
J. Functional Programming 5 (3): 415-442, July 1995 © 1995 Cambridge University Press 415

A polymorphic library for constructive solid
geometry

J. R. DAVY AND P. M. DEW
School of Computer Studies, University of Leeds,

Leeds LS2 9JT, UK

Abstract

Solid modelling using constructive solid geometry (CSG) includes many examples of stylised
divide-and-conquer algorithms. We identify the sources of these recurrent patterns and de-
scribe a Geometric Evaluation Library (GEL) which captures them as higher-order functions.
This library then becomes the basis of developing CSG applications quickly and concisely.
GEL is currently implemented as a set of separately compiled modules in the pure functional
language Hope+. We evaluate our work in terms of performance and general applicability.
We also assess the benefits of the functional paradigm in this domain and the merits of
programming with a set of higher-order functions.

Capsule Review

This article is concerned with the implementation of a library for Constructive Solid Geometry
(CSG). Divide-and-conquer algorithms are implemented as higher-order functions in HOPE+.
The authors do not choose a functional language because of their background, but for very
practical reasons: they need a prototyping tool, with a flexible type scheme, that naturally
supports the divide and conquer paradigm. A functional language supports all of this, and
leads to a sufficiently efficient implementation.

The discussion includes a detailed description of the data types and of the function
signatures. The case study is realistic in that it is not just a toy example, it considers the
empty and universal set, and input/output.

It is important to read through the positive experiences reported, and to dwell on the
problems encountered. The authors perceived a lack of expressiveness in working with graph
structures, the long compilation times are a nuisance and for large data sets the program
needs a non linear time to run. There is more work to be done by the functional community
to improve on these issues. It is from 'outsiders' who implement real applications that one
can learn what improvements are really desired.

It would be interesting to continue research in this direction to evaluate which types of
geometric modelling operations are well implementable through functional programming and
which are not.

1 Introduction

We present a case study in functional programming, in the field of solid modelling
with Constructive Solid Geometry (CSG). It is motivated by the observation that

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

416 J. R. Davy and P. M. Dew

this application domain uses many stylised algorithms based on the divide-and-
conquer (D&C) paradigm. Previous work on the Mistral series of parallel solid
modellers (Holliman et ah, 1989; Wand and Dew, 1993) has demonstrated that these
algorithms are highly parallel. Hence we pose the question: is it possible to capture
these common patterns of computation in a generic way ? If so, this would enable
CSG applications to be developed more rapidly and also provide a route for implicit
parallelism by mapping high-level descriptions onto known parallel solutions.

In this paper we attempt to answer the above question. Specifically, we present
a polymorphic Geometric Evaluation Library (GEL) which captures the generic
characteristics of these CSG algorithms, showing how this leads to rapid program
development and concise programs. The operations in GEL are also able to capture
a wider range of related algorithmic structures in computational geometry.

GEL was intended as a prototype to explore the systematic use of D&C in solid
modelling, with a view to future parallel implementation. It is currently implemented
as a set of parameterised data types and higher-order functions in the pure functional
language Hope+, though other higher-order languages such as Haskell and Miranda
would be equally appropriate. A functional language was indicated since higher-
order functions provide an elegant way to model recurring algorithmic patterns.
Furthermore, applications in this problem domain have a natural interpretation as
function evaluators, mapping representations of geometric objects into properties,
predicates or processes (Tilove, 1981).

We present our work as 'outsiders' to the functional programming community,
and assess these experiences of the functional paradigm in our field. This contrasts
with independent, related work at Imperial College (Darlington and To, 1995), where
developers of functional programming technology used solid modelling as a case
study.

Hope+ is a strongly typed, higher-order functional language. It supports only a
limited form of currying, which we have not used. Explicit type declarations are
required for all functions, though we will sometimes omit these. Our code fragments
use standard Hope+, though where we are particularly concerned with the signatures
of functions we make some minor changes in the interests of conciseness and clarity:
type variables such as alpha, beta are shown as a, /?, integer, character and boolean
types as Int, Char, Bool, and list types by square brackets. Thus the signature of the
length function for a list would, in our notation, be

[a] -+ Int

We use the term support functions for functions which are parameters of higher-order
functions.

In view of its similarity to other higher-order functional languages we omit a
description of Hope+ syntax. Details can be found in Perry (1989). We avoid low-
level geometric details, since our concern is primarily with the structure of the
algorithms. Issues of potential parallel implementation are also omitted: an outline
of generic methods can be found in Davy (1992).

In section 2 we describe some basic principles of CSG, identifying two main sources
of generic algorithmic patterns. Section 3 presents the main facilities of GEL with

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

A polymorphic library for constructive solid geometry 417

examples of their use. Sections 4, 5 and 6 discuss respectively the implementation,
performance and applicability of GEL. In section 7 we assess the merits of using
functional programming in this context. Section 8 notes related work before our
final conclusions in section 9.

2 Solid Modelling

Solid modelling systems represent and manipulate descriptions of three-dimensional
objects. Originally developed as an underpinning technology for computer-aided
design in mechanical engineering, they have also been used in a wider range of
applications, including computer vision (Brooks, 1981) and molecular modelling
(Muuss, 1987). The distinguishing feature of solid models is completeness: a descrip-
tion of a solid contains sufficient information to compute any geometric property
of that solid.

2.1 Constructive solid geometry (CSG)

Several schemes have been devised for complete representations of solids (Requicha,
1980). One of the most important is CSG, in which solids are represented by a
set of primitive solids combined using regularised boolean operations such as union,
intersection and difference. It is common for a small set of bounded primitives, such
as spheres and cones, to be available to the users of CSG systems. Internally these
are often represented as a combination of simpler unbounded primitives called
halfspaces. These are defined by functions of the form f(x,y,z) < 0 which partition
space into two halves, inside and outside the primitive.

CSG represents a solid as a tree structure with primitives at the leaves and boolean
operators at interior nodes. Though usually concerned with 3-dimensional shapes,
CSG is applicable in any number of dimensions; we include some examples with
2-dimensional 'solids' for simplicity.

The tree structure leads naturally to recursive D&C algorithms, which compute
results for primitives, then combine the results using the boolean operators when
returning up the tree. Tilove (1980) identified this as a generic paradigm for CSG,
applying it to set membership classification problems. An example used later in this
paper is point membership classification (PMC), which determines whether a point
is inside, outside or on the boundary of a solid. Classifications are carried out on
primitives and results of subtrees are determined using simple rewrite rules: for
instance if a point is 'in' two solids it is 'in' their intersection.

2.2 Spatial subdivision

It is common to convert CSG trees into secondary data structures based on octrees
(Meagher, 1982), using a process of spatial subdivision. Here the (usually cubical)
space in which the solid object is situated is partitioned into eight quasi-disjoint
subcells. Associated with each subcell is a localised CSG tree containing only the
primitives which intersect the subcell. The subcells are obtained by a hierarchical

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

418 J. R. Davy and P. M. Dew

approach which adapts the depth of subdivision to the local complexity of the model.
For instance, subdivision may stop when the number of primitives in a localised tree
falls below some threshold.

The benefits of spatial subdivision are exemplified in ray-tracing (Holliman, Wang
and Dew, 1993). Crude CSG ray-tracing is very expensive, intersecting every ray
with every primitive. When ray-tracing a spatially divided model, each ray is tracked
through the octree and intersects only the primitives of the localised trees encoun-
tered, giving substantial performance improvements.

There are also many algorithms which use spatial subdivision but without explic-
itly creating a tree: the family of algorithms for computing integral properties of
solids (Lee and Requicha, 1982) is a good example.

Spatial subdivision algorithms also typically follow a D&C approach. Thus CSG
computations lead to D&C algorithms both because of the primary data structure
and because of frequently used spatial subdivision techniques. The GEL library was
developed to enable both these algorithmic patterns to be captured in a high-level
fashion.

3 The geometric evaluation library (GEL)

GEL is currently written in Hope+ and provides a set of separately compiled
modules which can be called from Hope+ programs. It is based on general D&C
operations and two parameterised data types: a generic CSG tree and a generic
geometric decomposition tree (GDT). The latter generalises the octree-based solid
models noted in section 2.2. In this section we discuss the basic facilities of GEL,
illustrate their use, and outline some additional features.

