+In (U[N7)].

N (bars)
A

/
30+ /
/
/
/ Yol
/ 5
/ £ 2
20+ / d:;;
|

~

o]

T T ¥ T T T T

4 5 16 25 36 49 64 8l 100 21

T
144

T
169

Fig. 5. Friction 1o(U, N) on a plane with independent hemispherical knobs. Non-dimensional model up to Ry = 10 m.
Numerical values of Table I have been assumed. Weertman’s law holds in the upper left corner, for large values of N.
When N = o, for a given velocity the drag v is halved, and for a given drag the sliding velocity U is multiplied by four.
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(3) Cavitation in the range [R;, Ru]

The cavitation happens up to the largest knobs of the model when N < (U[B,Rwm)"7,
that is with the adopted values when N < 3.0U7%. 'Then

R, Ry
o dR (6+N) pdR
Tb=fﬂRU#R3+jﬂR2 = TR
fo £ (58)
Th U zfn+1) [t 1 n (/00 2 RuU
2 [l e eeEw] ) 3l
Forn = g
Th | Ut 3 U\ N RnU
s R T (BIRM) e Rderon o i (59)
or numerically, in the metre-bar—year system,
mo/p = 24.7U—9.7(U[Ry)}+N[2.88+} In (RmU|N)]. (60)

On Figure 5, curves of equal (7p/u) in the (U, N) plane are plotted.

Weertman (1964) considers the first case (no cavitation) and the case N' =0 only. Both
cases are quite distinct, and the double-valued friction law he found comes from false reason-
ing, as explained in Lliboutry (1978).

FRICTION LAW OVER AN UNDULATING SURFACE
No cavitation, very small slopes, and Newtonian-viscous ice

Assuming ice to be Newtonian viscous, and no cavitation, this problem has an asymptotic
solution for very small slopes which has been given by Nye (196g). Only the solution for the
two-dimensional case will be recorded here, in the form given by Lliboutry (1975). Let:

+©
b(x) = .[ a(w) exp (iwx) dwlw,, (61)
be the longitudinal profile of the bedrock. The wave number v = 1/A defined in Equation
(5) is related to w by w = 27, and w, = 2n/A. Then dw/w, = A dv, and a(w) = b(v)/A
has the dimensions of a length. Since b(x) is real, a(—w) and a(w) are complex-conjugate
quantities.

To obtain the microrelief z,(x), the low frequencies [ —w,, w,] must be excluded by a
perfect filter. There is also a cut-off w, for very high frequencies, because the irregularities
which are drowned within the micrometric water film are ignored. From Parseval’s theorem
it may be shown that the mean quadratic slope of z,(x) over a length 2A is m,, given by

m? = f |a(w) |Pw? dofw,. (62)

The microrelief is non-dimensional in the range [w,, w,] when the contribution of the
frequencies [w;, w,] to m,? is a function of w,/w, only. For this it is necessary that

|a|2wfw, = ¢, (63)

¢ being a constant independent of the choice of A.
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Let us introduce a new profile zy(x), drawn from b(x) by filtering around the transition
frequency wy (to be defined later) as follows:

Al = H2 / (Lol 22] ato) exp fron) dfnn (64)

T

Since the terms in Equation (65) outside [wy, w,] are negligible, it does not matter
whether we filter b(x) or z,(x). The mean quadratic slope of zy(x) over a length 2A is my,

given by:
My? = J [2/(-—;%+‘%)] |a|2w? dw/w,- (65)

o

For the non-dimensional microrelief

M2 = 7C. (66)
The relation between my and Kamb’s (1970) roughness parameter is
my = 2(n*(3)1f = 6.43L. (67)

The first step is to compute the stresses over a pure sine profile z = ap cos wx ignoring
melting refreezing. Let wy be the vertical velocity due to plasticity close to the bedrock.
The normal pressure against the bedrock is found to be pi+H+p, where

po = 2nwwy = 2mel(—apw sin wx) (68)
(p, is the octahedral normal pressure; 6;) = — 0z’ vanish against the bedrock).

