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In this paper, we report on a direct numerical simulation (DNS) study of turbulent thermal
convection in mixed porous–pure fluid domains. The computational domain consists of
a cavity that contains a porous medium placed right above the bottom wall. The solid
matrix is internally heated which, in turn, induces the convective motions of the fluid. The
Rayleigh number of the flow in the pure fluid region above the porous medium is of the
order of 107. In our study, we consider cases of different sizes of the porous medium, as
well as cases with both uniform and non-uniform heat loading of the solid matrix. For each
case, we analyse the convective structures in both the porous and the pure fluid domains
and investigate the effect of the porous medium on the emerging flow patterns above it.
Results for the flow statistics, as well as for the Nusselt number and each of its components,
are also presented herein. Further, we make comparisons of the flow properties in this
pure fluid region with those in Rayleigh–Bénard convection. Our simulations predict that,
depending on the area coverage, the large-scale circulation above the porous medium can
be in a single-roll, dual-roll or intermediate state. Also, when the area coverage increases,
the temperatures inside it increase due to reduced fluid circulation. Accordingly, when the
area coverage increases, then the Nusselt number becomes smaller whereas the Rayleigh
number is increased.

Key words: convection in cavities, turbulent convection, convection in porous media

1. Introduction

Thermal convection in mixed porous–pure fluid domains is encountered in a variety
of natural phenomena and technological applications. Examples of relevant natural
phenomena are forest and brush fires, in which the vegetation is modelled as a porous
medium. Other examples are geophysical processes such as those between the Earth’s
porous inner and liquid outer cores (Huguet et al. 2016), and between the porous rocky core
of Saturn’s moon Enceladus and the overlying ocean underneath the ice crust (Le Reun
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& Hewitt 2020). In technological applications, these flows are encountered in fuel cells,
micro-devices for rapid heat transfer, industrial cooling systems, loss-of-cooling accidents
in spent-fuel pools (SFPs) of nuclear power stations and elsewhere. In the particular
case of SFPs, the storage racks of spent fuel, located at the bottom of the pools, are
macroscopically assimilated as a porous medium. In the present work, and to gain physical
insight on the flows that emerge in the aforementioned applications, we are concerned
with free convection in a cavity with an immersed porous medium whose solid matrix is
internally heated.

Due to its applicability, thermal convection in mixed domains has been the subject of
numerous research efforts over the years. In computational studies, a major challenge is
the numerical treatment of the macroscopic interface between the porous and the pure
fluid regions. A common practice to circumvent this difficulty is the so-called two-domain
approach, according to which the porous and pure fluid regions are treated separately,
i.e. each region is endowed with its own set of governing equations. Then appropriate
matching conditions are prescribed at the interface which express the balance of forces and
continuity of energy fluxes (Ochoa-Tapia & Whitaker 1995; Hirata et al. 2007; d’Hueppe
et al. 2011, 2012); see also the monograph of Vafai (2015) and references therein. An
alternative option is the single-domain approach, according to which the porosity is
introduced as a field variable over the entire domain. This allows the derivation of a single
set of equations that is simultaneously valid in both porous and pure fluid domains, thereby
eliminating the need to specify matching conditions at the interface; see, for example,
Zhao & Chen (2001), Antoniadis & Papalexandris (2015), Le Reun & Hewitt (2021), and
the monographs of Straughan (2013) and Cowin (2013). In fact, this is the approach that
we have adopted in the present study.

Thus far, the bulk of experimental studies on natural (free) convection in mixed domains
has been devoted to laminar flows with fixed wall temperatures (Beckermann, Viskanta &
Ramadhyani 1988; Chen & Chen 1989; Prasad 1993; Song & Viskanta 1994). Similarly,
relevant numerical studies examined two-dimensional laminar flows (Poulikakos et al.
1986; Beckermann et al. 1988; Chen & Chen 1992; Kim & Choi 1996; Bagchi & Kulacki
2011). With regards to turbulent free convection, Kathare, Kulacki & Davidson (2010)
conducted experiments on superposed metal-foam and water layers, and studied the effect
of the relative thickness of the layers on the Nusselt number in the pure fluid layer. More
recently, Le Reun & Hewitt (2021) investigated, via two-dimensional (2-D) simulations,
the dynamics and heat flux through such domains at high Rayleigh numbers.

However, in the literature, there is a wealth of numerical studies on turbulent
convection in pure fluid domains. The configuration that has been studied the most is the
Rayleigh–Bénard convection (RBC) which consists of fluid in a cube whose horizontal
walls are kept at different temperatures; see, for instance, Siggia (1994), Niemela et al.
(2000), Ahlers, Grossmann & Lohse (2009) and Lohse & Xia (2010). Variations of
the classical RBC configuration have also been considered in the past. For example,
convection of liquids in cavities (or containers open to the ambient atmosphere) has been
studied numerically by Zikanov, Slinn & Dhanak (2002), Verzicco (2003) and Hay &
Papalexandris (2019). More recently, the effects of water evaporation in such containers
were investigated via numerical simulations by Hay & Papalexandris (2020) and Hay et al.
(2021). Another well-studied configuration involves convection in cylindrical domains;
see, for example, Wagner & Shishkina (2013), Foroozani et al. (2014) and references
therein. More recently, Kawano et al. (2021) performed a direct numerical simulation
(DNS) study of turbulent convection between no-slip permeable walls under Boussinesq
conditions and provided results for the scaling between the Rayleigh and Nusselt numbers.
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In addition to the presence of the interface between the porous medium and the pure
fluid domain, an important feature in the flows of interest is the internal heating of the
solid matrix of the porous medium. Actually, in the problem under study, it is the heat
supplied by the solid matrix that drives convection. Roberts (1967) presented a theoretical
study on the onset of convection due to volumetric internal heating. In that work, the
author introduced a modified version of the Rayleigh number based on the magnitude of
the heat supply instead of the temperature difference. Since then, this new dimensionless
group has been commonly used in problems of thermal convection with internal heating
(Thirlby 1970; Vilella et al. 2018; Limare et al. 2019) and is called the Rayleigh–Roberts
number, RaH .

Subsequently, Thirlby (1970) examined the properties of this type of convection in terms
of the volumetric heating and the RaH number. Therein it was shown that increasing the
heat supply results in the decrease of both the normalised bottom and volume-averaged
temperatures. Vilella et al. (2018) arrived at the same conclusion and also proposed a
correlation between the temperature difference across the domain and RaH . Also, Kim &
Kim (2002) and, more recently, Le Reun & Hewitt (2020) investigated internally heated
convection in two-dimensional porous domains. Nonetheless, the aforementioned studies
involved convection with internal heating in pure fluid or porous domains but not in mixed
ones.

With regards to convection in mixed domains, Rhee, Dhir & Catton (1978) performed
an experimental study in a cylindrical cell that contained an internally heated porous bed
overlaid by a pure fluid layer. Therein, the top wall was kept at a fixed temperature while
the side and bottom walls were adiabatically isolated. The authors of that work concluded
that the presence of the porous medium tended to increase the convection in the pure fluid
layer and vice versa. Further, they reported that the heat-transfer capacity of the overlying
layer can be 2.5 to 3 times higher than in a classical RBC due to the flow of liquid in
and out of the porous medium. Subsequently, 2-D numerical studies of free convection in
mixed domains with internally heated porous regions were reported by Somerton & Catton
(1982), Schulenberg & Müller (1984) and Poulikakos (1987). In those works, however,
it was assumed that the temperatures of the solid matrix and the interstitial fluid were
equal.

In fact, an important ramification of the internal heating is that, inside the porous
medium, the solid matrix and the interstitial fluid are generally not in thermal equilibrium.
This necessitates the introduction of two energy equations, one for the fluid phase and
one for the solid matrix (Nield & Bejan 2017), plus appropriate constitutive relations for
the heat exchange between the two phases. Thus far, most studies in convection in mixed
domains assumed thermal equilibrium (Poulikakos et al. 1986; Bagchi & Kulacki 2011;
d’Hueppe et al. 2011). Nonetheless, owing to their growing importance in technological
applications, the study of convection without thermal equilibrium between the two phases
has attracted considerable interest in recent years (d’Hueppe et al. 2012).

In this paper, we investigate, using DNS, the turbulent convection of a liquid in a
cuboidal container open to the ambient atmosphere (i.e. a cavity) comprising an immersed
porous medium placed right above the bottom boundary. To our knowledge, this is the
first three-dimensional (3-D) study of natural turbulent convection in porous–pure fluid
domains. According to our set-up, the convective motions of the fluid are generated by the
volumetric heating of the solid matrix of the porous medium. Our study focuses on the
analysis of the emerging flow structures both inside and outside the porous medium, as
well as on the turbulence properties in the pure fluid domain. To this end, comparisons are
made with the corresponding case of RBC in a cavity.
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The specific issues that this work aims at addressing are the following. First, the
temperature across the horizontal porous–pure fluid interface is not uniform which in
turn implies that the liquid water above the porous medium is not uniformly heated;
thus, we examine how this non-uniformity affects the turbulent flow structures above
the porous medium. Further, we investigate how the secondary flows between the porous
medium and the walls affect the flow in the pure fluid domain above. We also explore
the convection patterns that emerge inside the heated porous medium. Additionally, we
examine the distribution of the local Nusselt number and assess how it differs from that of
the equivalent Rayleigh–Bénard convection. We also study the effect of the relative size
of the porous medium via parametric studies with respect to its area coverage. Finally, we
explore the effect of the heat-load distribution in the horizontal directions by comparing
cases with uniform and non-uniform heat loadings.

This paper is organised as follows. In § 2, we present the governing equations, including
the constitutive expressions for the momentum and heat exchanges between the solid
matrix and the interstitial fluid, and outline the numerical algorithm. In § 3, we provide
the numerical set-up and the parameters for each case considered herein. The description
and analysis of the numerical results are included in § 4. Finally, § 5 concludes.

