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This paper investigates the air flow induced by a rigid circular disk or piston vibrating
harmonically along its axis of symmetry in the immediate vicinity of a parallel surface.
Previous attempts to characterize these so-called ‘squeeze-film’ systems largely relied on
simplifications afforded by neglecting either fluid acceleration or viscous forces inside
the thin enclosed gas layer. The present viscoacoustic analysis employs the asymptotic
limit of small vibration amplitudes to investigate the flow by systematic reduction of
the Navier–Stokes equations in two distinct flow regions, namely, the inner gaseous film
where streamlines are nearly parallel to the confining walls and the near-edge region of
non-slender flow that features gas exchange with the surrounding stagnant atmosphere.
The flow in the gaseous film depends on the relevant Stokes number, defined as the ratio
of the characteristic viscous time across the film to the characteristic oscillation time,
and on a compressibility parameter, defined as the square of the ratio of the acoustic
time for radial pressure equilibration to the oscillation time. A Strouhal number based on
the local residence time emerges as an additional governing parameter for the near-edge
region, which is incompressible at leading order. The method of matched asymptotic
expansions is used to describe the solution in both regions, across which the time-averaged
pressure exhibits comparable variations that give opposing contributions to the resulting
time-averaged force experienced by the disk or piston. A diagram structured with the
Stokes number and compressibility parameter as coordinates reveals that this steady
squeeze-film force, typically repulsive for small values of the Stokes number, alternates
to attraction across a critical separation contour in the parametric domain that exists for
all Strouhal numbers. This analysis provides, for the first time, a unifying viscoacoustic
theory of axisymmetric squeeze films, which yields a reduced parametric description
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for the time-averaged repulsion/attraction force that is potentially useful in applications
including non-contact fluid bearings and robot locomotion.

Key words: lubrication theory, general fluid mechanics

1. Introduction

This study concerns the fluid motion induced by a rigid circular disk (or piston) of radius
a vibrating along its axis in the vicinity of a stationary parallel surface. The three specific
geometrical configurations to be analysed are represented in figure 1. The width of the gap
separating the two parallel surfaces varies harmonically in time according to

h(t)
ho

= 1 + ε cos(ωt), (1.1)

where ho � a is the mean separation distance, ω is the angular frequency and εho is
the oscillation amplitude, with ε � 1 in our study. Such slender-flow systems, commonly
referred to as squeeze films, are of great interest in the context of gas lubricated bearings
present in high-speed rotary machinery and also in acoustic levitation devices used in
assembly line transport of microelectronics (see Shi et al. 2019). In the former case of
squeeze-film air bearings, there is great demand for predicting the load capacity, while
in the latter, referred to as near-field acoustic levitation, the sensitivity of transported
items additionally warrants comprehension of radial pressure departures p − pa from
the outer ambient value pa. A key aspect of the problem is that, although the disk
motion is harmonic, the resulting overpressure p − pa displays, in general, a non-zero
time-averaged value at any given location, which is a consequence of the inherent
nonlinearities introduced by convection and gas compressibility. As a result, the disk or
piston experiences a steady perpendicular force, typically referred to as the time-averaged
‘squeeze-film force’.

Analysis of the fluid flow induced by the disk oscillations must consider the existence
of two different regions, namely, the slender film separating the disk from the planar wall
at radial distances r in the range a � a − r � ho, where streamlines are aligned with the
parallel surfaces, and the non-slender edge region that extends over distances of order ho
from the disk edge, which controls the exchange of fluid with the surrounding stagnant
atmosphere and its associated pressure drop. We shall see that the character of the flow
in the slender film depends on the characteristic oscillation time ω−1, which is to be
compared with the two relevant mechanical times, namely, the viscous time across the
gas layer tv = h2

o/(μa/ρa), where μa and ρa are the values of the viscosity and density
in the surrounding atmosphere, and the characteristic acoustic time for radial-pressure
equilibration ta = a/( pa/ρa)

