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Abstract. We consider a class of skew product maps of interval diffeomorphisms over
the doubling map. The interval maps fix the end points of the interval. It is assumed
that the system has zero fiber Lyapunov exponent at one endpoint and zero or positive
fiber Lyapunov exponent at the other endpoint. We prove the appearance of on–off
intermittency. This is done using the equivalent description of chaotic walks: random
walks driven by the doubling map. The analysis further relies on approximating the chaotic
walks by Markov random walks, that are constructed using Markov partitions for the
doubling map.
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1. Introduction
The setting of this paper is of skew product systems of interval maps over linearly
expanding interval maps

Ĝ(y, x)= (Em(y), ĝy(x))

on I× [0, 1]. Here Em : I→ I, m an integer bigger than or equal to 2, is the expanding
map

Em(y)= my − bmyc,

and we use notation I= [0, 1] for the base space on which Em acts. For each y ∈ I, ĝy is a
strictly monotone interval map fixing the endpoints ĝy(0)= 0 and ĝy(1)= 1. It is assumed
to be smooth jointly in (y, x). We will in particular consider the doubling map E2 and we
will limit to this now and return to stronger expanding maps later.
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Since each ĝy fixes the endpoints of the interval [0, 1], we can conjugate the map Ĝ on
I× (0, 1) to a map G on I× R, using the homeomorphism h : R→ (0, 1),

h(x)=
ex

1+ ex .

That is,

G(y, x)= (E2(y), gy(x))= (E2(y), h−1
◦ ĝy ◦ h(x)).

Observe that h−1(x)= ln(x/1− x). A small calculation shows that near−∞we can write

gy(x)= x + ln(ĝ′y(0))+ R(y, x)

with

|R(y, x)| ≤ Ce−|x |

for some constant C > 0. A similar expansion applies near +∞.
Particular examples are given by translations on the real line driven by the doubling

map,

(y, x) 7→ (E2(y), x + ξ(y)). (1)

Iterates of the fiber coordinate yield the cocycle

x 7→ x +
n−1∑
i=0

ξ(E i
2(y)).

By [5] this cocycle is recurrent precisely if∫
I
ξ(y) dy = 0. (2)

See [8] for the central limit theorem for cocycles over intervals maps such as the doubling
map. References [9, 13, 19, 20] contain further results on ergodicity and stable transitivity
for similar cocycles.

Conjugating (1) back to I× (0, 1) results in the skew product system

(y, x) 7→
(

E2(y),
eξ(y)x

1+ (eξ(y) − 1)x

)
. (3)

Figure 1 shows a time series for the x-component of (3) for the choice ξ(y)=−1+ 2y (for
which (2) applies). Noticeable are the long durations of the time series near x = 0 or x = 1
and the bursts away. From this perspective such skew product systems are considered in
[7, §6], but for statements on dynamics that paper replaces the action of E2 by independent
and identically distributed (i.i.d.) noise from a uniform distribution on I.

A broader framework for which the study of systems such as (3) is relevant is that
of on–off intermittency [22]. On–off intermittency is associated with invariant manifolds
with an attractor inside that is neutral or weakly repelling in transverse directions. This
can generate dynamics showing an aperiodic switching between laminar dynamics near
the attractor and bursts away. In (3), I× {0} and I× {1} play the role of the invariant
manifolds with chaotic dynamics inside and a neutral transverse direction. A different
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FIGURE 1. Time series of the x-coordinate of (y, x) 7→ (3y mod 1, (xe−1+2y/(1+ x(e−1+2y
− 1)))) on I×

[0, 1]. The multiplication by 3, instead of 2, is for computational convenience. The restriction of this map to
I× (0, 1) is topologically conjugate to the group extension (y, x) 7→ (3y mod 1, x − 1+ 2y) on I× R. For

almost all initial values y, the distribution of the steps is uniform on [−1, 1] and has average zero.

type of system, but also with vanishing transverse Lyapunov exponents, is considered
in [12]; that paper considers Pomeau–Manneville maps with a parameter that is driven
by the doubling map. In bifurcation studies the relevant transition is called a blowout
bifurcation, where a transverse Lyapunov exponent passes through zero [2, 21].

Quantitative characteristics of on–off intermittency are considered in [14]. Referring to
systems such as (1) as chaotic walks, the authors comment

Is there a setting in which to understand both the random and the chaotic driving
cases? We suggest that one approach to answering this question is through the
study of ‘chaotic walks’, i.e. additive walks where the increments are chosen from
some chaotic process. [· · ·] We know of no systematic studies of chaotic walks,
though they are clearly an important counterpart to the comparatively well-studied
random walks.

Random walks in Z driven by expanding Markov maps are considered in [18], where
they are called deterministic random walks. Other authors have considered deterministic
random walks driven by irrational circle rotations instead of chaotic maps such as the
doubling map; see in particular [1, 6]. In [11] the reader can find a study of iterated function
systems of interval diffeomorphisms with a neutral fixed point. This amounts to a study of
chaotic walks on the line: for instance the symmetric random walk can be cast as a skew
product setting of the form

(y, x) 7→ (E2(y), x + sign(y − 1
2 )).

See Appendix A for comments on the relation and difference between chaotic walks and
random walks. In the same vein as [3, 4, 11] analyze iterated function systems of logistic
maps with vanishing fiber Lyapunov exponent at zero.
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1.1. The class of skew product systems. We go beyond group extensions as in (1) or
(3), and will consider small smooth perturbations of the form

Ĝ(y, x)= (E2(y), ĝy(x))=
(

E2(y),
eξ(y)x

1+ (eξ(y) − 1)x
+ r(y, x)

)
,

where r(y, x)=O(x2), x→ 0.

Definition 1.1. The set Ŝ consists of smooth skew product systems Ĝ : I× [0, 1] → I×
[0, 1],

Ĝ(y, x)= (E2(y), ĝy(x)).

Here ĝy are strictly increasing functions,

ĝy(x)=
eξ(y)x

1+ (eξ(y) − 1)x
+ r(y, x)

with, for some C > 0, r0 > 0:
(1)

∫
I ξ(y) dy = 0;

(2) |r(y, x)| ≤ Cx2, |r(y, x)| ≤ C |1− x |;
(3) |r(y, x)|, |(∂/∂x)r(y, x)|, |(∂/∂y)r(y, x)| ≤ r0.

Note that Ŝ depends on ξ and C, r0. We will occasionally write Ŝr0 to indicate
dependence on r0, suppressing dependence on C, ξ . We write Ĝn(y, x)= (En

2 (y), ĝn
y (x)),

so that
ĝn

y (x)= ĝEn−1
2 (y) ◦ · · · ◦ ĝy(x).

Remark 1.1. Equation (2), noting that in addition r(y, x)=O(x2) for x→ 0, expresses a
vanishing fiber Lyapunov exponent at 0:

L0 :=

∫
I

ln ĝ′y(0) dy =
∫
I
ξ(y) dy = 0.

The fiber Lyapunov exponent at 1,

L1 :=

∫
I

ln ĝ′y(1) dy (4)

need not vanish for maps Ĝ ∈ Ŝ. Clearly L1 is small if r0 is small.

In the setting of skew product systems on I× R, Definition 1.1 leads to the class of
systems

S = Sr0 = {G : I× R→ I× R; G = (id×h−1) ◦ Ĝ ◦ (id×h), Ĝ ∈ Ŝ}.
The set S consists of smooth skew product systems G : I× R→ I× R,

G(y, x)= (E2(y), gy(x)). (5)

For these systems, gy are strictly increasing functions of the form

gy(x)= x + ξ(y)+ R(y, x) (6)

with

|R(y, x)|, |DR(y, x)| ≤ Cr0,

|R(y, x)| ≤ Cex ,

for some C > 0. Note that the perturbation R(y, x) is exponentially flat at −∞. One can
view such a map as giving a non-homogeneous chaotic walk.
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FIGURE 2. This plot features a perturbation of the skew product map considered in Figure 1. Shown is a time
series of the x-coordinate of (y, x) 7→ (3y mod 1, xe−1+2y/(1+ x(e−1+2y

− 1))+ 1
5 x2(x − 1)) on I× [0, 1].

1.2. Monotone displacement functions. Here we treat displacement functions ξ : I→
R that are strictly monotone functions satisfying (2). Below we consider general smooth
displacement functions.

Figure 2 shows a time series of a perturbation of the map considered in Figure 1, where
the perturbation is chosen to keep a zero-fiber Lyapunov exponent at 0 and to get a positive-
fiber Lyapunov exponent at 1. As this makes I× {1} repelling on average, we find the
phenomenon of on–off intermittency only near I× {0}.

We formulate two theorems expressing aspects of on–off intermittency. The results are
formulated in terms of the skew product maps Ĝ on I× [0, 1]. The results can of course
be phrased for the corresponding skew product systems G on I× R, that is in terms of
chaotic walks on R.

For x, p ∈ (0, 1) with x < p, define

T (y)=min{n > 0; ĝn
y (x) > p}.

The following result states that T has finite values almost everywhere, but the average of
the escape time T is infinite.

THEOREM 1.1. Let ξ : I→ R be a smooth strictly monotone map satisfying (2). For r0

small enough, the following holds for Ĝ ∈ Ŝr0 :
(1) T (y) <∞ for Lebesgue almost all y ∈ I;
(2)

∫
I T (y) dy =∞.

For a subset U of I write 1U for the characteristic function of U .

THEOREM 1.2. Let ξ : I→ R be a smooth strictly monotone map satisfying (2). For r0

small enough, the following holds for Ĝ ∈ Ŝr0 .
Assume L0 = 0 and L1 > 0. Let U be a compact interval [ε, 1] ⊂ (0, 1] with ε > 0

small. Take x ∈ (0, 1). Then for Lebesgue almost all y ∈ I, the number of iterates ĝi
y(x) in
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U is infinite, but

lim
n→∞

1
n

n−1∑
i=0

1U (ĝi
y(x))= 0.

The results imply that the only invariant probability measures for a skew product Ĝ ∈ Ŝ
with Lebesgue measure as marginal, are the product measures of Lebesgue measure on I
and convex combinations of delta measures at 0 and 1.

