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Semisimple rings of quotients

Julius M. Zelmanowitz

Necessary and sufficient conditions on an arbitrary Gabriel
filter of left ideals of a ring R are determined in order that
the ring of quotients of R with respect to the filter be semi-
simple artinian. Special instances include generalizations of
earlier work on classical rings of quotients and maximal rings of

quotients.

Introduction

There have been several interesting results which determine when a
ring of quotients of a ring is semisimple artinian. For the classical ring
of quotients & with respect to the set of regular elements of a ring R ,
Levy proved in [5] that & is semisimple artinian if and only if torsion-
free divisible R-modules are injective. In [7], Sandomierski
characterized rings with a semisimple artinian maximal quotient ring as
being nonsingular and finite dimensional. More generally, for the ring of
quotients with respect to a Gabriel topology, some progress has been made
in [1] and [é] for the case of torsion-free rings. Hereditary rings with

semisimple artinian rings of quotients are studied in [3].

The purpose of this article is the determination of when the ring of
quotients with respect to an arbitrary Gabriel topology is semisimple
artinian. This is accomplished in §2. 1In §3 and §4, respectively, the
above-cited results of Sandomierski and Levy are shown to be special cases
of the main theorem, and are extended to allow for the possibility of
torsion. In §5, injective ideals of a ring of quotients are examined;
this permits one to learn when the ring of quotients is simple. Some

related observations are presented in §6.
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1.

Since the notation and language of torsion theories are not quite
standardized, we will first indicate the usages of this article. Two basic

references for the rudiments of the subject are [2] and [§].

By a module we mean a left R-module over some ring R . Actually, in
all that follows KR need not have an identity element, provided that one
insists that all modules on which R acts trivially are torsion, and that

one makes slight modifications in definitions and statements of theorems

(such as replacing R by Rl ). For simplicity however, we assume that R
contains an identity element. For subsets N and N' of a module M , we
set (N : N')={r €R | rN' <N} .

Throughout this paper F will denote a Gabriel topology of left
ideals of R with O § F . That is, F satisfies
(i) I €F and a € R implies (I : a) € F , and
(ii) (J : a) € F for all aq € I € F implies that J € F .
Such an F is necessarily a filter. We let
T(M) = Te(M) = {m €M | (0 :m) €F},
the F-torsion submodule of a module M . A module is F-torsion if
TF(M) =/ , and F-torsion-free if TF(M) =0 . A submodule N of M is
F-dense in M if M/N is F-torsion, and N is F-closed in M if M/N
is F-torsion-free. We also set fiag equal to the submodule defined by

NC/N = T(M/N) , M is an F-closed submodule of M , called the
F-closure of W . The class of F-torsion modules is closed under
submodules, homomorphism, extension and direct sums; while the class of
F-torsion-free modules is closed under isomorphism, submodules, extension,
injective hulls and direct products. When no confusion can arise, we will
delete the prefix "F-" from the preceding terms, and speak simply of

torsion modules, dense submodules, and so on.
A module M is F-injective if every f € homR(I, M) with I ¢ F

can be extended to an element of hom, (R, M) ; equivalently, T(M/M) = 0

R

where ﬁ denotes the R-injective hull of M . Every module has an
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F-injective hull F(M) obtained as F(M)/M = T(M/M) ; note that M is
dense in F(M) , and F(M) 1is closed in M . One defines Mg , the module

of quotients of M with respect to F , as F(M/T(M)) 5 MF is torsion-
free and F-injective. Ry = F(R/T(R)) forms a ring called the ring of
quotients of R with respect to F ; and the multiplication on RF
extends its R-module structure. The assignment M *-MF yields a left

exact functor from R-modules to RF—modules.

As it is our intention to make this article reasonably self-contained,
we now list some elementary and well-known observations that are required

in the sequel.
(1.1). z1r N, SN, S W, isa trio of submodules and N, is dense

2 3

(respectively, closed) in N, for i =1, 2, then 101l 15 dense

+1
(respectively, closed) in IV3 .
This is because the torsion (respectively, torsion-free) modules are

closed under extension. //

(1.2). A dense submodule N of a torsion-free module M 4is

essential in M .
For given O #m €M , (N :m) €F and 0# (N :mimcRmnhN., //
(1.3). If I is a left ideal of R and I + T(R) € F then I € F .,
To see this note that I is dense in I + T(R)} since
I+ TR)/I=T(R)Y/InTR) ;
and then apply (1.1). //

(1.4). 4 closed submodule N of an F-injective module M is
F-injective.

