
Canad. Math. Bull. Vol. 29 (2), 1986 

ON THE DISTANCE BETWEEN CONSECUTIVE DIVISORS 
OF AN INTEGER 

BY 

JEAN-MARIE DE KONINCK AND ALEKSANDAR IVIC 

ABSTRACT. Let O)(AI) denote the number of distinct prime divisors of a 
positive integer n. Then we define h\H—» [R by /z(«) = 0 if U)(AI) — 1 and 
h(n) = S,r

=2 l/(g, - <7,-_i) if n = q^q"2 • • .q*\ where qx < q2 < • • • < 
qr are primes and r > 2. Similarly denote by i{n) the number of divisors 
of n and let H: N -> !R be defined by //(AI) = T^l \/{dt - dt- ,), where 
1 = d\ < d2 < . . . dr(n) = n are the divisors of n. We prove that there exists 
constants A and B such that 2„<* h(n) = Ax + 0(jc(log log ;t)(log x)~l) 
and 2„ s j t H(n) = Bx + 0(;c(log ^)" , / 3). 

§1. Introduction. A natural way to estimate the average distance between the prime 
divisors of an integer n = q*x. .. q*r (r > 2) is to study the arithmetical function 

n n f M
 ! V r Ï P(n)-p(n) 

(1-1) /(/i) = ; 7 2J (qi ~ qi-\) = — — — . 
r ~ 1 / = 2 o)(/i) - 1 

Here ^j < . . . < qr are the prime divisors of n, and P(n), p(n), u>(n) denote 
respectively the largest prime divisor of n, the smallest prime divisor of n and the 
number of distinct prime divisors of n. Using a result of J.-M. De Koninck and A. Ivic 
[1], it follows easily that the average order of f(n) is c«/log n, where c > 0 is an 
absolute constant. 

We now introduce another arithmetical function, which also provides information 
about the distance between the distinct prime divisors of n. We shall denote this 
function by h(n) and define it as 

(1.2) h(n) = 

if a)(n) < 1, 

l in = <7, . . . qr , r>2, 

q\ < . . .< qr primes. 

In many ways this function is more complicated to estimate than f(n), and in 
Theorem 1 below we shall show that there exists an absolute constant A > 0 such that 
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CONSECUTIVE DIVISORS 209 

lim x x
 ZJ h(n) = A. 

An interesting, yet difficult problem is to determine the maximal order of h{n). One 
has trivially 

h(n) < (O(AZ) <̂  log n/log log n. 

Nevertheless h(n) can be fairly large for some n, e.g. 

log Nk ^ 1/XT^ log Nk log log log Nk 

(1.3) <^ h(Nk) < , 
(log log Nk)

2 (log log Nk)
2 

where Nk is the product of the first k primes. This follows from the work of P. Erdôs 
and A. Rényi [3], and the lower bound in (1.3) can be obtained simply as follows. If 
pn denotes the n-th prime, then by the Cauchy-Schwarz inequality we obtain 

( } =(pk-2)^{h(Nk)Y'\ 

But by the prime number theorempk ~ k log k, k ~ log Njlog log Nk as k—> °°, 
hence (1.4) gives the lower bound in (1.3). 

It seems equally interesting to study the analogues of (1.1) and (1.2) when one 
considers not only prime divisors of n, but all possible divisors of n. Thus if 
1 = d\ < d2 < . . . < dT{n) denote the consecutive divisors of n, where i(n) is the 
number of divisors of n, then for n > 2 one may define 

(1.5) F(n) - — 2 (df - </,•_,) - - f -
T(/I) - 1 / = 2 T(n) - 1 

as the average distance between the divisors of n. Using Theorem 1.2 of J.-M. 
De Koninck and A. Ivic [2], it follows readily by partial summation that the average 
order of F(n) is dn(log n)~{/1 for some absolute d > 0. 

Therefore it is perhaps more interesting to define the arithmetical function H(n), the 
analogue of h(n), as 

' 0 if/I = 1, 

(1.6) H(n) = 

J^2 di - di 

T(n) , 

E l 1— i f n > 2 , 

where as before 1 = d\ < . . . < d7{n) = n are the consecutive divisors of n. Determining 
the maximal order of magnitude of H(n) seems to be even more difficult than the 
corresponding problem for h(n). Our main objective will be to prove that, similarly 
as h(n), the function H(n) has a finite mean value. The result is contained in 
Theorem 2 below, and provides information about the distribution of consecutive 
divisors of an integer. These types of problems have been investigated by several 

https://doi.org/10.4153/CMB-1986-034-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1986-034-7
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authors, most notable by P. Erdôs. A classical conjecture of his states that for almost 
all n 

min di+i/di ^ 2. 
1 < / < T ( / I ) - 1 

This conjecture, in an even stronger form, has been recently proved by H. Maier and 
G. Tenenbaum [4]. 