The temperature fluctuation is then —Cp,, whence a heat flux —(Ki+Kyp) Cpow and a
vertical velocity owing to the melting-refreezing process

wg = Czwpm (69)
where
C(Ki+Ky) 1 m? .
=g - (70)
Lp 300 bar year
Adding the vertical velocity due to plasticity, wp = —Uapw sin wx, we find the total
vertical velocity when ice at a mean velocity U slides over 2z = a COS wX:
U —aw sin wx) = (U+29CUw?) (—apw sin wx), (71)
whence a = (1+23C,w?)ap. Let us define wx by
wy = (29Gy) 7% (72)
Then
wy?
ap =& wz+w¥2 % (73)

Denoting an average for all x by {, the mean drag over the bedrock is
7, = {po( —aw sin wx)> = 27 Uaapw(sin? wx)
= nUaapw?. (74)
According to Equations (73) and (72):

w w } W Wy
rem (o (55) = () 0o Cr)-

Summing up relatively to dw/w,, the friction over the bedrock z,(x) is obtained as

wo

H
= j r, dojuy = (2—2—) Uy, (76)

wy
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No cavitation, very small slopes, and Glen’s law Jor ice

Kamb (1970) has estimated the friction for a Glen material, always without cavitation.
He starts from the fact that in the Newtonian-viscous case the asymptotic solution over the
pure sine profile above gives an effective shear strain-rate

¥ = 2Uapwiz exp (—wz), (77)
which is independent of x. Summing up for all the frequencies, the effective variables y and

T = 7y are also independent of x. They are a maximum when z = 0.883/wy. For a non-
dimensional bedrock the maximum of the effective shear stress 7 is found to be

Tm = 0.334 37[;/?71;_. (78)
This independency of r from x should be more or less maintained for a Glen material,
and thus in this case 7 should be a function of z only. It follows, according to Kamb (his
detailed development has never been published) that for each Fourier component Equation
(68) between p, and wy, still approximately holds, 5 having for all the components the same
value 7 corresponding to this maximum Tm:

n—i
Lo Beri— g (0_334_3_b) _ g

Nm My
(Since the calculation of the stresses in the Newtonian-viscous case is valid only to the first
order in g, it is illusory to take into account the average shear stress ry, which is in a2, as
Kamb does.) The following Equations (69) to (76) still hold, » having the value above.
So it is found that

Uny = (0334 3)"=12(25C,) (ryfmy) n+11, (80)
et = (0.334 3Umy) "1 B/ (2Cy)n. (81)
With the numerical values of Table I, in the metre-bar—ycar system

Th = 8.amy s,
Ax = 0.34(Umy) -0, (82)
Mm = 0.45(Umy) 1.
These relations are much simpler than Kamb’s ones and give more or less the same numeri-
cal values in the nine cases which he has studied (Lliboutry, 1975). Discarding his cases 4, 6,
and 7 for which, in our opinion, there is cavitation, my should vary between o.11 and 0.27,
Ax between 0.19 and 0.40 m.

No cavilation, finite slopes

Kamb’s estimation becomes incorrect when the slopes of the microrelief are not very
small and A/) is large enough for the following reason. The strong stresses due to the wave-
lengths near A, make ice softer within a layer the thickness of which is of the order of A,.
This layer is unable to make easier the sliding over large bumps, when their height 2|a| is
larger than \,. The largest bumps must make their own “soft layer”, and thus introduce an
additional friction. This additional friction will be estimated in the same way as Kamb’s
when a pure sine profile is considered.

Almost all the sliding over a large bump is due to plastic deformation and then a;, ~ a.
The corresponding effective shear strain-rate is a maximum for wz — 1. This maximum
value is:

M = 2Uaw?/e. (83)

When considering a pure sine profile with a large wavelength (w/wy < 1), we may
estimate the stresses by using the same relations as for a Newtonian-viscous ice with the
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viscosity corresponding to this value yy. (In Kamb’s treatment the viscosity corresponding
to ap = a/2 and w = wy was used instead.) The normal pressure against the bedrock is then

po = po—2nUaw? sin wx

—(1/m) o Uaw?\(1/n)-1 -
=po—2 B = ] Uaw? sin wx

= pm—(é)”" exp [(n—1) u](Uaw?) /" sin w, (84)

and the drag

7, = {po(—aw sin wx)>

e\(n—1/n /[y lm(aw)(nﬂl,fn
- (%) 9

Incidentally, let us compare this estimate with the one made in Lliboutry (1968, equation
(7)) for n = 3, and extended in Lliboutry (1971, equation (137)) for any n. In these equations
a is not the same and must be replaced by 2a.