~

M= F(M) is closed in M , so N is closed in M by (1.1). Hence
N is closed in NC M ; that is, N = F(W) . //

LEMMA 1.5, Set F={1 | I € F} , a family of left ideals of
R = R/TE(R) . Then

(1) T€F ifand only if I is F-dense in E ;
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(i) F 1is an idempotent filter of left ideals of R ;

(iii) T¢(R) =0 ;

(iv) Rp = E’f .

Proof. (Z) follows from (1.3) and is in fact true for any factor ring
of R .

(i1) is also true for every factor ring of R . The proof is routine.

(iii) Ir a € Tp(R) , then (TL(R) :a) € F . But T(R) is
F-closed in R , so a =0 .

(iv) We first note that RF is an R-module, and that RF is
F-injective. To see the latter assertion, let I € F and f € homﬁ(f, RF)
be given; we must extend f to an element of hom[,—?(ﬁ, RF) . Let m
denote the canonical epimorphism of K onto R . Then

foTrEhomR

F-injective, f o T has a unique extension g' € homR(R, RF) . Now

(z, RF) with I € F. Since Rp is F-torsion-free and

ker g' 2 Tp(R) , so g' induces a unique homomorphism g € homy, (7, RF)

with gom=g' . Thus g is an R-homomorphism and

(g o‘rT)II

g’|I=foTT,so g extends f .

Since T«F(f) =0 , it remains only to prove that R is F-dense in

RF . But this is evident, and we are done. //

2.

We begin by presenting the main result, for which we require the
following definition. A set S of left ideals of R will be called
cofinally finite if given any I € S there exists a finitely generated
left ideal J € I with J F-dense in I .

THEOREM 2.1. The following conditions are equivalent:

(1) Ry is semisimple artinian;

(2) R satisfies the ascending chain condition on closed left

ideals, and torsion-free F-injective modules are injective;
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(3) F 1is cofinally finite, and torsion-free F-injective modules

are injective.

Proof. (1) = (2). The fact that R satisfies the ascending chain

condition on closed left ideals follows immediately from the observation
that ¢1 (RFT NE) = I for any closed left ideal I of R , where

denotes the canonical homomorphism of KR onto E = R/T(R) . Indeed, for

the same conclusion, it would clearly suffice to have RF noetherian (see
also [2, p. 1361). To see this formula, in turn, note that

Ic U)-l[RFT NR) , and that for any =z € w’l(RFT nR) ,

(I :z)=(I:%) €F. since I is closed we learn that

1=y t(RINER) .

Next, let M be a torsion-free F-injective R-module. Then M = MF
is an RF—module, as is the R-injective hull M of M . Since all
RF-modules are injective, M must be an RF-direct summand of 1‘? . But
then necessarily M = 1‘? .

(2) = (3). We prove that the set of all left ideals of R is

cofinally finite. For let I be any nonzero left ideal of R . Choose

: . e
0# a; €I . 1If Ral is dense in I , we are done. If not, (Ral] I,
where (Ral]c denotes the closure of Ral in R . Choose

0# a, € I\[Ral)c ; then (Ral)c g (Ba +Ra2)e . If Ral + Ii’a2 is dense

1
in I , we are done. If not, (Ral+Ra2)c P I, and we may continue this

construction. Since R satisfies the ascending chain condition on closed
left ideals, the construction must terminate. Thus for some integer n

there exists R‘al + ...+ Ran dense in I .