2. Governing equations

We consider a domain composed of a porous region and a surrounding pure fluid one.
The flow domain of interest is illustrated in figure 1. The working fluid is assumed to be
an isotropic and Newtonian liquid. The solid matrix of the porous medium is assumed
to be rigid with constant material properties. Also, it is internally heated, so it transfers
heat to the interstitial fluid. Moreover, as mentioned above, thermal non-equilibrium is
assumed between the solid matrix and the interstitial fluid, inside the porous region. In the
following, quantities related to the solid matrix are denoted with the subscript ‘s’, whereas
quantities related to the fluid phase are not denoted with a subscript.

Our numerical study is based on the single-domain approach and, more specifically,
on the thermo-mechanical model of Papalexandris & Antoniadis (2015). This model
relies on a mixture-theoretic formalism according to which both the solid matrix and
the fluid phase are treated as coexisting but immiscible thermodynamic continua. Then,
the porosity (volume fraction), φ, is introduced as a concentration variable that provides,
at each point of the entire domain, the density of volume occupied by the fluid. In
mathematical terms, the axiomatic definition of the porosity as a density function follows
from the Radon–Nikodym theorem (Goodman & Cowin 1972; Varsakelis & Papalexandris
2010). Inside the porous region, the porosity is less than unity, φ(x) < 1; whereas in the
pure fluid one, φ(x) = 1. Further, each phase is endowed with its own set of kinematic
and thermodynamic variables and its own set of balance laws. Herein, the solid matrix
is assumed to consist of non-reacting and rigid fibres at rest; therefore, its mass and
momentum balance laws are trivially satisfied. Thus, the mathematical model consists of
the mass, momentum and energy balance laws for the fluid phase and the energy balance
law for the solid matrix.

Further, in the flow under study, the fluid density can vary but such variations are due
to temperature gradients only and are not induced by mechanical means. Accordingly,
the fluid velocity is very small with respect to the speed of sound and, therefore,
compressibility effects are negligible. For this reason, there is no need to consider the full,
compressible set of equations for mixed domains but its low-Mach-number approximation,
which is also provided by Papalexandris & Antoniadis (2015). This approximation is
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ĥf

ĥf ĥf

ĥp

l̂p
l̂p

Figure 1. Illustration of the computational domain with the immersed porous region. The dimensions of the
computational domain are ĥf × (ĥp + ĥf ) × ĥf and those of the porous region are l̂p × ĥp × l̂p.

derived by singularly perturbing the full compressible equations at the zero-Mach-number
limit (Paolucci 1982; Lessani & Papalexandris 2006). According to it, the thermodynamic
pressure is uniform while the momentum and energy equations of the fluid decouple. Thus
the mass, momentum and energy balance laws for the fluid phase and the energy balance
law for the solid matrix read, in dimensionless form,

φ
∂ρ

∂t
+ ∇ · (φρu) = 0, (2.1)

∂φρu
∂t

+ ∇ · (φρuu) + φ∇p = 1
Re

∇ · (φμV ) − φρRiỹ − δu, (2.2)

φcp
∂ρT
∂t

+ cp∇ · (φρTu) = 1
Pr Re

∇ · (φk∇T) + h̃(Ts − T), (2.3)

cps(1 − φ)ρs
∂Ts

∂t
= 1

Pr Re
∇ · ((1 − φ)ks∇Ts) − h̃(Ts − T) + r. (2.4)

In the above equations, ρ, u = (u, v, w), p and h denote respectively the density, velocity
vector, dynamic pressure and specific enthalpy of the fluid, whereas Ts denotes the
temperature of the solid matrix. It is noted that p represents the second-order term in the
low-Mach-number expansion of the fluid pressure. The first-order term of this expansion,
interpreted as the thermodynamic pressure of the fluid, is constant since the domain under
study is open. Also, μ, k and cp are respectively the shear viscosity, thermal conductivity
and specific heat capacity of the fluid. Further, ỹ stands for the unit vector in the vertical
direction (parallel to the gravity vector).

In (2.2), the deviatoric part of the viscous stress tensor V is given by

V = (∇u + (∇u)�) − 2
3 (∇ · u) I, (2.5)
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where I is the identity matrix. In the same equation, δu represents the interphasial drag
force. The drag parameter δ is a second-order tensor since the solid matrix is, in general,
an anisotropic medium. For the same reason, the heat conductivity of the solid matrix,
ks, is a second-order tensor too. The term h̃(Ts − T) in the energy equations (2.3) and
(2.4) represents the heat transfer between the two phases, with h̃ being the heat transfer
coefficient. Further, r stands for the heat-source term of the solid matrix. It is noted
that bulk viscous stresses have not been included in (2.2) since they are assumed to be
negligible. It is also worth adding that for steady creeping flow inside a porous medium,
the momentum equation (2.2) reduces to the Darcy–Forchheimer model wherein the
permeability tensor is expressed in terms of φ and δ.

The dimensionless groups appearing in the above system are the Reynolds, Re =
ûrĥr/ν̂r, Richardson, Ri = ĝĥr/û2

r , and Prandtl, Pr = ν̂r/α̂r, numbers, where ûr is the
reference velocity, ĥr the reference length, ν̂r the reference kinematic viscosity, α̂r the
reference thermal diffusivity and ĝ the gravitational acceleration. Dimensional variables
are denoted with the hat symbol ˆ throughout this work.

The governing system (2.1)–(2.4) is presented in dimensionless form for purposes of
compactness and clarity. Also, the above dimensionless form of the governing system is
precisely that which we have solved numerically in our simulations. However, it is well
known that in natural convection, the relevant dimensionless group is the Rayleigh number
and not the Reynolds or Richardson numbers. However, in the problem under study, the
flow domain consists of two distinct parts: above and below the horizontal porous–pure
fluid interface. Accordingly, there are two top–bottom temperature differences (one for
each part of the domain) and two heights. The Rayleigh number, Raf , in the pure fluid
region, i.e. y > hp, is then given by

Raf =
ĝβ̂r�T̂f ĥ3

f

α̂rν̂r
, (2.6)

where β̂r is the thermal expansion coefficient at the reference state and �T̂f is the mean
temperature difference across the pure fluid region. However, Raf is not really relevant to
the lower domain, i.e. that encompassing the porous medium. For example, it would not
be convenient to non-dimensionalise the energy equation of the solid matrix (2.4) with
respect to Raf . However, the introduction of the Reynolds number facilitates the use of
available correlations for the components of the drag parameter δ. Consequently, we resort
to non-dimensionalising the governing system with respect to Re and Ri. Nonetheless, the
analysis of the results in the pure fluid domain is presented in terms of Raf .

The system (2.1)–(2.4) is closed with an equation of state for the fluid. In our study, the
fluid is liquid water; we, therefore, employ an ‘isobaric equation of state’ for the density
in the form of a ρ − T relation. This is a fourth-order polynomial fit of the tabulated
data (Wagner & Kretzschmar 2007) for water density at one atmosphere and over the
temperature range of interest. The other parameters of water that appear in the governing
system (k, μ and cp) are also computed via a fourth-order polynomial fit of data taken from
Wagner & Kretzschmar (2007).

As mentioned in the introduction, for modelling purposes, we employ the one-domain
approach. Accordingly, the governing equations of the fluid phase (2.1)–(2.3) are valid in
both the porous and pure fluid regions, which eliminates the need for matching conditions
at the interface between the porous and pure fluid regions. However, the energy balance law
for the solid matrix (2.4) is valid only inside the porous region. An additional condition for
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Ts is, therefore, necessary at the interface. Herein, we prescribe the following condition:

(1 − φ)(ks∇Ts) · ñ = 0, at the boundaries of the porous medium, (2.7)

where ñ is the unit vector normal to the interface. For a discussion on the appropriateness
and applicability of this condition, the reader is referred to the papers by Papalexandris &
Antoniadis (2015) and Antoniadis & Papalexandris (2016).

In our study, the porous medium is of uniform porosity φ. With regards to the solid
matrix, we assume that it consists of an ensemble of identical and uniformly distributed
circular cylinders that are all aligned with the vertical y direction. Accordingly, the solid
matrix is an orthotropic medium. As such, δ and ks, the interphasial drag and the solid
thermal conductivity, are diagonal tensors and, moreover, their diagonal components in
the x and z directions are equal, δ11 = δ33 and ks11 = ks33. Since the vertical cylinders
composing the porous medium are separated from each other, we assume that there is
no conductive heat transfer in the horizontal directions; therefore, ks11 = ks33 = 0. Then,
for the remaining non-zero element of the conductivity matrix, we set ks22 = ks, where
ks is the thermal conductivity of the material from which the solid matrix is made. It
is noted that these coefficients do not account for dispersive heat transport. In principle,
incorporating a heat-dispersion tensor in the model would improve the accuracy of the
modelling of heat conduction. However, available expressions of such a tensor are quite
cumbersome (Whitaker 1999; Lesseux & Valdés-Parada 2017) and, to our knowledge,
there are no available numerical data that we could employ for the problem in hand. Herein,
we consider a generic porous medium consisting of aligned cylinders and we thus expect
dispersive effects to be limited. Accordingly, for simplicity purposes, we have opted not to
include such effects in the parametrisation of the conductivity tensor.

