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A GENERALISED LUCASIAN PRIMALITY TEST

ZHENXIANG ZHANG, W E I P I N G ZHOU AND XIANBEI LIU

We present a primality test for numbers of the form Mh,n = A• 2*1 ± 1 (in particular with
h divisible by 15), which generalises Berrizbeitia and Berry's test for such numbers
with h £ 0 mod 5. With our generalised test, the primality of such a number Mh,n
can be proved by means of a Lucas sequence with a seed determined by h and nq —
primary irreducible divisor of a prime q s 1 mod 4. We call the prime q a judge of
the number Mh,n- We prescribe a sequence S of 48 primes = 1 mod4 in the interval
[13,2593] such that, for all odd/i = 15* < 108 and for all n < 7.3 • 10u, each number
Mh,n has a judge q in 5. Comparisons with Bosma's explicit primality criteria in "a
well-defined finite sense" for the case h = 3t < 105 are given.

1. INTRODUCTION

Two classical results express that primality of 2n ± 1 can be decided by a single
modular exponentiation. Let n ^ 2, then as Pepin knew in 1877,

(1.1) M = 2" + 1 is prime <f=» 3(M~l)/2 = - 1 mod M.

On the other hand for 2n — 1, the formulation involves a Lucas sequence. The Lucas
sequence with seed w0 is the sequence {WJ} defined from the given initial value two by the
recurrence:

(1.2) Wj+x =w)-2 for j ^ 0.

Let n ^ 3, then as given by Lucas [8] and Lehmer [7],

(1.3) . M = 2" - 1 is prime «=> wn-2 = Omod M,

where {WJ} is the Lucas sequence with seed w0 = 4.

The two tests (1.1) and (1.3) generalise to primality tests for integers of the forms

(1.4) MA,n,+ = h • 2n + 1 and Mft,n,_ = h • 2n - 1
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with hodd and h < 2" as follows. (All h in this paper are positive.) As Proth knew in

1878,

(1.5) M = Mh,n,+ is prime

there exists an integer b such that b^M~1^2 = — 1 mod M.

Whereas for Mh,n,_, let d € Z satisfy

<"» ( B ) - 1 -
where (*/M) is the Jacobi symbol. Let K = Q(v/d), and let %K be the ring of integers
of K. Let a £ 1>K satisfy

<»> (£)--'•
where a denotes the conjugate of a in K. Then [10]

(1.8) M = Mh,n- is prime <=• (a/a) ( M + 1 ) / 2 = - 1 mod Af <=> u;n_2 = Omod M,

where {tfj} is the Lucas sequence with seed

(1.9) w0 = (a/5)" + (a/a)" = Tr^/Q(a/a)A.

Note that, given h, the seed u>0 in (1.9) is uniquely determined by the pair (d, a).
For this reason, we call the pair (d, a) satisfying (1.6) and (1.7) (respectively, the integer
b in (1.5)) & judge (of primality) of MAin>_ (respectively, of Mh^+) for short. In general,
the judge depends on n as well as on h. However, it is certainly desirable to have it
independent of n, if possible.

If h ^ 0mod3, one may take b = 3 in (1.5) and

(1.10) (d, a) = (12,2 + Vl2), hence w0 = (2 + y/S)h + (2 -

in (1.8) for all n. More precisely, if

n ^ 2 a n d 2 " > / i ^ 0 mod 3,

then [2, Theorem 3.1]

(1.11) M = Mh,n,+ is prime <=>• 3{M~l)/2 = - 1 modM;

and [11, Theorem 4.16], [2, Theorem 3.2]

(1.12) M = Mh,n,- is prime

^=
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where {WJ} is the Lucas sequence with seed w0 as given in (1.10).

The case h = 0 m o d 3 is studied in [2, 10]. In [10, 11] tables of seeds are given for
A4,n,_ for odd h < 30. In [2] for each h = 0 mod 3, h< 105, but h not of the form 4 m - 1 ,
Bosma designed algorithms for determining finite sets of judges

(1.13) Bh = {bj}, and Vh = {(dj,aj)}

such that, for any n, there is a judge of Mh,n,+ in S&; and a judge of Mh,n,- in Vh. On the
other hand, for h of the form 4m - 1, he proves that there are no such finite sets (1.13)
of judges.

Recently, Berrizbeitia and Berry [1] show that, a modification of the test (1.8) allows
them, for h ^ 0mod5, to test primality of MAin>_ and Mh<n<+ by means of a Lucas
sequence with a seed independent of n. In particular when h = 4m — 1, modd, they
have a single seed. More precisely, they prove the following Theorem 1, where they use
notation

(1.14) **

for any odd integer k. This notation allows them to treat the cases

(1.15) M M = h-2n±l

simultaneously, where M/,itl means either Mh<n,+ or Mftini_.

THEOREM 1 . ([1, Theorem 3]) Let M = Mh,n = h • 2" ± 1 where h < 2n~2 - 1 is
odd, h^O mod 5, and n ^ 4. Let IT = - 1 + 2i G Z[i], and let {WJ} be the Lucas sequence
with seed w0 - {n/W)h + {TT/TT)11. Then

{ wn-2 = 0 mod M, when M* = ±2 mod 5;

wn_3 = 0 mod M, when M* = —1 mod 5.

Berrizbeitia and Berry [1] did not say anything about the case h = 0mod5. Of
course, if h = 0 mod 5 but h ^ 0mod3, tests (1.11) and (1.12) are still applicable. The
remaining case is therefore h = Omod 15, when it seems that one has to appeal Bosnia's
approach for determining finite sets (1.13) for the case h = Omod3.

In this paper, we go a little further to present a generalised test, which includes
Berrizbeitia and Berry's test as a special case, and which can treat the cases (1.15)
simultaneously as the Berrizbeitia and Berry test does. Moreover, our generalised test
treats the case h = 0 mod 15 more practically than using Bosma's approach for the case
h = 0 mod 3. We state our generalised test and main tasks of this paper in the following
section.
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2. T H E GENERALISED TEST AND MAIN TASKS

Let D = Z[i] be the ring of Gaussian integers, and by a prime we always mean
a positive prime of Z. Before stating our generalised test, we recall some basic facts
concerning D and biquadratic residue characters. Details can be found in [6, Chapter 9],
see also [12, Section 2].