(3) ® (1). We first show that every finitely generated left ideal of

RF is injective. For any X € RF , we have the exact sequence

0~ (0 : x) >—>RF—>RF:1:—»O,

Ry
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where (0 : x), = {r ¢ R | rz =0} . Now Rp is F-injective, and

is closed since Rpx is torsion-free, so by (1.%), (o : x)R
F F

is F-injective. By our hypothesis then, {0 : x) is injective. It

By
follows that RFx is injective for any « € RF .
Next, consider the exact sequence
t 5 t
O+ker L > ® Rox. — Y Ryx. >0 ,
. Fz - TFYE
1=1 1=1

where I 1is the canonical epimorphism. Then as in the previous paragraph,

t
ker I is closed. Since @ Rin is injective, it follows that ker L
=1

is torsion-free and F-injective, hence injective. Thus the sequence

t
splits, and Z Rin is injective.
=1

Now let I € F be given. Since F 1is cofinally finite, there exists

t ¢ £t B
_Zﬁ Ra, € F with iéi Ra, < I . Then Py Rra, < ReI € Ry with each a

t
dense submodule of its successor. Hence Z RFai is an injective
=1

t
R-module which is dense in Rp . By (1.2), izﬁ Rpa. = ReI = Rp . (Thus

F is a perfect topology, in the sense of [§, p. 231].)

It follows that every RF—module is torsion-~free (for if x is an

element of an Rp-module and Iz = 0 with I €F , then Rpx = Rplz = 0 ).
In particular, every left ideal of RF is closed, hence is torsion-free
and F-injective. By hypothesis, then, every left ideal of RF is
R-injective. 8Since R-injective implies RF-injective for torsion-free
RF—modules, this completes the proof. //

We remark that, in the preceding theorem, we could replace the

requirement that F is cofinally finite by the stronger hypothesis that F
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be perfect (that is, Rpl = Ry for all I €F). This was noted in the
course of proving the implication (3) = (1).

It is now our intention to examine for a moment the hypotheses of
Theorem 2.1 in order to determine their relationship with other familiar
conditions. For instance, F being cofinally finite is a weaker condition
than the ascending chain condition on closed left ideals. Their precise

correlation is now given. We let CF(R) denote the lattice of closed left
ideals of R .
PROPOSITION 2.2. The following conditions are equivalent:

(1) R satisfies the ascending chain condition on closed left

ideals;

(ti) F and CF(R) are cofinally finite;

(111) the set of all left ideals of R 1is cofinally finite.

Proof. The equivalence of (Z) and (Z77) is noted as part of
Proposition XIII.2.4 in [§], and we have proved that (Z) = (iiZ) in
(2) = (3) of the preceding theorem. For the sake of completeness, then, we

will demonstrate that (ZZ) = (Z).

Let Jl cd_ < ... be a sequence of closed left ideals. Set

2

[<+]
J = U Ji ;5 we first show that J is closed.

Suppose that J is dense in I C R . Let a € I be arbitrary. Then
(J : a) € F, so by hypothesis there exists I. =Ra,6 + ... + Rat dense in

0 1
(/ :a) . For each k=1, ..., t, a,a € J , so there exists an integer
n with T a<dJ . Since I. € F and J is closed, a € J . Thus
0" — n 0 n n
J =1 and J 1is closed.

Wext, we know by hypothesis that there exists Rbl + ... +Rb dense
in J . But then there is an integer m with Rbl + ... +RBb cd
This implies that Jm is dense in J . Since Jm is closed, J =J

m

and the sequence is finite. //

As we have seen in (1.2), a dense submodule of a torsion-free module
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is an essential submodule. The converse statement {that is that essential
submodules of torsion-free modules be dense) can be seen to be equivalent
to torsion-free F-injectives being injective. The proof is a simple
variant of the one given for Proposition 2.4 in [4], and will therefore not

be presented here.

(2.3). Torsion-free F-injective modules are~injective if and only if

essential submodules of torsion-free modules are dense.

3.
Throughout this section we let G denote the Goldie topology,
G = {RI | 7 S-RJ where J and (I : a) are essential left ideals of R
for every a € J} ;

~that is, G is the smallest Gabriel topology which contains the set of
essential left ideals of R (see [8, p. 148]). G-injective modules are of

course injective, and so Theorem 2.1 specializes as follows.

THEOREM 3.1. PFor F any Gabriel topology containing G , the

following conditions are equivalent:

(1) Ry is semisimple artinian;
(2) CF(R) satisfies the ascending chain condition;

(3) F s cofinally finite;
(4) there is no infinite independent family of F-torsion-free
left ideals of R .
Since F D G 1is equivalent to F-injectives being injective, RF is
semisimple artinian with F 2 G if and only if F 1is cofinally finite and
F-injectives are injective.

