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PICARD PRINCIPLE FOR FINITE DENSITIES

MITSURU NAKAI

A nonnegative locally Holder continuous function P(z) on 0 < | 2 | < l
will be referred to as a density on Ω: 0 < \z\ < 1 with singularity at
δ: z = 0, removable or genuine. A density P on Ω is said to be finite
if it is integrable over Ω:

( 1 ) f P(z)dxdy < oo .
J Ω

The elliptic dimension of a density P on fl at d, dίmP in notation, is
defined to be the dimension of the half module of nonnegative solutions
of the equation Δu = Pu on Ω with vanishing boundary values on \z\ = 1.
After Bouligand we say that Picard principle is valid for a density P
at δ if dimP = 1. The purpose of this paper is to establish the follow-
ing

MAIN THEOREM. The Picard principle is valid for any finite density
P on Ω at δ.

The proof of this will be given in no. 16 after a series of prepara-
tions in nos. 1-15. First we discuss the convex structure of the space
of nonnegative solutions and introduce the Martin compactification of Ω
relative to a density in nos. 1-5. The Martin representation theorem as
well as the precise definition of elliptic dimensions will then be given in
no. 6. A duality theorem between the Picard principle and the Riemann
theorem is given in nos. 7-8, which is one of chief tools for the main
theorem. Two propositions concerning limit properties at δ of functions
in Ω with square integrable gradients discussed in nos. 9-12 may have
independent interests. Two conditions in terms of the P-unit from which
the Picard principle follows will be given m nos. 13-14. The key in-
equality for the proof of the main theorem will be derived in no. 15
and then the proof will be completed in no. 16. A relation between our
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8 MITSURU NAKAI

present condition and our former one in [11] for the validity of Picard
principle is remarked in the final no. 17. For an elementary exposition
on fundamentals of the equation Δu = Pu such as the Dirichlet problem
and the Green's function we refer e.g. to no. 1 in [11].

We shall consider Ω: 0 < \z\ < 1 as an end (a subsurface of a Riemann
surface with a compact relative boundary and a single ideal boundary
component) of the punctured extended plane Co: 0 < \z\ < oo. Therefore
the unit circle \z\ = 1 is viewed as the relative boundary dΩ of Ω and
the origin z = 0 as an ideal boundary 3 = δΩ of Ω. We also use the
notation Ώ for the closure of Ω in Co, i.e. Ώ = Ω U dΩ: 0 < \z\ < 1. As
usual Δψiz) = d2φ(z)/dx2 + d2φ(z)/dy2 for ^ G C 2 and Fp(z) = (dφ(z)/dx,dφ(z)/dy)

for ^ e C1 or more generally for piecewise smooth 9 with 2 = x + iy.
We remark that most parts of the discussions in the sequel are obvi-
ously valid for a general end Ω and a density P (i.e. nonnegative Holder
continuous 2-form P(z)dxdy) but whether the main theorem is valid for
a general end of harmonic dimension one and a finite density is unsettled.
The most general result in our frame would be: The elliptic dimension
of any finite density on an end at the ideal boundary coincides with the
harmonic dimension of the end.

1. We denote by & the set of nonnegative solutions u of LPu =
Δu — Pu = 0 on Ω with boundary values zero on dΩ and by £ the space
of solutions v of LPu = 0 on Ω such that \v\ is dominated by a u in 0*.
In other words $ = &Q& — [ux — u2 ^ e 0f (J = 1,2)}. It is easily check-
ed that «f is a locally convex topological vector space with respect to the
topology on δ induced by the convergence on each compact subset of Ω.
The set 0> is a closed cone in δ. The order on δ induced by ^ , i.e.
u > v if u — v e 0*9 is the usual pointwise function ordering. We denote
by u V v (u Λ v, resp.) the least majorant (greatest minor ant, resp.) of
u and v in δ if it exists. We first maintain: The space £ forms a
vector lattice with lattice operations V and Λ. We only have to show
that for any ueδ there exists uV 0 in δ. Then (u — v) V 0 + v and
— ϋ —u) V (—v)) are the required uV v and % Λ v in δ for any te and v
in <?. Since there exists a weέ? such that u < \u\ < w, the set of
majorants of w and zero in i is nonvoid. Let w be any majorant of u and
zero in «f. Then w >u \J 0 = max (̂ , 0). We denote by vt the solution
of LPu = 0 on £ < |#| < 1 with boundary values zero on \z\ — 1 and u U 0
on |»| = t (0 < ί < 1). By the maximum principle w > vt > u U 0 and a
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PICARD PRINCIPLE 9

fortiori w > vs > vt (0 < s < t). By the Harnack principle {vt} (0 < t < 1)

converges to a solution v of LPu = 0 on Ω as t -+ 0 such that w > v >

u U 0. This shows that v e / and # = ^ V 0.

