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AN APPLICATION OF A GENERALIZATION OF 
TERQUEM'S PROBLEM 

BY 

STEPHEN M. TANNY 

Moser and Abramson [4] proved: given m>2 and 0<kl9 k2i . . . , kp<m, 
the number of ^-combinations 

1 < *! < x2 < • • • < xv < n 
satisfying 

? F> 
*! = 1+Zq (mod m), x^ = x^+l+kj (mod m), ji = 2, 3 , . . . , p. 

is 

(1) / (n , p; m | kl9 k29. . . , fcp) = I [ m J I 

([x] denotes the greatest integer <x). 
The case m=2 , / ^=0 , 7 = 1 , 2 , . . . ,p is the well-known Terquem's problem 

[8], while &,=0, 7 = 1 , 2 , . . . , / ? is Skolem's generalization [4] of Terquem's 
problem. 

In another direction Terquem's problem can be generalized to: find the number 
F(n,p; a, /?) ofp-combinations in which the first oe integers are of the same parity, 
the next /? are of opposite parity to that of the previous a, the next a are of opposite 
parity to the previous /?, and so on (the final group may have fewer than a or /? 
elements). The numbers F(n,p; 1, 1) and F(n,p;oi,l) have been determined 
([3], [6], [7]). The purpose of this note is to observe that F(n,p; a, j8) can be 
obtained from (1) by letting m=2 and adding the two counts which result by taking 
&1==0 or 1 (corresponding to the cases x1 is odd or even) and 

fc (0 if z = a + l , a + / ? + l , 2a+/?+l , 2a+2j8+l, . . . , 
* U otherwise. 

It remains only to determine k1+k2+' • '+kv i.e., how many of the &/s, with 
f > l , are equal to 0. 

First write p in the form 

p = p^+p^+r, 0 < px-p2 <; 1, 

/ a - 1 if px = p2, 
- ~ l /?- l if pi = p a + l . 

* The author wishes to express his gratitude to the referee for improving the readability of 
this note. 
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Now it is easy to see that 

&i+fc2+- * - + fc„ = fci+p-jPi-Jp2-l--<*r.o 

(da &=1 if a = è , and = 0 if a^b). Adding the two counts corresponding to k±=0 

or 1, we obtain 

F(n9 p; a, j8) = 
"«+P1+P2—A r.O 

f(«, P ; 1, i) = 

"n+px+p2+l-gr,0"l 

2 W 2 
\ p / \ p 

In particular, when a= j8= l we have: the number of alternating (in parity) 

^-combinations is 

~fl+pl\ /pi+ff—1~ 

, - J J / T J -, 
([1], [2], [3], [6], [7]). 
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