A similar result can be formulated for a skew product Ĝ ∈ Ŝ with vanishing fiber
Lyapunov exponents at both boundaries, i.e. where L1 = 0 in (4): just replace U by an
interval [ε, 1− ε] with ε > 0 small.

THEOREM 1.3. Let ξ : I→ R be a smooth strictly monotone map satisfying (2). For r0

small enough, the following holds for Ĝ ∈ Ŝr0 .
Assume that both L0 = L1 = 0. Let U be a compact interval [ε, 1− ε] ⊂ (0, 1) with

ε > 0 small. Take x ∈ (0, 1). Then for Lebesgue almost all y ∈ I, the number of iterates
ĝi

y(x) in U is infinite, but

lim
n→∞

1
n

n−1∑
i=0

1U (ĝi
y(x))= 0.

1.3. General displacement functions. The results stated above are all for monotone
displacement functions ξ . The results are proved to hold for general smooth displacement
functions ξ , if we replace the doubling map by an expanding map Em(x)= mx mod 1
for large enough m. We will formulate the result analogous to Theorem 1.2. The
class of skew product systems Ĝ(y, x)= (Em(y), ĝy(x)) with fiber maps ĝy as in
Definition 1.1, is denoted by Ŝm

r0
. The corresponding class of skew product systems

G(y, x)= (Em(y), gy(x)) is denoted by Sm
r0

.

THEOREM 1.4. Let ξ : I→ R be a smooth map, not identically zero, satisfying (2).
For m ∈ N large enough and r0 > 0 small enough, the following holds for Ĝ ∈ Ŝm

r0
.

Assume L0 = 0 and L1 > 0. Let U be a compact interval [ε, 1] ⊂ (0, 1] with ε small. Take
x ∈ (0, 1). Then for Lebesgue almost all y ∈ I, the number of iterates ĝi

y(x) in U is infinite,
but

lim
n→∞

1
n

n−1∑
i=0

1U (ĝi
y(x))= 0.

Above we considered interval diffeomorphisms forced by expanding maps on the
interval I. Another natural context is that of interval diffeomorphisms forced by the
(linearly) expanding circle maps. Here we are given a smooth function ξ : T→ R (with
T= R/Z). This is included in Theorem 1.4, by taking functions ξ : I→ R that give smooth
functions on the circle T= R/Z when identifying 0 and 1. So Theorem 1.4 contains as a
special case a statement on skew products on T× [0, 1] that are forced by sufficiently
expanding circle maps.
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1.4. Methodology. We finish the introduction with a brief account of the approach we
take in this paper. The reasoning will be in the setting of skew products with the real line
as fiber. We start with a chaotic walk

xn+1 = xn + ξ(yn)+ R(yn, xn),

where yn+1 = E2(yn) and R is small, so that we have a non-homogeneous walk close
to a homogeneous walk. More specific, as the chaotic walk originates from a smooth
skew product system on I× [0, 1], we have that R(y, x) is exponentially small in x for x
near −∞.

The chaotic walk driven by the doubling map is rewritten as a chaotic walk driven by
a subshift of finite type. The subshift is obtained from a Markov partition for E2. We will
consider increasingly fine Markov partitions indexed by an integer N . This yields subshifts
σ on sequence spaces 6AN with an increasing number of symbols. Using a measurable
isomorphism of E2 with σ , the system is written as a chaotic walk

xn+1 = xn + ξ(σ
nω)+ R(σ nω, xn).

This chaotic walk is approximated by Markov random walks driven by subshifts, i.e. by
walks of the form

xn+1 = xn + ξN (ωn)+ RN (ωn, xn)

where ω = (ωi )i∈N. Specifically, the maps ξN and RN are constant in ω on cylinders of
rank one. The approximations get better for increasing N when the partition elements get
smaller diameter.

Our main results are proved using results on escape times from subintervals of the line
for the approximate Markov random walks, and carefully taking limits of increasingly fine
Markov partitions. The derivation of the results on Markov random walks is contained in
the appendices.

We expect that various generalizations of the results in this paper can be achieved
using the methods developed in this paper as starting point. One may think of driving by
general expanding or by hyperbolic dynamical systems, and a treatment of larger classes
of functions ξ .

2. Approximation by step skew products
Although Theorems 1.1 and 1.2 are formulated for Ĝ ∈ Ŝ, the analysis mostly uses the
formulation in terms of the skew product system G on I× R. We will approximate G ∈ S
with step skew product systems driven by subshifts of finite type. This is done by using
fine Markov partitions for E2 of I. Take a Markov partition PN of I given by K = 2N

partition elements

Pi =

[
i − 1

K
,

i
K

]
,

1≤ i ≤ K . Note that
E2(Pi )= P2i−1 ∪ P2i ,

indices taken modulo K . Consider the resulting subshift of finite type (6AN , σ ) with
adjacency matrix AN = (ai j )

K
i, j=1 such that ai j = 1 precisely if j = 2i − 1 or j = 2i
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(modulo K ). That is, 6AN ⊂ {1, . . . , K }N is given by

6AN = {ω ∈ {1, . . . , K }N; aωiωi+1 = 1 for all i}.

Here ω = (ωi )i∈N.

Example 2.1. For N = 1,

A1 =

(
1 1
1 1

)
,

which is the full shift on two symbols 1, 2. For N = 2, A2 is the following 4× 4-matrix:

A2 =


1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

 .
It induces a subshift of finite type on sequences with four symbols 1, 2, 3, 4.

The shift σ on 6AN is primitive and in fact

AN
N > 0

(AN
N being the matrix with 1 at every entry).
We use notation

C0,...,n−1
i0,...,in−1

= {ω ∈6AN ; ω j = i j , 0≤ j < n}.

Such sets are called cylinders; a cylinder with the first n entries specified is called a cylinder
of rank n.

The stochastic matrix 5N is given by

5N =
1
2AN .

Denote the corresponding Markov measure on 6AN by νN , where νN assigns equal
measure 1/K to each cylinder of rank one C0

i (Appendix B contains more on this material).
The following lemma contains the basic approximation result that we will use frequently

in the following. It starts by rewriting the skew product system on I× R to a skew product
system on 6AN × R. The two systems are topologically semi-conjugate and they are
measurably isomorphic, where we use Lebesgue measure on I× R and the product of
Markov measure νN and Lebesgue measure on 6AN × R.

LEMMA 2.1. For any given N, a skew product system G ∈ S is measurably isomorphic to
a skew product system F :6AN × R→6AN × R,

F(ω, x)= (σω, fω(x))= (σω, x + ξ(ω)+ R(ω, x)) (7)

with ∫
6AN

ξ(ω) dνN (ω)= 0

and

|R(ω, x)| ≤ Cex ,

|R(ω, x)| ≤ Cr0,

for some C > 0.
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The skew product system F can be approximated by a skew product FN :6AN × R→
6AN × R,

FN (ω, x)= (σω, fN ,ω(x))= (σω, x + ξN (ω0)+ RN (ω0, x)).

Here

min
ω∈C0

ω0

ξ(ω)≤ ξN (ω0)≤ max
ω∈C0

ω0

ξ(ω).

with ∫
6AN

ξN (ω) dνN (ω)= 0

and the function RN can be any function so that

|RN (ω, x)| ≤ Cex ,

|RN (ω, x)| ≤ Cr0.

There exists C > 0 so that

|ξ(ω)− ξN (ω0)| ≤ C/2N .

Remark 2.1. The skew product system FN is a step skew product system: the fiber map
fN ,ω does not change for ω in cylinders of rank one, and hence can be written as a function
fN ,ω0 .

Proof. For any N , we can map I to 6AN by IN (x)= ω with

ωi = j if E i
2(x) ∈

[
j − 1
2N ,

j
2N

)
. (8)

This yields the topological semi-conjugacy

σ ◦ IN = IN ◦ E2. (9)

The map HN :6AN → I given by

HN (ω)=
⋂
i≥0

E−i
2 (Pωi )

is νN -almost everywhere an inverse of IN . The system σ :6AN →6AN with measure νN

is therefore measurably isomorphic to E2 : I→ I with Lebesgue measure. With G as in
(5), let F :6AN × R→6AN × R be given by

F(ω, x)= (σω, fω(x))= (σω, gHN (ω)(x)).

By (9) we have

F ◦ (IN , id)= (IN , id) ◦ G.

The skew product system G : I× R→ I× R (using Lebesgue measure) is hence
measurably isomorphic to F :6AN × R→6AN × R (with measure the product of νN

and Lebesgue measure). Note that we use the term measurably isomorphic without
demanding, as is often done, that the given measures are invariant.
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Recall from (6) the notation gy(x)= x + ξ(y)+ R(y, x). We will accordingly write,
by a slight abuse of notation,

fω(x)= x + ξ(ω)+ R(ω, x).

The skew product map F is approximated by a skew product map FN :6AN × R→
6AN × R,

FN (ω, x)= (σω, fN ,ω(x))= (σω, x + ξN (ω)+ RN (ω, x)),

where ξN (ω) and RN (ω, x) as function of ω are constant on the cylinder C0
ω0

. We choose
ξN (ω)= ξ(HN (ω̃)) for a fixed choice of ω̃ ∈ C0

ω0
. We will also write ξN (ω0) and R(ω0, x)

to emphasize the dependence on ω0 alone. The function RN is a function satisfying bounds
in Lemma 2.1.

In the above setup we get ∫
6AN

ξ(ω) dνN (ω)= 0.

By shifting the values ω̃ in the cylinders C0
ω0

, we can achieve∫
6AN

ξN (ω) dνN (ω)= 0.

The bounds on ξ − ξN follow from the facts that ξ is C1 and the diameter of each
partition element Pi is 1/2N . �

Phrased in different words, starting with a chaotic walk

xn+1 = xn + ξ(σ
nω)+ R(σ nω, xn)

on R, with ω ∈6AN , we approximate by a Markov random walk

xn+1 = xn + ξN (ωn)+ RN (ωn, xn).

Assume that ξ is a smooth strictly increasing function on I with
∫
I ξ(y) dy = 0. We

need the following lemma; see Property (C.7) in Appendix C.