It is well-known that D is a Euclidean domain. Let a, 0,n e D. The norm of
a, N(a) = aa = 1 if and only if a is a unit. The units of D are ±1, ±i. The irreducibles
of D are ±1 ± i with norm 2, primes = 3 mod 4 and their associates, and non-real
elements with prime norms = 1 mod 4. A nonunit a is called primary if a = 1 or
3 + 2i mod 4. Among four associates of a nonunit a satisfying (1 + i) \ a there is (only)
one which is primary. A prime q = 1 mod 4 must be the norm of a unique primary
irreducible nq of D. If q is small, say < 108, then nq is easily found by trial and error.
There exist efficient algorithms for larger q, see [4, Algorithms 2.3.12 and 2.3.13]. If n is
an irreducible with N(ir) / 2, then there exists a unique integer m, 0 < m ^ 3, such that

a{N{v)-i)/4 = jm m o ( j w »pne biquadratic residue character of a, for ir \ a, is defined and
denoted by (a/7r)4 = im, which is 1, —1, i or — i.

Now we are ready to state our generalised test in the following Theorem 2.

THEOREM 2 . Let M = Mhtn = h • 2" ± 1 wiere h < 2n~2 - 1 is odd and n #s 4.
Suppose that q is a prime = 1 mod 4 with primary irreducible iT = nq = a + bi£ Z[i]

satisfying N(ir) = nn = q and (M*/7r)4 ^ 1. Let {v)k} be the Lucas sequence with seed

w0 = (TT/TT)'1 + (TT/TT)'1. Then

(M*\
wn-2 = 0 mod M, wien I I = ±i;

\ 7T / 4M is prime -,—T » , , .
IM \

wn-3 = 0 mod M, wien I I = —1.
V 7T / 4

Given h and n, let q be a prime = 1 mod 4. If

<">

then by Theorem 2, the primality of M/,)f, can be proved by means of a Lucas sequence
with seed WQ depending only on nq and h. On the other hand, if

(2.2) { V ir A

or

(2.3)
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then Mk,n is a composite, where ord,(2) denotes the multiplicative order of 2 modulo q.

Note that M/,,,, means either Mh,n,- or Mh]I,i+.

DEFINITION 2 .1 : If one of the three equations (2.1), (2.2) and (2.3) holds, we call
the prime q a bi-quadratic judge of primality of the number Mj,,,,, or a judge of Mhttl for
short.

DEFINITION 2.2: Given an odd h, if there exists a common judge q of the numbers
M/,i7l for all n, or in other words, the system

(2.4)
gcd(Mh,n, 2ord«(2) - 1) = 1 = gcd (M M , 2°rd«(2> + 1)

has no solutions in n, we call the prime q a minus flag or plus flag of h according to that
Mh%n means M/,itli_ or Mh>rii+. An odd h may have several minus or plus flags. We denote
the smallest minus and plus flag of h by f^ and f£ respectively.

Not every odd h = I5t has minus and/or plus flags. For those odd h = \bt having no
minus and/or plus flags, one wonders whether it would be possible to solve the following
problem.

P R O B L E M 2.1. Given an odd/i = 15t. Determine a finite set Vt^ (respectively WjJ")
such that for any n, Mh,n,- (respectively Mh^+) has a judge in V\̂ ~ (respectively W^").

In Section 3 we prove Theorem 2, the proof uses biquadratic reciprocity as the proof
of Berrizbeitia and Berry's Theorem 1 does. In Section 4, we tabulate 16 primes with
the smallest being 13 and the largest being 2089, which are minus or plus flags of some
odd h = 15£ < 108. In Section 5 we prescribe a sequence <S of 48 primes = 1 mod 4 in the
interval [13,2593] having the following properties: for all but a few odd/i = 15t < 108,
there exists a subset (subsequence)

(2.5) W^ (respectively V\£) C 5

solving Problem 2.1; even if any subset of 5 does not solve Problem 2.1 for some odd
h = 15t (mainly h is of the form 42m — 1), that is, none of the elements of 5 is a judge of
Mh?rii_ (respectively M/,in>+) for some n, then n would be very large. For this reason, we
call <S a universal sequence of judges. Brief conclusions are given in Section 6. Compar-
isons with Bosma's approach for the case h = 0 mod 3 are given in relative sections, see
Remarks 3.1, 4.1, 5.5 and 5.7.

3. P R O O F OF T H E O R E M 2

To prove Theorem 2 we need two lemmas.

https://doi.org/10.1017/S0004972700040478 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040478


424 Z. Zhang, W. Zhou and X. Liu [6]

LEMMA 3 . 1 . ([1, Corollary 5]) Let p be an odd prime and let -n € Z[i] be primary
irreducible. Then

(P . ) = («-/5T)CP--I)/4 m o d p .
\ 7T / 4

LEMMA 3 . 2 . ([1, Lemma 7]) Let p be an odd prime and let a e Z[i] be prime
to p. Set 7 = a/a. Let {u>*} be t ie Lucas sequence with seed WQ =Tr(7) = a / a + a/a.
Suppose that, for some j , Wj = 0 mod p. Then p = ±1 mod 2J+2.

PROOF: [Proof of Theorem 2] (=>•) Suppose that M is a prime and (M*/7r)4 ^ 0,1.
Then (M*/n)4 = -l,±i. By Lemma 3.1,

(Ml) =iir/^w-D,* m o d M
\ 7T / 4

If {M'/n)4 = - 1 , then (TT/TF)^'-1)/4 = - 1 mod M. Thus

wn-2 = (Tr/TF)"-2""2 + (f/Tr)"2""2 = - 2 mod M.

Therefore wn-3 = 0 mod M follows from the recurrence satisfied be the Wj.
If (M*/7r)4 = ±i, Then (TT/TT)^'-1)/4 = ±i mod M. Thus

wn-2 = (Tr/Tr)"-2""2 + (Tf/Tr)"2"'2 = 0 mod M.

(•*=) Let p be a prime divisor of M. Since wn_3 = 0 mod M or wn-2 = 0 mod M,
we have, by Lemma 3.2,

p = ±1 mod 2"-1 or p = ±1 mod 2".

