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DISTRIBUTIVE OCKHAM ALGEBRAS:
FREE ALGEBRAS AND INACTIVITY

MOSHE S. GOLDBERG

This paper centres around the variety 0 of distributive Ockham

algebras, and those subvarieties of 0 which are generated by a

single finite subdirectly irreducible algebra A . We use H.A.

Priestley's duality for bounded distributive lattices throughout.

First, intrinsic descriptions of the duals of certain finite

subdirectly irreducibles are given; these are later used to

determine projectives in the dual categories. Next, left

adjoints to the forgetful functors from 0 and Var(4) into

bounded distributive lattices are obtained, thereby allowing us

to describe all free algebras and coproducts of arbitrary

algebras. Finally, by applying the duality, we characterize

injectivity in Var(/1) for each finite subdirectly irreducible

algebra A .

De Morgan algebras, natural generalizations of Boolean algebras were

introduced by Moisil [19] and have since been extensively studied by

various authors including Kalman [78] who called them i-lattices,

Bia/ynicki-Birula and Rasiowa [4], [5], [6], who called them quasi-Boolean

lattices, and Monteiro [20]. For a summary of the basic results see [7].

The study of distributive Ockham algebras, a further generalization, was

commenced by Berman [3] and contined by Urquhart [23] who named them Ockham

lattices and described the subdirectly irreducible and free algebras. A

far reaching generalization has also been undertaken by Cornish [S], but
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I 62 Moshe S. Go Idberg

is as yet in manuscript form.

In this paper, we carry on the work of Urquhart. In Section 1, after

giving the basic definitions and notation, we outline Priestley's duality

for bounded distributive lattices. Throughout the rest of the paper we

repeatedly make use of the duality to study certain properties in the

variety of distributive Ockham algebras and in those subvarieties which are

generated by finite algebras. In Section 2 we give an equational

description of these varieties and discuss their subdirectly irreducibles.

In Section 3 a more general description of the free algebras is given by

considering the category of distributive Ockham algebras as a reflective

subcategory of bounded distributive lattices. This also allows us to

determine coproducts in this category, thus expanding a theorem due to

Berman and Dwinger [7, Theorem 2, p. 2l6]. In Section h we use our

description of the subdirectly irreducibles to find the injective algebras

in each of the subvarieties mentioned above; our descriptions are obtained

via a well-known theorem of Day [72], which links the injectives to the

subdirectly irreducibles under certain conditions. Our results generalize

the characterization of injective De Morgan algebras given by Cignoli in

[7].

1. Preliminaries

An Ockham algebra <A; v, A, ~, 0, 1> is an algebra of type

<2, 2, 1, 0, 0> , where <A; v, A, 0, 1> is a bounded lattice, and ~ is

a dual endomorphism of A ; that is, the equations

~(x Ay) = ~sc v ~y , ~(x v j) = N T / \ ^ , ~0 = l , ~1 = 0 ,

hold identically. The class of distributive Ockham algebras is a variety,

which will be denoted by 0 .

Priestley's duality for bounded distributive lattices was developed in

[Z/] and [22].

Let (X; T; S) be an ordered topological space; that is (X, T ) is

a topological space and 5 is a partial order on X . A subset U of X

is called an order-ideal (dual order-ideal) if for all x, y in X ,

x < y and y (. U (x € U) implies x € I) (.y € U) , We say that (X; T; S)

is totally order-disconnected if for all x, y in X , whenever x ^ y

there exists a clopen order-ideal U of X , such that x € U and
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y \ V . In the sequel, we will simply refer to an ordered topological

space (X; T; £) as X .

Denote the category of hounded distributive lattices by D , and

denote the category of compact totally order-disconnected spaces with

continuous order-preserving maps by P . Priestley's duality states that

P and D are dual categories: the set 0(X) of clopen order-ideals of

an object X in P is closed under union and intersection, and so is an

object of D ; and for each lattice A in D , an object of P is

obtained by endowing the poset P(A) of prime ideals of A with an

appropriate topology. Furthermore, A S 0{P{A)) and X = P[0(X)) , via

natural isomorphisms.

If X is an object of P and g is a continuous order-reversing map

on X , then {X; g) (henceforth simply referred to as X ), is called an

Oakham spaae. We will denote by S the category whose objects are Ockham

spaces, and whose morphisms are continuous order-preserving maps which

commute with g . In [Z3], it is shown that 0 and S are dual

categories. If A is an object of 0 , then the map g defined on P{A)

by

g(x) = {a (. A | ~<z ̂  x} , for each x in P{A) ,

is continuous and order-reversing; and if X is an object of S , then we

can define a dual endomorphism ~ on 0{X) by setting

~y = x - g*~{U) , for each U in 0{X) .

If X € S , then a subset Y of X will be called a g-subset if

x € Y implies g(x) € Y . For a subset Y of X , ^(Y) will denote

the smallest g'-subset containing Y , and the lattice of all closed

g-subsets of X will be denoted by G(X) . We note that since 0 and P

are contravariant functors, and 2 is injective in both D and P ,

injections in each category correspond with surjections in the dual

category. It is easily verified that if / in S(Y, X) is injective,

then Y is isomorphic to a closed ^-subset of X . This leads to the

following result, which is proved in [23].

THEOREM 1.1. If A ie a dietrdbutive Oakham algebra, then the

lattice Con(4) , of congruences on A , is dually isomorphic to

G(PU)) . D
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2. Subvarieties and subdirectly irreducibles

We will denote the usual class operators corresponding to isomorphic

copies, homomorphic images, subalgebras, and direct products by I, H, S ,

and P , respectively; and S1(K) will denote the class of subdirectly

irreducible algebras in a class K . On the other hand if- X is a class

of Ockham spaces, then G(X) and M(X) will denote respectively the

classes of closed ^-subsets and S-morphic images of spaces in X .

Finally, for a class K of Ockham algebras, Var(K) will denote the

smallest variety containing K .

We begin with some general results on subdirectly irreducibles, to

which we shall repeatedly refer. The first two are due to Urquhart and can

be found in [23].

THEOREM 2.1. If A is a distributive Ockham algebra, then A is

subdirectly-irreduoible if and only if there is an open subset U of P{A)

such that ^({x}) = P(A) for all x in U . •

COROLLARY 2.2. If A is a finite distributive Oakham algebra, then

A is subdireatly irreducible if and only if g ({x}) = P(A) for some x

in P(A) . •

Note that the element x in Corollary 2.2 is not necessarily unique;

in general, if X is the dual of a finite subdirectly irreducible

distributive Ockham algebra, then any element which generates X under g

will be called an end of X . If 0(X) is not simple then it is clear

that this element is unique, and it will be denoted by e« (or simply e

if no confusion arises). If 0(X) is simple, then the following two

results show that every element of X is an end, and in this case we shall

always specify one particular element which will be denoted by «„ (or

e ).

THEOREM 2.3. If A is a distributive Ockham algebra, then A is

simple if and only if g^{{x}) = V{A) for all x in P(.A) •

Proof. Immediate from Theorem 1.1. •

COROLLARY 2.4. If A is a finite distributive Ockham algebra, then

A is simple if and only if g ({x}) = P(A) for all x in P(A) . O
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Let A be a finite subdirectly irreducible distributive Ockham

algebra. If e is the end of P(A) and Y is a g-subset of P(A) ,

then it is clear that g (e) is the end of Y , where

k = min{Z- \ g (e) E j] ; whence 0(Y) is subdirectly irreducible, We use

this fact to obtain the following result.

PROPOSITION 2.5. Let A be a finite set of finite subdirectly

irreducible distributive Oakham algebras and let K = Var(A) . Then the

subdirectly irreducibles of K are precisely all the homomorphic images of

subalgebras of algebras in A .

Proof. By Jonsson's Lemma [17, Corollary 3.2], Si(K) c HS(A) . To

see the converse, let B be a subalgebra of A , where A € A . Then

P[B) is an S-morphic image (under / , say) of P{A) . Since / is

onto, it is clear that if e is the end of P(A) , then /(e) is the end

of P{B) ; whence B is subdirectly irreducible. The rest follows from

the remark preceding this proposition, which tells us that homomorphic

images of finite subdirectly irreducible distributive Ockham algebras are

themselves subdirectly irreducible. •

COROLLARY 2.6. If the algebras in A of Proposition 2.5 are Boolean

lattices, then the subdirectly irreducibles of K are precisely all the

subalgebras of algebras in A .

Proof. By Proposition 2.5 and Jonsson's Lemma, we have

S(A) c HS(A) = Si(K) . To show the converse, let Y be a closed ff-subset

of X , where X is an S-morphic image (under h ) of P(<4) , for some A

in A . Let e be the end of ?{A) and define f : V(A) •+ Y by

/(s) = gkh{z) , where k = min{l « N | gl(e) (. h*{Y)} .

