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ABSTRACT. A generalized Hamiltonian formalism is established which is 
invariant not only under canonical transformations but under arbitrary 
transformations. Moreover the dependent variables, coordinates and mo­
menta, as well as the independent variable are allowed to be transformed. 
This is to say that instead of the physical time t another independent 
variable s is used, such that t becomes a dependent variable or, more 
precisely, an additional coordinate. The formalism under consideration 
permits also to include nonconservative forces. 

In case of Keplerian motion we propose to use the eccentric anoma­
ly as the independent variable. By virtue of our generalized point of 
view a Lyapunov-stable differential system is obtained, such that all 
coordinates, including the time t, are computed by stable procedures. 
This stabilization is performed by control terms. As a new result a sta­
bilizing control term also for the time integration is established, such 
that no longer any kind of time element is needed. This holds true for 
the usual coordinates as well as for the KS-coordinates. 

1. INTRODUCTION 

In order to obtain a flexible description of the equations of motion of 
the two body problem we propose a generalized Hamiltonian variational 
formalism with the following properties: 

1. The formalism is invariant not only under canonical transformations 
but also under arbitrary transformations of the dependent variables. 

2. In order to introduce a new independent variable s (called "fictitious 
time") instead of the time t the extended phase space is adopted. 
Hence the physical time t becomes an additional coordinate g^ and 
therefore its canonical conjugate momentum p Q must be introduced. 
This momentum is the negative total energy. The aim of all such trans­
formations is to improve the stability behaviour of the differential 
system as well as to perform an appropriate step-size adaption. 
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3. Nonconservative forces are also taken into account and their trans­
formation is performed automatically in the variational formalism. 

The generalized formalism proposed in this paper is more general than 
the classical Hamiltonian theory in analytical dynamics. 

2. THE GENERALIZED HAMILTONIAN VARIATIONAL PROBLEM 

We introduce the following symbols: q^ generalized coordinates, p^ mo­
menta, H(p^,q^,t) Hamiltonian, Pĵ Pi,* ̂ k'*-' nonconservative forces. The 
variational principal is then: 

fc2 
/ {«[ IPi4i - H ]+ IPiSqi} dt = O (1) 
t 1 i i 

H = H ( p i , q i , t ) , P-L = p i ( P k , q k , t ) , i , k = l , 2 , . . . , n 

It leads to the following Euler equations: 

9H_ . _ _ 9H_ 
3pi ' P i 8qi 

4i = sfr • Pi = " gfr + pi • i = l,2,...,n (2) 

The variational problem (1) is invariant under arbitrary noncanonical 
transformations of the dependent variables q^jPi- The proof of this 
statement is not too difficult if Poisson and Lagrange brackets are put 
in operation. 

We illustrate this statement working on the following example: We 
consider an onedimensional perturbed and damped harmonic oscillator. 
Equ. (1) is in this case for example: 

/2{« [ M " <§=: + I q2 + e | q4)] - ek p 6q} dt = 0 (3) 
fcl 

with the mass m, e as the small (dimensionsless) perturbing parameter 
and the constants c,b,k. The equations of motion are: 

P • "\ 

q = — , p = - c q - E b q J - e k p . (4) 

We now perform in (3) the noncanonical transformation introducing ampli­
tude A and angle A> : 

q = A sin ij; , p = /c m A cos ̂ . (5) 

Consequently the variational problem (3), is transformed into 
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^2 
/ {6[/c~~m A c o s i/J (A sinijj + ijJA cos ty) 

t 

- ( f A2 + e | A4 s i n 4 4» ] (6) 

- ek / c m A c o s ijj(sin IJJ6A + A COSI|J6^) }dt = O 

The corresponding equations of Euler are 

; / c~ £ b ? . A . , , . , 
^ = /— + A^ s m ^ + ek cosifj sinijj m 

/cm 
E b 

A3 sin3^ cosij) - Ek A cos2^ (7) 

and they are the correct equations of motion of the problem at hand. 