2. The topology in δ is metrizable, i.e. it is induced by the Frechet

norm \\u\\ — ̂ Γ en(sup,β|βrjl \u(z)\)* for u e δ, where α* = a/(l + a) for

real numbers a > 0 and oo* = 1, {en} a sequence of positive numbers with

2]Γ εn = 1, and {rn} a strictly decreasing zero sequence in (0,1). There-

fore, to see that the linear functional

C2π Γ d x l
( 2 ) σ(u) = ^(rezv α^

on δ is continuous, we only have to show lim^^ σ(un) = 0 if | |^n | |—>0.

Since ||^n||—»0 implies that {un} converges to zero uniformly on τγ < \z\

< 1, the sequence {[dun/dr]rml} also converges to zero uniformly on [0,2π]

and a fortiori σ(un) —> 0. We denote by 0»x the intersection of 0* with the

closed hyperplane {ueδ σ(u) = — 1} in <ί, i.e.

^ = [u e £P σ(u) = —1} .

It is compact in δ by the Harnack principle. Therefore &ι is a com-

pact convex subset of δ. Clearly 0f

ι is a base of the cone ^ , i.e. for

any it e 0* with uψ 0 there exists a unique v e£Px and a positive number

Λ such that it = λv. Since the linear space generated by the cone with

the base 0f

1 is δ which is a vector lattice as we saw in no. 1, 0f

ι is, by

definition, a simplex. Therefore, by the Choquet representation theorem

(cf. e.g. Phelps [16]) there exists a unique probability measure v on e x t ^ ] ,

the set of extreme points of 0*19 for any us0f

1 such that

(3) u = I vdviv) .

3. We denote by £8 the space of bounded solutions u of Lp'U = 0

on Ω with continuous boundary values on dΩ. We show that sup^|^| =

max3i2 |^|. For the aim observe that Λu2 = 2(Pu2 + \Fu\2) > 0 on Ω.

Therefore u2 is bounded subharmonic on Ω and a fortiori on the whole

disk \z\ < 1. By the maximum principle for subharmonic functions, we

see that u(zf < max3J2^
2 on \z\<\, and the above identity is deduced.

Next let / 6 C(dΩ) with / > 0 and ut be the solution of LPu = 0 on 0 < t <

\z\ < 1 with boundary values / on \z\ = 1 and zero on |«| = ί. The sequence
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{ut} is increasing as t —> 0 and thus u = lim^o ut is a bounded nonnegative

solution of LPu = 0 on Ω with boundary values / on dΩ. By the first

observation in this no. such a u is unique. Therefore u-+u\dΩ is a bijec-

tive, linear, order preserving, and isometric mapping of 3$ onto C(dΩ)

with norms sup^ \u\ in ^ and max3fl \f\ in C(dΩ). The function e = eP

in J* with e\dΩ = 1 is referred to as the P-unίt.

4. The Green's function G(z, ζ) of L P ^ = 0 on Ω with pole ζ e Ω is

the minimal positive solution of the Poisson equation LPu = — 27rdζ (the

Dirac δ). Then G(s,ζ) = G(ζ,z), G( ,ζ) = 0 on 3fl, G( ,ζ) is a bounded

solution of LPu = 0 on 42 except for an arbitrary disk about ζ, and

G(s, ζ) + log \z - ζ| = 0(1) as s -> ζ. Consider

( 4 ) X( ί | 0 = ! I«
2ττ e(ζ)

for («,ζ)eΏ x Ώ. Applying the result in no. 3 to the region Ωt =

{ζ 0 < Id < ί} (0 < t < \z\ < 1) we see that 0 < infζ€Λί K(z, ζ) < supζ€ ί ? ί K(z, ζ)

< oo. Clearly limζeΩiζ_dΩ K(z,ζ) = 0. Let p be a metric on Ω given by

19 ζ2) = Σ s«(max |Z(^, ζ2) - K(z, ζ2)\Y
n=l \|z| = r» /

for ζ1 and ζ2 in Ω, where {εn}, {rn}, and * are as in no. 2. The topology

on Ω induced by p is homeomorphic to the usual plane topology on Ω.