It is easily seen that f is well-defined and onto, since Y is a

g-subset of X ; and / commutes with g since h does. P(A) is

totally unordered because A is Boolean, hence / is also trivially

order-preserving. Thus Y is an S-morphic image of ?{A) ; so

HS(A) c S(A) . O

For m + n , m, n > 0 , let 0 n denote the class of those

distributive Ockham algebras whose dual spaces X satisfy the equation
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g (x) £ g (x) .

L e t ''m n = ^m n n ^n m ' w h e r e m > n • T n e dual category of P n will

be denoted by S n .
Ill j

Let m - n be odd, and let X he the dual of an algebra in P n .

Without loss of generality, suppose m is odd and n is even. Then for

each U in 0(X) ,

= 0

and

y u ~ u = lx-[g J (y)J u (̂  J

= X .

Now, for A in P ^ , ~ a = ~ (~ a) for each a in A , thus

whenever m - n is odd, {~a|a€j4} is a Boolean algebra, and we have

the following equational characterization of P n .

PROPOSITION 2.7. Let m > n , n > 0 , and let A € 0 . Then

(i) • when m - n is odd, A € P n if and only if

~ a A ~na = 0 and ~ a v ~ a = 1 /or each a in /I ;

CitJ when m - n is even, A € Pm n i/ arcd only if

~ a = ~ a for each a vn A . D

Note in particular that by Proposition 2.7 ('ii>', P£ Q is the class

of De Morgan algebras. The P _'s play an important role in the study of

distributive Ockham algebras. For instance, if A is a finite

distributive Ockham algebra, then for each x in P(/l) , there exists a

smallest pair [m , n J of natural numbers, with n < m , such that
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m n
g x(x) - g X{x) . If we set n = max(n | x ? P(A)) and

m = n + l.c.m. [m -n \ x i. P(A)) , we see that g = g on ?{A) . We

have proved the following useful result.

PROPOSITION 2.8. Every finite distributive Ookham algebra is in

P - for some n > 0 , m > n . •

For m > n and n 2: 0 , let m be the structure (Z , y ) where

Y : TL +TL is defined by y (k) = k + 1 for 0 5 k < m-1 , and
'n m m * n

y {m-l) = n .

Let L be the dual algebra of the Ockham space m with the

discrete topology and order, and g = y . Let L be the dual algebra of

the Ockham space BM the Stone-Cech compactification of the natural

numbers with the discrete topology, where the order on BM is discrete,

and g : BM •* PN is the unique extension of the successor map on N . For

basic information about BM we refer the reader to [Z5, Chapter 6] and

[24]. in [23], it is shown that 0 = ISPfl ) and Pm „ = ISPfi ) .
v a) m,n *• m,n'

There, L is actually defined to be c , the set of all subsets of the

natural numbers. But, it is quite easily seen that the two definitions are

equivalent once it is recalled that 0 is left adjoint to the forgetful

functor, |-| from COmp , the category of compact (Hausdorff) spaces,

into Set ; whence

^ Comp(BN, 2) s Set(N, |2|) ss 2N .

Before generalizing from P n to any subvariety generated by a finite

subdirectly irreducible distributive Ockham algebra we include some

consequences of Proposition 2.8.

COROLLARY 2.9. (i) A finite distributive Ookham algebra is simple

if and only if it is a subalgebra of L . for some m > 0 .

(ii) A finite distributive Ockham algebra is subdirectly irreducible

if and only if it is a subalgebra of L for some m > n , n ^ O . D
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Let X be the dual of any finite subdirectly irreducible Ockham

algebra. Let (m, n) be the smallest element of M x N such that 0(X)

is a subalgebra of £ . It is clear that m must in fact be the

cardinality of X . To simplify our notation, wherever possible we will

kr >
denote g \e^A by k . Note that the non-empty jy-subsets of X are

precisely the sets

Xk = {k, k+1, ..., m-1} ,

where H 2 ; thus Con^A")) is an rc+2-element chain. In

particular, we have

PROPOSITION 2.10. For m > n , n > 0 } Con (z^ J is an

n+2-element ohain. •

The dual of a finite subdirectly irreducible distributive Ockham

algebra may be viewed as in Figure 1, though it should be remembered that

in this diagram, we have suppressed the order relation.

Q0 y Ql ^ Q2

m-1 o n+1

m-2 O( on+2

FIGURE 1

For the rest of this section, X will be the dual of a finite

subdirectly irreducible distributive Ockham algebra, with end e ,

CardU) = m , and n = minj/c f Z ^ | gk(e) = g"(e)\ . We will often talk

about two particular subsets of X : L = {n, rc+1, ..., m-l} and

T = {0, 1, ..., rc-l} . For obvious reasons, these will be called

respectively the loop of X and the tail of X . Note that 0{X) is
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simple if and only if X is a loop; that is, if and only if the tail of

X is empty.

Let K = HSP(0(X)) ; once again using Jonsson's Lemma, we obtain

K = ISPHS(0(.»O) . Recall that K satisfies the congruence extension

property if

(CEP): for each algebra A in K , and every subalgebra B of

A , every congruence on B is the restriction of some

congruence on A .

It is shown in [3], that 0 satisfies (CEP), so we will often interchange

the operator HS with SH ; and in the dual categories we will do

likewise with GM and MG . Let Z € GM(X) , and let e be an end of

Z ; define

a. Ax) := H\ [gk(x) S gl(x) \ gk{e) < gl{e) in z)

and let

a(x) := W (o(z g)(x) | Z € GMU) and e is an end of z) .

THEOREM 2.11. K = {A € 0 | P(A) f= (Vx)a(x)} .

Proof. Let A € 0 , and suppose P(A) \= (Vx)o(x) . If u (. ?{A) ,

then P(A) f= a(u) ; that is, there exists Z in GM(X) with end e ,

such that P(A) (= Or ){u) . Then the map / : Z ->• P(4) given by
*• u ' V U U

f \g [e J = 3 (u) , is easily seen to be an S-morphism, with

*w : A ~* ^ Z J ' Siven by a ^ = W (ej | 9 («) € aj- , as its algebraic

dual. Note that we are identifying A with 0[P(A)) . Now if a ± b

then without loss of generality there exists u in a - b , so

e = g [e } £ a$ - b<$> ; hence a<|> ^ 2><j> ; and the map

• = T T (<i>M I « «
 pu)) : * - T T (o(

is an embedding, whence A (. ISP (HS(0( J))) = K .

Conversely, let A t K ; since ()(#) is a subalgebra of L for
m,n
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some m > n , n 2 0 , i t follows that A £ ISPS(i ) . Let u € ?(A)

and consider the map <f> : A •* L given by a<t> = \k i7L \ g (u) £ ar .

I t i s eas i ly seen tha t <f i s a homomorphism, with h , defined by

h (k) = g (u) , as i t s dual map in S .

Now A$ € S(i ) n K = Si (P ) n K by Corollary 2.6. Therefore,
Cv fit «11 ^

A<t> € HS(flU)) . Dualizing t h i s , we have P[A<t> ) € GM(A') ; and se t t ing

Z = P[A<$> ) , with the end e of Z being determined by 0 in m ,

and observing tha t Z (= Or, -, (e ) , and tha t ft embeds Z into

P(A) , we obtain P(i4) \= a r }[h [e )) = Or -i(w) . Hence

P(/l) (= (Vx)o(x) . •

From Corollary 2.6 we see that the subdirectly irreducible algebras in

Pm n are precisely the subalgebras of L . Again, let K = HSP(O(Ar)) .

A natural question to ask is: Under what conditions is it true that the

subdirectly irreducibles in K are precisely the subalgebras of 0(X) ?

We now set out to answer this question; as will be seen in Section k, the

result has a lot of bearing on the discussion of injectivity in K .

A subdirectly irreducible algebra A (in K ) is called maximal if it

has no proper extensions in Si(K) . Remembering that Si{K) = HS(O(^))

(Proposition 2.5), and dualizing, we will say that Z in GM(X) is

maximal if it is not a 'strict1 S-morphic image of any space in GM(A') ;

that is, if Y € GM(X) and h : 1 •* Z is onto, then h is an

isomorphism. Note that X is maximal in GM(A") . Our question will be

answered in the affirmative when X is the only maximal in GM(A") . We

begin with a result which is central to the ensuing discussion.

THEOREM 2.12. R is a retract of X if and only if R is the loop.