3.1 Divide and conquer

Variants of a higher-order D&C function have been defined by several writers, such
as Cole (1989) and Kelly (1989). There are four support functions: leaf determines
whether a problem is small enough to solve directly, divide splits a problem into a
list of subproblems, solve computes the direct solution of a 'small' problem, combine
combines the results of a list of subproblems. For instance, mergesort can easily
be implemented, with leaf returning true for a singleton list, divide splitting the list
into two equal-sized sublists (GEL provides this operation as a utility), solve as the
identity and combine merging sorted sequences.

GEL has two versions of this function, distinguished by whether combine uses
only the results of subproblems or needs the original divided data. In both cases,
the function is invoked as

divacon(data, leaf, divide, solve, combine);

and returns the final result of the D&C operation. Both functions are called divacon,
relying on the Hope+ overloading facility. Their signatures are

- P
P

a
a

x (a
x (a

-> Bool)
-> Bool)

X

X
(a -
(a —>

[a])

M)
X

X

(a
(a

- P)
- » /»)

X

X

([)?]

OP]x a —>
-* P
P)

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

A polymorphic library for constructive solid geometry 419

Note that the functions are disambiguated by the combine parameter. Their imple-
mentation is straightforward, as in Cole (1989) and Kelly (1989).

3.2 CSG trees

CSG trees are binary trees with instances of primitive solids at the leaves and
instances of boolean operators at interior nodes. We model them as algebraic
types parameterised by primitive and operator types. Since CSG is a set-theoretic
representation, there should be a means of denoting the empty set (0) and the
universal set (Q) in a CSG system. These considerations lead to the following type
definition, in which rho, chi are types for primitives and operators respectively:

data CSG(rho, chi) ==
Emptysolid ++ Fullsolid ++ Primitive (rho) ++
Compose (CSG(rho, chi) # chi # CSG(rho, ch i)) ;

Note that chi is simply an enumeration of the specific set of operators used,
such as {Intersection, Union, Difference} or {Union, Difference}. Its inclusion as a
parameter, rather than as a fixed enumeration, is motivated by the observation that
CSG systems vary in both the number and specific kinds of boolean operations
allowed. The actual implementation of these operations is carried out by combining
functions, discussed below.

The primary higher-order operation on CSG trees is an evaluation of the tree. This
is a D&C traversal, suitable for the family of set membership classification problems
noted in section 2.1. Interpreting this in terms of the divacon function, we note that it
needs a solve function to classify a primitive, and a function to combine the classifica-
tions. The latter will effectively implement the boolean operations for the evaluation
in question. Leaf and divide can be incorporated into the schematic solution for this
set of problems. A plausible higher-order function, CSGtraverse has the signature

a x CSG(p,x) x (p x a ^ / l) x (/ ! x ^ x ^ j 5) ^ / !

where a, /? are, respectively, the types of the object to be classified against the tree
and the classification result. The equations implementing this function (using a
characteristic pattern matching approach) are

CSGtraverse(_, Fullsolid, _, _) <= e r r o r [. . . .] ;
CSGtraverse(_, Emptysolid ,_, _) <= e r r o r [. . . .] ;
CSGtraverse(query, Primitive(prim), solve, _)

<= solve(prim, query);
CSGtraverse(query, Compose(1,op,r), solve, combine)

<= combine (CSGtraverse(query, 1 , solve, combine),
op,
CSGtraverse(query, r , solve, combine));

Note that the first two equations assume that CSG trees always have 'proper'
primitives, that is, there are no instances of 0 or Q. This is not entirely realistic for
at least two reasons; in a binary CSG tree a boolean complement operator must be
modelled as P = Q — P, and trees with empty primitives may exist as intermediate
steps. Thus we must allow the result of carrying out a solve on 0 or Q to be specified.

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

420 J. R. Davy and P. M. Dew

Also, there are situations in which there is no 'query' data - a trivial example is an
algorithm to count the number of primitives.

We again call on overloading to handle this situation, giving a family of CSGtra-
verse functions each with a slightly different signature. Invocations of two of these
are

CSGtraverse(query, tree, solve, combine, fullsolve);
CSGtraverse(tree, solve, combine, fullsolve, emptysolve) ;

The complete set of signatures is shown in figure 1. Note that if a result for a
primitive Q is specified, a result for a primitive 0 is a further option. The need for
disambiguation precludes also allowing0 alone as an option; we chose to give greater
importance to Q because of its fundamental role in modelling complementation.

CSG(p,X) x (p -
CSG(p,x) x (p -
CSG(p,X) x (p -
a x CSG(p,x) x
a x CSG(p,x) x
a x CSG(p,X) x

- P)
- P)
- P)
(p x
(p x
(p X

x (P
x (P
x (p

: a - >

: a - >

a —*

XX
XX
XX
/?)

P)
P)

X

X

X

X

X

X

p -
p - » •

p -»•
(p x
(p x
(p x

P)
p)
p)
X x

X x

XX

- p
x p -
x p x
p - »
p - »
p - p) x p x p -» p

Fig. 1. Signatures of overloaded CSGtraverse functions

Example 1: Point membership classification

As a first example of the use of GEL we solve the Point Membership Classification
problem introduced in section 2.1. (Recall that PMC determines whether a point
lies on the inside, outside or boundary of a solid.) First the geometric domain
must be defined, using planar, spherical, conical and cylindrical halfspaces, and a
set of three boolean operators. We model a classification simply as an integer; this
is an over-simplification in practice because it ignores problems of combining 'on'
classifications (Tilove, 1980). Since the fuller classification structure would complicate
the details without affecting the overall algorithmic structure, we use the simpler
form for expository purposes.

type SP_HS == real # P0INT3; ! radius # centre
type PL_HS == real # VECT0R3; ! d i s t . from Origin # normal to plane
! similarly for CY_HS, C0_HS

data HS == sphere(SP_HS) ++ plane(PL_HS) ++ cyl(CY_HS) ++ cone(C0_HS);
data ROP == Union ++ Inter ++ Diff;

type SOLID == CSG(HS, ROP); ! using generic CSG type

type CLASS == num; ! may be IN, OUT, ON.

PMC now requires only a single invocation of CSGtraverse:

CSGtraverse(pt, tree, classify.prim, combine_class) ;

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

A polymorphic library for constructive solid geometry 421

All that remains is to implement the two support functions. Classify-prim contains
the low-level geometric details for the set of primitives used. Combine.class imple-
ments the boolean operation for this problem. Its parameters are used to compute
an index into a table, stored as a vector for efficiency, in which each entry gives
the result of combining the relevant classifications. For instance, if a point is IN a
subtree it is IN its union with any other subtree. Both these support functions use
pattern matching, on the HS and ROP constructors respectively, in a simple, stylised
fashion:

dec classify_prim : HS # P0INT3 -> CLASS;
classify_prim(sphere(r, Point3(cx, cy, cz)) , Point3(x, y, z))

<= le t (dx, dy, dz) == (x - ex, y - cy, z - cz) in
le t d == (dx *dx + d y * d y * d z * d z - r * r) in

if d > 0.0 then OUT
else if d < 0.0 then IN
else ON;

! similarly for plane, cyl, cone

dec combine_classifications : CLASS # ROP # CLASS -> CLASS;
combine_classifications(cl, Union, c2)

<= index(UNI0N_TABLE, 4 * cl + c2 + 1); ! Find result from table
! similarly for Inter and Diff

Thus the whole application has been implemented by a simple data modelling
stage, invoking a single GEL operation, and supplying two support functions which
implement respectively the primitive geometric evaluation and the boolean operation.
This is characteristic of the way CSG operations are implemented in GEL.

3.3 Geometric decomposition trees

Section 2.2 described a second representation of solid models using octree-based
spatial subdivision, in which leaves of the octree hold localised CSG trees. We
generalise this structure to a Geometric Decomposition Tree (GDT). Noting that the
interior nodes of the octree hold no geometric information, we parameterise GDTs
by the type of geometric objects stored at the leaves, x

data GDT(tau) == Terminal (tau) ++
Interior (l i s t (GDT(tau)));

Clearly this captures the essence of a spatially divided octree, but its use of a list
for subtrees avoids the restriction to eight-way subdivision and opens the way for
more general application.