(1), (2), and (3) are equivalent by Theorem 2.1. The proof that
(3) = (L) = (2) involves a rather standard argument which appears also in
Proposition XIII.3.1 of [§], where additional equivalent conditions are

listed. We will therefore omit the proof.

LEMMA 3.2, Assume that torsion-free F-injective modules are
injective. Then TF = {essential left ideals of R} , the left singular
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ideal of R = R/T(R) 1is zero, and Ry is the maximal left quotient ring

of R.

Proof. Let I be an essential left ideal of R . By (2.3) and
Lemma 1.5 (¢), I € F . conversely, I € F implies that I is essential
in R by (1.2). Since Zﬁﬁﬁ) = 0 by Lemma 1.5 (iii), the right

annihilator of I in & equals zero. This proves that the left singular

ideal of K is zero.

As is well-known, the maximal left quotient ring of a nonsingular ring
is just the injective hull [§, p. 149]. ©Now because of the hypothesis and
Lemma 1.5 (Zv), RF must be the maximal left quotient ring of ﬁﬁ . //

Combining these results we obtain the following consequence.

COROLLARY 3.3. If R <is a finite dimensional ring and F2 G , then

Rp is semigimple artinian and is the maximal left quotient ring of

R/TF(R) .

4.

Another important special case of the main theorem occurs when F is
cofinitely prineipal; that is, when each left ideal in F contains a

principal left ideal in F .

Recall that when S is a multiplicatively closed subset of a ring
R , a classical Zef% quotient ring of R with respect to S 1is defined to

be a ring RS together with a ring homomorphism ¢ : R > RS such that

(i) o(s) is a unit in Rg for each s €5 ;

(ii) every element of RS has the form ¢(s)-l¢(a) with
s €5, a€R; and

(iii) e¢(a) = 0 if and only if sa = 0 for some g € S .

It can be established [§, p. 51] that the classical left quotient ring

of R with respect to S exists if and only if S satisfies:

(a) if s € S and a € R, then there exists ¢t € S and
b € R with ta =bs ; and
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(b) if as = 0 with a €R, s €S, then ta = 0 for some
t €S .

Such a multiplicatively closed set S will be called a left denominator

set. For the usual reasons, when RS exists, it is unique up to
isomorphism over R ; furthermore, F = {RI | InS# @] is then a

cofinitely finite Gabriel topology and RF = RS [§, p. 238].

PROPOSITION 4.1. Assume that F <is cofinitely principal and that

F-torsion-free F-injectives are injective. Then Ry is semigimple

artinian and is the classical left quotient ring of R with respect to
S={s €¢R| Rs € F} .

Proof. It is well-known and easy to prove that for a cofinitely
principal Gabriel topology F , 5= {s €¢ R | Rs € F} is a
multiplicatively closed subset of R satisfying (a) [§, p. 237]. To see
that (b) holds, suppose that as = 0 with @ € R, s € S . From §2, we
know that F 1is a perfect topology, so RF§-= RF where

s =s + T(R) € R/T(R) . Since RF is artinian, s is a unit of RF .

0 , whence g € TF(R) . It follows that

Now as = 0 implies that as

there exists ¢ € § with ta = 0 . Thus we know that R has a classical

left quotient ring with respect to < . //
The preceding proposition extends Theorem 1.7 of [7].

A result due to Levy states that if a ring R has a classical left
quotient ring & , then @ 1is semisimple artinian if and only if torsion-
free divisible R-modules are injective [5, Theorem 3.3]. In Theorem k4.3
we provide a generalization of this to classical left quotient rings with

respect to left denominator sets.
Given any S € R and a module g1 > we call M S-torsion-free if

whenever sm =0 with s € S and m € M , then m=0
called S-divisible if s =M for each s € S .

sy and M is
LEMMA 4.2. If S 4is a left denominator set and I +is a left ideal

of R then there is a natural isomorphism R &, o(I) = R$¢(I) , Where o

denotes the canonical homomorphism of R into Rg .
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Proof. The isomorphisms Rg @h o(I) -5* st(I) are defined by

n n n n
ul ¥ z. ®¢la.)] = Y z.ela.) anda v| Y zofa)]l = ¥ x. ®ofa.) ,
izl * L = =1 © ) =t *
where z, € RS s ai €I . u 1is well-defined by the universal mapping

property of tensor products, and the proof is completed by showing that Vv

is well-defined.

n
To see this, let . x.w(a.) =0 with x. € RS , a. €I . Ve may
i vt 7 7

choose a common denominator s € § and bl’ ey bn € R so that each

n
x, = ¢(s)—1¢(bi) . Then izi ¢(bi)w(ai) = 0, and so

¢(s) i xi®¢p(ai) = § w(bi) ®<p(ai)

=1 =1
14 n
= i§1 o(1) ® o(b_Jola;) = 0(1) ® igl o(b,)ela;) =0 .