By the above observations, ^o-Cauchy sequences {ζn} in Ω are classified

into three categories: {ζj converging to dΩ; {ζn} converging to a ζeΩ;

{ζn} converging to ζ = 0. We consider the completion of Ω toward ζ =

0, i.e. adding ideal elements ζ* of equivalence classes of ^-Cauchy se-

quences of the third category. We denote by β = βp the set of ideal

elements in the completion of Ω toward ζ = 0. The metric p is natu-

rally extended to β U Ω and if p(ζ,ζ*) -* 0 for ζeΩ and ζ* eβ, then

K(z,ζ) converges to a w e ^ which we denote by K(z,ζ*), i.e.

( 6 ) K ( * , ζ * ) = lim K(z,ζ).

Then the identity (5) is also valid if ζι and ζ2 are in β U 4λ As a con-

sequence of the Harnack principle, β is compact in β U Ω and the class

is also compact in the locally convex space δ> and then the space βΌ Ω
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PICARD PRINCIPLE 11

U dΩ = β U Ώ is compact. We call 42* = Ω% = β U 42 U dΩ the Martin

eompactification of 42 relative to P, β = βP the Martin ideal boundary
relative to P, and #(z, ζ*)((s, ζ*) e Ώ x β*) the Mαrίm kernel relative to
P. Observe that

e(ζ) = -=± Γ
2τr Jo dr

for ζ e Ω (cf. nos. 3 and 8 below). This is equivalent to

(7) ΓΓJ_χ(re*%C)l d* = - 1 .
Jo Ldr Jr=i

In view of (5) the right hand side of the above is continuous on β U Ω
in ζ and a fortiori we conclude that σ(X( ,ζ*)) = —1 (cf. (2)), i.e.

( 8) J ί C ^ .

5. We denote by cδ[JΓ] the closure of the convex hull of X in δ.
Since ^ is compact and convex, the inclusion co[JΓ] c ^ is clear, and
in fact we have

( 9 ) c o [ J f ] = ^ i .

For the purpose let Ωt be 0 < \z\ < t (0 < t < 1), Gt(z, ζ) the Green's func-
tion of LPu = 0 on Ω — Ώty and ue^^ Fix an arbitrary point 2 e Ω
and take ί so small that zeΩ — Ώt. Applying the Green formula to
G(z, ζ) and u(ζ) for the region Ω — Ώt less an ε-disk about z and then
letting ε -> 0, we obtain

(10) 2πu(z) = Γ* L(re")—G(s, rew) - G(«, rew)—u(re ί θ)] tdθ .
Jo L 9r dr Jr=ί

Let ^ s be the solution of LPu = 0 on ^ — 42S (0 < s < t) with boundary
values u on BΩt and zero on d42s. Again by the Green formula applied
to Gt(z9 ζ) and u(ζ) for the region Ωt — Ώs we derive

0 = Γ \vs(reίθ)^-Gs(z, reίθ) - Gs(z, re")-^,(re")l ίcW .
Jo L dr dr Jr=ί

Since vs converges increasingly to a solution ut < u on β£ with boundary
values ^ on dΩt and G,(2, ζ) converges increasingly to G{z,ζ) on Ώt as
5 —> 0, we see that

https://doi.org/10.1017/S0027763000021759 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000021759


12 MITSURU NAKAI

0 = Γ \u(reίθ)—G(z, reiθ) - G(z, reiΦ)—ut(rei9)] tdθ .
Jo L dr dr Jr=t

Subtracting the above from (10) we deduce

(11) 2πu(z) = Γ \G(Z, reiθ)—(ut(reίθ) - u(reiθ)) 1 tdθ .
Jo L dr λr=t

Since ut — u = 0 on dΩt and ut — u < 0 on Ωt9 we see that

d A (ζ) = ±e(ζ)\4-(Vt(rei9) ~ u(reίθ)] tdθ, ζ = tβ i # ,

is a positive measure on β* with its support in BΩt and (11) takes the

form

(12) u(z)={ K(z,ζ)dμt(ζ) .

Applying a to the both sides of (12) and by using (7) and the Fubini

theorem, we see that the total mass of μt is one. We can then choose

a subsequence {μtk} (tx> t2> > tk —> 0) converging to a probability

measure μ on β* with its support in β weakly in C(i2*)*. Since K(z, •)

is continuous on β*, we deduce by letting k—> oo in (12) with t = tk that

(13) w(s)= ί K(z9ζ*)dμ(ζ*) .
Jβ

The right hand side of the above belongs to co[«>Γ] and we conclude that

(9) is valid.

6. The Milman theorem (cf. e.g. Dunford-Schwartz [3]) says that

(9) implies ex [^J c if. Since at — X, we conclude that

(14) ex [0M c JΓ .