What operations are appropriate for a GDT? Clearly we need to be able to
create a GDT from a CSG model (or other geometric representation). Thus we
need to determine the appropriate parameters for a GDTcreate function. Following
the pattern of divacon we note that leaf determines whether the subdivision should
continue further, divide carries out the subdivision process. These are application-
dependent and must be specified as parameters. Solve creates the terminal nodes,
a housekeeping task which can be absorbed into the body of GDTcreate. It may,

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

422 J. R. Davy and P. M. Dew

however, first transform the geometric data, which is application-dependent; this
transformation (possibly the identity function) must be specified as solve. Combine is
a housekeeping task which forms the tree structure from a list of subtrees, so it can
also be embedded in the body of GDTcreate. One further parameter often supplied
is the maximum depth of the tree, which limits memory requirements and prevents
pathological cases of non-termination. We allow for this by defining two overloaded
versions, with and without this final parameter. Their signatures are:

(a -»
(a ->

Bool)
Bool)

X

X
(a -
(a -> M)

X

X
(a -
(« -

t)

T)

—>

X
GDT(i)
Int -> GDT{x)

The definition of the second version, counting the root as being at depth 0, is

GDTcreate(x, leaf, divide, solve, maxdepth)
<= MakeGDTC x, leaf, divide, solve, maxdepth, 0);

MakeGDTC x, leaf, divide, solve, maxdepth, depth)
<= if leaf(x) or depth = maxdepth

then TerminaKsolve(x))
else Inter ior

(mapGDTQeaf, divide, solve, divide(x),
maxdepth, depth+1)

) ;

where mapGDT is a variant of map, applying MakeGDT to each element ofdivide(x).
Once a tree is created we must traverse it to evaluate useful information. Again a

D&C method is possible, evaluating the geometric structure at each terminal node
and combining results. Here the critical parameters, as for CSGTraverse, are the
solve and combine functions. It is also possible that there may be some 'external
data', corresponding to the point in the earlier PMC example, such as a point or line
about which to find a moment of inertia. Thus we again have an optional parameter,
implemented using two overloaded functions, with signatures

GDT(T) x (T -> P) x ([/?] -> p) -> p

GDT(x) x a x (T x a -> /?) x ([)8] ->• 0) -> P

The definition of the second version is

GDTtraverse (Terminal (x) , query, solve, combine)
<= solve (x, query);
GDTtraverse (Interior(x), query, solve, combine)
<= combine (mapTraverse(solve, combine, x, query));

where mapTraverse is a map-like function similar to mapGDT.

3.4 Example 2: Area of a 2-Dimensional CSG 'Solid'

We illustrate GDT operations by finding the area of a 'solid' defined in two
dimensions with just two kinds of primitive halfspaces, namely lines and discs. We
follow the previous pattern in modelling our SOLID type. In addition, we must also
model the (square) cells of the spatially divided model; each leaf of the GDT will

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

A polymorphic library for constructive solid geometry 423

contain both its bounding cell and the localised CSG tree.

type CI_HS == r e a l # P0INT2; ! r ad ius and centre
type LI_HS == r e a l # r e a l # r e a l ; ! halfspace i s ax + by + c < 0

data HS2 == circle(CI_HS) ++ l ine(LI .HS) ;
data ROP == Union ++ I n t e r ++ Diff;

type SOLID == CSG(HS2, ROP); ! bas ic CSG t r e e

type INTERVAL == r e a l # r e a l ;
type CELL == INTERVAL # INTERVAL;

dec UNIVERSE : CELL
UNIVERSE <= ((0 . 0 , 1.0), (0 .0 , 1 .0)) ;

! modelling space is normalised to a unit square

type SDM == GDT (CELL # SOLID); ! spatially divided model

The algorithm to find the area creates a tree, stopping the subdivision when the
localised tree in a cell is either 0 or Q. In addition we will specify a maximum
termination depth MAXDEPTH. Finding the area sums the contributions from all
terminal nodes, counting 0 cells as zero and evaluating the complete area of Q cells.
A GEL implementation is:

GDTtraverse(GDTcreate((tree, UNIVERSE), leaf, divide, solve, MAXDEPTH),
quad_area,
add_areas);

It remains to define the various support functions. Leaf terminates the subdivision
if the CSG tree is full or empty, using primitive functions supplied by GEL:

dec leaf : CELL # SOLID -> truval;
leaf(_, t) <= is_empty(t) or is_full(t);

Divide requires two stages; first the cell is partitioned into quadrants using split-cell,
then the CSG tree is 'pruned' to localise it to each quadrant, by invoking CSGtraverse:

dec make.subtrees: list(CELL) # SOLID -> l i s t (CELL # SOLID);
make_subtrees (ni l , _)

<= n i l ;
make.subtrees (ce l l : : r e s t , tree)

<= (cel l , CSGtraverse (cel l , t ree , prune_hs, merge_subtrees, Ful lsol id))
:: make_subtrees (rest , t r ee) ;

dec divide: CELL # SOLID -> list(CELL # SOLID);
divide (e l l , tree) <= make_subtrees (sp l i t_ce l l (c l l) , t r ee) ;

The support functions of CSGtraverse (not shown) again use pattern matching
on the HS2 and ROP constructors. Of interest here is that CSGtraverse produces
a modified tree, discarding primitives found to be full or empty in relation to an
enclosing cell. However, it is possible, for il values to be retained in subtrees of form
fi — P, as noted before, hence the need to specify a value to be returned when Q is
encountered.

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

424 J. R. Davy and P. M. Dew

Solve also has interesting features, since a terminal cell at MAXDEPTH need not
contain Q or 0. To allow for this, we classify the mid-point of the cell against the
local tree; if this returns OUT we count the cell as empty, otherwise as full. The
PMC operation (using CSGtraverse again) returns IN or OUT trivially if the local
tree is Q or 0. Note that this particular CSG traversal is unusual in that it requires
both of the optional results for Q and 0. The following implementation makes use
of the GEL function ptmake to construct a point.

dec solve: CELL # SOLID -> CELL # SOLID;
solve (cel l & ((xmin, xmax), (ymin, ymatx)), tree)

<= le t midpt == ptmake((xmin + xmax) * 0.5, (ymin + ymax) * 0.5) in
(ce l l , if CSGtraverse (midpt, t r e e , classify.prim,

combine_classifications, IN, OUT) = OUT
then Emptysolid
else Ful lsol id) ;

Only quad-area and addjareas remain undefined; these are trivial and are omitted.
Creating a GDT is a substantial overhead, which is not justified when only

a single traversal is required. A further inefficiency arises because there is the
overhead of computing the midpoint and executing CSGtraverse, even when the cell
was previously found empty or full by leaf. This is an instance of a general difficulty
which we call the leaf/solve problem: leaf and solve may repeat some computation
since there is no way to pass the results of subexpressions between them. Both these
problems can be resolved by a more efficient algorithm which computes the desired
results 'on-the-fly' instead of creating the tree. Since no GDT is created, this solution
cannot be implemented by GDT operations, but it is still a D&C operation and can
be solved using divacon:

divacon((UNIVERSE, t r ee , 0, MAXD),
leaf, divide, quad_area, add_areas);

The support functions are similar to the previous example but there is some
re-distribution of the computation between them. Divide again uses CSGtraverse to
prune CSG trees to each cell. The termination condition and the PMC operation
are both included in quad-area, removing the leaf I solve inefficiency noted earlier.

Both approaches involve the same geometric computations and produce the same
results. The second method executes more quickly, but the first may be appropriate
if the GDT can be reused for subsequent computations.

5.5 Input and output

GEL provides facilities enabling I/O of geometric objects to occur in a uniform
way, with a single function call. Since Hope-I- models I/O streams as lazily evaluated
lists, input routines extract an item from the head of a list, returning a pair with
the item and the modified list. Similarly, output routines append an item to a list,
returning the modified list.

Simple routines for basic geometric types such as points and vectors are provided.
CSG trees and GDTs are more interesting; higher-order functions allow these types

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

A polymorphic library for constructive solid geometry 425

also to be input or output by a single function call. This requires a standard file
format, transparent to the user of GEL except for the one-character codes of the
operators; for compatibility with other work at Leeds we use the same format as
the Mistral-3 parallel solid modeller (Holliman et al, 1993).

For CSGget, two support functions respectively extract a primitive from the head
of the list and convert an operator code to its internal form; for CSGput they convert
primitives and operators to their character form. The invocations of CSGget and
CSGput are

CSGget(instream, get_prim, get.op);
CSGput(tree, outstream, put_prim, put_op);

and their respective signatures are

[Char] x ([Char] -> p x [Char]) x (Char -* x) -» CSG(p,x) x [Char]
CSG(p,x) x [Char] x (p -> [Char]) x (x -* Char) -» [Char]

The support functions should be written when the geometric domain is denned.
As in earlier examples, they use pattern matching in a stylised fashion, calling GEL
routines to convert the individual components of primitives; indeed it would be a
routine task to generate the support functions automatically from the primitive type
definitions.