= & [M] :m(gg)xm(aw)mw/n (@6)

on—1g B

Forn = g, the present better estimate increases the drag by a factor 1.33. This comes from
the variations in the mean pressure o, which were unjustifiably ignored, as said before. The
difference is not very large because there is no “enclosure effect” as in the case of an indepen-
dent knob. )

The Fourier-transform technique is unable to solve the plasticity problem for a more
general profile, when the slopes are finite. Nevertheless since for a large single sine profile it is
|aw |'1+1/n which appears in the drag, and not |aw|? as in Kamb’s treatment, we may suspect
that for large wavelengths it is no longer the spectral power density which is the appropriate
statistical parameter to consider.

Friction law with cavitation : former approach

Even if the slopes are vanishingly small and the ice is assumed to be Newtonian viscous,
the estimation of the friction law over an undulating surface when there is cavitation remains
an open problem. Kamb (1970) suggests that it should be similar to the friction law without
cavitation, with a smaller value of the roughness parameter. This is perhaps true in the auto-
nomous regime, which has been shown to be unimportant. In the interconnected regime
there is a new variable, pos—p = V and thus any law of Weertman’s type must be rejected.
Variations in the subglacial water pressure p change the sliding velocity very much, a fact
which Weertman’s law cannot explain.

In order to tackle this problem a new model of bedrock has been introduced in Lliboutry
(1968) and subsequent articles. The longitudinal profile consists of four superimposed sine
curves, with the same value of aw and wavelengths in a geometrical progression of ratio
10! = 31.6. Superimposed sine curves of same shape and wavelengths in geometrical pro-
gression may be considered as an approximation to a non-dimensional random profile, as
explained in Lliboutry (1975). Nevertheless when the ratio is so large this is no longer true,
and the four-sine-curves model must be considered as an arbitrary model.

Nye (1970) asks “why 31.62” In order to obtain a realistic spectral power for the displace-
ments, one order of magnitude less would be preferable. The reason is that we wish to
eliminate interference between the stress fluctuations caused by each component. The
condition of the preceding section must be fulfilled: the nth sine curve must “produce its own
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soft layer””. Its bumps, of height 2a,/m must be larger than the thickness of the soft layer
produced by the (n—1)th sine curve, that is Ay—,. Thus one must take:

AnfAn—r > m/(aw), (87)

and realistic values of aw seem to be 0.1-0.2.

The inaccurate value of the estimated drag for a single sine curve afforded an error in the
upper limit of cavitating wavelengths by a factor (1.33)3 = 2.35. A more important error
was made by putting the same value of N in the drags of each sine curve. Equation (56) in
Lliboutry (1968) is wrong.

With cavitation, the drag over a single sine curve is written:

aw

g Nd(s), (88)
where s is a function of U/ and of the size. Let 7, and s, be the values of 7, and s for the largest
sine curve where cavitation happens. Then 7, = (aw/2)N®(s,). The mean pressure of
ice on the area in contact is P, given by

Pisi+p(1—$;) = poo, (89)

whence ' ;

Pi—p = N|sy. (90)

Thus, in order to study the sliding over the next smaller sine curve, N/s, must be substituted
for V. The drag of this latter sine curve is effective over a ratio s; of the total bedrock
(over the remainder this smaller sine curve is drowned). Thus:

T: =51 |/ " q)(fz)] = a?‘-” ND(s,), (9!)

and so on.

Cavitation over large bumps of similar length and random heights

Let us consider first a large sine profile, for which the melting-refreezing process may be
ignored. When cavitation starts, the maximum downward velocity of ice is wp = Uaw.
This happens for p, = p and sin wx = 1 in Equation (84), and then

BNmA

4m er—1"

(92)

Wwp = Usw =

When there are cavities of finite length at pressure p, we may estimate the downward
velocity of ice at the roof of these cavities to be the same in terms of NV and A. The slope of
the roof of all the cavities is:

_wp _ BNmA
d i O (93)

In other words we assume that the flow with cavitation is roughly the same on the down-
stream side of a bump as it would be on a pure sine profile having a maximum slope ¢, the
value of ¢ being such that the minimum value of the normal pressure is V. Experimental
work by Brepson (1979) has shown that on the up-stream side of a bump the flow is consistently
changed, because the general shear affecting the boundary layer concentrates there. Never-
theless the drag may be calculated from the flow on the down-stream side only.