Set ^ = {ζ* e β K(>, ζ*) e ex [^J. Then (14) means that

(15)

By comparing topologies in β U β and <?, we deduce that by the mapping

T: ζ* -> K(., ζ*) ft and ex [^J are homeomorphic. We set dμ(ζ*) = ώ(Γζ*)

for p in (3). Then (3) can be rewritten as

(16) u = f X(.,
J /8α
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PICARD PRINCIPLE 13

We have thus obtained the Martin representation theorem (cf. [9], Ito
[6], Sur [18], etc.) : There exists a bijective correspondence u*->μ related

by (16) between 0> and the family {μ} of regular Borel measures μ on β

supported by βlu We define the elliptic dimension of £P a t δ:z = Q,

d i m P in notation, by

(17) dim P = #(ex [9>$ - #&

where # denotes the cardinal number. If dimP = 1, then we say after

Bouligand that the Picard principle is valid for P, or for the operator

LP = Δ — P, at δ. In this case we see by (16) that JΓ contains a single

element, i.e.

(18) #j8 = 1 .

Conversely, since β Z) βxψ φ, (18) implies that dimP = 1. Therefore the

Picard principle is valid for P at δ if and only if β = βP satisfies (18).

7. We denote by έP(t) the space of nonnegative solutions of LPu = 0

on Ωt: 0 < \z\ < t with vanishing boundary values on 3Ωt. Thus ^(1) —

^ . We also denote by &(t) the Banach space of bounded solution of

LpU — 0 on Ωt with continuous boundary values on 3Ωt and hence J*(l)

— @ (cf. no. 3). We shall show that d imP does not depend on Ωt

(0 < t < 1), i.e. there exists a positively linear bijective map between

0>(t) and & = ^(1) (cf. Ozawa [15]). Take an s with 0 < s < t < 1 and

let A be the operator from C(dΩt) onto &(t) such that (A<p) \ 3Ωt = φ.

We also denote by Bφ for φ e C(dΩ$) the solution of LPu = 0 on Ω — Ώs

with boundary values ^ on 3ΩS and zero on 3Ω. We maintain that the

mapping π: ^ -* ^ ( 0 given by

(19) πu = u — Au

is the required map. That πu > 0 for ^ e ^ can be seen by the maximum

principle and the way of constructing Au as lim,_oi;β where vs is the

solution of LpU = 0 on s <.\z\<t with boundary values u on \z\ = £ and

zero on |2| = s. Clearly TΓ is positively linear: 7r(^) = Λ m for real num-

bers λ > 0 and π(^! + u2) = πu1 + πu2. Suppose πuλ = π^2. Then ux — u2

= A ^ j — tί2) on βj shows that ux — u2 e 49 ΓΊ δ> and by the maximum

principle, sup^ \ux — u2\ = max3fl | ^ — u2\ — 0, i.e. π is injective. Let

v 60*(t). Finding w e # with
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14 MITSURU NAKAI

(20) A(u — v) = u — v

is nothing but the Sario principal function problem (see e.g. Rodin-

Sario [17]) and the solvability of (20) settles the surjectiveness of π.

Consider

Tφ = A(Bφ)

for φ e C(dΩs). By the maximum principle and the Harnack principle,

we see that T is a compact linear operator from C(dΩs) into itself. By

the maximum principle for A and B (cf. no. 3), we see that Tφ = φ

implies that φ = 0. Therefore the Riesz-Schauder theory (cf. e.g. Yosida

[20]) assures that there exists a unique φ e C(dΩs) with φ — Tφ = v. Then

Bφ = A(Bφ) + v on (3β,) U (3β,) and therefore on Ωt Π (β — β,). Thus

the function

{(Bφ){z) (zeΩ-Ώs);

is well defined onfl, a solution of LP% = 0 on Ω with vanishing boundary

values on 3β, and satisfies (20), i.e. w — An = ^ > 0 on β ί # The last

means that ^ is bounded from below by a constant, say c. Let ws be

the solution of LPu = 0 on 0 < S < | £ | < 1 with boundary values 1 on

\z\ = s and zero on \z\ = 1. Then ^ — c^ 5 > 0 for every small s > 0. A

fortiori lims_0 ws = 0 implies that ueέP.

8. We associate with the operator L P = Δ — P the operator LP given

by

(21) LPu(z) = JM(S) + 2F log eP(z)

for % 6 C\Ω) where e = eP is the P-unit. The importance of the LP for

the study of the Picard principle as well as the following duality is first

observed by Heins [5] and later by Hayashi [4], It is characteristic that

the associated operator L does not contain the term of zero order dif-

ferentiations even for the general, i.e. not necessarily self adjoint, op-

erator L (cf. Nakai [14]). We say that the Rίemann theorem is valid

for LP at δ: z = 0 if lim^o u(z) exists for every bounded solution u of

tPu — 0 in a punctured neighborhood 0 < | 2 | < £ < l of <5:2 = 0. We

maintain

THEOREM. The Picard principle is valid for the operator LP at δ if
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PICARD PRINCIPLE 15

and only if the Riemann theorem is valid for the associated operator LP

at d.