Proof. Let R be a retract of X . Then there is an injection

/ : R >-+ X and a surjection h : X •+-+ R , such that hf{r) = r for each

r in R . Now f(R) is a g-subset of 1 , so f(eR) = ̂ ( e j for some

k in 2 ^ . Since h is onto, h[e ) = e , hence
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eR = hf(eR) = hgk(ej = gkh[ex) = gk{eR) ,

that i s , R is the loop.

Conversely, le t e be the end of X and define h : X -*• L by

h{e) = g (e) , where k i s the unique natural number such that

;; 2 k 2 m-1 and 0 = k mod {m-n) . That fe is well-defined, onto, and

l l l2 l \ r k

commutes wi th g , i s t r i v i a l . I f g (e) 2 g (e) , then g (e) i s

comparable wi th g (e) . I f 2c i s even, then h i s o r d e r - p r e s e r v i n g ,

and i f m-n i s even, then k = 0 mod (m-n) imp l i e s fe i s even. I f

m-n and fc a re bo th odd, then

I +k lp+k I +k+m-n l-+k+m-n
g (e) > g (e) =» g (e) < g (e)

=» g (e ) 5 g (e )

*=* g (e) = g (e) .

Thus h is order-preserving. Finally, if i ̂  n , then

, £/ \ i+k, \ i+s(m-n), •. i-nz mzi \ i—nz nz, \ i, •,
hg \e) = g (e) = g (e) = g g (e) = g g (e) = g (e) .

Therefore h is retraction. •

Now let Z be maximal in GMU) . Since MG = GM , Z is

(isomorphic to) an S-morphic image of a g-subset of X ; and since Z

is maximal, it is in fact (isomorphic to) a g-subset of X . Thus Z = X,

for some k 5 n . If n = 0 , then X is a loop and hence 0(X) is

simple, and has only trivial homomorphic images. If n = 1 , then X is

the loop of X , and by Theorem 2.12, X is indeed an S-morphic image of

X and so Z '-? X . Finally, if n 2 2 , an easy argument shows that for

eauh k 2 n-2 , ^,+2 is an S-morphic image of X, via g . Hence the

only maximals are (isomorphic to) X and X .

Now if m = 1 then X is the only object in GM(A') ; and if

2 , either X is the loop or X is the lo<

for m 5 2 , the only maximal in GMU) is A" .

m - 2 , either X is the loop or X is the loop: see Figure 2. Thus
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O
P

o
FIGURE 2. Duals of subdirectly irreducibles with m < 2

Furthermore, if X is a 3-element chain, then X is either the

loop, in vhich case X is not maximal in GM(A') , or the middle element

of X is a jj-fixed point, in which case there can be no S-morphism from

X onto X , whence X is maximal in GM(J) . This situation is

illustrated in Figure 3.

X is not maximal

X is maximal

FIGURE 3. Case where A" is a 3-element chain
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LEMMA 2.13. If m > k , and X is a chain, then X is maximal in

GMU) .

Proof. It is easy to verify that X cannot be the loop if X is a

chain with more than three elements. Now if there is an S-morphism / ,

from X onto X , then f[eY) = eY = g[ey) , but / must then be order-
1 A A A

preserving and order-reversing, so, since we have e,. comparable with

g[ex) , it follows that g[ex) = 9 (eJ . Thus Card(/) = 2 , a

contradiction. D

In general when m > 3 , the situation is more complicated, but we now

have almost enough information to answer the question. The next result

gives us a procedure for determining whether or not X is maximal in

, merely by looking at a picture of X .

If x, y are elements of a poset P then we will write x ft y if a;

is comparable with y , and x \\ y if a; is incomparable with y .

THEOREM 2.14. Let m > 3 , and suppose X is not a loop. Then X

is maximal in GM(A*) if and only if X is a chain with more than three

elements or the following four conditions hold:

(i) X is not an antichain;

(ii) X is not the loop;

(Hi) if k is the smallest natural number with

gk(e) < gk+1(e) or gk(e) > gk+1{e) , then

k+1, % , k+2, >
g (e) + g (e) ;

k k+\
(iv) if for all natural numbers k , g (e) || g (e) , then

there are at least two distinct pairs of elements related

by < .

Proof.- Let X be maximal in GM(A") , and suppose X is not a

chain. Conditions (i) and (ii) follow immediately from Corollary 2.6 and

Theorem 2.12.
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k k+l
(Hi) Let k be the smallest natural number with g (e) < g (e)

k k+l
or g (e) > g (e) (assuming such exists): note that k £ 0 since

k+l k+2 k—l k+l
m > 3 • Suppose g (e) = g (e) . If j (e) # g (e) , without loss

of generality assume £ " (e) < £ (#) , then <y (e) > # (e) =

But then g ~ (e) 5 g (e) 5 # (e) , a contradiction. Hence

g (e) II 0 (e) . Now let 0 < s S r-1 < fe , and suppose

gk-r{e) § gk-S(e) ; then

k-1, > fe-r+r-l, , „ k-s+r-l, > fe+r-(s+l), . k+l, >
? (e) = g (e) # g (e) = g '(e) = ^ (e) ,

contradicting the fact that g (e) || g (e) . Now define / : X ->• X

by /(e) = g{e) . It is easily seen that / is well-defined, onto, and

commutes with g ; and since the only order to preserve, namely

g is) # g (e) , is preserved because we have assumed g (e) = g (e) ,

it follows that X is an S-morphic image of X , contradicting the

maximality of X .

(iv) Assume the hypothesis, and suppose 'gr(e) < g (e)' is the only

non-trivial order relationship holding in X • Now g (e) > g (e) ,

but if gr+1(e) > gS+1(e) , then gr+1(.e) = gS+X(e) ; but then / : X + X±

defined as in (Hi) is again order-preserving, contradicting the maximailty

of X± .

Suppose on the other hand, that X is not maximal in GM(/) ; that

is, there exists an S-morphism / : X •*-*• X . Further, suppose X is

not the loop, and X is not an antichain, so f = g . Now, either

(a) there exists a natural number k , such that

g (e) # g (e) , or

k k+l
(b) g (e) \\ g (e) for each natural number k .

If (a), then let kQ be the smallest such number. Without loss of
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kQ kQ+l kQ+l feQ+2
generality, suppose g (e) < g (e) ; then <7 (e) > g (e) . But

V1 V2
/ is order-preserving, and f = g , thus £ (e) = g (e) . So (iti,)

fails, and X also cannot be a chain. If (b), then let v be the

smallest natural number involved in a non-trivial order relationship; that

is g (e) # g (e) and g (e) t g (e) for some s in N . Without loss

of generality, assume g (e) < g (e) ; then by the same argument as above,

g (e) = g (s) • Suppose there is another pair of elements (u, v)

related by < ; that is, g (e) < g {e) . Then we again have

(T («) = 3 («) • But

/ + l ( e ) = g "
+ l ( e ) = /

+ 1 + " - r
( e ) = ?

s + 1 + M - r
( e ) = /

+ 1 + s - r ( S ) = g
V+1+S'r(e) .

Q "f*

Therefore, s-r = 0 mod (m-n) ; whence g (e) = g (e) , a contradiction.

So (iv) fails. •

It follows from this result and its proof that X is non-maximal in

if and only if one of the following hold.

(0) X is isomorphic to one of the spaces in Figure 2;

(1) X is an antiahain;

(2) X is the loop of X {regardless of the order relations on

* Is

(3) X is isomorphic to the space {A) in Figure h, or its dual;

(k) X is isomorphic to the space (S) in Figure h} or its dual.

U) (S)

o —>• o

FIGURE 4

COROLLARY 2.15. Let A be a finite set of finite subdirectly
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irreducible distributive Ockham algebras and let K = HSP(A) . Then the

subdireeily irreducibles of K are wedsely all the subalgebras of

algebras in A if and only if for each A in A , P(A) satisfies one of

the conditions (O)-(U) given above. D

We close this section with a fev remarks about the structure of X .

Once again, the results obtained are indispensable to our discussion of

injectivity in \lar[0(X)) . First we consider the case when X is a loop.

If m is even, define

Y(m) = {k f 2 Ik odd, 2fc 5 ml .

Let Y c Y{m) , and let 5 be the least reflexive relation on X , such

that eY 5V g [eS\ for each k in Y , and x 5 V x implies

g[xA 5y g{x J in X . A more general form of the following result is

proved in [23].

LEMMA 2.16. (i) If m is odd, then X is an antichain.

(ii) If m is even then the ordering on X is isomorphic to some

£ y where Y c Y{m) .

(Hi) In case (ii) distinct subsets Y give rise to non-isomorphic

Ockham spaces. D

We note a few consequences of this result, remembering that in what

follows, m is even. Without loss of generality, we are choosing the end

k Iof X to be a minimal element of X . If g (e) < g (e) , then k is

even and I is odd, thus if m is even and Y = 0 , then X is an

antichain, and if Y + 0 , then X has height 1 . Finally, if k € Y

., m-k, \then e < g (e) .