§2. Statement of results 

THEOREM 1. Let h(n) be the arithmetical function defined by {12). Then 

^ (x log log x\ 
(2.1) Z h(n) = Ax + 0\ , fe - , 

V ^gx I 
where 

(2.2) A = E — II (l " -) = 0.299 . . . . 
Pi<Pj (Pj ~ Pi)PiPj Pi<P<Pj

 v P' 

Here the sum is taken over all pairs of primes (/?,, pj) such that p{ < pj9 while for a 
fixed pair (pn pj) the product is over all primes p satisfying pt < p < pj. 

For our second result we define (a, b) (1 ^ a < b integers) to be a suitable pair if 
there exists a positive integer n such that a and b are two consecutive divisors of n. 
Clearly (a, b) is a suitable pair if and only if a < d < b implies d \ [a, b], where 
[a, b] is the lowest common multiple of a and b. Further let Dab consist of all integers 
of the form (d/(d, [a, b])) (a < d < b), where (d, [a, b]) denotes the greatest common 
divisor of d and [a, b] and where no element of Da b is a multiple of another element 
ofDab. Finally, for a given suitable pair (a, b), write Dah — {d\, d2,. . . , dr}, then we 
shall denote by R(a, b) the following expression 

i- 2 \+ S —— - 2 ' b s -J— 
l<i<j<r [di, dj] 

+ . . . + (-1)' 

/ J 

i<i<j<k<r [di, dp dk] 

[du dly... ,dr] 

where [c\, c2, • . . ,cs] stands for the lowest common multiple of the integers cx, 
c2 , . . . , c,. 

THEOREM 2. Let H(n) be the arithmetical function defined by (1.6). Then 

(2.3) 2 H(n) = Bx + <9(;c(log JC)~1/3), 

B = 2 2* /?(«,&) 

a/id the star on the inner sum indicates that the summation runs through suitable pairs 
(a, b). 

https://doi.org/10.4153/CMB-1986-034-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1986-034-7


1986] CONSECUTIVE DIVISORS 2 1 1 

§3. The necessary lemmas. In this section we shall formulate and prove two 
technical lemmas, which are necessary for the proof of Theorem 1 and Theorem 2. 

LEMMA 1. Let pi > p} be any two fixed primes and let ptj = UPi<p<p p, where p 
denotes primes. Then 

(3.1) 2 l=y II (l - " ) + 92''-1"-1, 
n<iy,(n,Pij)=\ Pi<P<Pj P 

where |6| ^ 1. 

PROOF OF LEMMA 1. The left-hand side of (3.1) is equal to 

2 2 \*d) = 2 [L(d)[y/d] = y 2 ^{d)/d 
n^y d\{n,Pi}) d\P{j d\Ptj 

+ e,2 i=y n ( l—We^-'- , 
d\Pij Pi<P<Pj P 

where |e,| < 1, |6| < 1. 

LEMMA 2. Let (a, b) be a suitable pair, g(d) = d/(d, [a, b]) and R(a, b) be as in 

§2. Then 

(3.2) 2 1 - yR(a, b) + 0(2b~a). 
m^y,a<d<b^ g{d)\m 

PROOF OF LEMMA 2. Set Dûtb = {du . . . ,dr}. Then by the inclusion-exclusion 
principle, we have 

?.. -w-..?..a+..?...[^]-..i m<y,a<d<b^>g(d)](m l < / < r L " ' J ! < / < ; < / - L L « / j W y ] 1 < / < ; < £ < r 

x - + . . . + ( - l ) r yR(a, b) + 0(2r), 
[dh dj, dk] [dl9d2,... ,dr] 

and the result follows since r < b - a - 1. 

§4. Proof of Theorem 1. Clearly we have 

(4.1) 2 h{n) = 2 —^— 2 1, 
«<JC pj<pj<x Pj Pi n<x,PiPj\n,(n,Pjj) - 1 

v> 1 ^ 
2 !> 

Pi<Pj^x,pjPj<x Pj Pi m<x/pipj,{m,Pij)=\ 

where in the last sum m denotes a positive integer. Let w(x) denote a function satisfying 

(4.2) log log x < W(JC) < JC1/3 
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212 J.-M. DE KONINCK AND A. IVIC [June 

and which will be suitably chosen a little later. Since we have 

Pi<Pj*x Pj ~ Pi m^x/PlP] VV(X) p.pj^x tPiPjl 

PiPj^x^pj-p^wix) {m,Pij)^\ 

^ - 7 - X ( — + l) « - 7 - (log log x)2, 

this means that (4.1) gives 

(4.3) S A(/i)= S —!— E 1 + o(- - - ( loglogx) 2 ) . 
/ i < * P,<Pj^x Pj Pi m^x/pipj XW(X) ' 