Proof. We denote by J* the space of bounded solutions of LPu — 0
on Ω with continuous boundary values on dΩ. Observe that u->ιt/e is
an isomorphism of 38 onto $ as Banach spaces, where e = eP. Let Ωt

be 0 < \z\ < t (0 < t < 1) and Gt(z, ζ) be the Green's function of LPu = 0
on Ω — Ωt. Take an arbitrary v e $ and let u = ev e 38. Then

ut{z) = J z l Γ \^-Gt(re\ zMreiθ)] dθ
2π Jo Ldr Jr=i

is a bounded solution of LPu = 0 on Ω — Ωt with boundary values u on
3β and zero on dΩt. Therefore u — \ϊmt^ut and G = limf^0Gί imply
that

u(z) =
2π

Dividing the both sides of the above by e, we obtain

(22) *?(s) = - Γ ί-^-K(re^,^)v(re^)l eW .
Jo ldr Jr=i

Since the right hand side of the above is continuous on β U Ω, the same
is true of v, i.e. v can be extended uniquely to Ω* so as to be a con-
tinuous function on β*, and in this sense we have

(23) & c C(Ω*) .

In particular, $\β c C(β). We next asserts that $\β separates points
in β, i.e. for any pair of distinct points ζf and ζf in β, there exists a
v e & such that v(ζf) Φ v(ζf). If this were not the case, then (22) with
z replaced by ζf(j = 1,2) would imply

Γ* ΓJ_/fc(reίS)l v(ei$)dθ = 0
Jo L dr ir=ι

for every v e $ and hence for every v e C(dΩ) where fc(ζ) = K(ζ, ζf) —
K(ζ, ζf), which vanishes continuously on dΩ. Therefore k e C(Ώ) satisfies

LPk = 0 , fc(e") = Γ_?_A;(re«θl = °
ldr Jr=i

By the uniqueness of the Cauchy problem we have k = 0 on Ω (cf. e.g.
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16 MITSURU NAKAI

Miranda [8]), which contradicts ζf Φ ζf. Since we have

min v(ζ*) < lim inf v(z) < lim sup v(z) < max v(ζ*)
ζ*eβ z-o z-*o ζ*eβ

for every v eώ, we conclude that Iim2_o v(z) exists for every v e $ if and

only if (18) is valid, which is equivalent to that dim P = 1. Since the

above argument can be repeated if Ω is replaced by Ωt: 0 < \z\ < t (0 < t < 1),

the result in no. 7 assures that the theorem is valid.

9. By the general theory developed in nos. 1-8 the study of Picard

principle for the operator LP is identical with the study of the Riemann

theorem for the associated operator LP. We shall give a sufficient con-

dition to assure the validity of the Riemann theorem for LP. Consider

the condition

(24) f \V log eP(z)\2 dxdy < co
JΩ

for the P-unit e = eP on Ω. Denote by Ωt the punctured disk 0 < \z\ < t

(0 < t < 1). We start with

PROPOSITION. // the condition (24) is satisfied, then any bounded

solution u of LPu — 0 on Ωt (0 < t < 1) has a square integrable gradients

on Ωt, i.e.

(25) ί \Fu(z)\2dxdy < oo .
jΩt

Proof. Let us be the bounded solution of LPu = 0 on Ωt — Ωs (0 <

s < t) with boundary values u on dΩt and zero on dΩs. Then vs = eus

is the bounded solution of LPu = 0 on Ωt — Ωs with boundary values eu

on 3βί and zero on dΩs. Observe that \vs\ < ke on Ωt — β s with & =

supβ t |π|. By no. 3, v = lims_>oi;5 exists and is a solution of LPu = 0 on

Ωt with boundary values eu on dΩt. Moreover \v\ < ke. On the other

hand eu is a bounded solution of LPu = 0 on Ωt with boundary values

eu on d^ί. Therefore v = eu, i.e. % = l i m ^ o ^ uniformly on each com-

pact subset of Ωt. Since us — u on 9β έ which is of class C1 on dΩt, we

deduce that us e C\Ώt — β s) and

d -u(teίΘ) = lim Λ-us(teίθ)
dt

uniformly on [0,2ττ]. Therefore lim s_oβ(^ s) = B(u) where
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Bin) = Γ u(teiθ)—u(teiθ)tdθ .
Jo dt

We extend us to ί2£ by setting us = 0 on £?s. Using the notation

D(φ)= ί |Γp(«)|2cted2/

for sectionally Ĉ -f unctions ^ on i3f we deduce the identity

B(us) = D(u$) + _ us{z)Δus{z)dxdy
J Ωt-Ωs

from the Stokes formula. Replacing Δus by — 2F log e Fus on 13β we have

B(us) = D(wβ) - 2 ί ^SO)F log e(z)-Fus{z)dxdy .