LEMMA 2.2. For r0 small enough, and any L > 0, there is ω from a set of positive
probability so that for x ∈ R, there is n ∈ N, f n

ω (x) < x − L ( f n
ω (x) > x + L) and

f i
ω(x) < x ( f i

ω(x) > x) for all 0< i ≤ n.

Proof. This is obvious from the monotonicity of ξ and
∫
I ξ(y) dy = 0. �

3. Average return times
Let us make explicit the convention used already in previous parts: we use C to designate a
generic constant depending only on data from the skew product system. In particular, when
considering approximations with Markov shifts driven by the shift on 6AN for different
N , a constant C is assumed to be uniform in N .

We start with a proposition on escape times from compact intervals. Let G ∈ S as in
(5). Consider a compact interval [A, B] ⊂ R and let x ∈ [A, B]. Define the escape time

T[A,B](y)=min{n > 0; gn
y (x) 6∈ [A, B]},

taking T[A,B](y) to be infinite if no such n exists.
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PROPOSITION 3.1. For Lebesgue almost all y ∈ I, T[A,B](y) <∞. The average escape
time from [A, B] is finite: ∫

I
T[A,B](y) dy <∞.

Moreover, both
pA = Leb({y; xT[A,B](y) < A})

and 1− pA are positive.

Proof. We will make use of the topological semi-conjugacy of E2 on I to the shift σ
on 6 =6A1 = {1, 2}N. This is by the map H : I→6 defined by H(y)= ω with ω =
(ωi )i∈N and

ωi =

{
1, E i

2(y) < 1/2,
2, E i

2(y)≥ 1/2.

We have σ ◦ H = H ◦ E2. In fact, H provides a measurable isomorphism between E2 :

I→ I with Lebesgue measure and σ :6→6 with Bernoulli measure ν (the product
measure coming from equal probability 1/2 for both symbols 1 and 2).

Consider the topologically semi-conjugate skew product system

F(ω, x)= (σω, fω(x))

on 6 × R. Our assumptions give the existence of ζ0, . . . , ζn−1 so that f n
ω (B) < A if ω ∈

C0,...,n−1
ζ0,...,ζn−1

. For ν-almost every ω ∈6 one has a first entrance time

Tζ (ω)=min{i > 0; σ iω ∈ C0,...,n−1
ζ0,...,ζn−1

}.

It is standard that the expected entrance time is finite, see for instance [16, §17.3.2] (see
also [11]): ∫

6

Tζ (ω) dν(ω) <∞.

Indeed this is the expected time to yield for the first time the given finite sequence of
symbols ζ0, . . . , ζn−1 when picking two symbols i.i.d. with probability 1/2 each. It
follows that ∫

I
T[A,B](y) dy <∞.

Analogous to the existence of ζ0, . . . , ζn−1, there are η0, . . . , ηm−1 with f m
η (A) > B.

Also the expected entrance time to enter the cylinder C0,...,m−1
η0,...,ηm−1

is finite. From this it is
clear that pA and 1− pA are positive. �

Take G ∈ S and consider the chaotic walk gn
y (x). Let B ∈ R and x ∈ (−∞, B]. Define

the escape time

TB(y)=min{n > 0; gn
y (x) 6∈ (−∞, B]} (10)

with TB(y) infinite if no such n exists. The next two propositions together prove
Theorem 1.1. The first proposition, Proposition 3.2 shows that almost surely, points escape
from (−∞, B]. The second proposition, Proposition 3.3, establishes that the average
escape time is infinite. In both statements, r0 will be small.
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PROPOSITION 3.2. For Lebesgue almost all y, TB(y) <∞.

Proof. Apply Lemma 2.1 to rewrite the chaotic walk as

xn = f n
ω (x)= xn−1 + ξ(σ

n−1ω)+ R(σ n−1ω, xn−1), (11)

driven by the shift on 6AN for some given N . In this setting, (10) becomes

TB(ω)=min{n > 0; f n
ω (x) /∈ (−∞, B]}.

We must show

νN ({ω ∈6AN ; TB(ω) <∞})= 1.

Divide (−∞, B] into three subintervals (−∞, A2], [A2, A1] and [A1, B]. If we start
at x ∈ [A2, B] then by Proposition 3.1, with probability one some iterate will have left
[A2, B]: either through the right boundary point B or through the left boundary point A2.
In the first case the iterate has escaped from (−∞, B]. In the latter case, there may be a
return to [A1, B] after which a further iterate may escape (−∞, B].

We approximate the cocycle (11) by Markov random walks, with different
approximations on the (overlapping) intervals (−∞, A1] and [A2, B]. On [A2, B] we use
an approximation by a Markov random walk driven by the shift on 6AN0

for a sufficiently
large but fixed N0. On (−∞, A1] we use an approximation by a Markov random walk
driven by the shift on 6AN , using increasingly fine partitions PN for increasing N . Also
the boundary points A2 and A1 will depend on N : we will take A1, A2 so that

B − A1, A1 − A2 = C1 N

for a suitable C1, subject to conditions made explicit later on. Take a compact
interval [A1, A1 + E] lying inside (A2, B) with E >maxω∈6AN

|ξ(ω)|. Without loss of
generality, we may assume x ∈ [A1, A1 + E] since x > A1 will hold for N large enough
and any starting point in [A1 + E, B] will leave (−∞, B] in a finite number of iterates if
x does.

As said, on [A2, B] we use an approximation by a Markov random walk driven by the
shift on 6AN0

for a sufficiently large but fixed N0. By Lemma 2.1, given ω ∈6AN0
, the

cocycle (11) is approximated by a Markov random walk

vn+1 = vn + ξN0(ωn)+ RN0(ωn, vn). (12)

Choose the approximation so that

ξN0(ω0)+ RN0(ω0, x)≤ min
ω∈C0

ω0

ξ(ω)+ R(ω, x).

Then
x0, x1, . . . , xn ∈ [A2, B] H⇒ vi ≤ xi for all 0≤ i ≤ n + 1.

We have
|ξ(ω)− ξN0(ω0)| ≤ C/2N0

for some C > 0. Further |RN0 | ≤ Cr0 for some C > 0.
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On (−∞, A1], applying Lemma 2.1, (11) is approximated by a Markov random walk

vn+1 = vn + ξN (ωn)+ RN (ωn, vn) (13)

with

ξN (ω0)+ RN (ω0, x)≤ min
ω∈C0

ω0

ξ(ω)+ R(ω, x).

We have |ξ(ω)− ξN (ω0)| ≤ C/2N and RN (ω, v)≤−Ce−|A1| on (−∞, A1]. Again

x0, x1, . . . , xn ∈ (−∞, A1] H⇒ vi ≤ xi for all 0≤ i ≤ n + 1.

Let v0 = x ∈ [A1, A1 + E]. We can of course view the random walk driven by the shift
on 6AN0

as a random walk driven by the shift on 6AN . Doing so we can say that for
νN -almost all ω ∈6AN , there will be a finite first escape time S1 of the random walk
(12) from [A2, B] (Proposition 3.1). If vS1 < A2, then vS1 ∈ [A2 − E, A2] and the random
walk continues by following (13). There may be a return time T1 > S1 with vT1 > A1.
Then vT1 lies in [A1, A1 + E]. After this we repeat by continuing with (12). Given v0 =

x ∈ [A1, A1 + E] and ω ∈6AN , we obtain a sequence of successive escape and return
values:

vS1 ∈ [A2 − E, A2],

vT1 ∈ [A1, A1 + E],

vS2 ∈ [A2 − E, A2],

...

stopping if either the walk starting from vSi does not return to [A1, B], or if the walk
starting from vTi has escaped from [A2, B] through the right boundary point B. Formally
T0 = 0,

Si (ω)=min{n > Ti−1; vn(ω) /∈ [A2, B]},

Ti (ω)=min{n > Si ; vn(ω) /∈ (−∞, A1]}.

Thus
νN ({ω ∈6AN ; TB(ω) <∞})≥ νN ({ω ∈6AN ; TB,v(ω) <∞}),

with
TB,v(ω) :=min{n > 0; vn(ω) /∈ (−∞, B]}.

Let

pSi = νN ({vSi (ω) < A2 | vωTi−1
, ωTi−1}),

pTi = νN ({Ti (ω)=∞ | vωSi
, ωSi }).

We invoke the results in the appendices to obtain bounds on pSi and pTi . We wish to apply
Proposition C.5 to get a bound on pTi . Lemmas D.1 and D.2 ensure bounds as required in
Appendix C for the Markov random walk. The choices for A1, A2 ensure that (C.13) holds
for suitable C1. However, with B as in (C.13), A1 − A2 ≤ B ≤ A1 − A2 + E is not fixed
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as assumed in Proposition C.5. But the proof of Proposition C.5, see in particular (C.14),
gives pTi ≤ C N/2N

+ C Ne−A1 . Choosing C1 appropriately we find

pTi ≤ C N/2N

for some C > 0.
As A2 − A1 = C1 N , taking C1 ≥ 1, σ Ti−Si maps cylinders of rank one in 6AN to a

union of cylinders of rank one in 6AN0
. From Proposition C.1 (after reflecting through the

origin) we infer 1− pSi ≥ CαN0eCαN0 N , or equivalently,

pSi ≤ 1− CαN0eCαN0 N

for some C > 0. Here αN0 < 0 and |αN0 | ≤ Cr0 for some C > 0, if N0 is large enough.
Observe that TB,v(ω)=∞ occurs if S1, T1, . . . , Sn are bounded for some n ≥ 1,

vSi (ω) < A2 for 1≤ i ≤ n and Tn(ω)=∞. For each i ≥ 1, pSi ≤ p and pTi ≤ q with:
(1) p is the probability to leave [A2, B] through A2 if we start at A1;
(2) q is the probability to stay in (−∞, A1] if we start at A2.
We have

p ≤ 1− CαN0eCαN0 N ,

q ≤ C N/2N .

Therefore,

νN ({ω ∈6AN ; TB,v(ω)=∞})≤ pq
(

1+
∞∑

i=1

pi (1− q)i
)
<

pq
1− p

. (14)

The right-hand side of (14) goes to zero as N →∞. Hence TB,v(w) <∞ for almost all
ω and the same is true for TB(ω). �

The following proposition states that the average return time of a point to a
compact interval is infinite. The arguments in the proof are reminiscent of the proof of
Proposition 3.2, but use an approximation by step skew product systems from above
instead of from below. A similar strategy was employed in [11, Lemma 5.2] for non-
homogeneous random walks with i.i.d. steps.