LEMMA 2.17. If e < gk(e) , then k € Y or m-k € Y .

•j.

Proof. Let e < g (e) , and suppose k $ Y ; then 2k > m . Also

m—ki \ m-k c k, \i m, •.
g Ke) > g [g (el) = g (e) = e and since m-k is odd, it follows

from the second remark above that e < gm~ (e) . Finally

2k > m => 2k - 2m > -m =* 2{m-k) < m . Hence m-k € Y . •
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Let x, y be elements of a poset P ; we write xCy if x and y

are connected in the graph of P , and x§y if they are not.

THEOREM 2.18. If X is not connected, then for each k in Y ,

g.c.d.U, B ) * 1 .

Proof. Let k € Y , and suppose g.c.d.(fe, m) = 1 . Then "by [74,

Corollary 6.k, p. 53], g generates the cyclic group {g, g , ..., ̂  } ;

zk
that is, there exists z in Z with £ (e) = g'(e) . Now k 6 Y , so

e < £ (e) . Thus

g (e) > g (e) < g (e) > ... # g (e) tt g (e) = g(e) .

Therefore eCg(e) . But then g {e)Cg ~ (e) for all I in TL ; that is

X is connected. D

THEOREM 2.19. If X is not connected, then each (connected)

component of X is self dual.

Proof. Suppose X is not connected and Y £ 0 . By Theorem 2.18, we

can choose k = min(Y) . We show that PQ , the component containing e ,

1 m-l-k
is self dual. Define f : PQ + PQ by f[g (e)) = g (e) . If

g (e) € P , then since e < g (e) , it follows that g {e)Cg (e) .

7 7 m-l+m-k m-l-k
Thus e = /(e) = g L {e)Cg °(e) = ̂  °(e) ; that is,

/"(# (e)) 6 P , hence / is well-defined. If gr(e) < gS(e) , then r is

m-k0+r m-fe +s
even and s is odd, so ^ (e) 2 g (e) from which it follows

m-fe -s m-k -r
that 3 (e) 2 £ (e) . Hence f[gr{e))>f[g8{e)) , and f is

order-reversing. If g- (e) € P , then by the same argument as before,

m-r-k m-r-k m-m+r+k
g (e) € PQ , and f[g (e)) = g (e) = gr(e) ; showing that

f is onto. Finally,
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m-r-k m-s-k
f[gr(e)) £ f[gB(e)) - g °(e) < g °(e)

°* g (e) > g (e)

=» g (e) £ g (e)

• /(e) £ /(e)

showing that / is a dual order-embedding.

We now show that each component is dually isomorphic to the next.

Since X is not connected, it is clear that g(.e) (: P . Let P be the

component containing g(e) , and define h : P •*• P by

h{gl(e)) = gUl(e) ; that is h = g on PQ .

If g (e) (. P , then since g preserves connectedness, it follows

that g (e) € P , thus h is well-defined. By definition, h is

order-reversing; and if gr(e) € P , then gV~ (e) = gr+m~ (e)Ce € P

and h[g (e)) = g (e) , so h is onto. Finally, if h[g (e)) £ h[g (e))

then g (e) S g ( e ) , and since m - 1 is odd, we have

#r(e) = g W ~ (e) > ^ S m " (e) = gs(e) , thus /i is an order-embedding.

Clearly this argument goes through for each pair of successive components.D

We note in passing that the cases we are presently studying are by no

means exhaustive; in fact the results obtained from Lemma 2.16 through to

the end of Section 2, are basically no more than is necessary for the

discussion of injectivity in Section h.

Finally, we consider the case when X is not a loop, and there exist

k I
k, I in TL , with g (e) < e < g (e) . Suppose X is not connected.

Let s be the smallest natural number such that g (e) If P ; that is

gS(e)$e . Since ge(e) || gs~1(e) , it follows that gs~X{e) \\ gs~i~1{e)

for each i in {l, .... s-l} . By induction, we see that

\e, g{e), ..., g (e)} forms an antichain. Now suppose gr(e)Ce ; since

g (e) > e , we have g (e)Cgr(e) . But, by definition, gS~1(e)Ce , so
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gS~1(e)Cgr(e) , and hence gs(e)Cgr+1(e)Cgl+1(e) 5 g(e) ; thus s = 1 . We

have proved the following result.

LEMMA 2.20. If X is not connected, then every element of each

(connected) component is mapped to the next component by g . •

If X is not connected, let p "be the number of components; that is

x = p o ' u P i ' u ••• i p
P - i •

LEMMA 2.21. Let r € T2-m ; then gT{e) S PQ if and only if p

divides r . More generally, g (e) (. P. if and only if r = i mod p. .

Proof. By Lemma 2.20, gP{e) £ P _± , and if ${e) € P± , then

But then g "~ (e)C</(e) € P , and no element is mapped into P by g .

A similar argument shows that cf(e) £ P. for each £ > 0 . Thus
If

cf(e) € P , and by applying g repeatedly, we obtain g"(e) E P , for

each natural number z .

Conversely, let g (e) J P , and suppose r = zp + i where

1 2 i S p-l . Then, by Lemma 2.20,

But / + P " V ) = gtP+P+i-Ue) = <7(2+l)p(e) € PQ . Thus .p - i = 0 , a

contradiction. •

3. The free distributive Ockham algebra
generated by a distributive lattice

For every object X in P , define S (X) := X^ , and endow it with

the product topology and the following order: for x = fx.).
1 z' v to)

y = [y •) •, in A ,
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x 5 y if and only if s ^ > y ^ and x^ 2 y ̂ in X .

That is, S^U) = * > < / * x A ' x / Z x ... , where /* denotes the order

theoretic dual of X ; we will call this the alternating order on X .

Define g on S^U) by ff(Ui)ieJ = ̂ + 1 ^ € U ) '
 For each map ^ in

Ptf, Y) , define SJf) : SJX) - SJY) by SJf)[[x.

This gives a functor from P into S . For a finite subdirectly

irreducible distributive Ockham algebra A , we obtain a functor from S

into S , the dual category of Var(4) , by setting

SA(X) = {x € X | X\=a(x)) , f o r e a c h X i n S .

(Here o(x) i s defined as for Theorem 2.11.J The topology, order, and the

map g , are those induced on the subspace -S (J) by X . When A = L
A m,n

for some n > 0 , m > n , we will abbreviate 5 = S to 5
A L m.n

m,n

THEOREM 3.1. (i) The functor S^ : P •+ S is right adjoint to the

forgetful functor.

(ii) The functor S • S -»• S is right adjoint to the inclusion

functor.

Before giving the proof, we observe that via Priestley's duality, this

theorem gives us left adjoints to the forgetful functor from 0 into D ,

and the inclusion functor from Var(/1) onto 0 . (By composing, we also

obtain the left adjoint to the forgetful functor from Var(4) into D .)

In general, if K is a full subcategory of L , then H : L •* K , defined

by H(B) = S/0 , where 0 = A (6 € Con(fl) | B/Q € K) , is left adjoint to

the inclusion functor from K into L . In the second part of the

theorem, we have L = 0 and K is generated by a single finite algebra,

and we have described the congruence 0 on B in 0 , by describing the

appropriate closed ^-subset of ?(B) .

This approach has been used before by Davey and Goldberg in [JO], to

describe the free distributive p-algebras. For a more general categorical

discussion of these ideas, see the remarks following Theorems 2.2 and 2.3

of that paper.
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Now, by noting that the dual space of FD(K) , the free bounded

distributive lattice on K generators, is 2 , we obtain the following

description of free algebras in the categories 0 and Var(<4) for any-

finite subdirectly irreducible distributive Ockham algebra A .

COROLLARY 3.2. (i) FD(K) s o[sa)(2
K)| s 0((2K)u) .

(ii) If K = \lar(A) , then FK(K) a 0 (s^ [s^ (2K)) ] s 0[s^((2K)^) . D

The description of the free algebras in 0 was first given in [23].

We note in passing, that when A = L for some n > 0 , m > n , a(x)

is the equation g (x) = g (x) . So in particular,

FPmjn(K)=0({* € (2
K)U | <Ax) =/(*)}) .

Proof of Theorem 3.1. (i) To see that S is a well-defined

functor, we first note that for X in P , A is compact and totally

order-disconnected; that is, S (X) € P . In fact, S {X) € S , since g

is order-reversing by definition, and for any sub-basic open set U of

S (X) , g*~(U) = X x U , which is open in S (X) ; hence g is

continuous.