3. INTRODUCTION OF A NEW INDEPENDENT VARIABLE 

Now we want to introduce a new independent variable s which is linked 
to the time t by the differential relation 

~ = f = y > 0, . (8) 
ds 

where y is the scaling function which may depend on all depending vari­
ables. In order to incorporate this time transformation into the varia-
ional principle the formalism of the extended phase is appropriate 
(Stiefel and Scheifele [4j). The physical time t becomes a new coordi­
nate qQ and thus we are forced to introduce its conjugate momentum pQ 

into the variational principle. The symbol PQ will be explained below. 
Prime means differentiation with respect to the new independent vari­
able s. 

Now our variational principle has the form: 

s2 
/ {<$ [Po<2o + I P i ^ i - y(H + P 0 >] 
s l i 

+ yPQ6 qQ + y I p ± 6 q ± } d s = o (9) 

H = H ( p i , q i , q 0 ) , P± = P ^ p ^ q ^ q ^ 

y = yCp^q-L/PQ/qo) > 0 i , k = 1 , 2 , . . . , n 

The variational problem (9) leads to the following set of differential 
equations: 
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3i = v lil + ̂ H + Pol|i7 <10a> 

q^ = y + {H + Po} |H- (10b) 

Pi = " ̂ |f-- lH + Pol |^- + ^ pi doc) 

K - - ^ - {H - Pol f £ + y p0 <"»> 

i = 1,2,... ,n 

It is seen that these equations, especially the Equations (10a) and (10c) 
are only the correct equations of motion provided {H + pQ} vanishes on 
the track. In order to achieve this we do want at first, that y(H + pQ) 
is an integral of motion. This desire is satisfied by putting 

3 = 1 n 

whereby P is the (negative) dissipative power. Secondly we choose as 
initial condition for pQ : pQ = - H, at the instant t = q^ = s = 0. 
Then y(H + pQ) as well as {H + pQ} vanishes on the track. With these 
prescription it follows at first that p is the negative total energy, 
secondly, Equ. (10b) reduces (in the exact but not in the computed solu­
tion) to 

such that the definition on the time transformation 

§ = f = u > 0 (8) 

xs included in the differential set (lO). Finally Equ. (lOd) reads (in 
the exact but not in the computed solution) 

Po = " ̂  + V P0 

which is the wellknown equation of energy. 

In practise we do not cancel the terms facterized by {H + pn] in 
the Equations (10) (called control terms) since they may modify the nu­
merical behaviour during a computer integration in particular they may 
stabilize. 

Remark. In the Lagrangian language of mechanics a compagnion principle 
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was published by the author [2]. This principle can be used if the scal­
ing function y does not depend on the p;, and the momenta p^ are elimi­
nated directly in the variational problem (9) by the relation 

*i - * Ipf <12> 

4. EXAMPLE: KEPLERIAN MOTION 

•Let x^ be rectangular coordinates and p i the corresponding momenta of a 
particle of unit mass subjected to the gravitational attraction of a cen­
tral mass in distrance r. The pertinent Hamiltonian is then: 

H = H'Pi ~ 7- ' r2 = I xi ' L = *'2'3 (13) 

i 

(K : gravitational parameter.) 

Let us choose a scaling function 

r 

/2p0 

(14) 

In this case the fictitious time s is the generalized eccentric anomaly 
in the sense of Stiefel and Scheifele [4]. It is wellknown that the ec­
centric anomaly behaves better as independent variable for numerical 
integration than the time or true anomaly. 

Taking into account these assumptions the variational principle (9) 
becomes for the perturbed motion: 

/2MPO*O + I Pi*i " <^=_ U l ~ +i=T 
si i 2/2p~ i /2?0 /2p~ 

• 0 

y^r,] + eP0 6x0 + — — e I P±6 x±} ds = o (15) 

^ o ^ o 

P0 = - I Pj Pj i.j = 1,2,3 

J 

Remember that xQ = qQ = t is the physical time, p the negative total 
energy, eP^ are forces, which may not be derivable from a potential, and 
e a small (dimensionsless) perturbing parameter. 
The Euler equations are: 

x{ = — — P i (16a) 
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X' = 
o ^Pr 

_ { i I p 2 . £ _ + e v + P o } 

VBr (16b) 

2/2p~ 

r v 2 
J I Pi K + ErV 

V9r 

Po = 

/2p~ 

/2Pr 

v^pl 

7 x. - E ^ — - {- > p. + ev + p } + 
3 i 3x. L2 h I r ° K— 

ePi 

J P 2 

I I 

2/2pI 

3xQ
 Po 

r/2p 

x . 
1 

r 

e 

*/2Po" 

3 rV) r 
3 Xi / ^ — i 

(16c) 

(16d) 

The control terms in Equs. (16b) and (16c) are factorized by the same 
curly brackets. Remember that these control terms (energy relation) 
vanish provided the integration of the system is exact but that they 
may modify the behaviour of a numerical integration. In particular we 
claim that they stabilize the differential system under consideration. 