PjPj<x,pj-pi^w(x) (m,Pjj)=\ 

Next if pj > x]/2 in (4.3), then in view of (4.2) we have 

Pi > Pj ~ w(x) > -x1 / 2 , /?,/?, > -x, 

hence 

2 - 4 - 2 i« 2 (— 
Pi<Pj<x,piPj<x Pj Pi m^x/pipj piPj^x,pj>V~x PiPj 

Pj-Pi^w(x),pj>Vx (m,Pij)=l 0<pj-Pi<w(x) 

v log log x 

Therefore the contribution of Pj in (4.3) which satisfy p} > xx/1 is negligible. Hence 
using (4.3) and Lemma 1 we obtain 

(4.4) 2h(n)=x 2 _l FI ( l - 1 

" ^ * Pi<Pj^x,Pipj<x \Pj PuPiPj Pi<p<Pj P 
Pj-pi<w(x),pj<Vx 

~ / s^ 2j~l \ ( log log* 
+ 0 / Z \ + O J C 

if we choose 

/ > , < ^ * , p , / > , ^ Py - Pi\ V logX / ' 
Pj-pi<w(x),pj<Vx J 

(4.5) u>(*) = - log x-log log x. 

To estimate the first 0-term in (4.4) we use the Brun—Titchmarsh inequality (see e.g. 
H. L. Montgomery [5], Theorem 4.4) 

TT(M + TV) - TT(M) < - ^ - , (M,N > 2) 
log TV 
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This allows us to write 

• • , x / x 2(pj - Pi) i W(X) i 
7 - I = 7T(/77) - TTfa) < " < - " — < - log X, 

log (pj-pi) 2\0gw(x) 2 
provided that j — i > 2. Estimating trivially the terms withy = / + 1 we obtain that 
the first error term in (4.4) is 

^ 2(l/2) log, ^ £ — — < 2 ( 1 / 2 ) ^ 7T(JC1/2) log Jt < JC9/1°. 

Thus to finish the proof of Theorem 1 it remains to show that the error made in 
replacing the first expression on the right-hand side of (4.4) by Ax is <x(\og log x)/ 
(log A:). In view of the arguments which lead to (4.3) and (4.4) it will be sufficient to 
estimate the expression 

«- s —-V- n (i-1). 
Pi<Pj,Pj>x KPj ~ Pi)PiPj Pi<p<Pj

 v P' 

Using partial summation and the prime number theorem we obtain 

(4.6) R ̂  2 ; l—— = S Î S (—— + -) 
Pi<Pj,Pj>x (Pj ~ PdPiPj Pj>x Pj Pl<Pj

 xPj Pi Pi' 

< 2J — — <~ 
pj>* Pj x 

This completes the proof of Theorem 1, and (4.6) shows that the value of the constant 
A in (2.1) is finite. A numerical calculation shows that A — 0 . 2 9 9 . . . . 

§5. Proof of Theorem 2. Let 2* denote summation over suitable pairs (a,b), which 
were defined in §2. We have 

(5.1) 2mn)= 2 2 - r r j — I? ~r~ 2 I 
/!<* 2 < « < J C i = 2 " ' ai-\ a<b,b<x-\ ° a n<x,a\n,b\n 

a<d<b= >d\n 

a<6,fc<jt-l ^ fl [a,fe]/n<jr a<fc,fc<jc-l ^ a m<x/[a,b] 
a<d<b = >dj([a,b]m 

where the dash in the last sum indicates that we restrict the sum to positive integers m 
for which the condition 

d „ 
a < a < b = > / m 

(d, [a, b]) 

is satisfied. Let now u(x), v(x) be two functions which satisfy 

(5.2) logex <̂  u(x) < \v(x) < log1"6 x9 
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and which will be suitably determined a little later. We shall show first that the terms 
in (5.1) for which b — a > u(x) log x are small. This follows from 

(5.3) 2 1 7 T V - < ^ — V - 2T(«)«-^-. 
2<n<x i = 2,di-di^l>u(x)\ogx " / a i - \ U\X) l O g X n<x U{X) 

The second step in the proof is to show that we can also neglect those terms in (5.1) 
for which b > v(x) log x. Indeed in view of (5.2) and ab = [a, b] (a, b) we have 

(5.4) 2* _L_ 2' is* 2 x 
v(x)\ogx<b<x- 1 * a m<x/[a,b] v(x)logx<b<x b - u(x)\ogx<a<b 

a<b,b — a< u(x) log x 

(a, b) v ^ (a, b) 
x < 2x (b — d)ab v{x)\ogx<b<x b-u{x)\ogx<b (b — a)b 

v 1 M M 
< xu(x) log x 2J — ^ x , 

b>v(x)\ogx b V(x) 

since (a, b) < b - a if 1 < a < &. Thus from (5.1), (5.3) and (5.4) it follows that 