Now let f € P{X, Y) . It is easily seen that S (/) is well-defined

and order-preserving, since f is order-preserving. To see that S (f)
(0

i s continuous, l e t U = i/ x w x . . . be a basic open set in S (Y) .

Then

S (/)""(U) = { ( x . ) . , € S (X) | [f{x.)).c € U]

= SJX) n {f{U0) x / - ( W i ) x . . . ) ,

which is open in S (X) , since / is continuous. That S (f) commutes

with g is trivial. Thus S (/) is an S-morphism.

Finally, to verify that S is right adjoint to the forgetful

functor, |-| : S -»• P , we must show that for each X in P , for every Y

in S , and for all a in P(\Y\, X) , there exists a unique $ in
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S(y, S (X)) , such that the diagram in Figure 5 commutes.

FIGURE 5

Let a. € P(|y|, X) , and define 6 : Y •* S (X) by B(i/) = <agL{y)>..

Clearly 3 is well-defined and continuous, since a and g are

continuous. If y < y' in y , then

and

7r2i+l^(l/)-' = °^ (i/1 - ° S (i/ ) = ^-t+i

so 3 is order-preserving. And 3 is an S-morphism since for all y in

y ,

Thus 3 € S(y, S (X)) . It is trivial that TT |B| = a . To see that 3

is the unique map with this property, assume that there exists A in

S(J, S W U ) ) with TTQ | A | = a . Then, for each y in Y ,

3(2/) = iew ( 0 ) . { Q )

Thus 3 = X .

(ii) -To see that S. is a well-defined functor, we show that for X

in S , SA(X) is a closed ff-subset of X . Let x £ X - S^U) . Then
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X ̂  o(x) ; that is X^=o,z Ax) for all Z in GM(PU)) , and for each

end e of Z . Thus, for each Z in GM(P(4)) , and for every end e of

Z , there exist natural numbers k and Z , with g (e) 5 <y (e) but

k L Z
<? (x) ̂  g (x) in X . By total order-disconnectedness, there exists a

1 k i
clopen order-ideal U of X , with g (x) € £/ and g (x) % U . So

x € (g J (f) - (g J (t/) , which is open in X , since g is continuous and

£/ is clopen. Now if y Z [g J (£/) - (<? J (i/) , then g {y) ̂  g {y) , and

clearly X ty* o(y) ; that is, y Z X - SA(X) . Thus S^C^) is closed. We

now show that ^.(.X) is ^-invariant. Let x £ -\i(.>0 ; then there exists

k Z
Z in GM(X) , with end e , such that g (e) £ g (e) in Z implies that

g (x) £ g (x) in # . If 0(Z) is simple, then by the remark following

Corollary 2.2, we can choose any element of Z to be an end. Let
r. i i,.-i 7+-i

e' = g(e) ; then g (e') S g (e') in Z implies that g (e) 5 g x(e)

in Z , which implies that g +1(x) 5 g +1(x) in X . Hence

X f= a. r.(j(i)) . If 0(Z) is not simple, then W = Z is a ^-subset

of Z , and

9 [ew] ̂  g^le^) in

- gk[g(x)) < /(g(x)j in AT .

Hence X )= O/- •, (g(x)) . In either case ^}=c(^(x)) ; that is,

g(x) € ̂ C'*') • So S
A(

X) is a closed ^-subset of X , and therefore

S^U) € S , by Theorem 1.1. That S^U) € S^ follows from the definition

of S.(X) and Theorem 2.11, and a similar procedure to that used before,

completes the proof. •

We can actually obtain more explicit descriptions of free algebras in

''m n ' t n a n those given above, but first we deviate slightly to look at

coproducts, and not surprisingly, for distributive Ockham algebras, we
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obtain a similar result to the one derived by Berman and Dwinger [7,

Theorem 2, p. 2l6J for De Morgan algebras. The simple proof of that

theorem used by Cornish and Fowler [9, Theorem 2.It], also, works here.

The product of a family of objects [X. \ i € JJ in a category X

will be denoted by ~] fY [%• \ ̂  * l) ; its coproduct will be denoted by

| [x [Xi I i € l) . If AT and Y are two objects of X , then X T T X

and X J |_v Y will respectively denote the product and coproduct of ' X

and Y in X .

THEOREM 3.3. If [x. \ i Z i) is a family of S-objeats, then

1 fD [x. | i € l) is an Oakham space and is the product of [x. \ i i i)

in S .

Proof. Define g on TTp (̂  \i * l) by J ^ . ^ ) ^igfcj

The proof is immediate from the fact that g thus defined is continuous

since each of its components is continuous. O

Using Priestley's duality, the theorem gives us coproducts in 0 ;

namely, for a family [A . \ i (. i) of distributive Ockham algebras,

| |Q [Ai | i € i) is isomorphic as a lattice with | |p [A . \ i i i) .

Consider again the varieties K and L with K c L , and let

H : L -»• K be the left adjoint to the inclusion functor from K into L

Since left adjoints preserve coproducts, H[B J L c) = H{B) J L H(C) ,

for all B, C in L . But, if K is a full reflective subcategory of

L , then H(B) S B for all B in K ; thus B | |K C ̂  H[B \ |L C
1) .

Applying this to the case where L = 0 and K is generated by a single

finite distributive Ockham algebra A , we have the following result.

THEOREM 3.4. If [x. \ i € i) is a family of S -objects, then

T T S [Xt \i if] ZSA(TJS [Xi I i € J)) ;

that is,

S [xt I i € J) s {x € "fTp (^ I i € i) I TTp [xi I i e i) H o w ) . D
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Again, via Priestley's duality, we obtain coproducts in Var(^) . If

A = L , then for each i in I , gm(x) = gn(x) for all a: in X. .
m ,n i'

Thus gm(x) = gn(x) for all x in ~| [_ [x. \ i £ i) . Hence we have the

following useful corollary.

COROLLARY 3.5. For n > 0 , m > n , if [B. \ i € l) is a family

of algebras in Pm , then \ |n [B. | i € i) and J_L [B. \ i € l)
m'n " ^ m , n v " ^ %

are isomorphic lattices. d

Observe that the class of algebras in P« « which satisfy the

identities x A ~sn = 0 and x V ~cc = 1 , is the class of Boolean algebras,

denoted by B . The following result extends Corollary 2.6 of [9].

COROLLARY 3.6. If {B. \ i € I"} is a family of Boolean algebras,

then

2,0 v l ' " ' " V n [Bi ' * ' J)

= IJO [Bi \i « I) = JJo [B - I i € I) • D

Let X be an ordered topological space and let L be a bounded

distributive lattice endowed with the discrete topology. Then C^{X, L)

will denote the set of all continuous order-preserving functions from X

into L , and C^X, L) , the subset of C^X, L) consisting of those

functions whose range is finite. It is easily seen that C^XX, L) is a

bounded distributive lattice under the pointwise operations. The following

result extends Theorem 2.7 of [9], to which the reader is referred for the

proof.

THEOREM 3.7. Let X be an ordered topological space with a

continuous order-reversing map g on it. Let L be a distributive Ockham

algebra. Then C^iX, L) is a distributive Ockham algebra, where, for each

f in CJ.X, L) , ~/ is defined by i~f)(x) = ~[f(g(x))) for each x in

X . Moreover, C^iX, L) is isomorphic to 0(X) J L L . D

We now return to free algebras. Berman [3], in generalizing De Morgan

algebras, restricted his attention to the subvarieties P. ; he
2m+n,n
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called these classes K . Urquhart [23], correctly asserted that many

of the results actually go through for all of the P . However, when we

study free algebras in P , it becomes apparent that the relationship

between m and n - for example, whether they differ by an even number or

not - is indeed significant.

Let m > n , n > 0 , and let H P . If m - n is even, then x"1 ,

the product space X with the alternating order, and g defined by

3i(x0' •••'
 xm-l^ = < V •••' Vl- V '

is easily seen to be an Ockham space. In fact, it is an object of S ,

the dual category of P .

THEOREM 3.8. If n > 0 y m > n , and m - n is even, then for each

X in ? , S
m

Proof. Define n : *m%ri{f) - % ** n(<*Q, • • • >) = < ^ Q , .... x|f(_1 >

It is easy to check that r| is well-defined, onto, order-preserving, open

and continuous. To see that r| commutes with g , note that for each x

in S (A") , gm(x) = gn(x) ; thus TT (*) = u (x) . So
fit m fi ili It

= < x l > •••' x m - l > X n } = 9 ( < X 0 > •••' X m - l ^ 0 m - l n

Finally, assume that n(*#0, • • • >) = 1 (< J/Q, ... >) ; that is,

<xQ, ..., xm_x> = (yQ, ..., ym_x> . Again using the fact that

gm(x) = ^"(x) , we have for k > 0 , ffW (x) = gn+ (x) . Thus, by

induction, -n^^x) = ^n+fc(a:) =
 ll

n+}\y^ ~
 v
m+k^^ ' H e n c e n is one-to-

one, and similarly, n is an order-isomorphism. •

Now in general, if A is given the alternating order, there is not

always an Ockham space structure on X such that S (Ŷ l 3? x"* . We
m,n^ '

note however, that there is a one-to-one correspondence between the
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elements x = <x ...> of S^ [X) , and the m-tuples <x , ..., x^ >

consisting of the first m components of x . Thus

Cardfsm [x")} = Cardf/1) = (cardU))"1 , and in fact S (/>) and f
i tfl * ft J 'II m iL

are isomorphic in P .