The same approach is used for reading and writing GDTs, using an extension of
the same file format. Since there is only a single type parameter, T, only one support
function is required for each operation. Outputting the tree requires the degree of
the tree as a parameter. (The restriction to fixed degree trees is unimportant in
practice). This parameter is not needed for input, since it is stored in the external
file. The invocations of GDTget and GDTput are

GDTget(instream, get_geom);
GDTput(tree, degree, outstream, put_geom);

with signatures

[Char] x ([Char] -> z x [Char]) -» GDT(z) x [Char]
GDT(z) x Int x [Char] x (T -» [Char]) -> [Char]

As an example of the power and flexibility of these operators it is possible to
input or output the spatially divided models of section 3.4 by a single call to GDTget
or GDTPut. In these cases get.geom and put-geom will invoke CSGget and CSGput
respectively.

3.6 Other GEL features

Two additional data types enlarge the scope of GEL. The first extends the range
of CSG problems which can be handled, the second opens up a range of geometric
problems outside the scope of solid modelling.

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

426 3. R. Davy and P. M. Dew

3.6.1 Attributed CSG

The CSG data type is parameterised by primitive and operator types, but in some
situations other information may also be stored in the tree. If this information is
only associated with primitives it can be included in the definition of the primitive
type. In some cases, however, information is also associated with interior nodes. A
simple example is the use of a hierarchy of bounding boxes, which speeds subsequent
processing by allowing intersection tests to take place against the simple bounding
boxes rather than the more complex primitives. Intersection of an object with a
primitive need only occur when intersection with the box is indecisive. The benefits
of such boxing are discussed in Cameron (1989). A rather different use of attributes
is proposed in Alagar et al. (1990), where semantic information is stored at the
nodes of CSG trees to guide finite element analysis.

These comments motivate the definition of an attributed CSG tree, in which a
further parameter, theta, represents the type of such attributes:

data AttCSG(rho,chi,theta) ==
Emptysolid ++ Fullsolid ++
Primitive (rho # theta) ++ ! at t r ibute at leaf node
Compose (AttCSG(rho, chi, theta)

(chi # theta) # ! a t t r ibute at interior node
AttCSG(rho, chi, theta)) ;

Attributed CSG trees have a similar set of overloaded operators to simple CSG
trees, including I/O functions. Their use is illustrated in the first author's PhD thesis
(Davy, 1992).

3.7 Multi-resolution representations

A variant of the geometric decomposition paradigm outside solid modelling is the
use of multi-level hierarchical approximations for digitised objects. For instance a
strip-tree (Ballard, 1981) stores a digitised 2-D curve as a hierarchy of bounding
strips. Nested ternary triangulations (Floriani et al., 1984) and nested quaternary tri-
angulations (Gomez and Guzman, 1979) are hierarchical representations for digitised
surfaces. These structures are derived by a recursive technique similar to spatial sub-
division. The most significant difference to the earlier GDTs is that similar geometric
information is stored at varying levels of accuracy throughout the tree structure,
with greater accuracy at greater depth. Thus an accuracy-time tradeoff is possible
in subsequent processing of the tree.

We capture such structures using a multi-resolution GDT type:

data MGDT(tau) ==
Terminal (tau) ++
Inter ior (l i s t (MGDT(tau)) # tau); ! geometry at interior node

The MGDT type has a set of overloaded operations analogous to GDT, including
input and output. One slight difference is in MGDTtraverse. Here we may wish to
compute some property of the stored geometry with less accuracy than was used to

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

A polymorphic library for constructive solid geometry All

create the tree, thus limiting the depth of the traversal. Hence there is an optional leaf
parameter, which typically checks whether the desired accuracy has been reached.

Examples of striptree operations using the MGDT type are shown in Davy (1992).

4 Implementation

GEL is implemented as a set of separately compiled Hope+ modules, amounting to
some 2095 lines (71 kbytes) of source code. Parts of GEL have also been translated
to a range of other functional languages (including Haskell and Lazy ML) as part
of a benchmarking exercise (Hartel and Langendoen, 1993; Hartel, 1994), using the
'area' derivation of section 3.4 (with a GDT) as the benchmark program.

The GEL modules fall into three categories:

• Structural modules provide the higher-order D&C functions on which GEL is
based, including all support for the CSG and geometric decomposition types.

• Geometric libraries provide operations on basic entities such as points and
vectors, from which more complex geometric domains can be constructed.

• A utility module provides a variety of utility functions relating to I/O and list
processing.

To make effective use of these core modules domain modules must be constructed
to define the geometric domains for specific applications. Four such modules are
already included in GEL, for 2- and 3-dimensional halfspaces, bounded primitives,
and striptrees. However, it is envisaged that users of GEL will commonly define
their own domain modules.

5 Performance studies

In the context of a prototyping exercise, functionality was a higher priority than
performance. However, a number of performance experiments were carried out to:

• measure the absolute performance of GEL on selected programs;
• compare its performance with C; and
• assess the overheads of using higher-order functions.

5.7 Execution times for PMC

Figure 2 shows the execution times (in seconds) for a program which inputs a CSG
tree and carries out a single PMC operation. Times were measured on a lightly
loaded Sun 3/60 workstation using the sum of system and user times returned by
the Unix 'time' command; the best time for five successive runs was used.

For a tree with Np halfspaces the execution time for both inputting the tree and
carrying out PMC should be 0{Np). Times for two versions of the program are
shown in figure 2:

1. Using the GEL CSGget and CSGtraverse operations.

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

428 J. R. Davy and P. M. Dew

time (s)

1000 2000 3000 4000 5000 6000 7000 8000
Number of primitives

Fig. 2. Execution times for PMC

2. A comparable recursive algorithm in C, in which each tree node constructed
required a call to malloc(), and no cells were deallocated.

In all cases the same models were used, including very large trees with up to 7000
halfspaces; the largest external file was around 258 Kbytes. Internally each halfspace
requires 16 bytes of memory in addition to the space required for enumerated types
at the interior nodes and links between nodes. In both cases the execution time is
dominated by inputting and building the CSG tree.

It can be observed that GEL outperforms C for up to around 2500 halfspaces
(a very substantial solid model). This is an encouraging confirmation of claims
that modern functional language compilers can generate code comparable with
established imperative languages. On the other hand, GEL is significantly slower
than C beyond this point. Whereas the C times follow the expected linear behaviour,
the Hope+ times are worse than linear. This is easily confirmed by curve-fitting;
indeed a denser set of timings at intervals of 500 halfspaces up to 4000 halfspaces,
showed a strong quadratic fit, indicating that the non-linear behaviour was not
simply a feature of the largest data sets.

There could be several possible causes of this performance degradation, including
page faults, memory leaks, overheads of lazy evaluation, and garbage collection.
Page faults could be discounted since 'time' usually reported none. After discussion
with one of the Hope+ implementors we were unable to discover any memory
leaks. Although Hope+ normally constructs data lazily, strictness can be enforced
using a compiler option. When this was done, execution times were almost identical,
sometimes slightly greater, more often slightly smaller; subsequent experiments

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

A polymorphic library for constructive solid geometry 429

time (s)

2000 4000 6000 8000
Number of primitives

10000 12000

Fig. 3. Effects of varying the initial heap size

therefore used strict compilation. This left garbage collection as the primary suspect,
particularly as the default initial heap size for Hope+ is only 2 Mbytes. Increasing
the initial heap size might be expected to reduce garbage collection, possibly at the
cost of some page faults.

Figure 3 shows the effect on execution time of using initial heaps of sizes 6
Mbytes and 10 Mbytes as well as the default 2 Mbytes. It confirms that garbage
collection was indeed the primary cause of the non-linear behaviour; for the 10
Mbytes initial heap, the graph is almost linear, though the data fit slightly better
to a + bNp log Np than to a + bNp. It is interesting to note that the larger initial
heap led to higher execution times on the smaller data sets, so optimal setting of
the initial heap size is data-dependent. Despite the increased heap size, normally
no page faults were reported by 'time'. When the program was compiled with a 16
Mbytes heap, however, a run time 'memory exhausted' error was obtained.