7
Since ©(s) is a unit, ) z @)w(ai) =0, and Vv is well-defined. //
=1

THEOREM 4.3. Let S be a left denominator set in R . Then RS 18

semisimple artinian if and only i1f S-torsion-free S-divisible R-modules

are injective.
Proof. Set F = {RI | InS# p} . It is straightforward to check

that a module is F-torsion-free if and only if it is S-torsion-free. We
begin by showing that the F-torsion-free F-injectives are precisely the

S-torsion-free OS-divisibles.

Suppose that M is F-torsion-free and F-injective and let s € S ,

m € M be given. Define f € homR(Rs, ) by flas) =am, a €R . f 1is
well-defined; for as = 0 implies that there exists ¢ € S with ¢tq =0,
and so tam = 0 , whence am = 0, since 4 is F-torsion~-free. Since M

is F-injective there exists g € homR(R, M) with gle =f . DNow

m = f(g) = g(s) = sg(1) , and this proves that # is S-divisible.
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Conversely, assume that M is OS-torsion-free and S-divisible, and
let f € homR(I, M) bve given with I € F . Choose s €I nS; fl(s) =m

for some m € M . Since M is GS-divisible, we may choose n € M with

m = sn . Now define g € hom,(R, ¥) by g(r) =rm . We claim that

R
g|I=f. For given a € I , there exists ¢ € 5, b € R with ta = bs
So

t(fla)-gla)) = f(ta) - glta) = flbs) - g(bs)
= bf(s) - bg(s) =bm - psn = 0 .

Since M is S-torsion-free, fla) = g(a) , and so M is F-injective.
Now assume that S-torsion-free S-divisible modules are injective.
By Proposition k4.1, RS = RF is semisimple artinian.
Conversely, assume that RS is semisimple artinian, and let RM be

S-torsion-free and S-divisible. Then M 1is an Rs—module. For given

m €M and x = (p(s)_lcp(a) € R, with s €5, a €R , there exists a
unique element »n € M with am =sn ; and defining x°m = n determines
the Rs-module structure of M , as can be readily verified.

Now let f € homR(I, M) be given, with I a left ideal of R . Then

J=keronI={ag €I | sa=0 for some s € S} is a left ideal, and
f(J) = 0 because M is S-torsion-free. Hence f induces
r'oe homR(q)(I), M) with f' o ¢ =f . By Lemma 4.2,

Rg ®R o(I) = Rs,(p(l’) , and therefore f' can be extended to

g' € homR[RSq;(I), M) . Since RSJJ;(I) is a left ideal of the semisimple
artinian ring RS , ¢g' can be extended to g € homR(RS, M) . But then
g oo € homR(R, M) extends f . So RM is injective, and the proof is

complete. //

5.
The next objective is to examine ideals of RF in the case when

torsion-free F-injectives are injective. Some observations can be made in
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a more general setting.

Assume that F and G are Gabriel topologies with F < G . Then

TF(R) c TG(R) ; and we let p denote the canonical homomorphism from
R/TF(??) onto R/TG(R) . Consider the diagram
Bg
X
ul
\
R/TG(R) g

\

[
R/T¢g(R) < Rp .
Since RG is F-torsion-free and F-injective there exists a unique
R-homomorphism ¢q : RF ->RG extending p .

We claim that ¢q 1s in fact a ring homomorphism. To see this, let r
denote the coset of » € R in R/TF(R) , and observe that the R-module
structures of RF and RG are defined by reo = o , Py = p(;)y for
any r» €R , o € RF , Y € RG . Now let o, B be arbitrary elements of

R. and set I = (R/TF(R) :a) € F . Then for any »r € I ,

F

r(g(aB)-q(a)q(B)) = q(r+aB) - gq(r-a)q(B)
= q{ra+B) - p(ralg(B) = p(ra)g(B) - plra)q(B) =0

since ra € R/T(R) and q extends p . Since »r € I was arbitrary and
R; is F-torsion-free, it follows that gq(aB) = g(a)q(B) . We summarize
this.