Then we have p > 2""1 - 1 and p2 ^ 22n~2 - 2n + 1. Since

and h < 2""2 - 1,
M < 22"-2 - 2" + 1< p2.

Thus p > \fM. Therefore M is a prime. D

In our generalised test (Theorem 2) we need to check efficiently whether (M£n/7r)4

€ {1,-1}, hence we use the following Lemma 3.3 and its corollary.

LEMMA 3 . 3 . [12, Lemma 2.5] Let n = u + vi be primary irreducible with prime
q = N(n) = 1 mod 4 and a = c + di. If (c0r)4 e {1, -1} , then we have

( Of \

— 1 = (c — duv"1 r '"1"4 mod q.

NOTE. The condition " If (a/7r)4 € {1, -1}" was missed out in [12, Lemma 2.5] by the
author with carelessness while typing. Fortunately, the misprint does not influence any
results of [12]).
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COROLLARY 3 . 1 . Let IT = u + vi be primary irreducible with prime q = irW

= u2 + v2 = 1 mod 4. If (M^n/7r)4 € {1, - 1 } , then we have

= (-ho • 2no + l )^ - 1 ) / 4 mod g;

where h0 = h mod q and TIQ = n mod ord,(2).

EXAMPLE 3.1. Let Nn = 85575 • 2" - 1 with n ^ 19. Then

^ • ) = I « = » 2 V * = - I mod13 <=» n s I, II" mod 12;

JV4 = 1 mod 17 <<=• n = 0,2 mod 8.

Since the system of congruences

n = 1,11 mod 12,

ln = 0,2 mod 8

has no solutions, 13 is a judge of JVn for n = 0,2,3,4,5,6,7,8,9,10 mod 12 and 17 is a
judge of Nn for n = 1,11 mod 12. This means that W^ = {13,17} solves Problem 2.1 for
h = 85575 = 15 • 5705. Let {wi,} be the Lucas sequence with seed

wo = K S / T T U ) 8 5 5 7 5 + (WWTT1 3)8 5 5 7 5

where 7r13 = 3 + 2i, and Let {w'k} be the Lucas sequence with seed

>85575 , / = — ; _ \85575

where nl7 — 1 + 4i. Since

(Nn\ _ J±* <==>" = 0,3,7,8,9,10mod 12,

V/ | n = 2,5,6mod 12,

and

±i<=>n = 1,5,6,7 mod 8,

,4 mod 8,

we have by Theorem 2, A^ is prime •<=>

un_2 = 0 mod A^, when n = 0,3,7,8,9,10 mod 12;

wn-3 = 0 mod A ,̂, when n = 2,5,6 mod 12;

w'n_2 = 0 mod ATn, when n = 1,13,23 mod 24;

u'n_3 = 0 mod A n̂, when n = 11 mod 24.
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Note that, the case n = 4 mod 12 needs not be tested, since in this case Nn is a multiple
of 13. In this way, we find that

Nn (19 ^ n ^ 1750) is prime «=>

n € {20,24,26,30,36,42,49,55,60,7072,79,85,90,138,175,209,230,254,

309,344,373,395,406,479,725,994,1027,1367,1638,1750}.

REMARK 3.1. For testing primality of the numbers 85575-2n-l, Bosma [2, Supplement
Table 6] used a modulus ('period') r~ = 401148, which is much larger than our modulus
24.

REMARK 3.2. If (M'/n)4 = 0 then either M = q is a prime or M is a multiple of q.
So, this trivial case is not mentioned in Theorem 2.

REMARK 3.3. If the prime q in Theorem 2 is 5, then IT = n5 = - 1 + 2i. Since

= 1 <=$• h = 0 mod 5,

Theorem 2 includes Theorem 1 as a special case and fa = f£ = 5 for all odd h ^ 0 mod 5,
or in other words, the prime 5 = TTW is a judge of Mhin for all odd h ^ 0 mod 5 and for
any n ^ 4 with h < 2n~2 - 1.

4. FLAGS OF SOME ODD h = 15t < 108

Let

(4.1) -p = {prime p = 1 mod 4 : 13 s$ p < 2600, ordp(2) < 350}.

Then
V = {13,17,29,..., 2441,2593}

with # P = 83.

In this section we determine the subset T of V:

(4.2) T = {q e V : q is a minus or plus flag of some odd h = 15i < 108}

For this purpose we need the following lemma, the validity of the lemma is obvious.
LEMMA 4 . 1 . Let prime q be a judge of Mft,n. If (2.1) or (2.2) holds, then q is

a judge of Mh',n' for all n' = nmodord,(2) and for all odd h' = h mod2ord«<2) - 1.
If (2.3) holds, then q is a judge of Mh>^ for all n' = ri mod 2ord,(2) and for all odd
/i'EE/imod22ord'(2>-l.

A Pascal (Delphi) program based on Corollary 3.1 and Lemma 4.1 ran about five
hours on a PC Pentium III/800 to get the set T, which has 16 elements q tabulated in
Table 1, where

count' = #{odd/i = 15t < 108 : f^ = q},

count* = #{odd/i = 15t < 108 : # = q},
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hql (respectively, h ) is the smallest (respectively, largest) odd/i = 15t < 108 with

fh ~ 9> ^£1 (respectively, h+ +) is the smallest (respectively, largest) oddh = Ibt

< 108 with f+ = q.

Out of the 3333333 odd h = 15t < 108, there are Ylcountq = 298217 (about
8.9465%) having minus flags € V, and £ count* = 298237 (about 8.9471%) having
plus flags e V.

9

13
37

61
73
89
97

109
241
257
337

433
601
673
1321

1801

2089

ord,(2)

12
36
60

9
11

48
36
24

16
21
72

25
48
60

25
29

Table 1:
count~

429
1

5
234749

16648
10

2669
6755
11237

25323
54

5
14
60
42

216

Flags q of some odd

296445
37618935
22464495

435
915

5180865
49485
29775
10845
2115

184335
9546795

6821445
1196325

2327775
106485

q,ccuntq

99814005
37618935

91298505
99999915
99994785
98908755
99986685
99990405
99988575
99991725
99835275

90708885
96863265
96400515
95816385
99854865

h=15t< 108

count*

429
2
2

234772

16660
12

2673
6740
11237

25328
51
5
18
44

46

218

97725
23920125

31243005
75

1425

6806145
123465
9315
5805
1545

313095

45931785
11217825
2701305

220905
133335

q,count£

99976455
35856285
69729105
99999765

99998865
93972315
99978525
99992625
99994485
99999555
97758825
98768385

94337745
98938545
99560745

99926535

EXAMPLE 4.1. Let 7Vn = 296445 • 2" - 1 with n ^ 21. Then

r —-) = 1 «=> A^ = - 1 mod 13 <*=>• n = 2,4 mod 12.