As shown in figure 3, the much improved times made it feasible to increase the
tree sizes, up to 10000 primitives. The C program was also run on the larger data
sets. Results were very similar to the GEL results with a 10 Mbytes initial heap; C
was marginally faster than GEL from 2000 primitives upwards.

5.2 Effects of input/output

The PMC program contains three main components; input of the data from an
external file, building the CSG tree, and traversing the tree to classify the point. The
first two are integrated within the CSGget function and cannot be separated, but
their combined effect can be assessed by removing the CSGtraverse function which

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

430 J. R. Davy and P. M. Dew

Table 1. I/O and computation times for PMC, with varying initial heap size

Np

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

2 Mbytes

Ti"

2.7
5.6

14.2
25.1
42.6
55.1
73.6

-
-

TC»

0.3
0.8
0.7
0.9
1.1
2.2
2.8

-

6 Mbytes

T,

2.7
5.7
9.2

13.2
15.6
20.6
25.9
44.2
68.0
98.4

Tc

0.3
0.4
0.7
0.9
1.2
1.4
1.7
1.8
2.1
2.5

10 Mbytes

T,

2.8
5.7
9.1

13.1
15.6
18.3
23.4
26.1
28.7
35.1

Tc

1.4
3.4
4.8
5.6
5.4

10.1
• 9.8

11.9
14.2
9.9

C

T,

4.0
8.6

13.2
17.9
19.9
27.0
31.6
36.2
40.8
42.8

Tc

0.3
0.4
0.7
0.8
0.8
0.9
1.1
1.2
1.3
1.7

" Ti is the time (in seconds) to build the CSG tree including input from the external file
b Tc is the time (in seconds) to carry out point membership classification

implements the PMC. Table 1 shows the execution times which can be attributed to
input/tree-building and PMC components.

With the largest initial heap size GEL consistently outperforms C for input and
tree-building. This because input is faster in Hope+ than C; tree-building is also
likely to be faster because heap allocation is done with inline code using reserved
registers to store important heap information (Perry, 1995). For all but the smallest
data sets the input and tree-building time substantially decreases with increasing
initial heap size. On the other hand the PMC computation is consistently slower
in Hope+ than C, and seriously degrades in a non-monotonic way with increasing
initial heap size. Clearly different parts of the same program behave differently with
respect to varying initial heap sizes and data sizes; this has adverse implications for
performance optimisation.

5.3 Overheads of using higher order functions

GEL's simplicity for programming arises from its use of higher-order functions.
It is reasonable to question whether this is achieved at the cost of performance.
To investigate this, the PMC program was 'hand-coded' in Hope, using a similar
recursive structure but no higher-order functions. Predictably the execution times
were somewhat lower. The overheads of using GEL (expressed by the increase in
execution time as a percentage of the raw Hope-|- time) are shown in table 2.

For the lower heap sizes the overhead is pleasingly small (apart from the largest
data sets with 6 Mbytes initial heap); it appears an acceptable price to pay for the
generality and simplification in programming. On the other hand, for the 10 Mbytes
initial heap, the overhead is consistently much more significant; its acceptability is
more questionable.

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

A polymorphic library for constructive solid geometry 431

Table 2. Percentage overheads of using higher order functions, with varying initial
heap size

Np 2 Mbytes 6 Mbytes 10 Mbytes

1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

3.4
6.7
11.2
2.4
4.0
3.4
2.2

_

3.4
1.7
5.3
2.9
-0.6
3.8
3.8

27.4
17.4
24.6

44.8
51.7
44.8
36.5
28.0
32.1
36.1
39.2
42.5
23.3

5.4 Execution times for area by recursive subdivision

The computation of area by spatial subdivision, described in section 3.4, provides
a more compute-intensive benchmark program. Recall that two versions of the
program were developed, the first creating then traversing a GDT, the second
computing the area 'on-the-fly' without building a GDT. Table 3 shows results
obtained for the 'on-the-fly' version, in both GEL and C, with maximum depth of
subdivision up to 13. Identical floating point computations were carried out in each
case. All times were obtained using 'time' with multiple runs on a Sun 3/60, as with
PMC.

Table 3. Execution times for area by spatial subdivision 'on the fly'

depth

2
3
4
5
6
7
8
9
10
11
12
13

Area computed

C

1.000000
0.968750
0.960938
0.957031
0.956787
0.955261
0.955551
0.955616
0.955612
0.955612
0.955614
0.955614

GEL

1.0000000
0.9687500
0.9609375
0.9570312
0.9567871
0.9552612
0.9555664
0.9556236
0.9556236
0.9556201
0.9556208
0.9556212

C

4.2
5.0
5.5
6.1
6.7
7.4
8.2
9.6
12.2
17.4
27.5
46.9

Execution

GEL2°

1.8
2.2
2.6
2.9
3.3
3.7
4.5
5.4
7.3
11.2
19.0
34.4

times

GEL6

1.8
2.2
2.6
2.9
3.3
3.7
4.4
5.5
7.4
11.2
18.9
34.4

GELio

1.7
2.2
2.6
2.9
3.3
3.8
4.4
5.4
7.4
11.1
19.0
34.3

GELN is the execution time with initial heap N Mbytes

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

432 J. R. Davy and P. M. Dew

Here the worst case execution time for depth d is 0{Np4
d), but this is of little

practical use since typical performance is much better than this and highly data-
dependent. Hence no asymptotic complexity result can be predicted. The measured
times are much better than the worst case, and the computed areas show a clear
convergence by around depth 9; it seems unlikely that the costs of processing to
a greater depth are justified. The original results for mass properties in (Lee and
Requicha, 1982) were reported only to depth 6. GEL consistently outperforms C;
since there is extensive tree-building when CSG trees are pruned during spatial
subdivision, this is not surprising. Of more interest is that, unlike PMC, the GEL
times do not appear to be sensitive to initial heap size. The slight discrepancy between
the C and GEL results is because the version of Hope+ we used appears to have a
minor error in real input conversion. We understand that this is now corrected.

Results for the GDT version (GEL only) are shown in table 4. For each heap size
the time for the full computation is followed by the separate times for creating the
GDT and traversing it to find the area.

Table 4. Execution times for area by spatial subdivision with a GDT

depth

2
3
4
5
6
7
8
9

10
11
12
13

2

Time

1.7
2.2
2.6
3.0
3.3
3.9
4.8
6.4
9.2

16.4
49.4

166.7

Mbytes

Tree

1.7
2.2
2.6
3.0
3.3
3.8
4.6
5.9
8.6

15.1
46.2

151.0

heap

Area

0.0
0.0
0.0
0.0
0.0
0.1
0.2
0.5
0.6
1.3
3.2

15.7

6 Mbytes

Time

1.8
2.2
2.6
3.0
3.3
3.9
4.7
6.3
9.3

15.7
29.8
73.8

Tree

1.8
2.2
2.6
3.0
3.3
3.8
4.6
5.9
8.5

14.4
26.4
65.6

heap

Area

0.0
0.0
0.0
0.0
0.0
0.1
0.1
0.4
0.8
1.3
3.4
8.2

10

Time

1.8
2.2
2.6
3.0
3.4
3.9
4.8
6.3
9.3

15.7
29.8
57.7

Mbytes

Tree

1.8
2.2
2.6
2.9
3.3
3.8
4.7
5.8
8.6

14.4
26.4
52.1

heap

Area

0.0
0.0
0.0
0.1
0.1
0.1
0.1
0.5
0.7
1.3
3.4
5.6

Predictably, all times are worse than for the corresponding 'on-the-fly' version but
here they improve with increasing initial heap size, as for PMC. There is, however, an
interesting contrast with PMC: the cost of the final tree traversal is greatest for the
smallest heap size. Despite the additional cost of creating the GDT, a comparison
with Table 3 shows that this is justified if only one further traversal is carried out,
up to depth 11 (further for the larger heap sizes). This confirms the value of the
distinct GDT structure within GEL.

5.5 Conclusions from performance experiments

Clearly, results from a small number of specialised programs should be treated with
some caution. We did not set out to compare GEL and C performance comprehen-

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

A polymorphic library for constructive solid geometry 433

sively, and the test algorithms might be considered favourable to GEL, accounting
for the better absolute performance. By contrast, C was much faster than GEL for
a simple mergesort using divacon, because of the extensive use of list processing.