(5.5) S H(n)= I S* - ^ - 2' 1 
n<x b<v(x)\ogx a < b, b — a < u(x) logx w<;c/[a,/j] 

+ 0( — ) + o ( ^ ) . X 

M*) 7 v v(x)' 

Further we shall show that in the sum over a we may suppose that b — a < log x, 
and not only b — a < u(x) log x. Namely we have 

(5.6) S S — <x-±^ 
l^n^x i = 2,dt-d^l>logx d i - d i - x l O g X 

</,-< v(jr)logjr 

To obtain this estimate let a(n) for each « counted in (5.6) denote the number of fs 
such that both dt - di-x > log x and d, < V(JC) log x hold. Then obviously we must 
have a(n) < V(JC), and the left-hand side of (5.6) is 

x̂  1 Tv 1 ^ V(JC) 

^ S ! 2 1 ^ : S a ( r c ) < ^ x - ^ . 
</,-< v(x)logx 

Thus we obtain 

(s.?) s//<«)= s s* T ^ - r i 
n<jc fc<v(jr)logjr a < £ ^ a m<x/[a,b] 

b- a < logx 

/ x \ /xw(x)\ /xv(x) 
+ 0 + O — — + O — ^ 

M * ) ' W ( J C ) / Vlogx 
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Now we shall simplify the triple sum in (5.7) by using Lemma 2. We have 

(5.8) Z ' 1 = r*T-R(a, b) + 0(2b~a), 
m<x/[a,b] [G, V\ 

and 

(5.9) X 2 * j — ^ 2logx v(x) log2 x < x/u(x). 
b<v{x)\ogx a < b,b-a<\ogx * a 

Hence we may write 

(5.10) ^H(n)=x S 2 * * M * ( f l ' f r ) 

n<x &<v(jr)logj: a<b,b- a < logjt ( # Cl)[a, Oj 

W y V V(X)/ V logx/ /(xy v v(x) 

Noting that R(a, b) denotes the density of integers with the constraints given in Lemma 
2, we obtain that 0 < R{a, b) < 1 for all a, b. Thus Theorem 2 will follow from (5.10) 
with a suitable choice of u(x) and v(x) if we can prove 

(5.1D 2 2*-—L—T7+2 2* * 
(b — a)[a, b] b = 2 b-a>\0gX,a<b (b — a)[a, b] 

(log log xf 1 
< : 1-logX y(x) 

Recalling that [a, b] (a, b) = ab it is seen that the first double sum in (5.11) does not 
exceed 

2 l- 2 l-+ 2 2 - ^ - . 
6> v(.r)logjr ^ a<b,b-a<logx a b>v(x)\ogx a<b,b-a>\ogx \t> a)(lb 

Now we have 

S i Z I« I If* f 
fc> v(*)log;c ^ a<6,Z?-a<logjt ^ fc>v(*)logJt ^ ^ b - log* ' 

^ S 7 log ; < log X S — < 
b>v{x)\ogx V _ lQg * b>v(x)\ogx b2 y M 

b 

so that (5.11) will follow from 

(5.i2) 2 = 2 2 - i f L * ) - ^ * * * * 2 

* = 2 «<*,*-«> log* (* - a)ûfe l o g * 
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If we set b — a = ra, then 

2< 2 12(-^^ = 2 ±sm, 
m>\ogx m b>m \D Wl)b m>\ogx m 

say. But for each m > 1 

sm = 2 2 {b \m' h)=2d 2 —L—. 
d\m b>m,(b,m) = d \P 171)0 d\m b>m,(b,m) = d (P m)b 

Hence setting b = Bd, m = Md, (B, M) = 1, we obtain 

Sm = ZJ d ZJ 

d\m B>M,(B,M) = \ (Bd - Md)Bd 

= 2 — 2 (——-1 

d\m Md B>MAB,M)=l ^B ~ M B 

1 x̂  v 1 T ( m ) l o ê m 

= - 2 J ZJ - < 
m d\m B>M,(B,M)=\ ** m 

Therefore using the elementary estimate 

ZJ T(n) = X log X + 0(x) 
n < x 

and partial summation, we obtain 

v v T(/W) log m (log log xf 
2J< la : <—; , 

m>\ogx m2 log x 

hence (5.11) follows. Collecting together all the estimates we finally obtain 
^ / x \ ( xu(x)\ (xv(x)\ /^(log log x)1 

2 H(n) = Bx + 0\ + O — — + O — — + O f 5 

W ) ' Vv(jc)/ Vlogx/ V log* 
= £JC + 0(;c(logx)- , /3), 

if we choose 

u{x) = log1/3 x, V(JC) = log2/3 x. 

This choice satisfies (5.2), hence we obtain (2.3) with B given by (2.4). A numerical 
calculation shows that B = 1.77 . . . . 
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