For the parametrisation of δ11 and δ22, we proceed as follows. We consider the
expression proposed by Koch & Ladd (1997) for the average drag force f̂ exerted on a
single cylinder of diameter d̂c at low Reynolds numbers:

f̂ = d̂cμ̂û
(
κ0 + κ2Re2

dc

)
, (2.8)

where Redc corresponds to the particle Reynolds number based on the diameter of a single
cylinder, d̂c, and the local horizontal velocity. Also, κ0 and κ2 are empirical coefficients,
the values of which depend on the porosity φ; their expressions are provided by Koch
& Ladd (1997) and are not reproduced herein for purposes of economy of space. The
above expression for the horizontal force acting on one cylinder is then multiplied by
the number density of cylinders in the porous medium, N̂c = 4(1 − φ)/πd̂2

c ĥp. Upon
non-dimensionalisation, the following relation for δ11 is derived:

δ11 = δ33 = 1
Re

4μ

π

(1 − φ)

d2
c

(
κ0 + κ2 ∗ Re2

dc

)
. (2.9)

Similarly, for the component δ22 of the drag coefficient tensor, we consider the
wall stress in 2-D flow over a flat plate τw = 1

2 cf ρ̂v̂2. Herein, cf is the average skin

friction coefficient over the height of the cylinder ĥp, cf = 1.328
√

μ̂/ρ̂v̂ĥp (Incropera
et al. 2007). This expression is then multiplied by the surface area of a single
cylinder and the number density of the cylinders N̂c (Antoniadis & Papalexandris 2015).
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Upon non-dimensionalisation, the following approximation for δ22 is derived:

δ22 = 2.656√
Re

(1 − φ)

dc

√
μρ|v|

hp
, (2.10)

where Re is calculated with respect to the macroscopic reference length and velocity.
With respect to the above parametrisation for δ11 and δ22, it is noted that they are based

on the premise that the cylinder Reynolds number is sufficiently small and that the flow
is steady. In our simulations, the particle Reynolds number is indeed small (of the order
of or less than unity) but the flow under study is unsteady. However, to our knowledge,
reliable correlations for the drag coefficient over cylinder arrays for unsteady conditions
are currently unavailable. For this reason, we resorted to employing (2.9) and (2.10).

With regards to the interphasial heat exchange coefficient h̃ that appears in the energy
equations (2.3) and (2.4), correlations or experimental data are not currently available
either. Herein, the heat transfer in such a configuration is assumed to be the sum of two
contributions: one due to the cross-flow of the interstitial fluid and the other due to the flow
parallel to the cylinders comprising the solid matrix. Accordingly, an approximation of h̃ is
obtained by adding these two contributions. For the first contribution, h̃⊥, we employ the
heat transfer coefficient for flow around a cylinder and multiply it by the number density
of cylinders N̂c. The final result reads

h̃⊥ = 1
Re Pr

4(1 − φ)

d2
c

kNudc, (2.11)

where the Reynolds and Prandtl numbers are the macroscopic ones while Nudc corresponds
to the Nusselt number based on the cylinder diameter d̂c. The expression for the second
contribution is obtained by multiplying the heat-transfer coefficient for flow parallel to a
flat plate with the perimeter of a single cylinder and the number density of the cylinders.
The final result reads

h̃‖ = 1
Re Pr

4(1 − φ)

dchp
kNuhp . (2.12)

For Nudc and Nuhp , we employ the following empirical correlations (Incropera et al. 2007):

Nudc = CRem
dc

Pr1/3, (2.13)

where C and m are functions of Redc , and

Nuhp = 0.453Ren
hp

Pr1/3, (2.14)

where Rehp is the Reynolds number based on the height of the porous medium ĥp. The
final expression for h̃ reads, in dimensionless form,

h̃ = h̃⊥ + h̃‖ = 1
Re Pr

4(1 − φ)

dc
k

(
Nudc

dc
+ Nuhp

hp

)
. (2.15)

The algorithm employed for the numerical treatment of the governing system (2.1)–(2.4)
is an extension of the single-phase low-Mach-number solver (Lessani & Papalexandris
2006) to mixed domains. It is based on a predictor-corrector time-marching scheme

961 A27-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

23
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.233


Turbulent convection in mixed porous–pure fluid domains

and employs a projection method that yields a linear elliptic equation for the dynamic
pressure. The discretisation of the elliptic equation gives a linear system that is solved via a
preconditioned conjugate gradient iterative method, combined with an algebraic multigrid
preconditioner implemented in the library PETSc (Balay et al. 1997, 2019). Spatial
discretisation of the governing system is performed via a second-order finite-volume
scheme on a collocated grid system. This is combined with a flux-interpolation technique
to avoid the pressure odd–even decoupling that is typically encountered when using
such grids (Lessani & Papalexandris 2006, 2008). For more details on the numerical
algorithm, the reader is referred to Lessani & Papalexandris (2006) and Papalexandris
& Antoniadis (2015). The algorithm has been parallelised using the message passage
interface (MPI) protocol. Coordination of the communication between processors is
performed via functions from the PETSc library.

3. Numerical set-up

The computational domain is a cuboidal cavity of equal length and width ĥf , and height
ĥtot; see figure 1. In other words, its dimensions in the x, y and z directions are ĥf ×
ĥtot × ĥf . It encloses a porous region of equal length and width, l̂p, and height ĥp; i.e. the
dimensions of the porous medium are l̂p × ĥp × l̂p. The porous medium is placed at the
bottom of the domain, as illustrated in figure 1. The overlaying pure fluid domain is a cube
of height ĥf . Accordingly, the total height of the domain, ĥtot, is given by ĥtot = ĥf + ĥp.
In our study, the height of the porous region represents half of the height of the pure fluid
domain above, ĥp = 0.5ĥf , which brings the total height of the computational domain
to ĥtot = 1.5ĥf . In our study, ĥf is set to 0.038 m and, therefore, the total height ĥtot is
0.057 m.

For non-dimensionalisation purposes, ĥf is used as the reference length. Using
dimensionless coordinates, the lower boundary (bottom wall) is located at y = 0, the upper
boundary (free surface) at y = htot = 1.5, and the horizontal interface between the porous
and pure fluid regions at y = hp = 0.5. The side walls of the computational domain are
located at x = 0 and 1, and at z = 0 and 1. For simplicity purposes, the top boundary of
the porous medium at y = hp will be referred to as the ‘horizontal interface’. The cubical
subdomain above, y > hp, will be referred to as the ‘pure fluid region’, while the domain
below y � hp will be simply called the ‘lower part’ of the flow domain. As such, the lower
part comprises the porous medium and the surrounding fluid between the porous medium
and the side walls.

Concerning the physical parameters of the solid structure composing the porous
medium, we assume that its porosity is equal to φ = 0.6 and that the (dimensionless)
diameter of each cylinder of the solid matrix, dc, is equal to 0.001. The material composing
the cylindrical elements is assumed to be stainless steel; its dimensional thermophysical
properties are listed in table 1. The variations of these properties over the temperature
range considered herein are negligible; accordingly, we treat these properties as constant.
These values are then non-dimensionalised by the corresponding reference variables of
liquid water.

The ratio between the horizontal surface area of the porous region and the overall
horizontal area of the domain is referred to herein as the ‘area coverage’ and is denoted by
a; accordingly, a = l2p/h2

f . In our study, we consider three cases of different area coverage:
Case 1 with a = 0.64, Case 2 with a = 0.884 and Case 3 with a = 1. In these three cases,
the heating of the solid matrix is uniform in all directions. In various applications of
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ρ̂s (kg m−3) k̂s (W (mK)−1) ĉps (J (kg K)−1)

7894 12.97 510

Table 1. Physical properties of the solid matrix.
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Figure 2. Porosity and heat-load distribution throughout a horizontal plane for four studied cases: (a) Case 1;
(b) Case 2; (c) Case 3; and (d) Case 4. The inner rectangle represents the porous region and the line-filled areas
indicate the parts of the porous medium that are heated. The heat-source term r is constant along the vertical
direction.

Case a Type of heat loading Q̂ (W) r̂ (kW m−3)

1 0.64 Uniform 4.59 646
2 0.884 Uniform 4.59 464
3 1 Uniform 4.59 408
4 0.64 Non-uniform 4.59 3135 or 0

Table 2. Area coverage and heat-supply details for the four cases considered in our study. In Case 4, the
heat-source term is positive in the heated parts of the solid matrix and zero in the non-heated ones.

interest, such as SFPs, the details of the heat-load distribution in the solid matrix can
play an important role in the emerging convective patterns. To study this role, we consider
herein an additional case in which some parts of the solid matrix are uniformly heated
while the remaining parts are not heated at all; this is Case 4 and the area coverage is the
same as in Case 1, a = 0.64. The area coverage of the porous medium and the heat-source
distribution for all four cases are illustrated in figure 2.

However, the total heat-supply rate, Q̂, is kept the same in all cases. The relation between
Q̂ and the heat-source term r̂ in (2.4) is Q̂ = ∫

Vp
(1 − φ) r̂ dV , with Vp being the volume

of the porous domain. Accordingly, the value of r̂ varies from one case to another. For
uniform heating, Cases 1–3, r̂ decreases as the area coverage a increases. Similarly, in Case
4, the value of r̂ in the heated parts is higher than in all other cases. Table 2 summarises
the details of the heat-load distribution for all cases.

With regards to the boundary conditions, free slip is prescribed at the upper boundary,
y = htot, so as to approximate the free surface of a liquid. The no-slip kinematic condition
is prescribed at the bottom and side walls. Concerning the thermal boundary conditions,
the temperature of the top wall, Ttop, remains fixed and uniform, while the bottom and side
walls are assumed to be adiabatically isolated. As for initial conditions, we assume that the
fluid is initially at rest and of uniform temperature T = Ttop in the entire computational
domain. The initial temperature of the solid matrix is also uniform and equal to Ttop.
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Case T̂top (K) 〈T̂int〉 (K) T̂r (K) 〈T̂bot〉 (K) �Tf (K)

1 293.15 304.1 298.6 309.1 10.9
2 293.15 305.1 299.1 312.9 11.9
3 293.15 308.5 300.8 322.5 15.4
4 293.15 302.5 297.8 305.5 9.4

Table 3. Time-and-area-averaged temperatures at three planes, namely the top (y = htot), interface (y = hp)
and bottom planes (y = 0). Here, T̂top is fixed for all cases and 〈T̂int〉 and 〈T̂bot〉 are the time-and-area-averaged
temperatures at the plane of the horizontal interface and at the bottom wall. Additionally, �Tf stands for the
temperature difference across the pure fluid region, �Tf = 〈T̂int〉 − T̂top.