Note that ord13(2) = 12. We have

fgcd(ATn, 2
12 - 1) = 7 for n = 2 mod 12,

< gcd{Nn, 212 + 1) = 17 for n = 4 mod 24,

(gcd(ATn, 2
12 + 1) = 241 for n = 16 mod 24.

So, 13 is a minus flag of 296445 and thus f^uis = 13- Let {wk} be the Lucas sequence

with seed

Wo = (TT/TT)296445 + (TT/TT)296445
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where n = TTI3 = 3 + 2i. Since

±i <*=> n = 0,1,3,6,10,11 mod 12,

n = 5,8,9 mod 12,

we have by Theorem 2,

wn-2 = 0 mod Nn, when n = 0,1,3,6,10,11 mod 12;
Nn is prime

lu>n_3 = 0 mod Nn, when n = 5,8,9 mod 12.

Note that, if n = 7 mod 12, then iVn = 0 mod 13. In this way, we find that

Nn (21 ^ n ^ 1750) is prime

n <E {22,34,39,73,78,165,207,333,334,423,613,798,813,819,874}.

E X A M P L E 4.2. Let Nn - 97725 • 2" + 1 with n ^ 19. Then

(—-) = 1 <£=> A^ = 1 mod 13<i=^n = 1,11 mod 12.

We have

f g c d ( i V n , 2 1 2 - l ) = 7 for n= 11 mod 12,

< gcd(iVn, 2
12 + 1) = 241 for n = 1 mod 24,

[gcd(iVn,212 + 1) = 17 for n = 13mod24.

So, 13 is a plus flag of 97725 and thus f^7725 = 13. Let {wk} be the Lucas sequence with
seed

Wo = (TT/TT)97725 + (T/TT)97725

where n = wi3 = 3 + 2i. Since

n = 0,3,7,8,9,10 mod 12,

n = 2,5,6 mod 12,

we have by Theorem 2,

wn-2 = 0 mod Nn, when n = 0,3,7,8,9,10 mod 12;
7Vn is prime

" wn-3 = 0 mod Nn, when n = 2,5,6 mod 12.

Note that, if n = 4 mod 12, then ATn = Omod 13. In this way, we find that

Nn (19 < n ^ 1750) is prime

n G {27,63,91,147,210,282,526,750,1051,1134,1260,1476}.

R E M A R K 4 .1 . Bosma [2] did not give examples of odd h = 3t < 105 having "flags" by
his approach. We do not know whether there exist odd h = 3t < 105 having "flags" by
Bosnia's approach.
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5. A UNIVERSAL SEQUENCE OF JUDGES

Let

(5.1) S = {quq2,...,q,}

be a finite sequence of different primes qj = 1 mod 4,

(5.2) Q = Y[q, and let QQ = Z*Q
7GS

be the multiplicative group of invertible elements modulo Q. Then

Let HQ = (2) be the cyclic subgroup generated by 2 of QQ. It is clear that if the system
of equations

(5.3) )

has solutions in n for a given oddt = t0, then it has solutions in n for all oddt £
or in other words, for all odd

t = t0 • 2mmodQ with m > 0.

Thus we have proved the following lemma concerning the structure of the quotient group

GQIUQ.

LEMMA 5 . 1 . The quotient group

(5-4)

where
t

= {t: (5.3) has solutions in n for Mi5t,n,-},

= {t: (5.3) has no solutions in n for Mi5 t i n i_},

and

{ UX — {t: (5.3) has solutions in n for M15t i,, i+},

VQ = {t: (5.3) has no solutions in n for Mi5tin,+}-

Moreover, both maps

and

are bijective. Thus

~ = #V+.
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Put

(5.7) u = #Wp = #W+ and v =

Define

A~(h,S) = {n : 0 ̂  n < 2L, (2.4) holds for all q G 5 with M M = Mh,n i_},

(5.9) A+(h, S) = {n : 0 ̂  n < 2L, (2.4) holds for all q € 5 with Mh,n = Mh,n ,+} ,

where

(5:iO) L = Lcm(ord,1(2),ordg2(2),...,ord,.(2)) = Wa-

lt A~(h,S) / 0 or A+{h,S) ^ ID, define

g-{h,S)=min{n>O:neA-{h,S)},

g+(h, S) = min{n > 0 : n 6 A+(h,S), Mh,nt+ is not a perfect square}.

We call TQ the impact factor of Q or of 5 . We hope that <S has impact factor close
to 1 and has as few elements as possible. If A+(h,S) ^ 0 (respectively, A~(h,S) ^ 0)
for some odd h = 15f, we also hope that g+(h,S) (respectively g~(h,S)) is rather large.

Let V be as defined by (4.1) and let

(5.12) S' = {q€V :3p&q)eV such that rp, > 0}.

For determining the set 5 ' we need a procedure described in §5.1 to find rpq for given
p,q £ V. We find that # 5 " = 48 and that T13.17 = 0.5 > rpq for all p,q £ V with
{ P J ? } ^ {13,17}. In §5.2, we sort the elements in the set S' to obtain a universal
sequence (5.1) with q\ = 13 and g2 = 17, mainly based on the condition

(5 .13) 7-13-17-fc ^ Ti3-i7-<&+1 for j ^ 3 ,

adjusted partially by rp<7 for some p,q E S'. In §5.3, we show how the universal sequence
S works well for our generalised test.

R E M A R K 5.1. Note that, the definitions of UQI+ and VQI+ (see (5.5) and (5.6)) do not
involve the gcd condition in (2.4). Since otherwise, the quotient group structure (5.4)
would not be valid. But in practical implementation of our generalised test, the gcd
checking makes things speed up. See Remark 5.2 below.