(5.1). If Fc G are Gabriel topologies, then there is a unique
R-algebra homomorphism q : Rp > R which extends the canonical

epimorphism p : R/Tp(R) > R/To(R) . (See [§, p. 210, Exercise 1].)

PROPOSITION 5.2. Suppose that F-injective ideals of Ry are
R-injective, and let G be a Gabriel topology with F < G . Then Rg 18
isomorphic to a direct swmnand of Rp under a splitting of the

homomorphism q of (5.1).
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Proof. Let g¢g : RF hd RG be the algebra homomorphism desecribed by
(5.1). Since RG is F-torsion-free, kernel ¢ is F-injective, and so
by hypothesis RF and kernel g are injective R-modules. Hence
RF = kernel g ® q(RF) , from which we have that q(RF) is injective. But

R/TG(R) gq(RF) , SO necessarily q(RF] = RG . //

A converse is true as well.
PROPOSITION 5.3. If A <is an ideal direct swmmand of R which is

injective as a left R-module, then A 1is a quotient ring of R with

respect to some Gabriel topology G D F .
Proof. Choose an ideal B with RF =A®B . Set
T = {RM | homR(M, A) = 0} 3 T is a hereditary torsion class containing

the F-torsion modules because A 1is an injective F-torsion-free

R-module. Let G Dbe the Gabriel topology of left ideals associated to

T then G2F and TG(R) 2 Tr(R) . We will show that Ry xA .
Let q : RF > RG be the ring homomorphism of (4.1). Since

homy, (B, A) =0, homR(g, A) =0. So B €T, and hence B C kernel q .

F
If ANnker g # 0, then A=A nker q n R/TF(R) # 0 , and conseguently
Ap = Aq = 0 . Hence A C kernelp = TG(R)/TF(R) € 7T . But then
homR(A, A} = 0, which forces 4 =0 , a contradiction. Thus it must be
the case that A nker g = 0 , and so q|A is a monomorphism. Next
q(RF) = q(A) 1is an injective R—submodul; of RG which contains
R/TG(R) , and we conclude from this that ¢(A) = RG . So é%‘RG under

the homomorphism ¢ . //

An ideal T of a ring R 1is a torsion ideal if there exists a proper

Gabriel topology G with TG(R) =T . We can now apply the information
above to learn when a semisimple artinian ring of quotients is simple.

THEOREM 5.4. Asswne that Ry tis semisimple artinian. Then the
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following conditions are equivalent:
(i) Rp is simple;
(ii) Rp = L for every proper Gabriel topology GO F ;
(ii1) Tp(R) is a maximal torsion ideal.

Proof. () = (ii1). Suppose that RF is simple, and say
TF(R) g TG(R) for some Gabriel topology G . Then T = TG(R) is a non-

zero G-torsion submodule of §=R/TF(R) . Since RF is simple,

RFTRF = RF . Write 1 = aitisi with ai, 87; € RF R ti €T . Set

ks

t
J= N ([®: o) €F . Then for any a €J ,

111 LERQTRFETG(R)

7.2 % e - v (a,)%,8,
=1 =1

It follows that 75 TG(E) , and hence by (1.2), TG(E) is an essential
left ideal of E . But TG(I_?) < TG(RF) , SO TG(RFJ must be an essential
ideal of RF . Hence TG(RF] = RF . By considering again the identity
element of RF , this forces TG(R) € G , which is impossible unless
0 €6 .

(¢21) = ({Z). This is clear from Proposition 5.2.

(Zi) = (7). 1If RF is not simple, let A be any proper ideal of
RF . By Proposition 5.3, there exists a Gabriel topology G =) F  with
Rg=AgRe . //

We conclude this section with the following result, which is actually
a consequence of the material in §2.

THEOREM 5.5, R 18 a division ring i1f and only if TF(R) is the
only proper closed left ideal of R .