If m i s odd, and x, y f ^ Q[x) with x < y , then since g i s

order-reversing, we have x = g (x) 5: 3 (y) = y . Thus 5 (x ) i s a

Boolean space.

Final ly, we look at the case n = m - 1 . Observe that for x, y in

Sm m - 1 ^ ' if x ~ y t h e n ' V i ^ = '"m-l^^ ' N o w f o r e a c h y in X '

the product space / = {<x , ..., x ) | x. € J} with the alternating
y 0 TU—c. 1-

order and g : f~X -*• f'1 defined by

%(<X0> •••' xm-2^ = < X 1 ' •••' xm-2> y)

is an Ockham space, and is in fact in S •• .

THEOREM 3.9. Let m > 1 , and let X i P . If X is finite, then

s

Proof. Define T) : S n [X*] •* U f/
1"1 | y € x) by

r\[( x , ... , x _, x , . .. >) = < x , . .. , x _„> in the component X ~

It is easy to check that n is well-defined, onto, ont-to-one, and

continuous. By our earlier remark, x 2 y implies that n(x) and r\(y)

are in the same component of the disjoint union, and hence n is easily

seen to be an order-isomorphism. Furthermore, r| commutes with g ,

since

X 0 V2 x ^ V
m-1 m-1

Now, translating all of the above results to the algebraic categories
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and recalling that in any variety K , FK(K) is a coproduct in K of K

copies of FK(l) , we can use Corollary 3.5 to obtain the following

descriptions of free algebras in the various subvarieties.

COROLLARY 3.10. (i) For m> n , n > 0 , FPm n(<) and FD(KOT)

are isomorphia in D .

(ii) For m - n even, FPm n(<) and FD(<m) are isomorphio in

m,n •

(Hi) For m > 0 , m odd, FPm Q ( K ) S [FD(O)] and 1 are

isomorphio in Pm Q .

(iv) For m 2 1 , FPm m_-](i<) and [FD(K(W-1)]] are isomorphio in

m,m-l

Part (i) was first proved for De Morgan algebras by Berman and Dwinger

[see 7, Theorem 3, p. 2l8].

4. Injective distributive Ockham algebras

Let K be a class of algebras. An algebra I" in K is (weak)

injeotive if for each algebra A in K , and every subalgebra S of A ,

every homomorphism (epimorphism) ij> : B •* I extends to a homomorphism

$ : A •+ I with <j>|g = (J) ; I is self-injeative if it is injective in the

class {1} , that is, every homomorphism from a subalgebra of / into J

extends to an endomorphism of J ; and J is an absolute subretraot in K

if it is a retract of each of its extensions in K . We say that K has

enough invectives if every algebra in K has an injective extension in

K . We recall here the dual concept projectivity. Let X c S ; an object

P in X is (weak) protective, if for each object X in X , and every

surjection h : X -*• Y for some object Y in X , every (mono)morphism

f : P ->• Y lifts to a morphism / : P -»• X with h ° J = / . We have

already noted that injections in 0 correspond with surjections in S ;

thus an algebra A is injective in 0 if and only if P(/4) is projective

in S ; this fact will be used in most of the ensuing proofs. A class K

of algebras is said to satisfy the amalgamation property if
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(AP): for all algebras A, B. {i = 1, 2) in K , and

injections <$>. : A -*• B. [i = 1, 2) , there exists an

algebra C in K and injections ty. : B. •*• C
U If

{i = 1, 2) such that Q ^ = <J>2<I>2 .

The following is a summary of the results we require about

injectivity. The proofs can be found in [J2] and [76].

PROPOSITION 4.1. Let K be a variety.

(i) Direct produots of injective algebras in K are injective in

K .

(ii) Regraats of injective algebras in K are injective in K .

(iii) Every injective algebra in K is a retract of each of its

extensions in K .

(iv) If K has enough injectives then K satisfies (AP) and (CEP).

(v) Let A be a finite set of finite algebras and assume that

K := ISP(A) is congruence distributive. Let A € A and suppose that

every subalgebra of A is either subdirectly irreducible or weak injective

in K ; then A is injective in K if and only if it is injective in

A .

(vi) Let A be a finite algebra all of whose subalgebras are either

subdirectly irreducible or weak injective in K , and assume that

K := ISP(/1) is congruence distributive. Then the following are

equivalent:

(a) A is injective in K ;

(b) K has enough injectives;

(c) A is self-injective;

(d) K satisfies (AP) and (CEP). D

Let X be an Ockham space. Each x in X determines a map

f : IM •* X , defined by f (k) = gk(x) . Let 7 : W •* X be the unique
*C oZ JZ

extension of / . Since / commutes with g on N , it follows that

f commutes with g on 3N . Recall from the proof of Theorem 2.11, that
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for X in S. , the dual of the variety generated by a finite algebra A ,
n

each x in X determines a space Z in 6M(P(/4)) , an end e of Z ,

and a similar map / : Z -»• X . These maps correspond respectively to

<j> : 0(X) •* L given by £Af> = [k 6 N | g (x) € £/} and (() : 0(X) ->• 0(Z )

given by U((> = \g (e) € Z | ̂  (a;) € i//1 . The following results are quite

useful.

LEMMA 4 .2 . CiJ Let H S , awd let x, y i X with x * y . Then

1 * 1 .Jx * Jy

(ii) Let X € S. , and let x, y Z X with x + y . Then f * f .A x y

Proof. Suppose f = f • Thenx y

* = g°ix) = 7x(o) = fy(o) = g°ly) = y .

The proof of (ii) is similar and is in fact given in the proof of Theorem

2.11. •

LEMMA 4.3. (i) Let X (. S . Every S-morphism from 0M into X

is of the form f for some x in X , and f is uniquely determined by
x x

its value at 0 .

(ii) Let X € S. . Every S-morphism from a g-subset Z (with end

e ) of an S-morphic image of P(A) into X is of the form f for some

x in X j and f is uniquely determined by its value at e .

Proof. Again we only prove (i) since the proof of (ii) is almost

identical. Let / , / ' € S(BN, x) and suppose /(0) = / ' (0) . Let

k € N ; if f(k) = f'{k) , then

/(fc+D = flffW) = gf(k) = gf'(k) = f'[g{k)) = f'(k*l) .

So, by induction, f = f on N , and hence f = f on &l . Thus if /

and /' are distinct, then they take different values at 0 . •

It follows that if A ( 0 , then every prime ideal of A determines a

homomorphism of A into L , and conversely, every homomorphism of A
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into L is determined by a prime ideal of -4 . This extends the

corresponding result for De Morgan algebras proved in [4].

THEOREM 4.4. L is an injective distributive Ockham algebra.

Proof. We will show that BM is projective in S . Let X, Y £ S

and let h be an S-morphism from Y onto X . Let / € S(gM, X) for
X

some x in X . Now, since h is onto, the set h ({x}) is non-empty.

Let # € fc ({x}) ; then f : BU •* Y lifts 7 x , because for each n in

N ,

Since 0 = ISP[L ) , Proposition i*.l Tt^ tells us that 0 has enough

injectives. So applying Proposition lt.1 (iv) , we have:

COROLLARY 4.5. 0 satisfies (AP) and (CEP). •

We would obviously like to characterize all of the injectives in 0 ,

but unfortunately, we are as yet unable to do so, and leave this as an open

problem. The following results are useful steps towards its solution, and

collect together all of the information that is known to us at present.

LEMMA 4.6. Any injective distributive Ockham algebra is a complete

Boolean lattice.

Proof. By Theorem 3.1, 0[S ) is left adjoint to the forgetful

functor |-| , from 0 into D ; and since S preserves onto maps,

0[S ) preserves embeddings. Hence by a result of Banaschewski [2,

p. 136], |-| preserves injectivity. Thus if A is injective in 0 ,

then |/5| is injective in D . But we know the injectives in D ; they

are the complete Boolean algebras (see for example [J6, Theorem lit,

p. lU6]). Therefore \A\ is a complete Boolean lattice. D

In fact, if A is injective in 0 , we can actually say more. Recall

t \ P(A)
that 0 = ISP(L J ; in fact A is embedded into L ' , and hence the

P(A)
identity map on A extends to an epimorphism from L into A . Thus
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P(A)
A is actually a retract of L

LEMMA 4.7. If A is injective in 0 , then for each n > 1 , T{A)

has no g -fixed points.