R E M A R K 5.2. It is clear that, if t G VQ, then VV{̂  = S solves Problem 2.1. On the
other hand, if i £ UQ , then system (5.3) has solutions in n for this t. Suppose n = n0 is
one of the solutions. If there is some q € 5 such that (2.2) or (2.3) holds for n = no, then
M15tifli_ is composite for all n = n0modord,(2) or for all n = n0mod2ord,(2); otherwise
if (2.4) holds for all q G S, then no subsets of 5 solve Problem 2.1 for h = Ibt, teUg,

thus for testing primality of Mi5(>n0i_, one should look for a judge outside the sequence
S. Corresponding words can be said for the case Mi5t>n,+.

https://doi.org/10.1017/S0004972700040478 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040478


[13] A generalised Lucasian primality test 431

EXAMPLE 5.1. Note that ord13(2) = 12, ordi7(2) = 8 and 13 • 17 = 221. We have

#e2 2i = (13 - 1) • (17 - 1) = 192, L = #-H221 = Lcm(ord13(2), ord17(2)) = 24,

U-nX = {1,5,23,55}, V221 = {3,9, IT, 25}, and r221 = - ^ = 0.5.

If t G V22i, then W{5t = {13,17} solves Problem 2.1 for h = 15*. Since 3 • 215

= 5705 mod 221, 5705 = 3 6 V22i, thus W£ = {13,17} solves Problem 2.1 for h = 15-5705
= 85575, see Example 3.1.

5.1. DETERMINING THE SET 5 '

Given primes p, q = 1 mod 4, let

(5.14) m0 = #G P , = (p - l)(q - 1), rm = Lcm(ordp(2),ord,(2)),

(5.15) r = #{primeg' = l m o d 4 : 5 < g ' < g , #V,», > 0},

and let p0 be a prime = Imod4 with impact factor Tpoq ^ Tq>q for all 5 < q1 <q.

We use the following Procedure 5.1 to find rpq and use Procedure 5.2 to determine

the set 5'.

Procedure 5.1. Finding rvq\

{input primes p, q = 1 mod 4 with p ^ q; }

{output u and v as defined by (5.7) with Q — pq, thus rp, = v/(u + v);}

{output also r, m0, mx as defined by (5.14) and (5.15)}

Begin m0 <- (p - 1) • (g - 1); d <- gcd(ordp(2), ord,(2));

mx <- Lcm(ordp(2),ord7(2));

For t := 1 To pq Do

If (t = Omodp) Or (t = Omodg) Then Tt +- True Else Tt ^- Faise;

u « - 0 ; *<- 1;

Repeat /i •«- t • 15;

Using Corollary 3.1 to find solutions in n of (M^n _/7rp)4 = 1 by trial and error;

(Suppose k solutions n = Tin,. • • ,nifcmodordp(2) are found)

Using Corollary 3.1 to find solutions in n of (M^ n _/7r,)4 = 1 by trial and error;

(Suppose / solutions n — n 2 i , . . . ,n2j modord,(2) are found)

j «— 0; morejudge •«— False;

repeat j «- j + 1; i«- 0;

Repeat i <- i + 1;

If (n2j — nii) = Omodd Then morejudge «— True

Until morejudge or (i = fe)

until morejudge or (j = I);
If morejudge Then

begin x «— <; u f- u + 1; Tj <- True; i <- 0;
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repeat x «— x + x; If x ^ pg Then x «- x — pg; Tx <— True; z «- i + 1
until i = mi

end;
repeat «<«—* + 2 until (not Tt) Or (t = pq)

Until £ = pq;
v <r- 0; t <- 0;
Repeat repeat £ <- t + 1 until (not Tt) or (t = pq);

If (i is odd) And (not Tt) Then
begin X «- i; t> «- u + 1; Tx «— True; i <- 0;

repeat x := x + x; If x ^ pg Then x «— x — pq; Tx <— True; i«- i + 1
until i = mi

end
Until £ = pg;
Tpg <-v/{u + v)

End,

Procedure 5.2. Determining the set 5';
{Input the set V — {px,... ,p83} as defined by (4.1); }
{Output the set 5 ' as defined by (5.12)}

Begin Let S' be an empty set; j <- 1;
Repeat j «— j + 1; <7 <— py, i •<— 0; maxr <- 0; r —̂ 0;

repeat i +- i + 1; p <— Pi;
If rp, > 0 Then begin r <- r + 1; 5' <r- S' U {p} end;
If rp, > maxr Then begin moxr «- rp,; po <- p end

until i = j - 1;
If r > 0 Then

begin 5 ' <- 5 ; U {q};
output {q,r,p0) and related values (mo,mi,u,v, r ^ J

(which are found by Procedure 5.1 for finding r9P0)
end

Until j = 83
End.

The Pascal (Delphi) program ran about 3 hours on a PC Pentium III/800 to get 48 elements
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of the set 5 ' with related values tabulated in Table 2. Thus

5' ={primes q in the first column of Table 2}

U{primes po in the third column of Table 2}

U{ primes p in the last column of Table 2}

={13,17,29,37,41,53,61,73,89,97,101,109,113,137,157,193,229,233,241,

257,277,337,349,353,397,401,433,457,577,593,601,641,673,881,937,

953,1013,1217,1249,1321,1429,1613,1657,1777,1801,2089,2113,2593}.

Note that all elements q of the set T (tabulated in Table 1) are contained in 5'.

REMARK 5.3. By (5.4), if (u + v)-mi / mo in the outputs of Procedure 5.1, then there must
be some errors in the programming.

5.2. DETERMINING THE SEQUENCE 5 Without much modification to Procedure 5.1, we
have a procedure for computing 7-13.17., for q S 5'\{13,17}. We sort elements of 5 ' mainly
based on (5.13), adjusted partially by rvq for some p, q € S', to obtain the sequence <S tabulated
in Table 3 with related values:

ord = ord,(2), m0 = #Gi3i7., = tf>(13 • 17 • q) = 192(g - 1),

mi =Lcm(ordi3(2),ordi7(2),ord,(2)) = Lcm(24,ord,(2)),

u and v are defined by (5.7) with Q = 13 • 17 • q, thus TQ = v/(u + v).