PROPOSITION 3.3. ∫
I

TB(y) dy =∞.

Proof. Given x0 < x , with positive probability one can find an n so that f n
y (x) < x0. See

Lemma 2.2. So we may have an assumption on a large enough distance B − x0 for a
starting point x0. There is for the same reason no loss in assuming that B is a large negative
number.

We make use of this by splitting an interval (−∞, B] into parts and considering
the random walks separately in different parts. Take points A2 < A1 < B. The mutual
distances between these points will be determined later. We first consider escape of xk

from [A2, B], for x0 ∈ [A1, B], and in particular escape through the boundary A2. That
will be followed by a second part of the argument treating a subsequent return to [A1, B].
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PART 1 (INITIAL POINT IN [A1, B], ESCAPE FROM [A2, B]). By Lemma 2.1, for a given
Markov partition PN0 , (7) can be written as the chaotic walk

xk+1 = xk + ξ(σ
kω)+ R(σ kω, xk) (15)

on 6AN0
× R. For initial points in [A1, B] we compare (15) with a random walk driven

by the subshift for a given Markov partition PN0 for some sufficiently large N0 (conditions
determining the size of N0 will be made explicit below). That is, we compare with

wk+1 = wk + ξN0(ωk)+ RN0(ωk, xk)

such that xk ≤ wk for x0 = w0, as long aswk ≤ B. It follows from Lemma 2.1 that we may
take RN0 so that

RN0(ωk, xk)≤ βN0 = CeB
+ C/2N0 .

We get βN0 small by choosing B and N0 large.
Define

T[A2,B](y)=min{n > 0; xn /∈ [A2, B]}

and
S[A2,B](ω)=min{n > 0; wn /∈ [A2, B]}.

We abbreviate this as T (y) and S(ω). Write

S1 = {ω ∈6AN0
; wS(ω) < A2}.

Define pA2 = ν(S1) and qA2 = Leb{y ∈ I; xT (y) < A2}. Then qA2 ≥ pA2 .
Proposition C.1 yields a lower bound

pA2 ≥ Cα1eCα1 A2

with α1 = βN0 . To apply the proposition we need a large enough distance B − x0 as
expressed by (C.8). As discussed earlier, we may assume this to hold. In the lower bound,
α1 is small if r0 is small and N0 large. Hence

qA2 ≥ Cα1eCα1 A2 .

PART 2 (INITIAL POINT IN (−∞, A2], ESCAPE FROM (−∞, A1]). For points that end up
to the left of A2 we estimate the time it takes to return to larger values, to the right of A1.
By (8) for a given Markov partition PN , (7) can be written as the random walk

xk+1 = xk + ξ(σ
kω)+ R(σ kω, xk) (16)

on 6AN × R. We do this for increasing values of N . Assume given an initial point x0 <

A2. Consider the first escape time

UA1(ω)=min{n > 0; xn(ω) > A1}.

A bound for E(UA1) is derived as in Proposition C.2. Care must be taken since the
solution to the Poisson equation is unbounded in N . The random walk (16) is compared
with

wk+1 = wk + ξN (ωk)+ RN (ωk, xk)
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on 6AN × R, such that xk ≤ wk as long as wk ∈ (−∞, A1]. We can bound

RN (ωk, xk)≤ βN = CeA1 + C/2N .

Consider the stopping time

VA1(ω)=min{n > 0; wn(ω) > A1}.

Observe that UA1(ω)≥ VA1(ω). Proposition C.2 yields E(VA1)≥ C/βN , assuming A1 −

A2 ≥ G where G appears as condition (C.13) that is needed to apply Proposition C.2.
Lemma D.1 gives that we can take G = C N for some C > 0. We therefore take

A2 =−C2 N ,

A1 =−C1 N

for uniform constants C1, C2 so that A1, A2 go to −∞ as N →∞ and A1 − A2 ≥ G. We
conclude that under these conditions, for some C > 0,

E(UA1)≥ C/βN .

The constant C is uniform in N and also in ω−1.

PART 3 (COMBINING PREVIOUS PARTS). We combine the information in the previous
parts on the two random walks in (−∞, A1] and [A2, B] and let N go to∞ to prove the
result. For x0 < B, let

T (y)=min{n > 0; xn > B}.

For the random walk wn+1 = wn + ξN (ωn)+ RN (ωn, x), Part 1 and Part 2 above give

E(T )≥ qA2E(UA1)

≥ CeCαN0 A2(eC A1 + 1/2N )−1.

With our choices for A1, A2, this goes to infinity as N →∞. The proposition follows. �

4. Intermittent time series: two neutral boundaries
This section contains the proof of Theorem 1.3.

Proof of Theorem 1.3. On I× R, define a class C = Cd of differentiable functions

Cd = {C ∈ C1(I, R); |C ′| ≤ d}.

For a skew product system of the form G0(y, x)= (E2(y), x + ξ(y)) we have

DG0(y, x)=
(

2 0
ξ ′(y) 1

)
.

It follows that DG0 maps a cone field of cones {(v, u) ∈ R2
; |u| ≤ d|v|} with d >

supy∈T |ξ
′(y)|, inside itself. This property is easily seen to be robust under perturbations:

for small r0 the same holds true for perturbations G of G0 in Sr0 . Therefore, for suitable
d > 0, G maps the graph of a function in Cd into two curves that are both the graph of a
function in Cd .
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To continue we find it convenient to use, as in the proof of Proposition 3.1, the
topological semi-conjugacy of E2 on I to the shift σ on 6 =6A1 = {1, 2}N, σ ◦ I1 =

I1 ◦ E2. The space 6 is equipped with Bernoulli measure ν. We henceforth consider
functions in Dd , which are the functions D that can be written as D(ω)= C(I1(y)) for
some C ∈ Cd .

Given ω ∈6 and a graph D0 ∈Dd , we obtain a sequence of functions

Dn(η)= f n
ω0···ωn−1η

(D0(ω0 · · · ωn−1η)),

where ω0 · · · ωn−1η stands for the concatenated sequence ω0 · · · ωn−1η0η1 · · · . We have
Dn ∈Dd for all n ≥ 0. The interval U ⊂ (0, 1) corresponds to an interval [−L , L] ⊂ R,
with L large. Start with D0 so that graph (D0)⊂ I× [−L , L]. Because Dn ∈Dd for all
n ≥ 0, we can consider a sequence Dni , Dmi of curves that are first returns to [−L , L]
respectively its complement. More precisely,

graph Dni ⊂6 × [−L , L],

graph Dmi ⊂6 × (R\[−L , L])

and

ni+1 =min{n > mi+1; graph Dni+1 ⊂6 × [−L , L], graph Dni+1−1 6⊂6 × [−L , L]},

mi+1 =min{n > ni ; graph Dmi+1 6⊂6 × [−L , L], graph Dmi+1−1 ⊂6 × [−L , L]}.

Letting n0 = 0, we thus obtain a sequence

n0 < m1 < n1 < m2 < n2 < · · ·

of successive escape times. By results from the previous section, given ω ∈6 from a set
of full Bernoulli measure, we obtain an infinite sequence of return times ni − mi .

Let ν̄ be normalized Bernoulli measure on C0,...,k−1
ωn ,...,ωn+k−1

,

ν̄(A)= ν(A)/ν(C0,...,k−1
ωn ,...,ωn+k−1

)

for Borel sets A ⊂ C0,...,k−1
ωn ,...,ωn+k−1

. On the graph of Dn we can consider the measure
(id, Dn)∗ν, which we also refer to as Bernoulli measure. Then

Fk
∗ ◦ (id, Dn)∗ν̄ = (id, Dn+k)∗ν. (17)

In words, the push forward measure, under the skew product system Fk , of normalized
Bernoulli measure on a cylinder of rank k inside the graph of Dn , equals Bernoulli measure
on Dn+k .

Let
S(ω)=min{n > 0; f n

ν (L) < L for all ν ∈ C0,...,n−1
ω0,...,ωn−1

}

be the first return, for a cylinder, to (−L , L) starting from L . As Dmi (ω) > L and the
maps fω are monotone, the return time ni − mi of Dmi to [−L , L] is larger than or equal
to S(ω). The return time S defines a partition Q= {Qi } on6 so that S is constant precisely
on the partition elements Qi . Each Qi is a cylinder and the union of all cylinders has full
Bernoulli measure ν.
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As remarked above, if

Ti =min{n > 0; f n
ω (Dmi (ω)) < L for all ν ∈ C0,...,n−1

ω0,...,ωn−1
},

then Ti (ω)≥ S(ω). The corresponding partition Ri of 6, corresponding to cylinders on
which Ti is constant, is therefore the same as or finer than Q; each partition element in Q
is a union of one or more partition elements of Ri .

Given a large integer M , take the partition O of 6 consisting of the cylinders Qi from
Q up to rank M and the remaining subset Q̂. Note that∫

⋃
i Qi

S(ω) dν(ω)=
∑

i,Qi∈O
ν(Qi )Si ,

where Si is the value of S on Qi ∈O. We claim that
∫
6

S(ω) dν(ω)=∞. To see this note
that if xn(ω) < L − d , then xn(η) < L for any η ∈ C0,...,n−1

ω0,...,ωn−1
. The claim follows from this

and Proposition 3.3. Since
∫
6

S(ω) dν(ω)=∞, we find that for each C > 0 there is M so
that ∑

i,Qi∈O
ν(Qi )Si > C.

Consider the following stochastic process. Pick ω0, ω1, . . . at random, independently
from two symbols 1, 2 with probabilities 1/2 each. Given ω0, . . . , ωn−1, we have return
times n0 < m1 < · · · up to the largest number nk or mk that is at most n. To fix thoughts,
assume given ω0, . . . , ωmi−1 defining the function Dmi . Continue with the next random
variables ωmi , ωmi+1, . . .. As these are picked independently from the previous symbols,
the probability forωmi , ωmi+1, . . . to end up in Qi equals ν(Qi ). On Qi we know that ni −

mi ≥ Si . By (17) we can use this stochastic process description and apply Kolmogorov’s
strong law to get for ν-almost every ω,

lim
n→∞

1
n

n−1∑
j=1

1Qi (ωn j )= ν(Qi ).