More precisely we prove in the unperturbed case E = O the following 
statement: 

Assumtion. The numerical value of the constant energy p_ is considered 
as a a priori constant, never varied. 

Statement. The system (16a-d) is Lyapunov-stable (for £ = 0) with re­
spect to variations of the initial conditions of x.,x0,p^. 

Proof: We discuss, at first, the time integration. The system (16) has 
(in the unperturbed case) the following first integral, where C is an 
integration constant: 

X° = 2P0 
I *i Pi + C (17a) 

V2p"0 i 

It is seen by differentiation and inserting appropriately the Equs.(16) 

+) Comments: 1. Remember that the classical differential equations of 
Keplerian motion are unstable. 2. In the perturbed motion p Q is no 
longer constant thus the strict stability (of the stabilized system 
(16)) is lost, but the appearing instability is only of the order of 
magnitude of the perturbing parameter £ (compare the paper of the au­
thor f3"f. 
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Now we use the basic law of Keplerian motion 

I xi Pi = ^PQ
 e sin E (17b) 

is the eccentric anomaly and e the eccentricity. 
From p. is pure periodic. 

where E = (s + const) 
Equ. (17b) 
Equ. (17a) 
x-,p- do influence the time xQ only in pure periodic manner. Therefore 

*o 

shows that the expression Z x. 
it thus follows that variations of the initial conditions of 

In order to discuss, secondly, the remaining Equs. (16a), (16c), 
(16d) we multiply the system (16a-d) by /2p0 and eliminate the momenta 
p^. This does not influence the stability behavior. By doing this we 
obtain: 

v x. x! 
3 3 3 

x!2 
3 

2r 
+ Pn> xi re 

9(rV) 
r £ P, (18a) 

8 V r 
r r — + > P. x! 

3x~ ^ 3 3 

? x : 2 

3 3 
2r 

K + erV J. 
2Po 

i,j = 1,2,3 

(18b) 

(18c) 

+ ) 
the Equs. (18a) and (18b) are identic with the equa-In this system 

tions for the x 
thor [1J where the Lyapunov-stability of the equations was proved by 
the Levi-Civita-transformation 

•! and pQ (pQ = h) discussed in the reference of the au-

Furthermore the time integration (18c) is stabilized by a control 
term. This control term is automatically produced by the choose of the 
scaling function y = — — - instead of y = r. 

We give finally a motivation for our line of approach. In the book 
Stiefel and Scheifele [4] as well as in the paper of the author [lj the 
integration of the KS-coordinates as well as usual coordinates x^ with 
respect to s as the independent variable was stabilized in case of the 

+) Now the independent variable, which we call also s, is no longer 
the generalized eccentric anomaly, but proportional to this anomaly. 
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time transformation 

— = t' = x' = r . ds ° 

But the integration of t(s) was left unstable. In order to remove this 
instability these publications introduced a time element (or used a 
t"'-equation). The theory above does not need this detour, but stabilizes 
all integrations including t = x . 

We now list the corresponding stabilized KS-equation. In vector 
notation we obtain (with p Q = h, x = t) : 

H" + | H = " f |r (|H|2V) + f |u|2 L T P (19a) 

h- = -e|u|2 U - 2e (u\ L
T P) (19b) 

i|u|2- [2 | u l |
2 - K 2

+ e | u |
2 v ] f = ^ |uT - 12 |u' I" - K" + elup V| |^ (19c) 

In case of the canonical KS-theory we have to put 

p = 4 u' (20) 

and obtain the canonical first order system, which corresponds to the 
system (16) multiplied by /2pQ = /2h . 
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