Nevertheless, the performance experiments cover the main features of GEL: input
and traversal of CSG trees, creation and traversal of GDTs, and a general divide-
and-conquer operation. In all cases the best absolute performance of GEL was com-
parable to or better than C, a very positive result given the folklore concerning the
inefficiency of functional language implementations. This can largely be attributed
to the relative efficiency of heap management in Hope+, aiding fast tree-building.

By contrast, the experiments show an unpredictable aspect of Hope+ perfor-
mance, making optimisation problematic. Execution times may depend in a problem-
dependent way on initial heap size, and the nature of this dependence may vary
with data sizes. Also, the cost of different parts of the same program may change
in different ways as the initial heap size changes. Perhaps more seriously, the match
between asymptotic complexity analysis and the observed behaviour on realistic
data sets may also be affected by the initial heap size.

We also found in practice that small changes in a program could have unexpected
consequences for execution times. This coincides with the observations of S Peyton
Jones (1987) that

seemingly innocuous (and meaning preserving) changes to a functional program may have
dramatic effects on its runtime behaviour.

Peyton Jones goes on to suggest that

we have no good means of reasoning about runtime behaviour so as to understand how
good or bad our programs are. In order to reassure himself that his program does not have
undesirable runtime behaviour the programmer may have to know a lot about the particular
implementation.

Certainly this matches our experience; one of the Hope+ implementors made sug-
gestions which improved the performance of a crucial input function, and which
were non-intuitive to us. During this dialogue, however, one suggestion unexpectedly
degraded the performance, provoking an inspection of some implementation details.
It appears that even implementors are not infallible!

Peyton Jones' remarks were made several years ago, but our experience suggests
that they are still valid. It appears that performance optimisation is both application-
and data-dependent in ways which are difficult to predict, and may require non-trivial
implementation knowledge; thus the provision of a general optimised GEL library
in Hope+ is problematic. While we have no direct evidence to indicate that this
would be true for other functional languages, it suggests that a more conventional
language would be appropriate for moving beyond the prototyping stage.

6 Applicability of GEL

The facilities supplied by GEL are of little benefit unless they are of reasonably
general use. We now address this issue, specifically considering the range of useful
operations captured and the ease of extending geometric domains.

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

434 J. R. Davy and P. M. Dew

6.1 Range of useful applications

The CSG principle is applicable, in principle, in an arbitrary number of dimensions.
CSG-based systems vary in the formal properties of primitives, which have included
r-sets (Requicha, 1980), s-sets (Arbab, 1984), and primitives bounded by B-spline
patches (Saia et al., 1987). Specific sets of available primitives may differ, even
between two systems with the same theoretical basis. Furthermore different sets
of boolean operators have been used, varying from difference only (Perng et al.,
1990) to union, difference, intersection and complement (Arbab, 1984). All these
variations can be modelled using our CSG type. The attributed CSG type models
both bounding boxes (Cameron, 1989) and semantic attributes (Alagar et al., 1990).

CSG traversals directly model the family of Set Membership Classification algo-
rithms identified by Tilove (1980). They provide a general utility operation which
we have seen in each CSG example.

GDT operations directly model spatial subdivision operations, such as the fam-
ily of integral property algorithms identified by Lee and Requicha (1982). Spatial
subdivision is a widely used technique which has also been used on other solid rep-
resentations than CSG, including boundary representations (Kela, 1989), polyhedral
models (Carlblom, 1987) and sweeps (Brunet and Navazo, 1990). Typically, trees are
generated in which terminal nodes contain an exact or approximate representation
of the model localised to the relevant subspace. Variants of this type have been
called octrees (Meagher, 1982) (with the equivalent quadtrees (Samet, 1984) in two
dimensions), polytrees (Carlblom, 1987) and extended octrees (Brunet and Navazo,
1990). A similar bintree structure has been proposed (Samet and Tamminen, 1985)
with a binary subdivision at each stage, cycling between the dimensions. All these
structures can be modelled by the GDT type.

In addition to applications previously noted, spatial subdivision techniques have
been used for wire-frame edge evaluation (Woodwark, 1986), NC program veri-
fication (Wallis and Woodwark, 1984), collision detection (Samet and Tamminen,
1985), finite element mesh generation (Shepard et al., 1988) and boolean operations
in polyhedral modellers (Carlblom, 1987). In view of this broad applicability, spatial
subdivision can be seen as a fundamental approach to solid modelling applications.

Many other geometric problems can be solved by D&C methods, especially in
discrete computational geometry. Examples include the construction of Voronoi
diagrams and Delaunay triangulation (Shamos, 1977), and the determination of
convex hulls (Preparata and Hong, 1977). While these cannot be expressed using
the specialised CSG and GDT operations, they can, in principle, be solved using the
general divacon function.

It thus appears that the generic nature of D&C, and of geometric decomposition
trees in particular, makes GEL applicable far beyond its initial aims.

On the other hand, the limitation to D&C means that not all possible algorithms
on the types provided are currently included in GEL; for instance, ray-casting
involves following a single path through an octree, which is not a D&C operation.
Such algorithms can of course be programmed directly using the constructors of
the types concerned. Similarly, operations between two tree structures (for instance,

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

A polymorphic library for constructive solid geometry 435

boolean operations between striptrees (Ballard, 1981), or addition and subtraction
of octrees (Wyvill and Kunii, 1985)) cannot currently be directly described in GEL.
Further work is needed to determine whether these and other computations could
usefully be captured as higher-order functions. (Note that the initial focus on D&C
arose from the wish to exploit known methods of parallelism.)

6.2 Geometric extensibility

One of the practical difficulties of solid modelling systems is extending the domain
of solids which can be represented. This issue is discussed in depth by Dunnington
(1989), where a generic recursive subdivision approach is proposed to solve the
various aspects of this problem. GEL captures this method, and effectively isolates
the domain-specific parts of geometric computations in type definitions and well-
defined support routines. Since these aspects of computational geometry are well-
known for difficulties with floating point accuracy, this isolation helps to localise such
problems. In principle, it should be possible to import code from other geometric
libraries, taking advantage of the extensive efforts on this area.

The main algorithmic structures of GEL, however, do not depend on the specific
geometric domain; in this sense GEL is 'geometry-independent'. Indeed, the core of
GEL contains no geometric routines, other than support for basic entities such as
points and vectors which are likely to be of use to all applications.

The first task for a user of GEL is therefore to customise it for the appli-
cation's requirements by defining a suitable geometric domain. Examples of two
such domains were modelled earlier. In each case primitive I/O functions must be
specified, and support functions provided for the needed geometric facilities, such
as classifying primitives. Adding an additional primitive to an existing domain is
also straightforward; an extra constructor is needed in the relevant type defini-
tion and an extra equation to match that constructor in each support function.
Thus adding new geometry can be done in a simple, systematic fashion. Effectively,
GEL provides syntactic support for extensibility. It is intended as a framework
for developing geometric applications which can be tailored to the user's require-
ments.

7 Evaluation

The GEL library was a prototype intended to explore both the potential for pro-
gramming with higher-order functions and the benefits of using functional languages
in this context. This section discusses these issues in relation to both the functionality
of the current library and our experiences in developing and using it. Performance
issues have already been considered.

7.1 Design and functionality

GEL was developed in incremental, exploratory fashion without a formal design
phase, for which Hope+ proved an excellent tool in several respects. Polymorphic

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

436 J. R. Davy and P. M. Dew

types matched the requirement to provide different geometric domains within the
same generic structure. Higher-order functions successfully captured the computa-
tional structures initially identified and isolated low-level geometric details in support
functions. The clean separation of geometric processing and boolean operation im-
plementation functions was particularly pleasing from an application perspective.
These comments are equally applicable to other higher-order languages such as
ML, Miranda and Haskell, and confirm the well-advertised claims made for the
expressiveness of functional languages.

An apparent drawback of functional programming has also been perceived.
Many of the above benefits can be attributed to the hierarchical nature of the
key data structures, which is not true of the other major solid representation
scheme, boundary representation. This uses a complex graph structure, showing the
topological relationships between the faces, edges and vertices which constitute the
solid's boundary. It is much harder than CSG to model in Hope+; a possible way
forward is shown in Burton and Yang (1990), where similar structures may be built
on an array type. In general, however, it seems that the modelling of multilinked
structures is generally more difficult in functional than in imperative languages. For
instance, we were unable to implement a father-of function to move back up a tree,
which would preclude some of the efficient octree and quadtree traversal algorithms
in the literature (Samet, 1990).