Case ûr (m s−1) ρ̂r (kg m−3) β̂r (K−1) ν̂r (m2 s−1) k̂r (W mK−1) α̂r (m2 s−1) Pr

1 0.031 996.9 2.40 × 10−4 8.84 × 10−7 0.608 1.46 × 10−7 6.1
2 0.033 996.75 2.45 × 10−4 8.74 × 10−7 0.609 1.46 × 10−7 6.0
3 0.039 996.3 2.60 × 10−4 8.41 × 10−7 0.612 1.47 × 10−7 5.7
4 0.029 997.09 2.32 × 10−4 9.00 × 10−7 0.607 1.46 × 10−7 6.2

Table 4. Reference values of the various thermophysical parameters and Prandtl number for the cases
considered herein.

In our simulations, we start taking statistics once the flow becomes fully developed and
statistically steady, based on the area-averaged temperature at the plane of the horizontal
interface and the bottom wall. In terms of notation, the time-average of a generic quantity
ϕ is denoted by 〈ϕ〉t and the area-average by 〈ϕ〉xz. The time and area average is denoted by
〈ϕ〉. In particular, 〈T̂int〉, denotes the time-and-area-averaged temperature over the entire
plane of the horizontal interface, y = hp.

The reference temperature, T̂r, is chosen to be the arithmetic mean between T̂top and
〈T̂int〉, i.e. T̂r = (T̂top + 〈T̂int〉)/2, so as to facilitate comparisons with classical RBC. It is
noted that the reference values of the material properties are taken at T̂r and at an ambient
pressure of 1 bar. The values of the reference, top and bottom temperatures are listed in
table 3, together with the values of 〈T̂int〉. In our analysis, we will also make use of the
temperature difference across the pure fluid region, �Tf = 〈T̂int〉 − T̂top, the values of
which are also provided in this table.

Also, the free-fall velocity, ûr =
√

β̂r ĝ ĥf �Tf , and free-fall time, t̂r = ĥf /ûr, are chosen
as the reference velocity and time unit respectively, as is typical in studies of natural
convection. The reference values of the various thermophysical properties (density ρ̂r,
thermal expansion coefficient β̂r, kinematic viscosity ν̂r, thermal conductivity k̂r and
thermal diffusivity k̂r) are those of the fluid (liquid water) at the reference temperature
T̂r. These values, along with the free-fall velocity and the Prandtl number, are listed in
table 4 for all cases of our study. For completion purposes, it is worth adding that for
Cases 1–4, Re = 1333, 1435, 1762 and 1224, respectively; also Ri = 388, 342, 245 and
443, respectively.

The values of Raf for all cases of our study, as determined by the numerical simulations,
are provided in table 5. In the same table, we also provide the values of the Nusselt number
in the pure fluid region Nuf .
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Case Raf Nuf

1 1.12 × 107 45.1
2 1.26 × 107 41.0
3 1.79 × 107 31.4
4 9.16 × 106 53.4

Table 5. Time-averaged results. Here, Raf and Nuf denote respectively the Rayleigh and Nusselt numbers in
the pure fluid region.

3.1. Definition of the Nusselt number
In the problem at hand, convection is driven by the internal heating of the solid matrix
which is modelled as a volumetric effect. To provide a definition of the Nusselt number
across the entire domain that can also be used for comparisons with RBC in a meaningful
manner, we introduce the area-averaged heat supply Jy:

Jy =
∫ y

0
〈r〉xz dy′, (3.1)

which is known beforehand.
In our case, since the heat source 〈r〉xz is a Heaviside step function of the y coordinate, Jy

is simply a ramp function; i.e. it increases linearly in the lower part of the flow domain and
remains constant in the pure fluid region. Crucially, in fully developed flow, Jy is equal
to the total heat flux across a horizontal plane. As such, it can be obtained by time and
area averaging the sum of the energy equations (2.3) and (2.4) and integrating the result
between the bottom wall and a horizontal plane:

Jy =
∫ y

0
〈r〉xz dy′ = 〈cpφρvT〉︸ ︷︷ ︸

Jconv

− 1
Re Pr

〈φk∇T〉︸ ︷︷ ︸
Jdiff

− 1
Re Pr

〈(1 − φ)ks∇Ts〉︸ ︷︷ ︸
Jdiff ,s

. (3.2)

Accordingly, the Nusselt number can be defined on the basis of Jy and the diffusive
contribution, Jdiff , averaged over the pure fluid region:

Jdiff = 1
hf

∫ htot

hp

Jdiff dy = − 1
Re Pr

k�Tf

hf
. (3.3)

More specifically, the local Nusselt number Nuy is given as the ratio between Jy and Jdiff :

Nuy = Jy

Jdiff
= Jconv

Jdiff︸ ︷︷ ︸
Nuconv

+ Jdiff

Jdiff︸︷︷︸
Nudiff

+ Jdiff ,s

Jdiff︸ ︷︷ ︸
Nudiff ,s

. (3.4)

According to the above relation, Nuy is the sum of the convective and diffusive components
related to the fluid and the diffusive component related to the solid. It is important to note
that, in the above equation, the numerator of Nuy is known a priori, but the denominator
is not because it involves the temperature difference 〈Tint〉 − Ttop. This is opposite to RBC
wherein the temperature difference across the domain is known beforehand but not the
heat flux Jy.
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Finally, the global Nusselt number in the pure fluid region Nuf is the depth average of
Nuy for y > hp. In this region, Nuy is constant along y and equal to Nuf . The values of Nuf
for all cases considered herein are provided in table 5.

3.2. Grid-resolution criteria
The present study consists of DNS and, as such, the computational grid has to be
sufficiently refined. Typically, in classical RBC, two resolution criteria are employed to
ensure the adequacy of the grid resolution (Hay & Papalexandris 2020). The first concerns
the resolution of the hydrodynamic and thermal boundary layers (Shishkina et al. 2010),
and the second one the cell size in the bulk (Grötzbach 1983).

With regards to the near-boundary regions, we employ the criterion of Shishkina et al.
(2010) for the minimum number of cells in the hydrodynamic and thermal boundary
layers. These criteria require the knowledge of Nuf . In our study, Nuf is estimated via a
preliminary simulation for each case. These preliminary simulations are run until the flow
becomes fully developed and statistically steady, based on the area-averaged temperature
at the plane of the horizontal interface y = hp. Subsequently, Nuf is computed by taking
statistics over 200 free-fall times. Instantaneous distributions of the flow variables from
the preliminary simulations are then used for the initialisation of the fully resolved DNS
via grid interpolation.

The criterion of Grötzbach (1983) for classical RBC is based on the principle that the
cell size in the bulk must be at most equal to the smallest of the Kolmogorov and Corrsin
scales of the flow turbulence, η = (ν3/ε)1/4 and ηc = η/Pr3/4, respectively, with ε being
the kinetic-energy dissipation. Then the computational mesh is stretched according to a
hyperbolic-tangent function from the boundaries to the bulk of the pure fluid region so
as to satisfy this criterion. Concerning the lower part of the flow domain, y � hp, the
resolution at the bottom wall also meets the requirements of Shishkina et al. (2010).
Also, for purposes of numerical stability, the porosity jump across the porous–pure fluid
interfaces has been smeared across two computational cells. Also, as the macroscopic
interface corresponds to a discontinuity of the porosity, the number of cells in that area is
increased consequently. A schematic representation of the computational mesh is shown
in figure 3, showing the regions of refinement and the relative size of the cells throughout
the computational domain.

The number of cells in the three spatial directions for the fully resolved DNS, denoted
Nx, Ny and Nz, are provided in table 6. In the same table, we also provide the number of
cells inside the hydrodynamic and thermal boundary layers, Nu and Nth, respectively. In
those columns, the numbers in parentheses are the minimum requirements according to the
criterion of Shishkina et al. (2010). According to our numerical simulations, in Case 1, the
area-averaged Kolmogorov scale in the pure fluid domain is estimated at η = 1.1 × 10−2

near the porous–pure fluid interface and 1.8 × 10−2 in the middle plane (y = 1). While the
Corrsin scale ηc is equal to 3 × 10−3 near the porous–pure fluid interface and 4.7 × 10−3

in the middle plane. Based on the values of the cell sizes listed in table 6, we deduce that
our simulations sufficiently resolve all relevant hydrodynamic and thermal scales. The
smallest thermal fluctuations in the bulk are not resolved; however, the energy carried by
these is exceedingly small.

Finally, it is noted that in Cases 1, 2 and 4 (which, as it turns out, are the cases
where the horizontal flow inside the porous medium is not negligible), the minimum
grid resolution inside the porous domain is �x = �z = 3.11 × 10−5, 7.57 × 10−6 and
2.71 × 10−5, respectively. On the basis of these values and those for the porosity φ = 0.6
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Figure 3. Schematic representation of the computational mesh, showing the regions of refinement and the
relative size of the cells throughout the computational domain. For visualisation purposes, only a fraction of
the computational cells is shown.

Case Nx Ny Nz Nu Nth �ymin �ymax

1 150 220 150 11 (9) 7 (5) 1.37 ×10−3 1.26 ×10−2 (1.33 ×10−2)
2 150 220 150 12 (8) 7 (5) 1.37 ×10−3 1.26 ×10−2 (1.32 ×10−2)
3 150 220 150 15 (7) 9 (4) 1.37 ×10−3 1.26 ×10−2 (1.32 ×10−2)
4 160 230 160 11 (9) 7 (5) 1.14 ×10−3 1.22 ×10−2 (1.37 ×10−2)

Table 6. Grid-resolution criteria. Here, Nx, Ny and Nz respectively are the number of cells in the x, y and
z directions. Additionally, Nu and Nth are the number of cells in the hydrodynamic and thermal boundary
layers, with numbers in parentheses providing the minimum requirement according to Shishkina et al. (2010).
The terms �ymin and �ymax respectively correspond to the smallest and largest cell size, with the numbers in
parentheses providing the maximum cell size according to Grötzbach (1983).

and cylinder diameter dc = 0.001, it is readily found that for Cases 1, 2 and 4, the minimum
coverage is 15.8, 3.8 and 14.8 cylindrical elements per cell, respectively. In turn, this
implies that the flow scales resolved in our simulations are considerably larger than the
characteristic scale of the microstructure of the porous medium.