We must also consider the escape from [−L , L], which proceeds similarly. Recall that
xn(ω) > L + d implies that xn(η) > L for all η ∈ C0,...,n−1

ω0,...,ωn−1
. Consider

vn+1 =min{ fσ nω(vn), L + d}.

starting at v0 = L . Let

S−L(ω)=min{n > 0; vn(ν) <−L for all ν ∈ C0,...,n−1
ω0,...,ωn−1

}.

As in Proposition 3.1, ∫
I

S−L(ω) dν(ω) <∞.

Corresponding statements hold for escape through L: consider

wn+1 =max{ fσ nω(wn),−L − d}

with w0 = L . For

SL(ω)=min{n > 0; vn(ν) > L for all ν ∈ C0,...,n−1
ω0,...,ωn−1

},
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we have ∫
I

SL(ω) dν(ω) <∞.

Define
S =min{S−L , SL}

and note ∫
I

S(ω) dν(ω) <∞. (18)

If
Ti =min{n > 0; f n

ω (Dni (ω)) 6∈ [−L , L]},

then Ti (ω)≥ S(ω).
We follow previous reasoning. The function S defines a partition Q= {Qi } on 6 so

that S is constant on each partition element Qi . Each Qi is a cylinder and the union of all
cylinders has full Bernoulli measure ν. On each curve Dmi the escape time from (−L , L)
is larger than or equal to S. Given ω ∈6 from a set of full Bernoulli measure, we obtain
an infinite sequence of escape times ni − mi . Given a large integer M , take the partition
R of 6 consisting of cylinders Ri from Q up to rank M and the remaining subset R̂.

Let Si be the value of S on Ri . By (18), for any ε one can find M large enough so that∫
6

S(ω) dν(ω)≤
∑

i

ν(Ri )Si + ε.

Again by Kolmogorov’s strong law, for ν-almost every ω,

lim
n→∞

1
n

n−1∑
j=1

1Ri (ωn j )= ν(Ri ).

We conclude that for almost all ω ∈6,

lim
n→∞

1
n

n−1∑
i=0

(ni − mi )=∞

and

lim
n→∞

1
n

n−1∑
i=0

(mi+1 − ni ) < C

for some C > 0. The theorem follows. �

5. Intermittent time series: a neutral and a repelling boundary
For B ∈ R and fixed x0 > B, let

TB =min{n > 0; xn < B}.

PROPOSITION 5.1. If a > 0 then ∫
I

TB(y) dy <∞.
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Proof. We use an approximation of xn+1 = fω(xn),

vn+1 = fN0,ωn (vn) (19)

directed by ω ∈6AN0
, so that xn ≤ vn when x0 = v0, as long as vn > B. The condition

a > 0 allows us the following formulas: on [B,∞) we can write fω(x)= x + η(ω)+
S(ω, x) with ∫

6AN

η(ω) dν(ω)= 0

and
lim

x→∞
R(ω, x)=−a < 0.

Write (19) as
vn+1 = vn + ηN0(ωn)+ SN0(ωn, vn)

driven by the shift on 6AN0
. We can take∫

6AN0

ηN0(ω) dν(ω)= 0

and
lim

x→∞
SN0(ω, x)=−a < 0.

For L̃ large we thus find |SN0(ω, x)+ a|< a/2 on [L̃,∞].
With L > L̃ , assume z0 is in [L ,∞). Let SL be the escape time of zn out of [L ,∞);

SL̃(ω)=min{n > 0; zn < L̃}.

By Proposition C.2, assuming that L − L̃ is large enough, we get

E(SL̃)≤ C.

An escape out of [B,∞) is realized by a finite number of passages through [L ,∞),
starting and ending with iterates in [B, L̃], followed by the escape to (−∞, B). The
expected escape times for these escapes from [B, L], through either the left or right
boundary, and from [L ,∞) are bounded. Therefore, with pB bounding the probability
to leave through L for an escape from [B, L] and starting point in [B, L̃],

E(TB)≤ C
∞∑

i=1

i pB(1− pB)
i <∞. �

Proof of Theorem 1.2. Theorem 1.2 is proved in the same way as Theorem 1.3, invoking
Proposition 5.1. We leave the details to the reader. �

A. Appendix. Chaotic walks
For ω = (ωi )i∈N in 6 = {1, 2}N, denote by σ the left shift operator (σω)i = ωi+1 acting
on 6. Consider the standard random walk xn(ω) given by

xn+1 = xn + ξ(σ
nω)
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on R, where for ω ∈6 the step ξ(ω) is defined by

ξ(ω)=

{
1, ω0 = 1,
−1, ω0 = 2.

Introduce the skew product system F :6 × R→6 × R,

F(ω, x)= (σω, x + ξ(ω)).

Then the fiber coordinates in R of Fn(ω, x) equal xn(ω) with initial condition x0(ω)= x .
The natural measure on 6 is the Bernoulli measure ν given probabilities 1/2, 1/2 for the
symbols 1, 2.

Since the shift σ :6→6 is topologically semi-conjugate to the doubling map E2 :

I→ I, the skew product system F is topologically semi-conjugate to G : I× R→ I× R,

G(y, x)= (E2(y), x + ξ(y)),

where now

ξ(y)=
{

1, y ∈ [0, 1/2),
−1, y ∈ [1/2, 1].

In fact, σ :6→6 with ν as invariant measure is measurably isomorphic to E2 : I→ I
with Lebesgue measure. Note that

Gn(y, x)= (En
2 (y), x +

n−1∑
i=0

ξ(E i
2(y))).

Going the other direction, also for other maps ξ : I→ R, one can identify G on I× R
with a skew product system F on 6 × R. Typically the steps ξ(ω) will depend on the
entire sequence ω. Following [14] we refer to a cocycle

x 7→ x +
n−1∑
i=0

ξ(E i
2(y)),

i.e. the fiber coordinate of Gn(y, x), as a chaotic walk. We refer to [23] for lecture notes
on cocycles driven by ergodic transformations.

B. Appendix. Markov random walks
This appendix and the next develop material for random walks driven by subshifts of finite
type. Appendix D will specialize to subshifts coming from Markov partitions for doubling
maps.

Write � for the finite set of symbols {1, . . . , K }. Let A= (ai j )
K
i, j=1 be a matrix with

ai j ∈ {0, 1}. Associated with A is the set 6A of bilateral sequences ω = (ωn)
∞

0 composed
of symbols in � and with adjacency matrix A:

aωnωn+1 = 1

for all n ∈ N. Let (6A, σ ) be the subshift of finite type on 6A. The map σ shifts every
sequence ω ∈6A one step to the left, (σω)i = ωi+1. The space 6A will be endowed with
the product topology. We assume that A is primitive, i.e.

there exists n0 ∈ N for all i, j ∈�(An0)i j > 0.

This implies that the subshift σ is topologically mixing.
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Let 5= (πi j )
K
i, j=1 be a right stochastic matrix, i.e. πi j ≥ 0 and

∑K
j=1 πi j = 1, such

that πi j = 0 precisely if ai j = 0. By the Perron–Frobenius theorem for stochastic matrices,
there exists a unique positive left eigenvector p = (p1, . . . , pK ) for5 that corresponds to
the eigenvalue 1; i.e.

K∑
i=1

piπi j = p j ,

for all j ∈�. We assume that p is normalized so that it is a probability vector,
∑K

i=1 pi =

1. The distribution p is the stationary distribution on �.
For a finite word ωk1 , . . . , ωkn , ki ∈ Z, the cylinder Ck1,...,kn

ωk1 ,...,ωkn
(we will also use the

notation Ck1,...,kn
ω ) is the set

Ck1,...,kn
ωk1 ,...,ωkn

= {ω′ ∈6A; ω
′

ki
= ωki , ∀1≤ i ≤ n}.

As cylinders form a countable base of the topology on 6A, Borel measures on 6A are
determined by their values on the cylinders. A Borel measure ν on 6A is called a Markov
measure constructed from the distribution p and the transition probabilities πi j , if for every
ω ∈6A and k ≤ l,

ν(Ck,...,l
ω )= pωk

l−1∏
i=k

πωiωi+1 .

The measure ν is invariant under the shift map σ , it is ergodic and supp(ν)=6A. From
now on, we conser a fixed ergodic Markov measure ν on 6A.

B.1. Poisson equation. The Poisson equation is a means to calculate stopping times for
Markov random walks. See [17, Ch. 17] and also [10].

Consider a random walk on R,

wn+1 = wn + ξ(σ
nω),

driven by ω = (ωn)n≥0 from 6A. In the setting here, ξ(σ nω) is a function of ωn alone.
Write Fk for the σ -algebra on 6A generated by cylinders C0,...,k−1

ω0,...,ωk−1
of rank k. Observe

that a F1-measurable function φ :6A→ R is constant on cylinders of rank one.
Introduce expectation operators, for integrable functions h :6A→ R,

Ph = E(h ◦ σ |F1)

and
Pνh = E(h).

Thus
Ph(ω)=

1
pω0

∫
C0
ω0

h(σω) dν(ω)

(recall pω0 = ν(C
0
ω0
)) and

Pνh =
∫
6A

h(ω) dν(ω).
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LEMMA B.1. There is a unique F1-measurable function 1 :6A→ R that solves

P1(ω)−1(ω)= Pξ(ω)− Pνξ (B.1)

and satisfies

Pν1= 0.

Proof. This is a special case of the theory developed in [17, Ch. 17]. We identify a F1-
measurable function h with the vector in RK of its values on cylinders C0

i , i = 1, . . . , K .
We denote this vector also by h = (hi )

K
i=1. Then Ph(ω), for ω ∈ C0

i , equals
∑K

j=1 πi j h j .
Now (B.1) becomes

51−1=5ξ − Pνξ, (B.2)

to be solved for the vector 1= (1i )
K
i=1 (here Pνξ =

∑K
i=1 piξi ).