Proof. Suppose that RF is a division ring, and that I is a closed
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left ideal of R . If I # T(R) , then RFT is a nonzero left ideal of
RF » SO RFT = RF . But then I is clearly dense in R , so, necessarily,
I =R,

Conversely, assume that T(R) is the only closed left ideal of R ,
other than A . We first show that a torsion-free f—injective module M

is injective. For let f € hom,(I, M) with I a left ideal of R . By

R
our hypothesis either I < T(R) , in which case f =0 , or else I € F .

In any event, f can be extended to an element of homR(R, M) , and so RM

is injective.
By Theorem 2.1 (2), Ry 1is semisimple artinian; and from the

discussion immediately following that theorem, we know that F is perfect.

Let K now be any left ideal of R Since F 1is perfect, K is closed

F e
in Rp . It follows that I = w-l(K A R) 1is closed in R , where

% : R > Ry 1is the canonical homomorphism. By hypothesis, I = T(R) or
I =R , and from this we can conclude that KX =0 or KX = RF . Thus BF

is a division ring. //

6.

In this final section we treat some related facts, which extend
results known for classical rings of quotients. For instance, a ring with
a simple (respectively, semisimple) artinian classical ring of quotients is

prime (respectively, semiprime). More generally, we have the following:
PROPOSITION 6.1. Suppose that Rp is a simple ring (respectively, a

finite direct sum of simple rings), and that every left ideal in F 4is a
faithful RE-module. Then Tr(R) is a prime (respectively, semiprime)
ideal of R .

Proof. First assume that RF
and B left ideals of R.and B¢ T,(R) . Then B # 0 in §=R/TF(R) ,

is simple, and let AB ¢ TF(R) with A4

_ t
s0 RFBRF = RF by the hypothesis on RF . Write 1 = Zﬁ p.b a; with
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t
pP.s q- € RF , b, €8B Let I = N C‘? p’b] €F Now

1 1 =1

— — t p— — —— —— — . —
I=Tic Y (Ip)ba, cRER  C BR. . Hence AT CAIR, =0 . Since 7l

is faithful, we conclude that 4 = 0 , proving that TF(R) is a prime
ideal.
For the semisimple case, let B be a left ideal of R with

g STF(R) , n=1. We may write RFBRF = RFe with e a central

t
idempotent of R . As above, write e = ) pibiqi and let
=1

I=n (ﬁ:pi) € F. Then eI =Tec By , so that B lIicd =0.

Since I is faithful, En_le =0 . But e is an identity element on B ,

so ?1—1 =0 . Continuing in this manner, we eventually learn that

B=0 , and this proves that TF(R) is a semiprime ideal. //

COROLLARY 6.2. If S5 1is a left denominator set such that kg is a

simple ring/(respectively, a direct sum of simple rings), then
T(RY = {a €R | sa=0 for some s € S} 1is a prime (respectively, semi-
prime) ideal.

Let us call a topology F hereditary if every left ideal in F is
projective. Cofinally finite hereditary tcpologies (which are not
necessarily Gabriel topologies) often consist of finitely generated left

ideals, as we now see.
PROPOSITION 6.3. Assume that Tp(R) = 0 and that F is a cofinally
finite hereditary topology. Then every I € F <is finitely generated.

t
Proof. Let I € F be given. Choose J = ) Rz, < I with J € F .
i=1

By hypothesis I 1is projective, so we may choose fa € homR(I, R)

s

Yy € I with y= ) (yf )y  for each y € I . Since J is finitely
wél a’Va
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genefated, f&IJ = 0 for all but finitely many o € A . For simplicity,
let us assume that f&IJ =0 for a ¢ {1, 2, ..., k} . Now for each

a ¢ {1,2, ....,k}, f

. [ ' .
o induces fa : I/J + R and (I/J)f& is

F-torsion. Since TF(R) =0, f& = 0 ; that is, f& = 0 for each

o ¢ {1, 2, ..., k} , and it follows that Yy» Ygr -v-s Yy generate I . //
COROLLARY 6.4 (8, p. 260]. 4 finite dimensional hereditary ring is

noetherian.

Proof. A hereditary ring is nonsingular. So
F = {essential left ideals} forms a Gabriel topology satisfying the
previous proposition. It follows that every left ideal, being a summand of

an essential left ideal, is finitely generated. //
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