5.3. EFFECT OF THE UNIVERSAL SEQUENCE 5 Let

be sub-sequences of the first j elements of 5. Define

yj = # { odd/i = 15t < 108 : j is the smallest subscript

such that W^ = Sj solves Problem 2.1},

y+ = # { odd ft = 15t< 108 : j is the smallest subscript

such that WjJ" = Sj solves Problem 2.1},

Yf = j^y-k, and ^ = ^>*+-

Let A~{h,S), A+(h,S), g~(h,S) and g+(h,S) be as defined by (5.9) and (5.11) with

L = Lcm(ord,1(2),ord,2(2),... ,ord?48(2)) = 1034115765883200.

We use the following Procedure 5.3 to find, for each odd/i = 15t < 108, the smallest j such
that W/, = Sj solves Problem 2.1 and use Procedure 5.4 to find values of functions yj and Yj,
where W/, means either W "̂ or W "̂, jy means either yj or j/+, and Yj means either YJ~ or Y^.
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Procedure 5.3. Finding the smallest j such that W/, = Sj solves Problem 2.1;
{input odd/i = 15t < 108 and the universal sequence 5 = {q\,... ,94s}}
{output 1 < j ^ 48 such that Wh = Sj solves Problem 2.1}
{if Wfc = 548 = $ does not solve Problem 2.1, then output g(h, S)}

Begin j «- 0;

Repeat j «- j + 1; Using Corollary 3.1 and Lemma 4.1 to find solutions in n
mod2ord,(2) of (2.4) for q = qy,
If no solutions are found Then

begin output j and the message uq = qj is a minus (plus) flag of h"; exit end;
Using the Chinese Remainder Theorem to find common solutions in n of the
system (2.4) for all q 6 SJ;

Saving all solutions mod 2 Lcm ord,, , . . . , ord^.) in an array if they exist
Until (j = 48) Or (no common solutions for all q € Sj exist);
Output j ;

If W/, = S48 = 5 does not solve Problem 2.1 Then output g(h, S)
End;
Procedure 5.4. Finding values of functions yj and YJ;
Begin h <- 15; For k := 1 To 48 Do begin yk «- 0; Yk 4- 0 end;

Repeat Using Procedure 5.3 to find the smallest j such that W/, = Sj solves
Problem 2.1 or to find g(h, S);
If the smallest j is found Then

begin yj i-yj + 1; For k := j To 48 Do Yk <- *"* + 1 end;
h <- h + 30

Until h > 108;

For k := 1 To 48 Do output yk and Y/t
End.

In Table 4 we tabulate y~, yf, Y~, Yf, Y~/Total and Yf/Total where

Totoi = #{odd/i = 15* < 108} = 3333333.

In Table 5 we tabulate all six odd h = 15t, all of them are of the form h = 42m - 1, such
that 5 has no subsets W "̂ solving Problem 2.1. In Table 6 we tabulate all 52 odd h = 15£ such
that S has no subsets V\?£ solving Problem 2.1, where #^4+ means #A+(h, S). From Tables
4-6, one may clearly see the effect of the universal sequence S.

REMARK 5.4. Since six h = 152 tabulated in Table 5 are all of the form 42rn — 1, it seems that
Problem 2.1 has finite solutions W "̂ for all h - Ibt not of the form 42m - 1.
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9
17

37
41

61
73
97

109
113
157

193
241
257
337

353
397

433
457
577

601
641

673
881
937

953
1013
1217

1321

1429
1613
1657
1777

1801

2089

2113

2593

r

1
1
2
1
2
2
4
2
1 .
2

6
8

5
3
4
6
3
3
1

3

7
2

1
1
1

2

8
4

5
2
1

6
2

6
1

Pa
13

13
17
41

13
17
13

29
53
17

13
17
73
17

89
73
17

17
101
257

17
89
73
137
277

17
41

13
157
277

593
601

233

89

73

Table 2:

mo
192

432
640
2400
864
1536

1296
3136
8112
3072
2880
4096
24192

5632

34848
31104
7296

9216
60000
163840
10752

77440
67392

129472
279312

19456
52800

17136
251472

457056
1051392

1080000

484416

185856
186624

mi

24

36
40

60
36
48
36
28
52

96
24
16
63

88
44
72
152
144

100
64

48
55
117

68
92

152

60
84
52
92

148
25
29

44

81

Primes

u

4

9
11
38
20
27
29
97

155
31
87
143
357

63
730
406
47

63
594

2459
202
1317
567

1887
3029

127

851
202

4690
4956
7103
34352

14035

3849

2258

q and

V

4

3
5
2
4
5
7
15
1
1

33
113
27
1

62
26
1
1

6

101
22
91

9
17
7
1

29

2
146
12
1

8848

2669

375
46

p with Tpq > 0

v/(u + v)

0.50000

0.25000
0.31250
0.05000
0.16666
0.15625
0.19444

0.13392
0.00641
0.03125
0.27500
0.44140
0.07031
0.01562
0.07828

0.06018
0.02083
0.01562

0.01000
0.03945
0.09821

0.06463
0.01562

0.00892

0.00230

0.00781
0.03295
0.00980

0.03019
0.00241

0.00014
0.20481

0.15978
0.08877

0.01996

p other than po

13

37
13
17,37,73

17

97
17,73,97,109,193
13,41,97,109,113,193,241
13,29,113,241
89,257

17,257,353
17,37,109,241,257
229,257
241,257

17,97

13,97,109,193,241,257

601

257

13,17,61,73,241,257,337
29,113,337

17,53,257,1249
1013

41,101,401,881,1321

349
17,257,353,397,881
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j
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Table 3
Q = Qj

13
17
241
97
257
673
37
109
41
73
433
193
1321
61
577
337
1429
113
397
1249
353
2113
29
53
101
157
233
277
349
401
881
937
1013
1657
2089
89
137
229
457
593
601
641
953
1217
1613
1777
1801
2593

The Universal

3 + 2i
1 +4i

-15 + 4t
9 + 4t
l + 16t

-23 + 12i
-l + 6i
3 + 10i
5 + 4i

-3 + 8i
17 + 12i
-7 + 12i
5 + 36i
-5 + 6t
l + 24t
9 + 16t
23 + 30i
-7 + 8t
19 + 6t