By the Perron–Frobenius theorem, 5− id has a one dimensional kernel and a
codimension one invariant space {h|Pνh = 0} on which5− id acts invertible. Hence (B.2)
can be solved since Pν(Pξ − Pνξ)= 0. The demand Pν1= 0 brings uniqueness of the
solution. �

Define

un = wn − n Pνξ −1(σ n−1ω)+1(ω).

We get that
un+1 = un + ξ(σ

nω)− Pνξ −1(σ nω)+1(σ n−1ω)

is cohomologous to yn+1 = yn + ξ(σ
nω)− Pνξ .

LEMMA B.2. un is a martingale with respect to Fn .

Proof. Calculate

E(un+1|Fn)= E(un + ξ(σ
nω)− Pνξ −1(σ nω)+1(σ n−1ω)|Fn)

= un + Pξ(σ n−1ω)− Pνξ − P1(σ n−1ω)+1(σ n−1ω)

= un,

by Lemma B.1. �

Example B.1. Consider the topological Markov chain given by

A =
(

1 1
1 0

)
and the probability matrix

5=

(
1/2 1/2
1 0

)
.

For this,

p =
(

2/3
1/3

)
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satisfies pT
= pT5. Consider the displacement vector

ξ =

(
−1
2

)
.

A solution 1 of 51−1=5ξ is given by

1=

(
−1/3
2/3

)
.

With xn+1 = xn + ξn and un = xn −1(σ
n−1ω)+1(ω), and hence, un+1 = un + ξn −

1(σ nω)+1(σ n−1ω), we find:
• if ωn−1 = 1, ωn = 1: xn+1 = xn − 1 and un+1 = un − 1;
• if ωn−1 = 1, ωn = 2: xn+1 = xn + 2 and un+1 = un + 1;
• if ωn−1 = 2, ωn = 1: xn+1 = xn − 1 and un+1 = un ;
the possibility ωn−1 = 2, ωn = 2 being forbidden.

C. Appendix. Stopping times
Using the material from Appendix B we state and prove various bounds on stopping
times for Markov random walks. We focus on bounds that are needed in the main text.
References [10, 15] also deal with stopping times for Markov random walks, but from a
different angle. As in [10] we construct martingales by making use of the Poisson equation.

Deviating slightly from the notation in the previous appendix, we consider a random
walk

wn+1 = wn + ξ(σ
nω)+ α

with ω ∈6A and
Pνξ = 0.

In this setup, α is the average drift. The reader can think of α being small. We write

vn = wn −1(σ
n−1ω)+1(ω) (C.1)

and find

vn+1 = vn + ξ(σ
nω)−1(σ nω)+1(σ n−1ω)+ α.

Note that

vn = v0 +

n−1∑
i=0

ξ(σ iω)−1(σ n−1ω)+1(ω)+ nα.

We introduce notation ξ(ωn)= ξ(σ
nω),1(ωn)=1(σ

nω) and ζ(ωn−1, ωn)= ξ(ωn)−

1(ωn)+1(ωn−1). Thus

vn+1 = vn + ζ(ωn−1, ωn)+ α. (C.2)

Let also un = vn − nα so that un+1 = un + ζ(ωn−1, ωn). By Lemma B.1, for each ωk−1,∑
i

πωk−1iζ(ωk−1, i)= 0. (C.3)
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Let G be such that

|1(i)−1( j)| ≤ G (C.4)

for all i, j . We also assume explicit bounds: there are positive constants V−, V+, D so
that for all i, j with πi j > 0,

|ζ(i, j)| ≤ D (C.5)

and for all i ,

V− <
K∑

j=1

πi jζ
2(i, j) < V+. (C.6)

Throughout we assume a recurrence property: for any L > 0 (L < 0) there exists ω ∈
6A and M ∈ N so that, with w0 = 0,

wM > L(wM < L). (C.7)

Together with An0 > 0 for some n0 ≥ 0 we find the existence of periodic symbol sequences
(ω0, . . . , ωk−1)

∞
∈6A for which wk >w0 (or wk <w0). A condition of this type is

needed to avoid examples of the following type.

Example C.1. Let

5=

1/2 1/2 0
0 0 1

1/2 1/2 0

 , ξ =

 0
1
−1

 .
Note that the associated adjacency matrix A is primitive with A3 > 0, but wn ∈ {0, 1} for
all n > 0, ω ∈6A if w0 = 0.

As a consequence of condition (C.7), the probability to escape from a compact interval
[A, B] is always one. We state this in the following lemma. Consider a compact interval
[A, B] and define for w0 ∈ [A, B],

T[A,B] =min{n > 0; wn 6∈ [A, B]}.

LEMMA C.1. For ν almost all ω ∈6A, T[A,B] <∞.

Proof. This is immediate from the observation that property (C.7) implies the existence
of a finite symbol sequence for which any point in [A, B] is mapped outside the interval.
The corresponding cylinder has positive ν measure. By ergodicity of σ , for ν almost all
ω ∈6A its positive orbit has points in this cylinder. �

We will discuss escape times from bounded and unbounded intervals for different signs
of the average drift α. The principal technique is Doob’s optional stopping theorem for
which we refer to e.g. [24, Theorems VII.2.1 and VII.2.2]. We state the theorem under
conditions relevant to our setting.

THEOREM C.1. (Doob’s optional stopping theorem) Let un be a martingale (or
submartingale); E(un+1|Fn)= un (or ≥ un). Let T be a stopping time. Suppose that
either:
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(1) |un+1 − un| is uniformly bounded and E(T ) <∞, or;
(2) |un| is uniformly bounded.
Then

E(uT )= E(u0) (or≥ E(u0)).

The following §§C.1, C.2, C.3 treat expected escape times and probabilities of escape
for positive, zero, and negative drift α respectively. One may consider different initial
distributions for ω0. We will take ω0 from the stationary distribution, or assume ω−1 is
given and ω0 is from the distribution that gives probability πω−1ω0 of picking ω0. The
formulations of the results then apply to both settings without change. That is, the derived
bounds for expected escape times and probabilities of escape involve constants depending
on G from (C.4) D from (C.5) and V−, V+ from (C.6), but not on the initial distribution
for ω0.

C.1. Positive drift α > 0. We start with escape from bounded intervals [A, B]. For
definiteness we assume A < 0, B > 0 and w0 = 0. By conjugating with a translation one
may reduce to this situation.

Recall that
T[A,B] =min{n > 0 | wn 6∈ [A, B]}.

Given an initial distribution for ω0, let pA be the probability to escape through the left
boundary A. For ω0 chosen from the stationary distribution,

pA = ν{ω; wT[A,B](ω) < A}.

We assume

|A|, B > G, (C.8)

where G is given in (C.4).

PROPOSITION C.1. With probability one, T[A,B] <∞.
There is α0 > 0 so that for 0< α < α0, the following holds. There exist c1, c2, such that

c1αe(2/V−)αA
≤ pA ≤ c2αe(2/V+)αA

if B is bounded and |A| is large. There exists C, such that

E(T |wT[A,B] < A)≤ C
1
α

e(−2/V−)αA.

Remark C.1. If we replace (C.6) by a one-sided bound

K∑
j=1

πi jζ(i, j)2 ≤ V+, (C.9)

we retain the estimate
pA ≤ c2αe(2/V+)αA.

For this we only need to assume |A|> G and not B > G as in (C.8) since decreasing B
also decreases pA.
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Proof. For notational convenience we will write T for T[A,B] in this proof. That the escape
time is finite for almost all ω ∈6A was established in Lemma C.1 as a consequence
of (C.7).

For r 6= 0 and recalling (C.2) consider

zn = ervn .

Denote vn+1 = vn + ζn + α and calculate

E(zn+1 | Fn)= E(er(ζn+α) | Fn)zn .

We wish to find r so that zn is a submartingale for which

E(zn+1 | Fn)≥ zn .

For this we need
E(er(ζn+α) | Fn)≥ 1.

That is, ∑
i

πωn−1i er(ζ(ωn−1,i)+α) ≥ 1.

For r small we may develop the exponential function in a Taylor series (this is justified
since ζ(i, j) are bounded by (C.5)). Doing so yields∑

i

πωn−1i

(
1+ r(ζ(ωn−1, i)+ α)+

1
2

r2(ζ(ωn−1, i)+ α)2 + O(r3)

)
≥ 1

which, using (C.3), is equivalent to

rα + 1
2r2V + O(r3)≥ 0

with variance
V = V (ωn−1)=

∑
i

πωn−1i (ζ(ωn−1, i)+ α)2.

By (C.6), this is solved for an r− < 0 with

r− ≤
−2
V−

α

for α small.
Now we can use this to calculate probabilities to escape through the left or right

boundary of [A, B]. Doob’s optional stopping theorem yields

E(zT )≥ E(z0)= 1. (C.10)

Recall that D bounds the stepsize, see (C.5). If wT < A then wT ∈ (A − D, A) and thus
by (C.1) and (C.4) we have vT ∈ (A − G − D, A + G). Likewise if wT > B then wT ∈

(B, B + D) and thus vT ∈ (B − G, B + G + D). From (C.10) we get pAer−(A−cA) +

(1− pA)er−(B+cB ) ≥ 1 for some cA, cB ∈ [−G, G + D]. Note that, since we assumed
|A|, B > G, we have A − cA < 0 and B + cB > 0. So

pAer−Ae−r−cA + (1− pA)er−Ber−cB ≥ 1.
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and hence
pA(er−Ae−r−cA − er−Ber−cB )≥ 1− er−Ber−cB .

Therefore,

pA ≥
1− er−Ber−cB

er−Ae−r−cA − er−Ber−cB
. (C.11)

For B fixed and |A| large we find

pA ≥−cr−e−r−A

for some constant c.
A similar calculation gives that ervn is a supermartingale for an r+ < 0 with

r+ ≥
−2
V+

α

for α small. Using the supermartingale er+vn instead one finds instead of (C.11) the similar
inequality

pA ≤
1− er+Ber+cB

er+Ae−r+cA − er+Ber+cB
.

For B fixed and |A| large we find

pA ≤−cr+e−r+A

for some constant c.
Having estimated the probabilities of escape through the left and right boundary, we can

now estimate escape times. Let zn = vn − nα. Thus zn+1 = zn + ζn and zn is a martingale
by (C.3):

E(zn+1|Fn)= vn − nα + E(ζn|Fn)

= zn .