4. Numerical results and discussion

The results section is divided into two parts. In the first part, we present the results for
Case 1 and analyse the flow properties and convective structures in both the pure fluid
region and the lower part of the domain. In the second part, we present the results for
the other cases and make comparisons between them. All statistical results presented
below are time-averaged over a period of 300 free-fall times after the flow has become
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(b)(a)

〈θ〉t

Figure 4. Case 1: (a) time-averaged normalised temperature, 〈θ〉t, at the top (y = htot), horizontal-interface
(y = hp) and bottom planes (y = 0); (b) superimposed vector plots of the time-averaged velocity at the top
plane (free surface), showing the impingement point and the horizontal motion of the fluid. The red dashed line
denotes the vertical plane parallel to the side walls that contains the impingement point; this is the point from
which the velocity arrows start to diverge.

statistically steady. The simulation time for the averaging period of 300 tr is approximately
25 000 h per core in a cluster of Intel-Xeon-Gold-6252� processors.

4.1. Results of Case 1

4.1.1. Global flow properties
We first examine the distribution of the normalised temperature θ , defined as

θ = T − Ttop

〈Tbot〉 − Ttop
. (4.1)

According to this definition, 〈θ〉 at the bottom plane is equal to unity. Plots of the
time-averaged normalised temperature 〈θ〉t at the top, horizontal-interface and bottom
planes are shown in figure 4(a). At the bottom plane, the fluid inside the porous medium is
heated substantially, as expected, while the temperature of the fluid outside remains quite
low, thereby leading to large thermal gradients across this plane. In particular, 〈θ〉t = 2.3
at the centre of the plane, while 〈θ〉t = 0.22 near the side walls. Further, from the plots
at the bottom plane and horizontal interface, we readily infer that the fluid temperature
inside the porous medium is not uniform either, even though the solid matrix is uniformly
heated. Evidently, this is due to fluid motion inside the porous medium.

In figure 4(b), we present vector plots of the velocity at the free surface. We observe that
the impingement point of the upward fluid motion is not aligned with a diagonal plane,
as is often the case in turbulent RBC at this range of Rayleigh numbers. Instead, it is
located closer to the centre of the free surface. Then, the fluid reaches the free surface at
the impingement point and moves horizontally (‘spreads’) in all directions. Subsequently,
it starts descending once it approaches the side walls.

In figure 5, we present different views of time-averaged streamlines coloured by the
vertical velocity component. Therein, we can discern the impingement point and the
downward motion of the fluid close to the side walls once it leaves the free surface.
We also note that the fluid originating from the corners of the free surface continues to
descend below the plane of the horizontal interface and reaches the bottom wall. In the
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Figure 5. Case 1: time-averaged streamlines coloured by the time-averaged vertical velocity component, 〈v〉t.
In these plots, 〈v〉t has been non-dimensionalised by ᾱ/ĥtot, where ᾱ is the thermal diffusivity of water at
(T̂top + 〈T̂bot〉)/2. (a,b) Side views. (c) Bottom view.

lower part of the domain, y < hp, the descending fluid starts to circumvent the porous
medium and, therefore, its vertical velocity decreases. Also, from figure 5(c), we infer that
the circumventing currents eventually reach the side boundaries of the porous medium.
Subsequently, such a current splits into two parts. One part actually enters the porous
medium, while the other moves upwards along its side faces. In the same figure, we can
readily discern the perimeter of the porous medium because of the change in the direction
of the streamlines: inside the porous medium, they point towards the centre. In fact, near
the bottom and in the periphery of the porous medium, the fluid moves mostly horizontally
and towards the centre. However, in the central region, the streamlines look intertwined,
which is indicative of vertical motion (plumes) due to thermal convection.

Further, the fluid moving upwards along the side boundaries of the porous medium
eventually reaches the plane of the horizontal interface, y = hp, and gets entrained in the
convective structures of the pure fluid region y > hp. For example, the vortex shown in
figure 5(b) and its counterpart in figure 5(b) appear to have been formed by the interaction
of this ascending fluid and the downward stream close to the side walls.

In figure 6, we show colour plots of the time-averaged vertical velocity component 〈v〉t
on two vertical planes, superimposed with the time-averaged in-plane velocity vectors.
The first plane, p1, is parallel to the side walls and includes the impingement point
at the free surface, while the second one is the diagonal plane d2, as depicted in
figure 4(b). According to these figures, the flow in the pure fluid domain organises itself
in a large-scale circulation (LSC), which is one of the principal coherent structures in
turbulent convection. In this case, the impingement point is not located at a diagonal plane
and therefore, the resulting LSC does not have the single-roll structure that is typically
encountered in classical RBC. However, the impingement point is not located at the centre
of the free surface either and, therefore, a dual-roll LSC such as that reported by Hay
et al. (2021) is not formed either. Instead, the emerging LSC has an intermediate structure
between those of the one roll and dual roll; at p1, it comprises a single roll whereas at d2,
it comprises two rolls. It is noted that reorientation events of the LSC occur over time.
During the simulation, we monitored the evolution of the LSC by placing probes as was
done by Foroozani et al. (2017) and Marichal & Papalexandris (2022), and did not record
any reorientation events. Nonetheless, we expect that such events will occur at later times,
in which case, the location of the impingement point will change.
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Figure 6. Case 1: contour of time-averaged vertical velocity 〈v〉t superimposed with time-averaged in-plane
velocity vectors: (a) plane p1; (b) diagonal plane d2. Here, 〈v〉t is non-dimensionalised by ᾱ/ĥtot. The black
line represents the boundary of the porous medium.

It is interesting to observe that, based on the velocity amplitudes, the upward motion at
p1 in the pure fluid region is almost twice as strong as at d2. This is explained by the
fact that the upward-moving fluid at p1 is right below the impingement point, i.e. at
the core of the ascending plume. However, the motion of the descending fluid close to
the side walls is stronger in d2 than in p1. In particular, at d2, the downward plume close
to the walls splits at the plane of the horizontal interface; one part continues to descend
while the other part turns and follows the LSC as it moves along the horizontal interface.
Whereas at p1, most of the descending fluid joins the LSC so that the downward motion
in the lower part, y < hp, is very weak. Part of this is due to the fact that at the corners,
the distance between the side walls and the vertical boundaries of the porous medium is
larger so that boundary-layer effects are comparatively less pronounced. Further, from the
velocity amplitude, we observe that, in this case, the ascending motion in the pure fluid
region is stronger than the descending one.

With regards to the bottom part, in figure 6, we discern the upward motion of cold
fluid along the vertical (side) boundaries of the porous medium that was mentioned above.
Accordingly, this motion is mostly due to inertial effects rather than buoyancy. We can also
identify some weak convective structures inside the porous medium. These are alternating
ascending and descending plumes. Finally, from the in-plane velocity plots, we infer that
the horizontal velocity inside the porous medium is very low, which in turn implies strong
shear at the horizontal interface.

4.1.2. Analysis of the flow properties in the pure fluid region (y > hp)
We proceed to describe in more detail the flow properties in the pure fluid region y > hp,
i.e. in the subdomain above the plane of the horizontal interface. To this end, we first
introduce the normalised temperature θf , defined by

θf = T − Ttop

〈Tint〉 − Ttop
. (4.2)
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Figure 7. Case 1: colour plots of the time-averaged normalised temperature 〈θf 〉t in the pure fluid region,
superimposed with time-averaged in-plane velocity vectors: (a) diagonal plane d1; (b) diagonal plane d2. The
colour scale is the same for both panels.

It is noted that θf is defined with respect to the mean temperature at the horizontal
interface, whereas θ is defined with respect to the temperature at the bottom wall, so as to
allow for comparisons with the corresponding RBC case.

In figure 7, we present plots of the time-averaged normalised temperature 〈θf 〉t at
the two diagonal planes d1 and d2, superimposed with time-averaged in-plane velocity
vectors. At these two planes, the LSC consists of two large rolls. As mentioned above, the
descending plumes are located close to the side walls, whereas the two rolls merge into
a strong ascending plume in the region underneath the impingement point. As expected,
the temperature peaks occur right above the horizontal interface. We also observe that, in
both planes, there are patches of relatively cold fluid inside the rolls of the LSC, located
below the mid-plane of the pure fluid region. They consist of fluid originating from the
descending plumes and of fluid that has moved upwards along the vertical boundaries of
the porous medium. The fluid above these patches is at a higher temperature. By contrast,
such a pattern is not observed when the porous medium extends throughout the horizontal
plane (so that its area coverage is unity).

Next, we present flow statistics in the pure fluid region. Also, we make comparisons with
the equivalent RBC case, i.e. convection between a uniformly heated bottom wall and a
cooler free surface (with fixed temperature) at the same Rayleigh and Prandtl numbers.
Herein, this equivalent case is denoted by RBC-FS.

In figure 8(a), we have plotted the profiles of the mean (area and time-averaged)
normalised temperature 〈θf 〉. The profile for the problem in hand shows large thermal
gradients right above the horizontal interface, which implies a significant diffusive heat
flux from the porous medium to the pure fluid region above. We further observe that in the
RBC-FS, the profile is ‘shifted’ to the left (Hay & Papalexandris 2019), i.e. towards the
temperature of the free surface. Whereas in classical RBC (between two horizontal walls),
the mean temperature profile is centred. This is due to the absence of a hydrodynamic
boundary layer at the free surface, which promotes convective motions of the fluid therein.
However, in our case, the mean temperature profile in the pure fluid region is slightly
‘shifted’ to the right, i.e. towards the mean temperature at the plane of the horizontal
interface, despite the presence of the free surface. As it will be shown below, this shift of
〈θf 〉 to the right is not observed in Case 3 in which the area coverage of the porous medium
is unity. Therefore, it cannot be attributed solely to the presence of the porous medium and,
instead, is explained as follows. The porous medium inhibits significantly the horizontal
motion of fluid due to drag. Therefore, at the horizontal interface, at y = hp, there is a shear
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Figure 8. Profiles of the normalised temperature in the pure fluid region, y � hp: (a) mean profile, 〈θf 〉, where
the thick vertical line represents the arithmetic mean, 〈θf 〉 = 0.5, between the values at the top and at y = hp;
(b) r.m.s. profile, 〈θrms,f 〉, where the legend is Case 1 (——) and RBC-FS (· · · · · · ).

layer whose effect on the convective motions is analogous to that of boundary layers at a
rigid wall. However, when the area coverage of the porous medium decreases, the shear
effects at the horizontal interface decrease too, thereby enhancing convective motions of
the nearby fluid. Additionally, convective motions are enhanced by the flow in the side gaps
of the lower part of the domain. In turn, these effects result in a shift of the temperature
profile in the pure fluid domain towards the temperature at the plane of the interface 〈Tint〉.
From the profile in figure 8(a), we observe that the effect of the horizontal interface has
counterbalanced the effect of the free surface.