Observing that |ws| < fc = sup^ ί \u\ on i3ί we conclude that

D(us) < \B(us)\ + k[ |2F log e(z) Fus(z)\ dxdy .
jΩt

On denoting by m2 the four times of the quantity (24), the Schwarz in-

equality yields

(26) Dius) < \B(us)\ + krnD(usy
2 .

We now maintain that lim sup^ 0 D(u8) < co and thus lim m£a_QD(ua) < oo.

If this were not the case there would exist a strictly decreasing zero

sequence {s(n}} in (0,1) such that l i m ^ ^ D(us{n)) = oo. By (26) we have

D(us(n)y> < \Bus{n))\'D{us{n))-^ + km

for n = 1,2, . Since |B(^5 ( W ))| -> |B(M)| < oo, we arrive at a contradic-

tion by letting n -> co in the above inequality. By the Fatou lemma we

finally conclude that

f \Fu(z)\2 dxdy < lim inf ί \Fus(z)\2 dxdy
JΩt s-*0 JΩt

< CO .

10. In view of the preceding proposition we shall next study the

limit property of functions with (25). Consider a real valued continuous

function u on Ώ. The behavior of u in a small neighborhood of δ: z = 0

is regulated to a certain extent by the behavior of a pair of functions
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18 MITSURU NAKAI

I M{r) = Mix u) = max uiz)

m(r) = mix u) = min uiz)

\z\ = r

for r e (0,1] as r -> 0. A necessary condition for the existence of lim^ 0

is that the oscilation M{r) — m(r) oί u on \z\ = r tends to zero as r-+0.

Concerning this we first prove the following

PROPOSITION. If a function u e C\Ω) has a square ίntegrable gradi-
ent over Ωy i.e. \Pu(z)\2 dxdy < oo, then there exists a closed subset E

JΩ

of the interval (0,1] with a finite logarithmic measure, i.e. dlogr< oo,
JE

such that

(28) lim {M{χ u) — m(r u)) = 0 .

Proof. Fix an r e (0,1) and let ΘM and θm be in (0,27r] such that

u(reiθM) = M(r) and u(reiθm) = m(r). Observe that ^(r) = Mix) — m(r) > 0

is continuous on (0,1] and we have

dθ

C2π

Jo dθ
dθ .

By applying the Schwarz inequality to the right of the above we obtain

λ(r)2 < 2π Γ
Jo

-?-u{χeίθ) dθ .
dθ

Since \Fu(reiθ)\2 = \du(reiθ)/dr\2 + r'2 \du(retβ)/dθ\2, we have

λiχ)2jr < 2π Γ \Fuiχeίθ)\2rdθ .
Jo

Integrating the both sides of the above on (0,1) with respect to dr, we

deduce

(29) Γ λ(r)2d log r < 2π ί | Vuiz) |2 dxdy
JO J Ω

< OO .

We set an = fM λ{χ)2d log r > 0 for ra = 1,2, . . . . The inequality (29)

yields 2 ? an < °° Choose a decreasing zero sequence {εn} (n = 1,2, •)

of positive numbers εn such that
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oo

y1. ε~2an < oo .

Let En = {re [l/(w + 1), l/»] J(r) > «„} and E = \Jΐ #»• Then E is a
closed subset of (0,1] and

f d log r = Σ ε"2 f ε2

Md log r < Σ ε"2 f Λ(r)2d log r

< Σ ««2 Γ" W < * log r = Σ ε~2an < oo ,

i .e . £7 h a s a finite l o g a r i t h m i c m e a s u r e . I f rgE a n d r e ( 0 , 1 / n ] , t h e n

λ(r) < en, i .e . l i m r € E , r _ 0 ^ ( r ) = 0.

11. We state two direct consequences of the above proposition. Let
u e C\Ω) with finite square integrable gradient over Ω. Suppose u satis-
fies the maximum-minimum principle on each Ωr: 0 < \z\ < r for every
r 6 (0,1] in the following sense:

!