7.2 Implementation

The implementation of GEL was found to be mostly straightforward and quick,
though compilation was slow; subjectively, we found pattern matching a helpful
and systematic way to develop code. Overall, we consider the claim that functional
languages enable rapid code development to be substantiated, with the caveat that
we were dealing with data structures to which functional languages are particularly
well-suited.

A flaw with the current implementation is its heavy reliance on overloading. The
reason for this was the desire to emphasise the similarity of related operations
without resorting to large numbers of almost identical function names. Clearly this
solution is language-dependent; with hindsight it is not all necessary. Consider the
signatures of overloaded operators in figure 1. The heavy overloading was occasioned
by the need to specify a result for the solve function when a special case of 0 or Q
is encountered at the leaves. This could be better handled by declaring a new type
of the form

data SpecialSolve(alpha)
== NoSolve ++ Full(alpha) ++ FullEmpty(alpha, alpha);

A value of this type could then be supplied as a final parameter to all CSGtraverse
functions, removing most of the need for overloading. A possible drawback is that
the parameter must always be included even if no special case is involved; on
the other hand, drawing attention to the possibility of special cases is perhaps
desirable.

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

A polymorphic library for constructive solid geometry 437

The use of currying would further reduce the number of overloaded functions.
Consider again the signatures of the two GDTtraverse functions:

GDT{i) x (x -> P) x ([fi] ^ p) ^ p
GDT(x) x a x (x x a -• P) x ([p] - • /?) -> P

Rewriting these in curried form, with some re-ordering of arguments, allows the
surplus argument to the second operation to be omitted:

GDT(z) - (x -> P) - ([fi] -» p) - p
GDT{x) - (a — x -> /J) — ([/?] -> p) - • /?

The second operation can now be carried out in terms of the first, simpler function.
For instance, the 'area' example of section 3.4 can be modified to compute a moment
of inertia about a point using

GDTtraverse sdm (quad.moment pt) add_moments;

where sdm is the spatially divided model, and quad-moment computes the moment
of inertia of a quadrant about a point. This removes a further needless overload
and is clearly a better solution for a language which supports currying; indeed it
could be implemented using the limited form of currying available in Hope+. The
remaining overload of CSGtraverse can also be removed in this way.

The overloadings of GDTcreate and MGDTcreate cannot be avoided by currying,
because the extra parameter is actually used in the body of the function, rather
than simply being passed to support functions. Thus some overloading appears
inevitable, unless different names are adopted for the variant functions, which would
make GEL more language-independent.

7.3 Use of GEL

Programming using a small number of higher-order functions proved to have both
benefits and drawbacks. There is a helpful discipline to facilitate program devel-
opment, code is concise, and the low-level, error-prone geometric computations are
isolated in a few support functions. On the other hand, the limited set of oper-
ations may lead to more imaginative and appropriate solutions being missed, or
incur inefficiencies such as the leaf/solve problem noted in section 3.4. Moreover,
'short-cut' solutions, such as 'early-outs' (Mudur and Koparkar, 1984), may not fit
into the higher order function framework; Tilove's work on generic CSG algorithms
also pointed to this conflict between generality and efficiency (Tilove, 1980). Adding
extra CSG and GDT operations for special cases may partly resolve this, but would
conflict with the simplicity of using a small set of generic operations, and does
not guarantee that no more special cases will occur. Of course it should still be
possible to code such special cases directly in Hope+ or any other base language
used.

GEL has been used by several undergraduate students to aid writing CSG and
striptree programs in Hope+ as part of their final year projects. The largest code
was a CSG ray-tracer, translated from C. This was interesting because GEL was not

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

438 J. R. Davy and P. M. Dew

able to model casting a ray through an octree, as noted earlier, and this operation
had to be hand-coded in Hope+. All the students concerned were novices in both
computational geometry and Hope+. Their verdict on GEL was uniformly positive
in terms of the programming process itself, criticisms being related mainly to other
features such as long compile times.

8 Related work

Programming with a small number of higher-order functions was promoted by
Meertens (1986) and Bird (1987). Theories are developed for various classes of
data structures, allowing a transformational approach to program development.
In GEL, we observe that most CSG and GDT operations are specialisations of
one of the basic divacon operations, in which support functions have been em-
bedded in the body of higher-order function. For instance, we have derived the
GDTcreate function of section 3.3 from divacon, using standard 'fold-unfold' tech-
niques (Burstall and Darlington, 1977), though we have made no further use of this
insight.

The notion of using higher-order functions as 'skeletons' for parallel programs
has been developed by Cole (1989) and Darlington and To (1995). The latter,
independently of us, show application-specific skeletons for solid modelling, similar
to our CSG and GDT operations. The data types used are not polymorphic, hence
much less general than in GEL, and they do not allow for Q primitives in CSG, a
necessary feature for realistic modelling. Their work differs from ours in stressing
transformations between CSG and octree structures, with a view to carrying out
all parallel operations on octrees. Thus a programmer specifies an operation on
CSG but it is carried out on the corresponding octree. While this is an interesting
example of transformation techniques, it has two practical weaknesses from the
application perspective. Firstly, some standard algorithms (such as mass property
derivations) are defined on the octree model rather than on CSG directly. Secondly,
traversal of a CSG tree does not necessarily map directly to a corresponding
D&C traversal of the octree - ray-tracing is a good example. By contrast, GEL
encourages D&C operations to be defined in terms of the most suitable data
structure.

Recent work on categorical data types (Skillicorn, 1995) shows a way in which
new data types may be defined so that a set of (parallel) higher-order operations
can automatically be generated from the constructors, specifically a generalised map
and a generalised reduction. Such formal treatment, based on category theory, seems
appropriate for our CSG and GDT types; traversal operations are reductions and
it is straightforward to define a corresponding map.

Cameron (1989) notes that CSG trees are purely a syntactic structure - the same
is true of all our specialised data types and also for categorical data types. He defines
a denotational semantics for CSG trees, in which an interpretation function maps
leaf nodes of a CSG tree into subsets of Mn. Combining this semantic approach
with categorical data types has the potential to give a complete formal foundation
for GEL.

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

A polymorphic library for constructive solid geometry 439

9 Conclusions and future work

We began by asking whether common patterns of computation in solid modelling
could be captured in a systematic way. The answer to this is clearly yes. GEL im-
plements a set of higher-order functions which successfully exploit widely applicable
algorithmic patterns using CSG and spatial subdivision. They provide an effective
library for the systematic development of CSG applications, and their polymorphism
aids geometric extensibility.

There are, however, some CSG and spatial subdivision applications whose main
algorithmic structures cannot currently be described by GEL, such as tracing a
ray through an octree. This is not an insuperable obstacle, since they can still be
implemented directly in the base language, but it indicates that GEL is not yet a com-
prehensive package. Further work may establish whether other general algorithmic
patterns could be included in later versions of GEL. We conjecture that special cases
will continue to arise which cannot be handled within a small set of higher-order
operations. Thus there is likely to be some limitation to the use of this approach.

The use of a functional language had both positive and negative aspects. Some
elegant and very useful features are offset by difficulties in handling multi-linked
structures. Good absolute performance for typical CSG problems is marred by
difficulties in performance tuning and prediction. There is no doubt that for this
prototyping exercise Hope+ was invaluable. Data modelling was extremely straight-
forward ; provision of an equivalent level of polymorphism would have been much
more difficult in, say, C. For a 'production' version, however, our view is that in
the current state-of-the-art an imperative or object-oriented base language would
be more appropriate, even at the cost of more complex implementation. This ver-
dict is reinforced by the inevitable pragmatic consideration of 'legacy' imperative
code. Thus we have no short-term plans to proceed further with the use of a func-
tional language in this area, though we await further developments in functional
programming with interest.

Moving to an object-oriented base language would give the opportunity to exploit
inheritance. For instance, an attributed CSG tree is essentially a CSG tree with an
additional attribute instance at each node. It seems natural to express this using
subclassing, but there is no facility to do so in Hope+. We have recently begun
porting GEL to C++ in order to explore this possibility. The initial experience with
Hope+ has been invaluable in identifying the issues of importance.

Our original motivation for this study was to simplify parallel programming
by making use of known packaged solutions tailored to the application domain.
This remains a focus of our research. We are continuing to investigate the use
of application-specific parallel algorithmic skeletons, with particular emphasis on
modelling their performance (Deldarie et al., 1995).