Further, in the same figure, we observe that 〈θf 〉 is not monotonous with y but, instead,
has a lower local minimum and an upper local peak. Such overshoots have been observed
previously in the soft-turbulence regime; see, for example, Horn, Shishkina & Wagner
(2013). In our case, however, the value of Raf indicates that we are already in the
hard-turbulence regime. Therefore, we attribute these overshoots to the presence of patches
of colder fluid as mentioned above.

In figure 8(b), we present profiles of the root mean square (r.m.s.) of temperature
fluctuations. In both Case 1 and RBC-FS, the profile has a local peak below the free surface
due to the thermal boundary layer. Subsequently, it drops, as thermal mixing becomes
more efficient. Then, in the bulk of the domain, the gradients of the temperature r.m.s.
are much smaller, as is typically the case in thermal convection. However, in Case 1,
close to the plane of the horizontal interface, the fluctuations increase substantially and
attain a maximum at y = hp. However, in the corresponding RBC-FS case, the fluctuations
peak at the edge of the bottom thermal boundary layer and vanish at the wall. The high
peak in Case 1 is attributed primarily to the limited area coverage of the porous medium
which gives rise to the development of the secondary flow between the solid walls and the
porous medium, thereby resulting in large horizontal temperature gradients, as depicted in
figure 4(a).

Profiles of the r.m.s. fluctuations of the vertical and horizontal velocity components are
shown in figures 9(a) and 9(b), respectively. In the bulk, the vrms profiles have the same
shape for both Case 1 and RBC-FS. In particular, vrms increases with y and peaks between
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Figure 9. Profiles of the r.m.s. of velocity fluctuations: (a) vrms and (b) urms. The velocities have been

non-dimensionalised by α̂r/ĥf . The legend is Case 1 (——) and RBC-FS (· · · · · · ).

the mid-plane and the top free surface. Subsequently, it decreases until it vanishes at the
top. The fact that the peaks are located above the mid-plane is due to the difference in
the strengths of the ascending and descending motions. This has been documented before
(Zikanov et al. 2002; Hay & Papalexandris 2019) and is attributed to the presence of the
top free surface. Further, we observe that while in RBC-FS, vrms vanishes at the bottom
wall, in Case 1, its value at the plane of the horizontal interface is substantial. As a result,
the values of vrms are everywhere higher in Case 1 than in RBC-FS. This, in turn, implies
stronger plumes (stronger vertical motion) in Case 1. Once again, this is attributed to the
limited area coverage of the porous medium that enhances convection.

Plots of the r.m.s. of the horizontal velocity, urms =
√

〈u2〉 + 〈w2〉 − 〈u〉2 − 〈w〉2 are
provided in figure 9(b). As expected, similarly to the r.m.s. of the vertical velocity, in Case
1 urms does not vanish at the plane of the horizontal interface, whereas it does vanish at the
bottom wall in RBC-FS. Interestingly, in Case 1, it increases rapidly and peaks at a short
distance above the horizontal interface. This is due to the shear layer that is developed
across this interface. Further, in both Case 1 and RBC-FS, urms is approximately constant
in the bulk of the domain but becomes larger close to the free surface. Actually, in both
cases, urms attains its maximum value right at the top. This peak is a standard feature
of turbulent convection with a free surface on top (Zikanov et al. 2002; Hay et al. 2021;
Marichal & Papalexandris 2022) and is due to the strong vertical motion of fluid beneath
the free surface which, in the absence of a hydrodynamic boundary layer, leads to strong
surface currents. In other words, the absence of a hydrodynamic boundary layer greatly
reduces viscous dissipation in the vicinity of the free surface. The fluid coming from below
has been accelerated by the buoyancy force and, once it reaches the free surface, it turns
while maintaining most of its momentum and ‘spreads’ to all horizontal directions; this,
in turn, leads to the aforementioned surface currents.

Lastly, in figures 10(a) and 10(b), we respectively plot the convective and diffusive
contributions of the local Nusselt number. As is typically the case, Nuconv is constant
in the bulk and decreases near the boundaries. However, in Case 1, the lower limit
of the pure fluid region, y = hp, is not a boundary but simply encompasses the
horizontal interface. Accordingly, at that plane, the vertical velocity is not zero and the
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Figure 10. Profiles of the time-and-area-averaged components of the local Nusselt number Nuy along the y
direction. (a) Convective component, Nuconv . (b) Diffusive component, Nudiff . The legend is Case 1 (——) and
RBC-FS (· · · · · · ).

temperature is not uniform. This implies that Nuconv does not vanish therein. As a result,
Nuconv is higher in Case 1 than in RBC-FS throughout the pure fluid domain. Nonetheless,
in both cases, Nuconv vanishes at the free surface. As a result, and in contrast to RBC-FS,
the profile of Nuconv in Case 1 is not symmetric with respect to the mid-plane.

With regards to the diffusive component Nudiff shown in figure 10(b), it follows the
opposite trend, i.e. it decreases in the bulk and increases near the boundaries, as expected
in turbulent convection. It is worth noting that Nudiff is slightly negative in the bulk due to
the overshoots of the mean temperature profile. In this manner, the local Nusselt number,
Nuy = Nuconv + Nudiff , remains constant along y and equal to the global Nusselt number
Nuf . Accordingly, not only Nuconv but also Nuy is higher in Case 1 than in RBC-FS. Also,
since similarly to Nuconv , the profile of Nudiff is symmetric only in RBC-FS but not in
Case 1.

4.1.3. Analysis of the flow properties in the lower part (y � hp)
Herein, we examine in more detail the flow properties in the lower part of the
domain, which includes the porous medium. To this end, we first define the normalised
temperatures in this part for the two phases via

θp = T − 〈Tint〉
〈Tbot〉 − 〈Tint〉 and θs,p = Ts − 〈Tint〉

〈Tbot〉 − 〈Tint〉 . (4.3a,b)

In figure 11, we present colour plots of the time-averaged normalised temperatures, 〈θp〉t
and 〈θs,p〉t, respectively at the vertical plane p1 and the diagonal plane d2. The most
noticeable feature is that, inside the porous medium, there are strong thermal gradients
in the horizontal direction even though the solid matrix is uniformly heated. As mentioned
above, this is due to cold fluid entering from the vertical faces of the porous medium but
also due to convective plumes in its interior. Convective motion inside the porous medium
is much weaker than in the pure fluid region above because of interphasial drag. Also, the
convective rolls are long and thin (i.e. finger-like), which implies that the fluid motion
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Figure 11. Case 1: time-averaged normalised temperatures of the fluid 〈θp〉t (top) and the solid matrix 〈θs,p〉t
(bottom), superimposed with time-averaged in-plane velocity vectors. (a) Vertical plane p1. (b) Diagonal plane
d2. The arrows mark the fluid velocity, but are enhanced in the bottom panels for better visibility.

therein is almost vertical, i.e. with a very small horizontal velocity. This is explained
by the fact that with this particular microstructure of the solid matrix (vertically aligned
cylinders), the interphasial drag is much higher in the horizontal direction than in the
vertical one, which favours vertical motion. However, since fluid enters the porous medium
sideways, this means that mixing between the fluid in the central region of the porous
medium (where the plumes are located) and the fluid outside the central region is reduced.
Further, from figure 11, we infer that the plumes reach up to the horizontal interface and
interact with the shear layer formed right above it.

Another interesting aspect is that the temperatures of the two phases are practically
equal, which implies efficient heat transfer from the solid matrix to the interstitial fluid.
For example, as cold fluid enters the porous medium from the sides, it absorbs heat
from the solid matrix. Consequently, θs is much lower near the sides of the porous
medium than in its interior. It is noted, however, that these observations concern a fully
developed, time-averaged statistically steady flow. In particular, in the early stages of
the evolution of the flow, the difference between the temperatures of the two phases is
significant.

The velocity vector plots in figure 11 reaffirm the aforementioned observation that cold
fluid descends mostly from the corners of the domain and then circumvents the porous
medium. Accordingly, a part of it enters the porous medium while the rest starts ascending
along its vertical sides. Further, the fluid entering the porous medium changes direction
rapidly and moves upwards even though its temperature is still relatively low. In other
words, the upward motion of the fluid near the side boundaries of the porous medium
is mostly driven by inertial effects rather than by buoyancy. It is noted that the velocity
vectors shown in figure 11 are used mainly for visualisation purposes of the flow direction.
More specifically, the size of the velocity vectors in the bottom subfigures has been made
larger than in the top ones for better visibility.

In figure 12, we have plotted the profile of the mean (time and area-averaged) normalised
temperature of the fluid, 〈θp〉. We can observe that 〈θp〉 remains almost constant up to
y ≈ 0.13, which roughly corresponds to 1/4 of the height of the porous medium. The
absence of a lower thermal boundary layer is due to the adiabatically isolated bottom wall.
Then, as y increases, 〈θp〉 drops. Also, the rate of decrease of 〈θp〉 gets higher with y.
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Figure 12. Plots of the normalised temperature in the lower part of the domain: time- and area-averaged

temperature of Case 1 (——) and computed static temperature Tst normalised accordingly (– – –).