M(r u) = sup u(z)

m(r u) = inf ^(^)

for every r e (0,1]. The conclusion in this case is that \\mz^u(z) exists.
To prove this first observe that, by (30), Mir) is decreasing and m(r) is
increasing on (0,1] as r —> 0. Therefore λ(r) is decreasing on (0,1] as
r —> 0. A fortiori (28) implies that limr_0 λ(r) = 0. Again by (30) we
have

0 < lim sup u(z) — lim inf u(z) < λ(r)
z-*0 z-*0

for every r e (0,1] and therefore limt^Q u(z) exists.

12. Again let u e C\Ω) have a finite square integrable gradient over
Ω. Suppose u has a 'mean limit' at d:2 = 0 in the following sense:
there exists a point z(r) on the circle \z\ = r for each r e (0,1] and a real
number £ such that £ = \ιmr^ u{z(r)). Then there exists a closed sub-
set E of (0,1] with a finite logarithmic measure such that

lim u(z) = ^ .
]zie#,z^o

For the proof take the exceptional set E in Proposition in no. 10. Ob-
serve that
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20 MITSURU NAKAΓ

\u(z) - u(z(\z\))\ < λ(\z\)

and the right hand side term of the above tends to zero as z —• 0 with
\z\gE. Thus the desired conclusion can be deduced.

13. Combining Propositions in nos. 9 and 10 we obtain the follow-
ing test for the Riemann theorem and hence for the Picard principle in
terms of the P-unit e = eP:

THEOREM. The Riemann theorem is valid for LP at δ and therefore
the Picard principle is valid for the density P on Ω at δ if the P-unit
eP satisfies (24).

Proof, By Proposition in no. 9 any bounded solution u of LPu = 0
on Ώt (0 < t < 1) has square integrable gradient over Ωt. Moreover u
satisfies (30) for re(0, ί]. In fact, let v — eu. Then v is a bounded
solution of LPu = 0 on Ώt and

mix u)e <v< M(r u)e

on dΩr for every re(0, ί]. Therefore the same inequality is valid on
Ώr (cf. no. 3) and we conclude that mir) <u< Mir) on Ώr, which implies
(30). A fortiori, the result in no. 11 assures the existence of I im 2 ^ o ^),
i.e. the Riemann theorem is valid for LP at δ. By Theorem in no. 8
we also conclude the validity of the Picard principle for P at δ.

14. Although the following is essentially identical with the criterion
in Nakai [11] and will not be made use of in the main context in this
paper, we include it here for comparison:

THEOREM. The Riemann theorem is valid for LP at δ and therefore
the Picard principle is valid for the density P at δ if the P-unit eP

satisfies

(31) lim sup ePiz) > 0 .

Proof. Let u be any bounded solution of LPu = 0 on Ωt (0 < t < 1)
and v = eu. By the fact that v = lim^o vs as in the proof of Proposi-
tion in no. 9, we have V(v) < lim infs_0 Vivs) where

V(φ) = f
J

[\Fφ(z)\2

Ωt
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for sectionally C1 functions φ on Ωt and we have set vs = 0 on 42 s

(0 < s < t). Since V is the variation whose Euler-Lagrange equation is

Δu = Pu, we see that V(vs) < V(vSo) < oo for every s e (0, s0] (0 < s0 < t).

Therefore, in particular, v has a square integrable gradient on Ωt and

the same is true of e. For a function ψ e C(Ωt) we associate a function

- — Γ φ(reiθ)dθ
2πJo

on (0, ί]. If 9 is bounded, subharmonic, and nonnegative, then limr_oφ*(r)

exists and identical with lim sup«_*0 9>0&) (cf. e.g. Tsuji [19]). This is the

case for φ — e and also for v + ke for sufficiently large k > 0. Since

O + ke)* = v* + fee*, we conclude that 4 = limr_0 e*(f) > 0 and £υ =

limr_0 v*(r) exist. For each r e ( 0 , ί] there exists a #(r) in |^| = r with

β(ίδ(r)) = β*(r) and the same is true of v. We can apply the result in

no. 12 to e and v. Let Ee and J5β be the exceptional sets as in no. 12

for e and u. Then E ~ Ee U Eυ can also be used for the exceptional

set both for e and v, and cZlogr < oo. Since u = v/β, we have
JE

(32) lim w(«) = £Ό/£e .

As in no. 13, (30) is valid for u. This with (32) implies that lim^ 0 u(z)

= £v/£e, i.e. the Riemann theorem is valid for LP at δ.