By Doob’s optional stopping theorem,

E(zT )= E(z0)= 0.

This gives pA(A − cA)+ (1− pA)(B + cB)− E(T )α = 0, so that

E(T )=
1
α
(pA(A − cA)+ (1− pA)(B + cB)). (C.12)

For B fixed and |A| large we get E(T )≤ c for some constant c.
For the expected time to escape conditioned by escaping through the left boundary,

E(T |vT < A)≤ E(T )/pA

implies the given bound. �

We continue with a result on escape from an unbounded interval (−∞, B]. Take w0 =

0, assume

B > G, (C.13)

and define
TB =min{n > 0; wn 6∈ (−∞, B]}.

The following proposition uses only an upper bound (C.9) as in Remark C.1.
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PROPOSITION C.2. With probability one, TB <∞. For some c1, c2,
c1

α
≤ E(TB)≤

c2

α
.

Proof. Again we write T as shorthand for TB inside this proof. Let un = vn − nα. As
noted earlier, un is a martingale. Making |A| bigger in Proposition C.1 gives an increasing
subset of 6A that leads to an escape through B. In particular, pA goes to 0 as |A| →∞.
If we let |A| →∞ in Proposition C.1 we get T <∞ almost everywhere. By monotone
convergence and (C.12) we get E(T ) <∞. By Doob’s optional stopping theorem,

E(uT )= E(u0).

We find B + c − E(T )α = v0 for some c ∈ [−G, D + G]. The proposition follows (noting
v0 − B − c 6= 0). �

C.2. Zero drift α = 0. Again we first treat escape from a compact interval [A, B] with
A < 0, B > 0, v0 = 0. Notation is as in the previous part treating α > 0. We assume (C.8)
to hold.

PROPOSITION C.3. With probability one, T[A,B] <∞.
There is α0 > 0 so that for 0< α < α0, the following holds. There exist c1, c2, such that

c1/|A| ≤ pA ≤ c2/|A|

if B is bounded and |A| is large.
Then

E(T |vT[A,B] < A)≤ cA2

for some constant c > 0, if |A| is large.

Proof. As earlier we write T for T[A,B] inside this proof. Note that with α = 0, vn

is a martingale. Doob’s optional stopping theorem gives E(vT )= E(v0)= 0. Therefore
pA A + (1− pA)B is constant and the bounds on pA follow.

To estimate the stopping time conditional to an escape through the left boundary A, we
introduce un = v

2
n − nV−. Then

E(un+1|Fn)= E((vn + ζ )
2
− (n + 1)V−|Fn)

≥ v2
n − nV−

= un,

so that un is a submartingale. Likewise a supermartingale can be created, replacing V−

with V+. Then E(uT )≥ E(u0)= 0 by Doob’s optional stopping theorem, giving

pA A2
+ (1− pA)B2

− E(T )V− ≥ 0.

We get E(T )≤ cA for a constant c > 0. Likewise, calculating with the supermartingale,
E(T )≥ cA for a constant c > 0. So E(T |vT < A)≤ cA2 for some constant c > 0. �

The next proposition treats escape from (−∞, B] for v0 < B.

PROPOSITION C.4. With probability one, TB <∞. The expected escape time is infinite:

E(TB)=∞.

Proof. This follows from Proposition C.2, letting α go to zero. �
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C.3. Negative drift α < 0. For compact intervals this case is similar to the case
α > 0. We just consider the probability of escape from an unbounded interval (−∞, B].
We assume w0 = 0 and (C.13). Write pB for the probability to never escape. For ω0 from
the stationary distribution, pB = ν({ω; vn < B for all n ∈ N}).

PROPOSITION C.5. There is α0 < 0 so that for α0 < α < 0,

c|α| ≤ pB ≤ C |α|

for some positive constants c < C.

Proof. Consider escape from an interval [A, B]with B fixed and |A| large. As in the proof
of Proposition C.1 we get for the probability pA of escape through A,

pAer−(A−cA) + (1− pA)er−(B+cB ) ≥ 1,

where r− ≥ (−2/V−)α for |α| small. From this we obtain

pA(er−Ae−r−cA − er−Ber−cB )≥ 1− er−Ber−cB ,

and thus

pA ≤
er−Ber−cB − 1

er−Ber−cB − er−Ae−r−cA
,

compare (C.11). With r− > 0, er−Ae−r−cA goes to zero as A→−∞. Hence, from

pA ≤
1− e−r−Ber−cB

1− e−r−Be−r−cB er−Ae−r−cA
, (C.14)

we find pA ≤ C |α| for a constant C independent of A. When taking |A| larger, for
increasing subsets of 6A, orbits escape through B. Letting A go to −∞ therefore proves
the upper bound on pB .

The lower bound is proved similarly using a lower bound for pA as in the proof of
Proposition C.1. �

D. Appendix. Doubling maps
The previous appendices considered general subshifts with a primitive adjacency matrix.
The results on the stopping times in Appendix C rely on bounds for the solution of the
Poisson equation. Here we specialize to subshifts corresponding to Markov partitions for
doubling maps, and derive the bounds for this case.

Recall the setting from §2: given is the subshift σ on 6AN ⊂ {1, . . . , K }N, K = 2N ,
with adjacency matrix AN = (ai j )

K
i, j=1 satisfying ai j = 1 precisely if j = 2i − 1 or j = 2i

modulo K . We start with a remark on subshifts on 6AN for different values of N . There
is a natural topological conjugacy between the shifts σ on 6AN0

and 6AN1
for different

N0, N1, given by a homeomorphism 2N0,N1 ,

σ |6AN0
= (2N0,N1)

−1
◦ σ |6AN1

◦2N0,N1 .

Given the product measures νN0 , νN1 on the spaces 6AN0
and 6AN1

, we have

(2N0,N1)∗νN0 = νN1 .
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The topological conjugacy 2N0,N1 between the shift operators on these spaces thus
provides a measurable isomorphism. For N1 > N0, σ N1−N0 maps a cylinder of rank one in
6AN0

one-to-one to a cylinder of rank one in 6AN1
.

Consider a Markov random walk

xn+1 = xn + ξN (σ
nω)

with ω ∈6AN . In our setting the steps ξN come from discretizing a smooth function ξ :
I→ R. Assume

PνξN = 0

(see Appendix B). Lemmas B.1 and B.2 give the existence of a function 1N :6AN → R
so that

un = xn − n PνξN −1N (σ
n−1ω)+1N (ω)

is a martingale with respect to Fn . We recall

un+1 = un + ξN (σ
nω)−1N (σ

nω)+1N (σ
n−1ω)

= un + ζN (ωn−1, ωn).

The following example treats the symmetric random walk in this setup. The steps are
±1 and do not originate from discretizing a smooth function ξ .

Example D.1. (The symmetric random walk) The symmetric random walk with steps ±1
is given by the stochastic matrix 51 and vector ξ1,

51 =

(
1/2 1/2
1/2 1/2

)
, ξ1 =

(
1
−1

)
.

Here, of course,

11 =

(
0
0

)
.

A refined partition is made from 2-tuples of consecutive symbols (ω0ω1). For this refined
Markov partition on four symbols 1, 2, 3, 4 we get to consider

52 =
1
2


1 1 0 0
0 0 1 1
1 1 0 0
0 0 1 1

 , ξ2 =


1
1
−1
−1

 .
Here (52 − id)12 =52ξ2 is solved by

12 =


−1
1
−1
1

 .
Continuing the previous examples one considers N -tuples of consecutive symbols

(ω0 · · · ωN−1). As there are 2N such N -tuples, one obtains 2N
× 2N -matrices 5N and
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FIGURE 3. This figure illustrates the solution of the Poisson equation for a fine Markov partition coming from
the symmetric random walk in Example D.1. Depicted is the solution 1N for the Poisson equation for N = 10,
i.e. for a Markov partition with 1024 elements. The horizontal axis contains the indices 1 to 1024, the vertical

axis the corresponding value of 1N . The values are connected by line pieces.

2N dimensional vectors ξN . That is, for 5N = (πi j )1≤i, j≤2N and giving the N -tuples the
lexicographical order, we find

πi j =

{
1/2, j ∈ {2i − 1, 2i}mod 2N ,

0 otherwise.

For ξN , for the first 2N−1 indices the value is 1, for the others the value is −1. One can
characterize 1N as

1N (i)= ξN (i)+ |ξN (i)|(]{0≤ j ≤ N − 1; ω j = 2} − ]{0≤ j ≤ N − 1; ω j = 1})

if i corresponds to the N -tuple (ω0 · · · ωN−1). Figure 3 illustrates graphically the solution
1N for N = 10.

The following two lemmas provide the bounds for solutions of Poisson equations
needed in Appendix C (see (C.4)–(C.6)), discussing dependence on N . The first lemma
assumes a smooth function ξ and does not require ξ to be strictly monotone.

LEMMA D.1. Assume that ξ : [0, 1] → R is a smooth function with
∫ 1

0 ξ(y) dy = 0. There
are uniform (i.e. independent of N) positive constants C, D, V+, with

|1N | ≤ C N ,

for all admissible i, j ,

|ζN (i, j)| ≤ D

and
K∑

j=1

πi jζN (i, j)2 ≤ V+. (D.1)
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Proof. We know
(5N − id)1N =5N ξN .

Since here
5N

N ξN = 0,

we find

1N = (5N + · · · +5
N−1
N )ξN . (D.2)

Powers of 5N are given by

(5M
N )i j =

{
1/2M , j ∈ [2M (i − 1)+ 1, 2M

]mod K ,
0 otherwise.

(D.3)

Since ξN is bounded we get that |5 j
N ξN | is bounded and thus the first bound stating |1N | ≤

C N for some C > 0, follows.
Since ξ is smooth we get

|(5
j
N ξN )k − (5

j
N ξN )k+1| ≤ C/2N− j (D.4)

for some C > 0. Combining (D.2), (D.3) and (D.4) proves a bound

|1N (2i)−1N (2i − 1)| ≤ C (D.5)

for some C > 0. Note that this bound holds uniformly in N . Lemma B.1 yields (with
indices modulo K )

ζN (i, 2i − 1)+ ζN (i, 2i) = ξN (2i − 1)−1N (2i − 1)+1N (i)

+ ξN (2i)−1N (2i)+1N (i)

= 0.