Interestingly, similar temperature profiles have been reported by Thirlby (1970) who
studied convection in an internally heated layer with an isolated bottom wall.

To assess the effect of convection in the lower part of the flow domain, we consider
an equivalent one-dimensional purely diffusive process, i.e. in absence of fluid motion
and hence convection. More specifically, we examine the static temperature distribution
Tst in an internally heated quiescent medium which has the same height as the porous
medium and whose thermal conductivity equals the average conductivity of the lower
part, i.e. 〈φk + (1 − φ)ks〉xz. Further, this medium is subject to exactly the same
internal heating as the solid matrix, 〈r〉xz. In this problem, we prescribe Tst = 〈Tint〉
at y = hp and zero-Neumann condition at y = 0. The solution is a parabolic profile
for Tst. In figure 12, we have included the plot of the normalised static temperature
θst,p, where the normalisation is performed according to (4.3a,b). We observe that
the total variation of the static temperature in the purely diffusive process is four
times larger than in Case 1; equivalently, the static temperature at the bottom is
four times higher than in Case 1. We, therefore, deduce that convective heat transfer
has a strong impact and reduces considerably the thermal gradients in the vertical
direction, even though convective motions are significantly constrained inside the porous
medium.

The relative strength of the various modes of heat transfer can be also assessed by
comparing the different components of the Nusselt number, as provided in (3.4). Their
plots are shown in figure 13. We observe that the local Nusselt number Nuy increases
linearly with y due to internal heating. Since the bottom wall is adiabatically isolated,
the major component of Nuy in the near-wall region is the convective one. Also, both
Nuconv and the diffusive component of the solid matrix Nudiff ,s increase considerably away
from the bottom wall. Actually, Nudiff ,s has a peak close to the horizontal interface, and
then it decreases rapidly and vanishes right at the horizontal interface. This is due to the
prescribed thermal boundary condition (2.7) for the solid matrix which stipulates zero
diffusive heat flux at points where the porosity becomes unity. However, the diffusive
component of the fluid, Nudiff , remains very small for most of the lower part of the domain
and becomes noticeable only very close to the horizontal interface and at the point where
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Figure 13. All contributions of the Nusselt number in the lower part of the domain normalised by the global
Nusselt number in the pure fluid region Nuf . The legend is total Nusselt number Nuy (——), convective
contribution Nuconv (· · · · · · ), diffusive contribution of the fluid Nudiff (−· − · − ·) and of the solid Nudiff ,s
(– – –).

Nudiff ,s starts to drop. As a result, convection is the dominant mode throughout the lower
part of the domain, in the sense that at any given y, Nuconv represents more than 50 % of
Nuy. The fact that Nudiff is much smaller than Nudiff ,s in the bulk of the lower part of the
domain is due to the difference in the thermal conductivities of the two phases.

4.2. Comparisons of Cases 1 to 4
In this section, we make comparisons among Cases 1 to 4. As mentioned above, Cases
1–3 are in ascending order of area coverage a of the porous medium and with uniform
heating. However, in Case 4, the area coverage is the same as in Case 1 but the heat-load
distribution is not uniform in the horizontal direction. Details of each case are summarised
in table 2. It is also worth recalling that the total amount of heat added to the system is kept
the same. By considering these cases, we examine the effects of the area coverage and the
type of heat loading on the emerging flow structures and turbulence statistics.

4.2.1. Global flow properties
In figures 14, 15 and 16, we provide plots of time-averaged streamlines coloured by the
time-averaged vertical velocity for Cases 2, 3 and 4, respectively. According to them, in
Case 2 (whose area coverage is 88.4 %), the flow in the upper pure fluid region organises
itself in a single-roll LSC aligned to a diagonal plane, similar to the LSC in classical RBC.
However, a noticeable difference is that whereas in classical RBC there are two pairs of
large counter-rotating vortices in the second diagonal plane, in Case 2, there is only one
pair. Also, the observations made above for Case 1 regarding the descending fluid motion
close to the corners and the circumvention of the porous medium are still valid for Case 2.
Nonetheless, since the area coverage is much larger in Case 2 (88.4 % versus 64 %), these
patterns are significantly weaker.

According to figure 15, in Case 3, the flow in the pure fluid region also organises itself
in an LSC. However, the structure of this LSC is different from Cases 1 and 2, as there
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Figure 14. Case 2: time-averaged streamlines coloured by non-dimensional time-averaged vertical velocity,
〈v〉t. (a,b) Side view. (c) Bottom view.
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Figure 15. Case 3: time-averaged streamlines coloured by non-dimensional time-averaged vertical velocity,
〈v〉t. (a,b) Side view. (c) Bottom view.
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Figure 16. Case 4: time-averaged streamlines coloured by non-dimensional time-averaged vertical velocity,
〈v〉t. (a,b) Side view. (c) Bottom view.

is significant upward motion close to the side walls. Evidently, this is due to the area
coverage (100 % in Case 3) which significantly reduces the descent of cold fluid towards
the lower part of the domain. Also, the plots suggest that the vertical motion in the pure
fluid region has a smaller magnitude compared to what we observed in Case 1. It is also
worth mentioning that the streamlines and flow patterns in the pure fluid region, y � hp,
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Figure 17. Colour plots of 〈Tint〉t/〈Tint〉 at the plane of the horizontal interface y = hp. (a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

are very similar to those of the RBC-FS (not shown herein for the sake of economy of
space) that was discussed in the previous section.

With regards to Case 4, from figure 16, we infer that the average streamlines in the pure
fluid domain resemble those of Case 1. Also, as in Case 1, fluid descends from the corners
and then circumvents the porous medium. Eventually, a portion of the fluid enters the
porous medium from the side while the rest ascends along its side boundaries. However,
a noticeable difference is that, in Case 4, there is no clear formation of convective rolls
inside the porous medium; instead there is upward motion in the heated parts and weak
downward motion in the non-heated parts.

In figure 17, we present colour plots of 〈Tint〉t/〈Tint〉 at y = hp, i.e. of the
time-averaged temperature at the plane of the horizontal interface, normalised by its
mean (time-and-area-averaged) value. In this manner, we can assess the amplitude of
the temperature variations at this plane. We readily infer that these variations are the
smallest in Case 3. This is mainly due to the fact that the heating is uniform in the
horizontal directions and the area coverage is 100 %. As the area coverage decreases, then
the downward motion close to the corners becomes stronger, the heat-source term r̂ gets
higher and, therefore, the temperature variations increase. Accordingly, these variations
are larger in Case 2 and even more so in Case 1. Also, as expected, the thermal gradients
are even larger in Case 4 due to the non-uniformity of the heat loading.
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(c) (d )(b)(a)

Figure 18. Iso-surfaces of the time-averaged fluid temperature throughout the flow domain. (a) Case 1.
(b) Case 2. (c) Case 3. (d) Case 4.

With respect to figure 17, it is also interesting to observe that the high-temperature areas
constitute in a sense the ‘footprints’ of the convective patterns that develop in the pure
fluid region and inside the porous medium. For example, in figure 17(b), we can infer
the alignment of the LSC with one diagonal plane. Also, the five ‘hot spots’ seen in this
figure correspond to ascending plumes inside the porous medium. The fact that these hot
spots are distributed symmetrically with respect to the diagonal of the LSC suggests an
interaction between the plumes in the porous medium, the shear layer above the interface
and the LSC. In addition, fluid coming out from these plumes eventually merges with
the LSC in the pure fluid domain. Similar observations hold for the hot spots observed in
figures 17(a) and 17(c). Concerning Case 4, the hot spots shown in figure 17(d) correspond
to the heated parts of the porous medium.

For purposes of visualisation of the thermal field, in figure 18, we present contour plots
of the time-averaged fluid temperature for the cases examined in this study. Therein, we
can observe the principal plumes and infer the orientation of the LSC in the various cases.

Concerning the temperature variations in the vertical direction, our simulations predict
that the global temperature difference, 〈Tbot〉 − Ttop, increases with the area coverage of
the porous medium, even though the heat supply remains the same. In particular, it equals
15.9, 19.7 and 29 K for Cases 1, 2 and 3, respectively. This is attributed to the fact that large
area coverage inhibits fluid motion inside and around the porous medium which, in turn,
reduces thermal mixing since the heat supply comes from the solid matrix. Also, in Case
4, 〈Tbot〉 − Ttop = 12.4 K, which is mildly lower than in Case 1. This is a manifestation of
the fact that a non-uniform heat-load distribution promotes convective motions. The same
trend is observed when comparing the temperature difference across the pure fluid region
�T̂f and the Rayleigh number Raf . In other words, these quantities increase with the area
coverage but decrease for non-uniform heat-loading. The values of the mean temperatures
at the bottom, horizontal interface and top planes have been summarised in table 3 and
those of the Rayleigh number in table 5.

Next, we compare our numerical predictions for the local Nusselt number. Profiles of
Nuy across the entire domain for the four cases are presented in figure 19. As mentioned
above, in all cases, Nuy increases linearly in the lower part of the domain due to the internal
heating, while it remains constant in the pure fluid region and equal to Nuf . Also, according
to these plots, Nuy decreases substantially with the area coverage of the porous domain.
This corroborates the fact that lower area coverage enhances convection. Moreover, the
rate of decrease of Nuy becomes higher as the area coverage approaches 100 %. However,
Nuy increases for non-uniform heat-load distributions, which is also due to the fact that
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Figure 19. Profiles of the local Nusselt number Nuy. The legend is Case 1 (——), Case 2 (· · · · · · ), Case 3
(– – –) and Case 4 (−· − · − ·). The (red) horizontal line shows the location of the horizontal interface.

such non-uniformities facilitate fluid recirculation in the pure fluid domain and hence
convection.