With the numerical values of Table I, in the metre-bar—year system,

N3A
3 = 5
g1rol

(94)
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When ¢ = aw, the cavitation starts simultaneously in the lee of all the bumps. As ¢ — o,
all the bumps are drowned simultaneously and the friction drops to zero. These circumstances
are very unrealistic. A pure sine profile is not a good model for roches moutonnées. A model
where the maximum leeward slopes and the height of the bumps fluctuate in a random
way must be preferred. If the bumps are of similar length A, the slope of the roof of the
cavities ¢ should be always given by Equations (93)—(94). The lengths of the cavities differ
from one another, but ¢ is the same for all.

The friction law depends on the distribution of the heights and leeward slopes, which is
completely unrelated to the spectral power density. As already suggested in Lliboutry (1968)
it is convenient to introduce instead the shadowing function s(t). This function, which is defined
on Figure 6, has already been introduced in the study of the reflection of solar rays and radar
waves on rough surfaces (Smith, 1967). Here s(¢) is the part of the bedrock which is in contact
with moving ice (the water film of micrometric thickness being ignored). )

Fig. 6. Definition of the shadowing function. s(t) = (area of the shadow) | (total area).

‘The normal pressure on the bedrock is p where a cavity exists, and p -+ P(x) where there is
contact (P(x) > o). Let ¢ ) denote a mean value for all the area with contact. According to
Equation (go):

CP(x)) = Ns. : (95)
Since a uniform pressure p on the bedrock affords no drag, the friction is:
| = $CP(x) 2 (x)). (96)
The ice limit goes down as much as it goes up, and then:
(1 —s) = 5€2'(x) ). (97)

For very large cavitations, z'(x) is more or less constant over each small area where there
is cavitation and P(x) is significant. Then:

(P2 (%)) = KP(x) P2 (%)), (98)
whence
™ & N(1—s)/s. (99)
For small cavitations P(x) is in general less where Z'(x) is negative, and then ¢Pz') is
larger than ¢PY¢z"y. This introduces an additional term, the only one to subsist when no
cavitation occurs. This term will be estimated in the case of a pure sine profile,
When there is no cavitation, Equation (93) may still be used to define a function ¢, which no
longer has any physical meaning.
_ BAmA B
Cgmer U 2emt Uw'

(100)

For a large pure sine curve, where the melting-refreezing process is negligible, the friction
7, is then given by Equation (85) so that

(27,)" = 2 en~ (Uw|B)(aw)"*. (101)
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Comparing Equations (100) and (101) it follows that

a aw\/n
-rm=—22.\'(—:-’) - (102)

Let us introduce the mean quadratic slope m. For a pure sine profile m = aw/4/2. Putting
4

g ok (103)
Equation (102), which is valid when s = 1, becomes:
r, = A/2mN[(2TVn). (104)

Since the additional term must vanish for large cavitations (s € 1), the value from
Equation (104) will be adopted after multiplication by s# (8 > o). In Lliboutry (1978) the
friction over a large pure sine profile has been estimated to be:

aw "
Py = NO(s) = v/amND[a. (105)
Over a sine profile:
t = aw Sin wxe = 4/2m sin wxc; (106)
sin wxe — T has been calculated in the aforementioned article as a function of s (equation

(9)). As shown in Jable II the very elaborate function ®/2 is more or less the same as the
much simpler one obtained with g = 2:
T(1—s) s

ME=—1 orm’

(107)

TabsLE II. FUNCTIONS RELATIVE TO A PURE SINE PROFILE

_ ¢ P 7 e Tilv=xs) , 5%
T Wam s(T) 2 o AT
0.009 61 0.055 6 0.163 7 0.170 6
0.037 54 0.111 1 0.302 8 0.318 8
0.081 b7 0.166 7 0.416 5 0.440 3
0.172 4 0.250 0 0.540 3 0.573 5
0.284 5 0.333 3 0.6170 0.653 4
0.408 8 0.416 7 0.654 9 0.689 3
0.537 0 0.500 0 0.662 5 0.6g90 8
0.661 1 0.583 3 0.647 7 0.667 5
0.773 7 0.666 7 0.6179 0.628 g
0.868 5 0.750 0 0.580 g 0.584 3
0.940 2 0.833 3 0.542 0.542 g
0.984 8 0.916 7 0.512 7 0.511
1.000 O 1.000 0 0.500 0 0.500 0

This function, that will be called the friction function, will be adopted in the more general
case, for any degree of cavitation or no cavitation. The friction over irregular large bumps
of similar length is thus estimated to be:

L NF B
Ty = G gmen-1t Uy/am)

Eor a pure sine curve F(T), which is plotted in Figure 7, increases suddenly when cavita-
tion starts, and drops to zero at very large cavitations. For bumps of irregular height it is no
longer valid.