Proof. Suppose that y in V(A) is a g -fixed point for some

n > 1 . Let 1 be the one-element Ockham space, and consider 1 as an

S-morphic image of n + 1 . Now / : ?{A) -*• 1 defined by fix) = 1 for

each x in V[A) is an S-morphism, and since P{A) is projective, there

is an S-morphism f : P(A) •* n + 1 , lifting / . But then

9 f(y) = fg (y) = f(y) > which is impossible in n + 1Q . D

By the above result, there are no finite injective distributive

Ockham algebras.

We now turn our attention to the subvarieties of 0 which are

generated by a single finite algebra. Our work is somewhat simplified due

to the results of Davey and Werner [/I]. We recall the following

definitions from there. For an algebra A and a Boolean algebra B , the

bounded Boolean power A[B] is defined to be the algebra C[XB, A) of

continuous functions from the Boolean space X~ of prime ideals of B ,

into A , where A is endowed with the discrete topology. A simplicity

formula for a class K of algebras is an 3V conjunct of equations, say

a(a, b) = 3s%[M Pi(«, y, a, b) = q^x, y, a,

such that for each A in K ,

{ 9 ( a , b) £ Con(A) \ A \= a ( a , b)} = { to , c } .

Let L be a subclass of K ; if the (weak) injectives in K are

precisely the algebras of the form ] f [A . [B .] \ j S n) where the A .
0 3 3

are pairwise nonisomorphic members of L , and the B. are complete, then
3

we say that the (weak) injectives in K are induced by L .

THEOREM 4.8 ([//]). Let K be a congruence-distributive variety

generated by finitely many finite algebras, and assume that there is a

simplicity formula for the maximal subdirectly irreducible algebras in K .
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Then the injectives (weak injectives) in K are induced by the subdirectly

irreducibles which are injective in K {weak injective in Si(K) }. •

We shall see anon that for each m > n , n > 0 , P m n has enough

injectives. If A is any finite subdirectly irreducible distributive

Ockham algebra, we would like to know when Var(4) has enough injectives.

This is not always the case. Recall that a De Morgan algebra which

satisfies the identity a A ~a 5 fc V ~fc , is called a Kleene algebra.

Cignoli [7] characterized the injective Kleene algebras; they are

precisely the bounded Boolean powers of 3 - the three element Kleene

algebra {0, a, l} , with 'O = 1 , ~1 = 0 , ~-a = a . Now if X is the

Ockham space shown in Figure 6, then the diagram cannot be completed, and

hence X is not projective in

FIGURE 6

In fact, if K = HSP(O(X)) , then it is quite easily seen that A is

injective in K if and only if A is a Kleene algebra and injective as a

Kleene algebra; that is, A = 3[B] , where B is complete.

For the rest of this section, X will be the dual of a finite

subdirectly irreducible distributive Ockham algebra with end e , with

Card(X) = m , and n the smallest number in TL such that g (e) = g [e) .

We wish to characterize injectivity in \lar[0(X)) . Our procedure will be

to characterize projectivity in S^u^v '•> t h e first step being to find the

projectives in
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LEMMA 4.9. Let Z £ GM(J) and suppose Z is a totally unordered

loop. If L is the loop of X and h in S(I, Z) is onto, then any f

in S(£, Z) lifts to a map f in S(L, L) .

Proof. If Card(Z) = 1 , then the identity map on L provides the

lifting. Assume Card(Z) > 1 ; since h is onto, it is clear that L is

not connected, and the number of (connected) components in L equals

Card(Z) . If L is itself an antichain, then L is isomorphic to Z and

we are done. Otherwise, choose an end eT of L , and let P.. be the
L U

component containing eT . If P. = h [f{eT)) , then define / : L -*• L by

f\e) = q , where q is the image of er under the isomorphism from Pn
L u U

onto P. (see Theorem 2.19). It is easily verified that / is an

S-morphism, and by its construction, / is also a lifting. •

THEOREM 4.10. L is protective in GM(J) .

Proof. Let Z € GM(X) . If / € S(L, Z) , then Z is a loop, and it

is sufficient to show that L is self-projective. Let h in S(L, Z) be

onto, let e. be the end of L , and define f : L •*• L by

J[eL) = g
r[eL} , where ^[sj) € tT[f[e )) . The construction of J

ensures that it is well-defined, that it commutes with g , and that it is

a lifting. If r is even, then / is order-preserving. Let r be odd,

and suppose that g (e£) < g (e£) ; then fg (ê j < gf [sj) , and

fgk{eL) = gkf{eL) = » V ( . J = grgkh(eL)

> ffghiej - glhgr{eL) = g
lf(eL) = fg

l{eL) .

Thus g f[eL) = g /(e.) , and hence Card(Z) divides I - k . But since

g (e.) < g ier) J it follows from the remark after Lemma 2.16, that I - k

is odd, and so by Lemma 2.16 (i) , Z is an antichain. An application of

Lemma U.9 now completes the proof. D

COROLLARY 4.11. Let Z i GMU) , and let h in S(X, Z) be onto.

If f € SU, Z) and f(X) = Lz , then f lifts to a map J in S(X, X) .
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Proof. Let f = f\v • Since X = L is projective, / lifts to
Yt A. Yt Yt

an S-morphism fn = *n •* \ E x • Define J : X + X by

/(e) = g~ f gn(e) , and note that in the loop, g is actually (congruent

to) a positive power of g , so / is well-defined. It is constructed to

commute with g , and is a lifting since

hf(e) = hg-nJng
n(e) = g~nhfng

n(e) =

= g~nfgn(e) = g~ngnf(e) = /(«) .

Finally, to see that / is order-preserving, we check two cases; if n

is even, then

^ (e) < g (e) •» ̂  (e) £ # (e)

. -n~s k+n, > _ -n-j: l+n
fng (e)

and if n is odd, then

gk(e) < gl(e) => gk+n(e) > gUn(e)

~ /„? (e) 2 fn? (e)

=* ? fn9 (e) 5 ̂  /ng (e)

- /S
k(e) S ?/(e) . D

COROLLARY 4.12. If X is the loop, then X is projective in

mix) .

Proof. Let Z (. GM(X) ; since X is the loop, it is not maximal by

Theorem 2.lU, and so GM(#) = M(X) ; that is, it is sufficient to show

that X is self-projective. Let f,h(. S(X, Z) , and let h be onto.

Since X is the loop, fr(#n) = L- the loop of Z , so Z is either a

loop, or has a one-element tail. If fix) = L_ , then / lifts by

Corollary U.ll; and if fix) * L% , then fix) = Z = hiX) . Thus f = h
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and the identity map on X lifts f . •

Note that if X is a one-element space, then it is trivially

projective in GM(X) . If CardU) = 2 , then X is the loop or X is

the loop, and again by Corollaries U.ll and It.12, X is projective in

GMU) .

THEOREM 4.13. Let CardU) > 3 and suppose X is not the loop; if

X is not maximal, then X is projective in GM(#) .

Proof. We use the characterization of maximality given in Theorem

2.\k. First if X is the loop, then we have shown in Corollary It.12 that

X is projective. Otherwise, since GM(^) = M(X) , we show that X is

self-projective; so let Z € GMU) and let f,hd S(X, Z) , with h

onto. Define / : X -»• X by /(e) = gr(e) where hgT{e) = f(e) . As we

have already seen, / is well-defined, / commutes with g , and

hf = f . It remains to be shown that f is order-preserving. If X is

unordered, then we are done; if X has some non-trivial order relation-

ships then consider the two cases:

k k+t
(i) There exists k in N , with g (e) # g (e) . Without loss of

k k+i
generality, assume g (e) < g (e) . By Theorem 2.lit (Hi),

£ *
+ l ( e ) = / + 2

( e ) . Thus fgk(e) = gk+r[e) = gk+r+1(e) = fgk+1(e) , whence

f is order-preserving; or r = 0 , whence h(e) = f(e) , so h = f and

the identity map on X lifts / .

(ii) For each k in N , gk(e) || gk+1(e) . Let ga(e) < gt(e) .