In summary, as the area coverage increases, Nuf and Raf follow different trends;
the former decreases while the latter increases. At a first glance, this appears to be
counterintuitive because the correlation between Nuf and Raf in classical RBC is the
opposite. This difference is explained as follows. As the area coverage a increases, there is
less recirculation and convective motion, so the Nusselt number Nuf decreases. However,
in the lower part of the domain, less recirculation reduces thermal mixing and leads to
higher temperatures because the liquid stays longer in that part and, therefore, receives
more heat from the solid matrix. Accordingly, as a increases, then 〈Tint〉 gets higher and,
therefore, the Rayleigh number Raf gets higher too. Another way to interpret this is that,
for the flows under consideration and contrary to classical RBC, it is not 〈Tint〉 but the heat
supply from the solid matrix that is kept constant; this was also mentioned in § 3.1. Then,
since 〈Tint〉 and hence �T̂f lie in the denominator of (3.4) for Nuf but in the numerator of
(2.6) of Raf , it is natural for Nuf and Raf to follow different trends as the area coverage
increases. The same is also applied to explain the different trends of the Nusselt and
Rayleigh numbers when the heat-load distribution becomes non-uniform.

The profiles of the various terms comprising Nuy in the lower part of the domain are
presented in figure 20. Actually, in these plots, the terms have been normalised by the
global Nusselt number of each case, Nuf , to assess their relative contribution. Figure 20(a)
shows plots of the convective term Nuconv/Nuf for the various cases considered herein.
According to them, in all cases, the convective contribution to the Nusselt number
increases monotonically with y. Further, it decreases substantially with the area coverage
but is increased with a non-uniform heat-load. For example, in Case 3 where a = 1,
the convective contribution to Nuf is less than 10 %, whereas in Case 1 (a = 0.64),
its contribution is approximately 50 %. Also, when the heat-load is non-uniform, the
convective contribution rises even further, to 70 %. However, according to figure 20(b), the
diffusive contributions for both solid and fluid follow the opposite trend, i.e. they increase
with the area coverage but decrease with the non-uniform heat-load distribution.
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Figure 20. Profiles of the various terms comprising Nuy in the lower part of the domain, y � hp, normalised
by the global Nusselt number Nuf : (a) Nuconv/Nuf ; (b) Nudiff /Nuf (grey lines) and Nudiff ,s/Nuf (black lines).
The legend is Case 1 (——), Case 2 (· · · · · · ), Case 3 (– – –) and Case 4 (−· − · − ·).

1.5

1.0

0.5

y

0

1.5

1.0

0.5

0.1 0.20
1.46

1.48

1.50

00.2 0.4 0.6 0.2 0.4 0.6

1.010.970.93
0

0.1

0.2

0.90.60.3

0.55

0.50

0.45

0.8 1.0

(b)(a)

〈θ〉 〈θrms〉
Figure 21. (a) Time-and-area-averaged temperature 〈θ〉 and (b) r.m.s. of the temperature fluctuations, θrms.
The inset is a zoom on the macroscopic interface. The legend is Case 1 (——), Case 2 (· · · · · · ), Case 3 (– – –)
and Case 4 (−· − · − ·). The (red) horizontal line denotes the plane of the horizontal interface.

4.2.2. Flow statistics
In figure 21(a), we plot the mean (time-and-area-averaged) profiles of the normalised
fluid temperature 〈θ〉. One noticeable feature of these profiles is the strong temperature
gradient in the vicinity of the horizontal interface which implies strong diffusive flux right
above this interface; this is due to the fact that the fluid below the horizontal interface is
heated while the fluid above is not. Also, in figure 21(a), the temperature profiles in the
pure-fluid region shift to the right, i.e. towards 〈θint〉, as the convective motions become
stronger, either due to the reduction of the area coverage or non-uniform heat loading.
We further observe that the overshoots of the temperature profile near the top and the
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horizontal interface become smaller as the convective motions decrease. In particular,
these overshoots have disappeared in Case 3 wherein the temperature profile has become
monotonically decreasing all across the pure-fluid region. This is in accordance with the
previous observation that the overshoots are due to the recirculation of relatively cold fluid
ascending from the side boundaries of the porous medium.

With regards to the temperature distribution in the lower part, we observe that the
temperature gradients and hence the diffusive flux increase as the area coverage becomes
larger. As a result, the temperature at the interface 〈θint〉 decreases with a.

The profiles of the r.m.s. of temperature fluctuations are plotted in figure 21(b). In the
pure fluid region, and starting from the top, the profiles look similar to those of RBC-FS up
to the vicinity of the horizontal interface. In particular, they attain a maximum at the edge
of the thermal boundary layer at the free surface and decrease in the bulk. Overall, in the
various cases, the values of 〈θrms〉 in the bulk are close; nonetheless, they increase mildly
as the area coverage becomes smaller and with the non-uniform heat loading. Then, in
the vicinity of the horizontal interface, the r.m.s. profiles start to increase substantially.
In Case 3, where a = 1, the r.m.s. profile peaks a little above the interface and then
decreases up to the bottom wall. However, in all other cases, the r.m.s. has a cusp right
at the plane of the horizontal interface and continues to increase in the lower part of the
domain. This difference is due to the fact that in Case 3, the area coverage is equal to
unity and, therefore, fluid motion is sharply constrained in the lower part of the domain. In
particular, in Case 3, fluid can enter or exit the lower part only by crossing the horizontal
interface.

In the other cases, 〈θrms〉 increases substantially with the depth in the lower part of the
domain. This is due to the increase in temperature with the depth and the recirculation of
cold fluid coming from the pure fluid region. Further, with regards to the temperature r.m.s.
in the lower part, our simulations have predicted that they decrease as the area coverage
decreases. This is explained by the fact that a larger porous region significantly limits fluid
motion in the lower part of the domain as well as the descending motion of fluid coming
from above. However, we observe that 〈θrms〉 in the lower part of the domain is higher in
Case 1 than in Case 4. We presume that this is attributed to the fact that in Case 1, the
plumes in the central part of the porous medium do not remain fixed but slightly move
from time to time, thereby increasing 〈θrms〉; in contrast, such a motion is not observed in
Case 4.

Finally, in figures 22(a) and 22(b), we have plotted the profiles of vrms and urms,
respectively, for all cases considered in our study. Once again, in the pure fluid region, the
vrms profiles are similar to those in RBC-FS up to the vicinity of the horizontal interface;
in other words, they increase away from the free surface, attain a peak in the bulk and then
decrease substantially as the horizontal interface is approached. In the lower part of the
domain, the profiles also decrease with the depth of the domain until they vanish at the
bottom wall. Overall, the vrms values become smaller as the size of the porous medium
increases because vertical motion becomes more constrained. However, the vrms profiles
for Cases 1 and 4 are quite similar throughout the flow domain, which means that the
non-uniformity of the heat loading does not affect vrms. The only noticeable difference is
that in Case 4, the peak of vrms is located closer to the mid-plane of the pure fluid domain.
This is because the difference between the strengths of the ascending and descending
motions is less pronounced in Case 4 than in Case 1. Moreover, as mentioned above,
the basic difference between the predicted vrms profiles and those in RBC-FS (Hay &
Papalexandris 2019) is that now they do not vanish at the lower limit of the pure fluid
domain due to the fluid motion below.
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Figure 22. Plots of the r.m.s. of velocity fluctuations in the whole domain: (a) vrms and (b) urms. The velocities
have been made dimensionless using ᾱ/ĥtot. The legend is Case 3 (– – –), Case 1 (——), Case 2 (· · · · · · ) and
Case 4 (−· − · − ·). The (red) horizontal line denotes the plane of the horizontal interface.

According to figure 22(b), the urms profiles are also similar to those in RBC-FS. More
specifically, urms is quite high at the top but decreases substantially with the depth.
Subsequently, it starts to increase, peaks right above the horizontal interface and then
decreases considerably as the interface is crossed. The large gradients observed in the
vicinity of the horizontal interface are indicative of strong shear, the amplitude of which
increases with the interface area. Then, in the lower part of the domain, urms remains
almost constant and drops to zero at the bottom wall. As with the other quantities, inside
the porous medium, the amplitude of urms drops significantly with the area coverage
because flow recirculation becomes more restricted. Further, the urms profiles between
Cases 1 and 4 are overall similar. The main difference between these two profiles is the
value at the free surface; in Case 1, the peak is higher than in Case 4 due to stronger
ascending motion which in turn leads to stronger (horizontal) currents at the free surface.

5. Conclusions

In this paper, we have presented a numerical study of turbulent convection in mixed
porous–pure fluid domains with an internally heated solid matrix. When the area coverage
is less than unity, cold fluid descends from the corners to the lower part of the domain.
Subsequently, it circumvents the porous medium and either enters it or ascends along its
side boundaries. The fluid entering the porous medium is then getting heated, thereby
forming plumes which, in turn, drive the thermal convection in the pure fluid domain
above. As a result, the flow patterns in the pure fluid region can be substantially different
from those in classical RBC. For example, the LSC that emerges in the pure fluid region
is not always aligned with a diagonal plane. Instead, depending on the location of the
impingement point at the free surface, the LSC can be either in a single-roll, dual-roll or
intermediate state. Further, when the area coverage is less than unity, the mean temperature
profile has two overshoots, close to the plane of the horizontal interface and the free
surface. These overshoots are due to cold fluid ascending along the side boundaries of
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the porous medium that eventually is entrained in the large turbulent structures of the pure
fluid region.

Also, our simulations predicted that when the area coverage of the porous medium
increases, the fluid circulation in the lower part of the domain is constrained sharply. This
leads to higher (average) temperatures inside the porous medium and at the plane of the
horizontal interface. In this manner, when the area coverage increases, the Nusselt number
becomes lower whereas the Rayleigh number in the pure fluid region becomes higher.
Similarly, a non-uniform heat-load distribution in the solid matrix enhances convective
motions and reduces the mean temperature at the plane of the horizontal interface; this, in
turn, leads to a higher Nusselt number but a lower Rayleigh number.

Finally, with respect to convection under different conditions, we may add that a
different amount of heating would result in a different Rayleigh number in the pure fluid
domain and the flow statistics therein would change accordingly. Also, a different porosity
will significantly effect the fluid motion inside the porous medium. In particular, we expect
that higher porosities will enhance convective motions in the lower part of the domain and
lead to higher Nusselt numbers.
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