(108)
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Fig. 7. Friction function F(T) for periodic bumps. m is the mean quadratic slope, A the wavelength (in metres), U the sliding
velocity (in m[year), N = ps,—p (in bars), Ty, the friction (in bars). The figures along the curves are the values of s(T).

Let us consider the case of a Gaussian distribution of the displacements z(x) and the slopes
z'(x). (We shall say that the profile has a Gaussian modulation.) Smith has calculated that in
this case:

I exp (—T?)
{0 = T aTa Tk T (109)

To obtain this result Smith also assumes a negligible self-correlation, but it has been
shown by Benoist and Lliboutry (1978), by numerical simulation of random profiles, that
s(T) is practically insensitive to this last assumption.

The corresponding friction function is also plotted on Figure 7. It has a completely dif-
ferent shape from that for a sine curve. When the cavitation is significant F(t) &~ 0.54 withina
few per cent. For very large cavitations F(t) increases a little, up to F(o) = 7% = 0.564 2,
instead of vanishing. '

A more realistic model
In order to model the most general undulating bedrock we must consider :

1. Very large undulations where no cavitation occurs at any realistic velocity. They
afford a small drag 7, which, since only plastic sliding is involved, is proportional to U1/,
The choice of the cut-off wavelength A affects this drag. Assuming that the largest undulations
are considered as part of the microrelief or as part of the smoothed reference profile, the
corresponding drag enters into the local friction law or into the expression of the friction in
terms of the body variables (Equation (2)).

2. Large bumps where cavitation may happen which are superimposed on the very large
undulations. Assuming that they are of similar length they afford the drag calculated above
(Equation (107)) where N = po—p has a local, fluctuating value. The overburden p, is
larger on the up-stream side of a very large undulation, and smaller on the down-stream side,
by more or less the same amount. Since the drag of the cavitating bumps, say 7, is roughly
proportional to .V, these fluctuations cancel each other.
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3. Still superimposed on the cavitating bumps, smaller undulations. Only the ones which
lic on a ratio s of the total area afford a drag, the other ones are entirely drowned (s is the
shadowing function for the cavitating bumps above). Since the mean normal pressure where
moving ice and bedrock are in contact is N5, cavitation seldom happens on these small
undulations. The corresponding drag =, then follows a Weertman’s law in [72/(n+0),

The total friction over this composite model is

Ty = k,UV" 4 \,-’le.\'F( ‘t )+.s:‘t)k_;('2r’l"+”. (110)
vam,
k, and k, being constants, and m, the mean quadratic slope of the cavitating bumps alone.
According to Equations (100) and (103), {7 is proportional to N#/T. The third term is
then proportional to N2n/(nt0[s(T) T-2/tn+1], This last factor within brackets, with n = 3,
has been plotted on Figure 8. At very large cavitations it remains finite in the case of a sine
profile, and vanishes when a Gaussian modulation is introduced. Thus when Vis zero, the
only drag which remains is the small one in /" introduced by the very large undulations.

12 . "
s/T Gaussian modulation

i N

5
Sine curve

} I ] | 1
=y T s e TR (R M SHE
1

0 ———+—+—
(¢} 0.5

Fig. 8. Values of s|T*. The contribution to the total drag of small undulations which are superimposed on the cavitating bumps
is proportional to N3/2[s| Tt].

CoNCLUSION

The analysis which has been done shows definitely that the local friction law is strongly
dependent upon the geometrical model of bedrock which is assumed.

In the case of independent knobs lying at random on a plane, the friction 7, may be esti-
mated by Equations (49) to (60), which are plotted on Figure 5. These relations have been
calculated with hemispherical knobs, but their precise shape is unimportant when one considers
the many approximations and rough estimations which are introduced into the theory all the
way along. For very large values of po—p = N (very thick glaciers with subglacial waterways
at atmospheric pressure, a rare circumstance), Weertman’s law is valid, with a largely
modified numerical factor, and a small correction to account for the limiting size Ry. Other-
wise N enters into the friction law because the ice—bedrock interface cannot be absolutely
watertight and the interconnected hydraulic regime predominates. With increasing values
of the subglacial water pressure p, the friction lowers progressively to one-half of the former
value.
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This last value is reached for p = po, V' = o. Locally, and during a short time, \ can
even become negative, a fourth case which has not been considered in this article. T'he drag
then lowers a little more. It may be shown that, in order to have no drag at all. .\ must reach
the value —a,, given by Equations (45) and (45), which is totally unrealistic.