-15 + 32i
17 + 8t

33 + 32i
-5 + 2i
7+2i

-1 + lOi
ll + 6i
13 + 8i

-9 + 14i
-5 + 18i
l + 20i

25 + 16i
-19 + 24t
23 + 22i

-19 + 36i
45 + 8i
5 + 8t

-ll + 4i
15 + 2t
21 + 4t

-23 + 8t
5 + 24i
25 + 4t
13 + 28i

-31 + 16t
-13 + 38i
-39 + 16i
-35 + 24i
17 + 48i

ord
12
8
24
48
16
48
36
36
20
9
72
96
60
60
144
21
84
28
44
156
88
44
28
52
100
52
29
92
348
200
55
117
92
92
29
11
68
76
76
148
25
64
68
152
52
74
25
81

Sequence S —
m0

46080
18432
49152
129024
6912
20736
7680
13824
82944
36864
253440
11520
110592
64512
274176
21504
76032
239616
67584
405504
5376
9984
19200
29952
44544
52992
66816
76800
168960
179712
194304
317952
400896
16896
26112
43776
87552
113664
115200
122880
182784
233472
309504
340992
345600
497664

77li

24
48
48
48
72
72
120
72
72
96
120
120
144
168
168
168
264
312
264
264
168
312
600
312
696
552
696
600
1320
936
552
552
696
264
408
456
456
888
600
192
408
456
312
888
600
648

{9i,9
u

330
102
286
765
32
98
22
66
419
146
916
42
337
178
764
60
136
376
126
762
16
16
16
48
32
48
48
64
64
96
176
288
288
32
32
48
94
64
96
308
224
254
494
192
288
384

2, • • • 1

V

1590
282
738
1923
64
190
42
126
733
238
1196
54
431
206
868
68
152
392
130
774
16
16
16
48
32
48
48
64
64
96
176
288
288
32
32
48
98
64
96
332
224
258
498
192
288
384

948>
V

u+v

0.82812
0.73437
0.72070
0.71540
0.66666
0.65972
0.65625
0.65625
0.63628
0.61979
0.56628
0.56250
0.56119
0.53645
0.53186
0.53125
0.52777
0.51041
0.50781
0.50390
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.50000
0.51041
0.50000
0.50000
0.51875
0.50000
0.50390
0.50201
0.50000
0.50000
0.50000
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REMARK 5.5. It is easy to prove that, if ft. = 15t is of the form 42m - 1, then for any finite
set of primes {qj}, the system (5.3) has solutions in n. It seems that the gcd checking in (2.2)
and (2.3) does not help much for h of this form. So, it seems that Problem 2.1 does not have
a finite solution W/, for h = Ibt of the form 42m — 1. Nevertheless, the determination of values
of the functions g(h, S) (see Tables 5 and 6) is a remediation of finite-solution-non-existing for
h = 15t of the form 42m — 1. However, Bosnia's approach for the case h = 0mod3 did not
provide such remediation.

REMARK 5.6. Out of the 52 odd h = 15* tabulated in Table 6, there are 46 odd h = Ibt
not of the form 42m - 1. Although Problem 2.1 does not have solutions WjJ" C S for these 46
odd h = 15t, it seems that for all odd h = 15t not of the form 42m - 1, Problem 2.1 has finite
solutions W£ with additional primes outside S. For examples,

W76245 = (29> 37> 61> 73> 277>1289> 1657> C S U {1289} C V,
W794i55 = (13> 29.73.281} C 5 U {281} C V,

W1259445 = {13,37,97,353,7393} C 5 U {7393} C P U {7393},

solve Problem 2.1 for corresponding h.

REMARK 5.7. Note that, using (1.8) to test primality of Mh,n- for the case h = 0mod3,
one first finds d € Z satisfying (1.6), then he finds an algebraic integer a in the quadratic
extension Q(\/d) satisfying (1.7). Moreover, for determining finite judge set (1.13), Bosma
needed the complete factorisations of all integers 2U — 1 for 2 ^ u ^ U = 250. So, the judge
(d,a) in Bosnia's approach is not only "two-process finding", but also d may be as large as
up to 106 decimal digits. In our generalised test, judges are "one-process finding", which are
just some small primes = 1 mod 4. Moreover we have the universal sequence S of judges for
odd/i = 15i < 108, but Bosma did not provide such a sequence of judges for odd/i = 3£ < 105.

REMARK 5.8. Now one may realise that the bound 2600 for p and the bound 350 for ordp(2)
in the set V defined by (4.1) are chosen after several trials for obtaining the effective universal
sequence S of judges for odd/i = 15( < 108. One may increase these bounds for h > 108.

REMARK 5.9. For determining the values of g+(h,S) defined by (5.11), one needs to check
whether M^n,+

 IS a perfect square. This can be done by Newton's method (see [3, Section 1.7]
and [4, Section 9.2.2]) or by Bosma [2, Proposition 4.2].

REMARK 5.10. We call W/, a minimal set of judges to solve Problem 2.1 for given odd/i, if
any proper subset of Wh does not solve Problem 2.1 but W/, itself solves Problem 2.1. Note
that W/, means either W^ or WjJ". The subsequence Sj found by Procedure 5.3 is in general
not a minimal set of judges to solve Problem 2.1 for given odd/i = 15*. One may delete some
elements of Sj to obtain a minimal set W^. For example, the subsequence Sj found by Procedure
5.3 for h = 11897535 = 15 • 793169 is W," = 534. But both W," = {277,1013,1657} C 534

and W^ = {229,277,457,593,1657,1777} C Si6 axe minimal sets solving Problem 2.1 for
h = 11897535. So, there may exist several minimal sets (with different cardinalities) of judges
to solve Problem 2.1 for given odd/i.
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j
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36-48

Table

Qi
13
17
241
97
257
673
37
109
41
73
433
193

1321
61
577
337
1429
113
397
1249
353

2113
29
53
101
157
233
277
349
401
881
937

1013
1657
2089

89-2593

4: The functions y~

429
1554395
1049748
384445
240217
76507
11892
11098
1823
2013
566
95
60
19
8
0
7
0
0
0
1
1
0
1
0
0
0
0
1
0
0
0
0
1
0
0