We conclude that |ζN (i, j)| (where j = 2i − 1 or j = 2i modulo K ) is uniformly bounded:

|ζN (i, j)| ≤ max
1≤k≤K

|ξN (k)| + C/2,

with C coming from (D.5). The bound (D.1) follows. �

Figure 4 shows the solution of the Poisson equation for a discretization of ξ =−1+ 2y,
the function that features in Figures 1 and 2. The material in Appendix C assumes
for some results, in addition to the bounds from Lemma D.1, a positive lower bound
on

∑K
j=1 πi jζN (i, j)2 (expressed by (C.6)). See also Lemma E.2 for a corresponding

statement on skew product systems over stronger expanding maps Em .

LEMMA D.2. Assume that ξ : [0, 1] → R is a smooth strictly monotone function with∫ 1
0 ξ(y) dy = 0. Then there is a positive constant V− so that, for all N larger than

some N0,

V− ≤
K∑

j=1

πi jζN (i, j)2.
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FIGURE 4. This figure illustrates the solution of the Poisson equation when discretizing the function ξ(y)=
−1+ 2y using a fine Markov partition. Depicted is the solution1N for the Poisson equation for N = 10, i.e. for
a Markov partition with 1024 elements. The horizontal axis contains the indices 1 to 1024, the vertical axis the

corresponding value of 1N . The values are connected by line pieces.

Proof. Assume for definiteness that ξ is strictly increasing. The proof of Lemma D.1
provided a bound

1N (2i)−1N (2i − 1)≤ C

for some C > 0. Recall

1N = (5N + · · · +5
N−1
N )ξN

and

(5M
N )i j =

{
1/2M , j ∈ [2M (i − 1)+ 1, 2M

]mod K ,
0 otherwise.

From these identities and the fact that ξ is strictly increasing, we find

0< c ≤1N (2i)−1N (2i − 1) (D.6)

for some c > 0. Indeed, it follows that 1N (2i)−1N (2i − 1) is a sum of positive values,
where 5N−1

N ξN (2i)−5N−1
N ξN (2i − 1) is uniformly bounded from below. The bounds c

therefore holds uniformly in N .
We conclude that

|ζN (i, j)| ≥ c/2− max
1≤i≤K

(ξN (2i)− ξN (2i − 1))/2,

with c coming from (D.6) (where j = 2i − 1 or j = 2i modulo K ). For N large
enough, ξN (2i)− ξN (2i − 1) are close and therefore |ζN (i, j)| is uniformly bounded from
below. �

The uniform bounds D, V−, V+ mean that the propositions in Appendix C can be
applied uniformly in N . The bound |1N | ≤ C N in Lemma D.1 implies conditions on the
size of the considered intervals, see e.g. (C.8) for Proposition C.1.
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E. Appendix. General displacement functions
In this section we show how to prove Theorem 1.4, with the methods used for Theorem 1.2.
For an integer m ≥ 2, consider skew product maps

(y, x) 7→ (Em(y), gy(x))

from Sm
r0

on I× R.
The following corollary substitutes Lemma 2.2, that was formulated for monotone

functions on I. Notation is copied from there. Suppose that ξ is a smooth function on I
with

∫
I ξ(x) dx = 0.

LEMMA E.1. For m large enough, the following property holds. For r0 small enough, and
any L > 0, there is ω from a set of positive probability so that for x ∈ R, there is n ∈ N,
f n
ω (x) < x − L ( f n

ω (x) > x + L) and f i
ω(x) < x ( f i

ω(x) > x) for all 0< i ≤ n.

Proof. Since ξ is not identically zero and
∫
T ξ(y) dy = 0, we have two open intervals A

and B in the circle such that ξ|A < 0 and ξ|B > 0. We know that Em has a unique fixed
point in each interval of the form Im,k = [k/m, (k + 1)/m], k = 0, . . . , m − 1. It follows
that, for m large enough, A and B each contain a fixed point of Em . So let us consider
such m and denote the fixed point of Em in A by yA and the one in B by yB . We have
ξ(yA) < 0< ξ(yB).

For each n ∈ N we have that for y close enough to yA,

xn+1 = x0 + ξ(y)+ ξ(Em y)+ · · · + ξ(En−1
m y)+ ξ(En

m y)

with ξ(E j
m y) < 0 for each 0≤ j ≤ n. So

xn+1 < xn < · · ·< x0.

A similar statement applies to points near yB . Taking n large enough, and thus taking
smaller neighborhood of the fixed points, gives the lemma for the cocycle xn+1 = xn + ξn .

Now if we consider the perturbed skew product then the result still follows for r0 small
enough so that ξmax

y,n + Cr0 < 0 and ξmin
y,n − Cr0 > 0, where

ξmax
y,n = max

0≤i≤n
ξ(E i

m y)

and

ξmin
y,n = min

0≤i≤n
ξ(E i

m y). �

Lemma D.2 gets replaced by the following lemma. We keep the notation from the
previous section, except that the doubling map is replaced by Em . The adjacency matrix
AN = (ai j )

K
i, j=1 with K = m N is now given by ai j = 1 precisely if j = mi + k modulo

K , for −m < k ≤ 0. The stochastic matrix 5N equals (1/m)AN . The following lemma
yields lower bounds for ζN . Its proof is an adapted version of the proof of Lemma D.2.

LEMMA E.2. There exists m > 0 so that the following holds. There exists V− > 0 so that
for N larger than some N0,

V− ≤
K∑

j=1

πi jζN (i, j)2.
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Proof. All the indices in the proof are taken modulo m N . Note that

5N =



1
m
· · ·

1
m

0 · · · 0 · · · 0 · · · 0

0 · · · 0
1
m
· · ·

1
m

0 · · · 0 · · ·

...
. . .

. . .
...

0 · · · 0 · · · 0 · · · 0
1
m
· · ·

1
m

...
...

...
...

1
m
· · ·

1
m

0 · · · 0 · · · 0 · · · 0

0 · · · 0
1
m
· · ·

1
m

0 · · · 0 · · ·

...
. . .

. . .
...

0 · · · 0 · · · 0 · · · 0
1
m
· · ·

1
m


where 1/m · · · 1/m and 0 · · · 0 stand for sequences of m identical numbers. For fixed
i ∈ {1, . . . , m N

} let Ii = {m(i − 1)+ 1, . . . , mi}, and note

K∑
j=1

πi jζN (i, j)2 =
1
m

∑
j∈Ii

ζN (i, j)2.

We will show that

max
j1, j2∈Ii

|ζN (i, j1)− ζN (i, j2)|> c

for some c > 0, which implies that

1
m

∑
j∈Ii

ζN (i, j)2 > C

for some C > 0 (depending on m).
We have

|ζN (i, j1)− ζN (i, j2)| = |ξN ( j1)−1N ( j1)− ξN ( j2)+1N ( j2)|

≥ |1N ( j1)−1N ( j2)| − |ξN ( j1)− ξN ( j2)|.

As ξ is assumed to be smooth, we have |ξ ′| ≤ C2 for some C2 > 0. Now each ξN ( j) is a
representative of {ξ(x)}x∈Pj where |Pj | = 1/m N . Thus for each i , the different values of
ξN ( j), j ∈ Ii , are in m consecutive partition elements whose union is an interval of length
1/m N−1. Hence

|ξN ( j1)− ξN ( j2)| ≤
C2

m N−1 .

It follows that

max
j1, j2∈Ii

|ζN (i, j1)− ζN (i, j2)| ≥ max
j1, j2∈Ii

|1N ( j1)−1N ( j2)| −
C2

m N−1 . (E.1)
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Since 5N
N ξN = 0, we have

1N =5N ξN + · · · +5
N−1
N ξN .

For k ∈ {1, . . . , N − 1}, let Bk =5
k
N ξN . We have

|1N ( j1)−1N ( j2)| ≥ |BN−1( j1)− BN−1( j2)| −
N−2∑
k=1

|Bk( j1)− Bk( j2)|.

As ξ 6= 0 and
∫
T ξ(y) dy = 0, for m large enough, there exists C1 > 0 so that

C1 <

{
−min

j∈Ii
BN−1( j),max

j∈Ii
BN−1( j)

}
.

Thus

max
j1, j2∈Ii

|1N ( j1)−1N ( j2)| ≥ 2C1 − max
j1, j2∈Ii

N−2∑
k=1

|Bk( j1)− Bk( j2)|. (E.2)

For each k, we have

Bk( j)=
1

mk

mk j∑
l=mk ( j−1)+1

ξN (l).

Thus

|Bk( j1)− Bk( j2)| =
1

mk

∣∣∣∣ mk j1∑
i=mk ( j1−1)+1

ξN (i)−
mk j2∑

i=mk ( j2−1)+1

ξN (i)
∣∣∣∣

=
1

mk

∣∣∣∣ mk∑
j=1

(ξN (mk( j1 − 1)+ j)− ξN (mk( j2 − 1)+ j))
∣∣∣∣

≤
1

mk

mk∑
j=1

∣∣∣∣ξN (mk( j1 − 1)+ j)− ξN (mk( j2 − 1)+ j)
∣∣∣∣.

The different values of ξN (mk( j1 − 1)+ j) and ξN (mk( j2 − 1)+ j) are within a block of
length mk+1, thus

|Bk( j1)− Bk( j2)| ≤
C2

m N−k−1 .

Hence

max
j1, j2∈Ii

N−2∑
k=1

|Bk( j1)− Bk( j2)| ≤
C2

m N−1

N−2∑
k=1

mk
≤

C2

m − 1
. (E.3)

Combining (E.1), (E.2) and (E.3) gives

max
j1, j2∈Ii

|ζN (i, j1)− ζN (i, j2)| ≥ 2C1 −
C2

m − 1
−

C2

m N−1 .

Therefore for m and N large enough, max j1, j2∈Ii |ζN (i, j1)− ζN (i, j2)|> c > 0. This
ends the proof. �
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Proof of Theorem 1.4. Choose m such that Lemma E.2 applies. Now the arguments to
prove Theorem 1.2 apply to conclude Theorem 1.4. �
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