In the case of interfering bumps, the friction law without cavitation is given by Kamb’s
simplified relations, Equations (80)—(82), for vanishing slopes only. Nevertheless. even with
finite slopes, Weertman’s law in {J2/(n+0 holds as long as no cavitation appears. With cavita-
tion, the friction law cannot be calculated with accuracy. Fourier analysis becomes useless.
It is the shadowing function s(¢) which gives the pertinent information about the micro-relief,
Now, the shadowing function of a pure sine profile is a very peculiar one, and the friction law
on such a model is accordingly a red herring. Periodic bumps with a Gaussian distribution
of the heights and slopes have a quite different shadowing function, and afford a quite
different friction law, plotted in Figure 7.

For any undulating surface, even taking into account smaller superimposed undulations,
the drag almost vanishes with N. The only drag for V= o comes from the largest undulations
and varies as [/'/#, The difference from the case of independent knobs is noteworthy.

It thus seems possible to assess the relative input of isolated knobs and of undulations into
the drag by monitoring the seasonal fluctuations of the sliding velocity and of the subglacial
water pressure p.

If we assume now that V is given, with independent knobs there is a single value of {7 for
cach 7y, contrary to Weertman’s assertion. With undulations, U/ may be a multivalued
function of 7y, or not, according to the shadowing function and to the relative importance of
the different kinds of drag. These conclusions are of course essential for the study of kinematic
waves, glacier surges, or glacier falls (ice avalanches). Nevertheless, as said in the first section,
the introduction of these local friction laws into glacier dynamics is not simple and straight-
forward. Several models may be assumed for the pressure py in the waterways. In our
opinion it is useless to tackle this problem without having a particular case in view and the
pertinent field measurements to hand.
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DISCUSSION

B. Lapanvyi: The friction law for the ice-rock interface you have shown takes into account,
in fact, only viscous friction, and not the true friction in Coulomb’s sense. However, Coulomb
friction might be present at the interface because of the presence of rock debris, and also
because of possible brittle fracture of ice in the vicinity of obstacles. Do you not think that it
would be useful to modify the basic Glen’s flow law so that it takes into account the effect of
the hydrostatic component of the stress tensor on the creep-rate, which would lead to a more
realistic friction law for the interface?

L. A. Lrisoutry: I agree with your first two sentences, not with the third one. Coulomb’s law
is the normal friction law for an almost perfectly plastic solid, that is when # in Glen’s law is
very large. For this case the cavitation is extremely well developed, the contact area is
proportional to the normal pressure V, and the local friction over this contact area a constant.
Thus the mean friction becomes proportional to N as a consequence of cavitation, not of any
influence of N on the creep law.

J. WeErTMAN: The language problem has led to two misunderstandings that are repeated in
your many papers about what 1 have stated in my papers. (1) I have never claimed that
glacier beds are watertight. In fact, in all my papers that deal with basal water I quote
Dr W. H. Ward that the contrary is true. (2) Although I pointed out (as of 1972) that there
is a dearth of descriptions of extensive Nye networks in the literature, I did not use this lack to
claim that Nye channels do not exist.
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Lrmourry: “Watertight” must be understood according to the context. When saying that,
in your opinion, the ice-bedrock interface (not the bedrock) should be watertight, I refer to
your paper in Reviews of Geophysics and Space Physics, 1972. You demonstrate there that water
cannot drain into subglacial R-channels. This is true when ice slides over a perfectly plane
and smooth surface. Actually on bedrock there are glacial striae, rock joints, areas and stripes
of previous drift, etc., where your reasoning does not hold. When these are not exactly in the
direction of flow, ice cannot enter by plasticity into these millimetric channels, sliding is too
fast. Viscous heat dissipation within the micrometric water film and geothermal heat should
prevent most of these millimetric channels from being obstructed by regelation ice.

By the way, I see no reason to call these already well-known and described features “Nye
channels”, the more so as Nye only reproduced my point of view (Lliboutry, 1968, p. 55).
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