By Theorem 2.1*t (iv), this is the only non-trivial order relationship, thus

if fgS(e) ^fgt{e) , then gS+r{e) > gt+r{e) , and therefore

t+r, x s, s , s+r, > t, i
g \e) = g (e) and g \e) = g1 (e) . Now since g is order-reversing, and

gS+r(e) * gt+r(e) , it follows that gS+1(e) > gt+1(e) . Hence

g (e) = g (e) , giving g (e) < g (e) , which contradicts the

hypothesis (ii). •

THEOREM 4.14. Let CardU) > 3 and suppose that X is maximal.

If one of the following conditions hold, then X is projective in
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(i) e ff g (e) for some i > 0 .

(ii) e || g%ie) for each i > 0 , and there exists k and I , with

gk(e) < g(e) < gl{e) .

Note that in condition (ii) , X is obtained by adding a new end

element to the tail of X' , where X' is the space described at the end

of Section 2.

Proof. Let Z, W (. GMU) , and let / € SU, Z) and h € S{W, Z) ,

with h onto. Define / : X -*• W by fie) = g (e,J where

hg (e.,) = fie) . As before, it is trivial to check that / is well-

defined, commutes with g , and is a lifting. As a consequence of the

remarks following Theorem 2.12, W is an S-morphic image of either X or

X . If it is an image of X , then / is order-preserving if r is

even; and if it is an image of X , then / is order-preserving if r

is odd.

Otherwise, / is order-reversing, in which case

gs(e) < gt{e) ~Jgs{e) 2 Jgt{e)

• hfgs(e) 2 hfgt(e)

- fgs(e) > fgt(e) .

s tBut since / is order-preserving, g f{e) = g fie) . In case (i),

e § gV[e) , so f(e) = g1'fie) ; that is, fix) = Lg and so f lifts by

k I
Corollary U.ll. In case (ii), g ie) < g(e) < g ie) , so

9 fie) = gfie) = g fie) ; that is, /(xj = Lg . Now, if r > 0 , then

g ~,(e) # g ie) # g ie) , with the two comparability relations going

in the same direction. So without loss of generality, assume that

gk*r~\e) 5 gr(e) < gl*r-\e) . Thus hg^^ie) 5 hg2\e) 5 hgUr^ie) ,

and since hg1\e) = fie) , we have fgk~l(e) S fie) < gf1'1^) . But from

Lemma 2 . 2 1 , we c a n d e d u c e t h a t g ie)Cg (e) , s o fg^^ie) = gfl~Xie) .
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Therefore f(e) € L_ , whence f(X) = £„ and again we are done by-

Corollary it. 11. If r = 0 , then h = / and f lifts to the identity map

on X . 0

THEOREM 4.15. Let CardU) > 3 ; then X is protective in GMU)

if and only if any of the following hold:

(i) X is the loop;

(ii) X. is not maximal;

(Hi) X is maximal and e § g (e) for some k > 0 ;

(iv) X. is maximal, and e II g (e) for each i > 0 and

k I
there exist k, I in U , with g (e) < g(e) < g (e) .

Proof. One direction has been proved by Theorems U.10, it.13, and

U.lU. Conversely, let X be projective, and assume that X is hot the

loop, X-. is maximal, e II gl(e) for each i in N , and g(e) does not

2
lie between two distinct elements. Let C? and C be as in Figure 7•

FIGURE 7

If g{e) II g (e) for each k t 1 , then both C~ and (T are S-morphic

images of X and X, • If g(e) < g (e) for some k in N , then by

assumption #(e) ^ g (e) for all Z in N , and it is easily seen that

C is an S-morphic image of both X and Z. . (if g{e) > g (e) for

some k in N , then dually, we conclude that CV, is an S-morphic image

of both X and X, .) In any case then, both X and X. have a space C

in GM(X) as an S-morphic image. Let f : X ->->• C and h : X -»-»• C be
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the corresponding surjections. Since X is projective, there is an

S-morphism / : X + X± with hf = / . But then hf(e) = /(e) = eQ ; and

as C is not a loop and h is onto, we have f{e) = ev . But then X
x i

is an S-morphic image of X , contradicting the maximality of X a

COROLLARY 4.16. If X is maximal, then X is projective in

if and only if X is projective in GM(X) .

Proof. Suppose X is projective. Let Z, W £ GM(X) and let

h € S{W, Z) and / £ S[X , z) with h onto. Define J : X •* W as in

Theorem U.llt. By the same argument, / is either order-preserving or

order-reversing. Assume / is order-reversing; then by Theorem U.15,

k k I
either e # g (e) for some k in N , or g (e) < g(e) < g (e) for some

k, I in N . In either case, f[X-.) = L% and from Corollary k.lX we

deduce that / lifts; whence X is projective. The other direction

follows easily using a similar argument to the one in Theorem 1+.15. D

We now have almost enough information to completely characterize

injectivity in the subvarieties generated by a single finite algebra. Let

X be the dual of a finite subdirectly irreducible distributive Ockham

algebra. By applying Proposition U.I (v) and (vi) to Theorem U.15 and

Corollary h.lS, we know when Var(0(X)) has enough injectives, and these

results together with Proposition U.1 (Hi) and Theorem U.10 then tell us

exactly which subdirectly irreducible algebras are injective in

Furthermore, let M, A, B (. HS[0(X)) with M maximal and suppose

that <f> in OU, M) is onto, and iji in 0(<4, B) is one-to-one. If

M S 0(X) , then clearly A '=* 0(X) ; and if M 2* 0 ^ ) , then A S 0(X) or

A = 0[x) . In either case, A must also be maximal, and so by

definition, \\> is an isomorphism. Thus M is weak injective in

HS(OU)) • We also note that since 0(L) is injective in HS(0U)) (by

Theorem U.10), it is weak injective in HS(O(A')) . Finally, since all weak

injectives in a class of algebras are absolute subretracts, Theorem 2.\h

tells us exactly which subdirectly irreducible algebras are weak injective

in Var(0U)) -
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Now if we can find a simplicity formula for the maximal subdirectly

irreducibles we will be done. Let

a { a , b ) : = a = 0 & f c A - * = 0 & & v ~ f c = l .

If i/E 0(X) and X - g*~U = X - U , then x € U if and only if

g(x) € U . So U is a (7-subset of X . Suppose U is non-empty; that

is, U = X, for some k 5 n . But then g[g (e)) = g {e) $ U and

g ~X(e) If U ; so k = 0 . Thus the only elements b of B = 0(X) , which

satisfy "-& = b' are 0 and 1 ; so a.(a, b) is actually a simplicity

formula for the class of all finite subdirectly irreducible distributive

Ockham algebras.

We can now apply Theorem U.8 to obtain complete descriptions of the

weak injectives and injectives in a variety generated by a single finite

algebra.

THEOREM 4.17. Let X be the dual of a finite subdirectly

irreducible distributive Ockham algebra, let K = Var(O(x)J , and let

A € K .

(a) If X is not maximal in GM(x) , then the following are

equivalent:

(i) A is injective in K ;

(ii) A is weak injective in K ;

(Hi) A = 0(/)[B Q ] x 0{L)\B^\ , where BQ and BX are complete

Boolean algebras.

(b) If X is maximal in GM(^) , then A is weak injective in K

if and only if A s 0U) [BQ] * 0{x^) [sj * 0{L)\B^\ , where BQ, B± , and

B2 are complete Boolean algebras.

(c) (i)% If X^ is maximal in GM(A") , and X satisfies condition

(Hi) or (iv) of Theorem h.X'?, then A is injective in K if and only if

A = 0U)[Bo] x 0(^j [fl.,] x 0(£)[s2] 3 where BQ, B± , and B2 are complete

Boolean algebras.

(ii) If X is maximal in GM(X) , and X does not satisfy
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conditions (Hi) and (iv) of Theorem U.15j then K does not have enough

invectives, and A is injective in K if and only if A ̂  0(L)[B] , where

B is a complete Boolean algebra. •

COROLLARY 4.18. Let m > n , n 2 0 ; P has enough injectives,

and for A in P , A is injective in P if and only if
IN ̂  n in j n

A = L [fl 3 x L nC
s
n] > where B and B are complete Boolean

algebras. •

Let T = L , and let 3 "be the three-element De Morgan algebra

{0, a, l} with ~a = a . We have seen that M , the variety of De Morgan

algebras is ISP(i ) , and Cignoli [7], has shown that Kl , the variety

of Kleene algebras is ISP(3) . Note that P(3) is the totally ordered

two element loop.

COROLLARY 4.19. (i) M has enough injectives, and any De Morgan

algebra A is injective in M if and only if A ̂  J[B] , where B is a

complete Boolean algebra.

(ii) Kl has enough injectives and any Kleene algebra A is

injective in Kl if and only if A = 3[S] , where B is a complete

Boolean algebra.

Injective De Morgan and Kleene algebras were first described

intrinsically in [7].
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