Availability of GEL

Source code for GEL and the demonstration programs described in this paper is
available by anonymous ftp from agora.leeds.ac.uk in file scs/GEL/gel.tar.Z.

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

440 J. R. Davy and P. M. Dew

Acknowledgements

Thanks are due to Professor Alan de Pennington and the Geometric Modelling
Project at Leeds for their support, and to Professor John Darlington of Imperial
College for his interest and supplying the Hope+ compiler used. Nigel Perry gave
much useful advice on the use and performance of Hope+, and Hossain Deldarie
helped with curve-fitting the experimental results. Several discussions with David
Dunnington stimulated the development of the work. Don Goodeve gave helpful
comments on an early version of the paper. Further improvements came as a result
of insights from the anonymous referees.

The first author was partly supported by a studentship from the Science and
Engineering Research Council.

References

Alagar, V. S., Bui, T. D. and Periasamy, K. (1990) Semantic CSG Trees for Finite Element
Analysis. Computer Aided Design 22(4): 194-198.

Arbab, F. (1984) RSC: A Calculus of Shapes. In: Proc. CAD 84, Brighton, UK, pp. 244-251.
Ballard, D. H. (1981) Strip Trees: A Hierarchical Representation for Curves. Comm. ACM

24(5): 310-321.
Bird, R. S. (1987) An introduction to the theory of lists. In: M. Broy, ed., Logic of Programming

and Calculi of Design, Springer-Verlag, pp. 5—42.
Brooks, R. A. (1981) Symbolic Reasoning among 3-D Models and 2-D Images. Artif Intell.

17: 285-348.
Brunet, P. and Navazo, I. (1990) Solid Representation and Operation using Extended Octrees.

ACM Trans. Graphics 9(2): 170-197.
Burstall, R. M. and Darlington, J. (1977) A Transformation System for Developing Recursive

Programs. J. ACM 24(1): 44-67.
Burton, F. W. and Yang, H.-K. (1990) Manipulating Multilinked Data Structures in a Pure

Functional Language. Software - Practice and Experience 20(11): 1167- 1185.
Cameron, S. (1989) Efficient Intersection Tests for Objects Defined Constructively. Int. J.

Robotics Res. 8(1): 3-25.
Carlblom, I. (1987) An Algorithm for Geometric Set Operations using Cellular Subdivision

Techniques. IEEE Computer Graphics and Applications 7(5): 44-55.
Cole, M. (1989) Algorithmic Skeletons: Structured Management of Parallel Computation. Pit-

man/MIT Press.
Darlington, J. and To, H. W. (1995) Building parallel applications without programming. In:

J. R. Davy and P. M. Dew, eds, Abstract Machine Models for Highly Parallel Computers.
Oxford University Press.

Davy, J. R. (1992) Using Divide-and-Conquer for Parallel Geometric Evaluation. PhD thesis,
University of Leeds.

Deldarie, H., Davy, J. R. and Dew, P. M. (1995) The Performance of Parallel Algorithmic
Skeletons. Research Report, School of Computer Studies, University of Leeds.

Dunnington, D. R. (1989) A Recursive Subdivision Strategy for Solid Modelling with Sculp-
tured Surfaces. PhD thesis, Leeds University.

Floriani, L. D., Falcidieno, B., Nagy, G. and Pienovi, C. (1984) A Hierarchical Structure for
Surface Approximation. Computer and Graphics 8(2): 183-193.

Gomez, D. and Guzman, A. (1979) Digital Model for Three-dimensional Surface Represen-
tation. Geo-processing 1: 53-70.

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

A polymorphic library for constructive solid geometry 441

Hartel, P. H. and Langendoen, K. G. (1993) Benchmarking implementations of Lazy Func-
tional Languages. In: 6th Functional Programming Languages and Computer Architecture,
pp. 341-349, Copenhagen, Denmark.

Hartel, P. H. (1994) Benchmarking implementations of Lazy Functional Languages II - Two
Years Later. Technical Report CS-94-21, Department of Computer Systems, University of
Amsterdam.

Holliman, N. S., Morris, D. T. and Dew, P. M. (1989) An Evaluation of the Processor Farm
Model for Visualising Constructive Solid Geometry. In: P. M. Dew, R. A. Earnshaw and
T. R. Heywood, eds, Parallel Processing for Computer Vision and Display, Addison Wesley,
pp. 452-460.

Holliman, N. S., Wang, C. M. and Dew, P. M. (1993) Mistral-3: Parallel Solid Modelling. The
Visual Computer 9(7): 356-370.

Kela, A. (1989) Hierarchical Octree Approximations for Boundary Representation-based
Geometric Models. Computer Aided Design 21(6): 335-362.

Kelly, P. H. J. (1989) Functional Programming for Loosely-coupled Multiprocessors, Pit-
man/MIT Press.

Lee, Y. T. and Requicha, A. A. G. (1982) Algorithms for Computing the Volume and
Other Integral Properties of Solids. II. A Family of Algorithms Based on Representation
Conversion and Cellular Approximation. Comm. of the ACM 25(9): 642-650.

Meagher, D. (1982) Geometric Modeling using Octree Encoding. Computer Graphics and
Image Processing 19: 129-147.

Meertens, L. G. T. (1986) Algorithmics - Towards Programming as a Mathematical Activity. In
Proc. CWI Symposium on Mathematics and Computer Science, North Holland, pp. 289—234.

Mudur, S. P. and Koparkar, P. A. (1984) Interval Methods for Processing Geometric Objects.
IEEE Computer Graphics and Applications 4(2): 7-17.

Muuss, M. J. (1987) RT and REMRT: Shared Memory Parallel and Network Distributed Ray
Tracing Programs. In USENIX Association, 4th Computer Graphics Workshop, pp. 86—97.

Perng, D.-B., Chen, Z. and Li, R.-K. (1990) Automatic 3D Machining Feature Extraction
from 3D CSG Solid Input. Computer Aided Design 22(5): 285-295.

Perry, N. (1989) Hope+. Technical documentation, Department of Computing, Imperial
College London.

Perry, N. (1995) Private communication.
Peyton Jones, S. (1987) The Implementation of Functional Programming Languages, Prentice-

Hall.
Preparata, F. P. and Hong, S. J. (1977) Convex Hulls of a Finite Set of Points in Two and

Three Dimensions. Comm. ACM 20(2): 87-93.
Requicha, A. A. G. (1980), Representations for Rigid Solids: Theory, Methods and Systems.

ACM Comput. Surv. 12(4): 437-464.
Saia, A., Bloor, M. S. and de Pennington, A. (1987), Sculptured Solids in a CSG Based

Geometric Modelling System. In: The Mathematics of Surfaces II, IMA, Oxford University
Press.

Samet, H. (1984) The Quadtree and Related Hierarchical Data Structures. ACM Comput.
Surv. 16(2): 187-260.

Samet, H. (1990) Applications of Spatial Data Structures, Addison Wesley.
Samet, H. and Tamminen, M. (1985) Bintrees, CSG Trees and Time. Computer Graphics 19(3):

121-130.
Shamos, M. I. (1977) Computational Geometry, PhD thesis, Yale University.
Shephard, M. S., Baehmann, P. L. and Grice, K. R. (1988) The Versatility of Automatic Mesh

Generators Based on Tree Structures and Advanced Geometric Constructs. Comm. Applied
Numerical Methods 4: 379-392.

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

442 J. R. Davy and P. M. Dew

Skillicorn, D. B. (1995) Categorical data types. In" J. R. Davy and P. M. Dew, eds., Abstract
Machine Models for Highly Parallel Computers, Oxford University Press.

Tilove, R. B. (1980) Set Membership Classification: A Unified Approach to Geometric
Intersection Problems. IEEE Trans. Computers 29(10): 874-883.

Tilove, R. B. (1981) Exploiting Spatial and Structural Locality in Geometric Modelling. PhD
thesis, University of Rochester.

Wallis, A. F. and Woodwark, J. R. (1984) Creating Large Solid Models for NC Toolpath
Verification. In" Proc. CAD 84, Brighton, UK, pp. 455-460.

Woodwark, J. R. (1986) Generating Wireframes from Set-Theoretic Solid Models by Spatial
Subdivision. Computer-Aided Design 18(6): 307-315.

Wyvill, G. and Kunii, T. L. (1985) A Functional Model for Constructive Solid Geometry. The
Visual Computer 1: 3-14.

https://doi.org/10.1017/S0956796800001416 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001416