Yr
429

1554824
2604572
2989017
3229234
3305741
3317633
3328731
3330554
3332567
3333133
3333228
3333288
3333307
3333315
3333315
3333322
3333322
3333322
3333322
3333323
3333324
3333324
3333325
3333325
3333325
3333325
3333325
3333326
3333326
3333326
3333326
3333326
3333327
3333327
3333327

y,, "j ,

Yf
Total

0.00012
0.46644
0.78137
0.89670
0.96877
0.99172
0.99528
0.99861
0.99916
0.99977
0.99993
0.99996
0.99998
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999
0.99999

V~ V"1"
Yj > Total a n d Total

yt
429

1554395
1049752
384927
239660
76503
12124
10966
1776
1985
497
122
66
15
5
2
11
2
1
2
9
2
1
5
2
5
0
0
2
1
2
3
1
4
4
0

y+

429
1554824
2604576
2989503
3229163
3305666
3317790
3328756
3330532
3332517
3333014
3333136
3333202
3333217
3333222
3333224
3333235
3333237
3333238
3333240
3333249
3333251
3333252
3333257
3333259
3333264
3333264
3333264
3333266
3333267
3333269
3333272
3333273
3333277
3333281
3333281

y/
Total

0.00012
0.46644
0.78137
0.89685
0.96874
0.99169
0.99533
0.99862
0.99915
0.99975
0.99990
0.99994
0.99996
0.99996
0.99996
0.99996
0.99997
0.99997
0.99997
0.99997
0.99997
0.99997
0.99997
0.99997
0.99997
0.99997
0.99997
0.99997
0.99997
0.99998
0.99998
0.99998
0.99998
0.99998
0.99998
0.99998
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Table 5: All odd h = 15t < 108 such that 5 does not have subsets Wh solving Problem
2.1

t

1

17

273

4369

69905

1118481

h= 15*

15

255

4095

65535

1048575

16777215

#A~(h,S)
128

32

144

12

96

24

9~(h,S)

18632716502396

44961555038392

2374757985588

392017741315184

18295167290380

124218110015

Table 6: All odd h = 15t < 108 such that S does not have subsets W£ solving Problem
2.1

1
1
17

273
4369

5083

52941

£9905

83963
197743
224927

234481
298497

325039
346579

546165

575631
733907

807823

1118481
1227083

1273503
128SOO7

1339039

1343135

1343391
1343407

h = 151

15
28S

4095

65535

76245

794115

1048575

1259445

2966145
3373905

3517215

4477455

4875585

5198685

8192475

8634465

11008605

12117345

18777315

18406245

19102545
19320105

2OOS55S5

20147025

20150865

20151105

?M+

384
80
192
216
96
96
128
540
96
128
16
144
30
288
12
24
96
8
16
128
288
72
32
40
96
144

3+{h.S)
3744810669600

32S7496S323200

27949074753600
35892230774400

14312086588806

56017284523205

13517853148800
1245274430404

13335179457604

16007983991976

197830069196805
12966968651200

24573582633588

1048798951208
46581791256004

148696384636776

16897316436005

225215774783996

37586686737600

5401061265604
7826125507180

31054527604007

24843622003184

87866045467188

45189691747192
1473987715196

t
1555421

1620409
1624207

1689743

1693839

169409S
1694111

1737631
2045407

2053685

2801779

2941299
3093983

3159519

3163615

3163871

3163887

3267165

3398759
3732271

4277607

4472013
5589327

5618313
6275577

6384911

h = 151

23331315

24306135

24363105

25346145

25407585

25411425
25411665

26064465

30681105

30805275

42026685

44119485

46409745
47392785

47454225

47458065

47458305

49007475

50981385
55984O6S

64164105
67080195

83839905

84274695

94133655
95773665

240
16
96
72
72
48
24
400
20
16
16
144
432
120
96
60
320
450
16
72
144
144
32
240
60
16

9+(l>,S)

9316358251204

20S7960290416O5

21416915519980
79343920655984

57450875882388

9322657343992
101383898615996

7826125507172

118007204515176

419236121304004

172352627647209
44977439707204

4566842279980

730694764784

21738169252788

5884015737592

5388873890396

1177930353605

27035706297606
31697034969604

13974537376804

6210905500804

47034504316772

14921556249606

37448106696004

97416702583176

6. CONCLUSIONS

We have presented a Lucasian primality test mainly for numbers of the form M^,n = /i-2n±l
with odd/i = 15t < 2n~2 — 1, which generalises Berrizbeitia and Berry's test for such numbers
with h ^ 0 mod 5. With our generalised test, the primality of such a number M^n can be proved
by means of a Lucas sequence with a seed determined by h and nq — primary irreducible divisor
of a prime 9 = 1 mod 4. We call the prime q a judge of the number Mh,n-

Given an oddh, if the numbers Mh,n,- = h • 2n — 1 (respectively, Mh,n,+ = h • 2" + 1)
share a common judge q for all n, we call the judge q a minus (respectively plus) flag of h. We
found sixteen primes q which are minus or plus flags of some odd/i = 15£ < 108; 298217 (about
8.9465%) out of 3333333 odd h = 15* < 108 have minus flags, and 298237 (about 8.9471%)
odd/i = 15* < 108 have plus flags.
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We have also prescribed a sequence S of 48 primes = 1 mod 4 in the interval [13,2593]
including the sixteen flags, such that, for 3333327 out of the 3333333 odd h = 15t < 108 and for
all n, each number Mh,n,- has a judge q in the first 34 elements of S. For the remaining six
h (which are of the form 42m — 1) and for all n < 2.37 • 1012, each number Mh,n,- has a judge
q in S. Correspondent words can be said for the numbers M/,inj+ = h • 2" + 1. For 3333281
out of the 3333333 odd h = 15t < 10* and for all n, each number M/,itli+ has a judge q in the
first 35 elements of S. For the remaining fifty two h and for all n < 7.3 • 1011, each number
M/,,n,+ has a judge q in 5. The only limitation towards testing primality of numbers Mh,n by
our generalised test seems to be the difficulty of doing computation involving such numbers as
large as

4095 • 22374757985588 - 1 or 47392785 • 2730694764784 + 1,

much larger than the 43rd Mersenne prime (current largest known prime number)

230402457 _ l (9152052 decimal digits),

see http://www.mersenne.org, [5, A3], and [9, Chapter 5].
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