15. We are ready to prove the main theorem stated in the intro-

duction. The key step in our proof is the following evaluation of the

square integral of the gradient of the logarithm of the P-unit e = eP:

PROPOSITION. The P-unit eP of any density P on Ω satisfies the fol-

lowing inequality

(33) f \Γ log eP(z)\2 dxdy < f P(z)(l - eP(z))dxdy .
JΩ JΩ

Proof. Let et be the P-unit of LPu = 0 on Δt: t < \z\ < 1 (0 < t < 1),

i.e. et be the solution of LPu = 0 on Δt with boundary values 1 on dΔt.

Since {et} is decreasing as t —> 0, it converges to a bounded solution of

LPu = 0 on fl with boundary values 1 on dΩ, and a fortiori, by no. 3,

e = lim^o e4 uniformly on each compact subset of Ώ, and similarly \Pe\ =

lim^o |Fβί| uniformly on each compact subset of Ώ. By the Stokes formula

we have
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Γ l-^-Tr^-etire^Ydθ = f V-±—Vet{z)dxdy + f -A-Jβt(Jo Le^re1*) 9r J* Ut et{z) ut et{z)

Once more by the Stokes formula the left hand side of the above equals

Γ \r^-et(rzid)\dθ = f Δet{z)dxdy = f P(z)et(z)dxdy .
Jo L dr At JJt JΔt

Therefore we obtain the identity

f P(z)et(z)dxdy =-[ \F log et(z)\2 dxdy + f P{z)dxdy .
J^/e J Λ < J Λ «

On extending et to Ω by setting et = 1 on Ω — Δt we conclude that

(34) ί \V log β£(^)|2 (fody = f P(«)(l - et(z))dxdy .
JΩ JΩ

Observe that the integrand of the right hand side of the above is in-
creasing as t —> 0. Therefore the Lebesgue theorem yields

lim ί P(z)(l - et{z))dxdy = f P(z)(l - e(z))dxdy .
ί-»0 J Ω J Ω

On taking the inferior limit as t —> 0 on the both sides of (34) and using
the Fatou lemma, we deduce that

ί P(z)(X - e(z))dxdy = lim inf f \P log et(z)\2 dxdy
J Ω ί->0 J Ω

> ί |
J Ω

16. Proof of the main theorem. Suppose P is a finite density on
β, i.e. (1) is satisfied. By (33), the condition (1) implies (24). By the
theorem in no. 13, we conclude that the Picard principle is valid for P.
The proof of the main theorem is herewith complete.

17. The condition (24) in Theorem in no. 13 is, at least superficially,
better than the condition (1) in the main theorem. Between these

two conditions there are involved two gaps: \F log e(z)\2dxdy <
J Ω

f P(z)(X - e(z))dxdy and f P(z)(l - e(z))dxdy < [ P(z)dxdy. At this
J Ω J Ω J Ω

moment we cannot discuss whether the former of the above two inequal-
ities are in fact strict in the essential sense, while both sides of the
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latter are simultaneously finite or infinite. The reason why we did not
enlist the theorem in no. 13 as the main theorem, in spite of the fact
that it is better result than the one stated in the introduction, is that
the condition (1) is more explicit and seems to be tractable in practical
applications than (24).

The condition (31) in Theorem in no. 14 is also implicit. However we
can see that it is equivalent to

(35) f P(z) log —dxdy < oo
JΩ-X \Z\

for some closed subset X = XP in Ω which is thin at z = 0, i.e. the point
z = 0 is an irregular boundary point for the harmonic Dirichlet problem
for the open set Ω — X. In fact, it was shown in [11] that (35) implies
(31). Conversely suppose that (31) is valid, i.e. 6 = lim sup2_>0 e(z) > 0.
Then for any ε e (0, £) the set X = {z e Ω e(z) < ε} is closed in Ω and thin
at z = 0 (cf. e.g. Brelot [2]). Observe that e(z) satisfies the integral
equation

- — [ e(z)P(z) log

for every ζeΩ. Therefore

A J P(«) log

dxdy = 1

for any ζeΩ. On letting ζ —• 0 with using the Fatou lemma in the above
we deduce (35). Thus the theorem in no. 14 is equivalent to the main
theorem in [11]:

THEOREM. The Picard principle is valid for a density P at d if P

satisfies the condition (35).

Clearly the conditions (1) and (35) are independent and thus both of
them are not necessary for the validity of the Picard principle. Actually
both of them cannot take care of the simple density P(z) = \z\~2 for which
the validity of Picard principle is known (cf. Nakai [10]). Except for
rotation free densities P, i.e. densities P with P(z) = P(\z\) on Ω, the
problem of determining P with dim P = 1 seems to be very far from
being complete. For the Picard principle for rotation free densities,
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refer to e.g. Brelot [1], Nakai [10,12,13], Kawamura-Nakai [7], etc.
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