1/2, where ( pa/ρa)
1/2 is, aside from a factor γ 1/2, the

ambient value of the sound speed, with γ denoting the ratio of specific heats. The analysis
that follows assumes all three times to be comparable, yielding order-unity values of the
Stokes number

α2 = tv
ω−1 = ωh2

o

μa/ρa
(1.2)

and of the compressibility parameter

Λ =
( ta
ω−1

)2
= ω2a2

pa/ρa
. (1.3)
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Squeeze-film force on an oscillating disk
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Figure 1. Schematic illustration of the three axisymmetric flow configurations examined in this study,
including (a) a disk or (b) a piston vibrating close to an infinite wall and (c) a piston vibrating close to
another piston. The curved arrows in each case represent the edge flow region, extending over radial distances
r − a ∼ ho. The velocity profile pictured inside the slender inner region a � a − r � ho of the disk–wall
configuration in panel (a) corresponds to the leading-order flow (4.11) generated for a Stokes number of
α2 = 300.

The three length scales present in the problem (i.e. the disk radius a, the mean separation
distance ho and the oscillation amplitude εho) introduce two additional operational
parameters – the relative oscillation amplitude ε and the slenderness ratio δ = ho/a � 1.
It will be shown in the following analysis that the time-averaged pressure drop across the
slender film, identical for all three geometrical configurations shown in figure 1, depends
solely on α2 and Λ, while that across the edge region, different for each geometrical
configuration, depends additionally on a third controlling parameter, the local Strouhal
number

St = tc
ω−1 = δ

ε
, (1.4)

where tc = ho/(εωa) is the characteristic residence time in the edge region. The majority
of previous analyses of squeeze-film systems δ � 1 have been restricted to specific
limiting cases of the slender gas-film problem, arising for extreme values of α2 and Λ,
namely, incompressible flow for Λ � 1, inviscid flow for α2 � 1 and lubrication flow
for α2 � 1. A unifying viscoacoustic theory of squeeze-film systems, which embodies
all of these specific cases and accounts for the pressure variation across the edge region,
is to be developed here by considering the regime α2 ∼ 1 and Λ ∼ 1 for asymptotically
small values of the relative oscillation amplitude ε � 1 and the slenderness ratio δ � 1
in the distinguished limit ε ∼ δ (or equivalently St ∼ 1). It is worth noting that, because
the mean free path is of order 	 ∼ (μa/ρa)/( pa/ρa)

1/2, in the limit investigated here, the
relevant Knudsen number in the gas layer is 	/ho ∼ (Λ1/2/α2)(ho/a) ∼ δ � 1, thereby
guaranteeing applicability of the continuum hypothesis to the description of the flow.

The lubrication limit α2 � 1, corresponding to negligible fluid acceleration, has been
widely studied throughout the twentieth century by way of the isothermal squeeze-film
equations, a subclass of the well-known Reynolds lubrication equation tailored for
modelling squeeze-film bearings of various geometries (see Reynolds 1886). Specific
interest in the role of compressibility in the slender gas layer was piqued by an experiment
conducted by Popper & Reiner (1956), where a disk rotating around its axis in close
proximity to a parallel wall was reported to experience a perpendicular suction force that
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transitioned to growing repulsion as the gap between the disk and the wall was reduced.
In a subsequent clarifying analysis, Taylor & Saffman (1957) proved that the observed
repulsive squeeze-film force could be explained by effects of compressibility arising from
imperfections in the operation of the rotor such as off-axis rotation or normal vibrations.
They demonstrated using perturbation methods that the steady overpressure resulting
from the latter case scales with the square of the dimensionless vibration amplitude ε

and depends on a single parameter – the squeeze number σ = 12Λ/α2. These results
were formalized by Langlois (1962) in the context of the classical squeeze-film equations
for planar and axisymmetric geometries. Finite-difference solutions of the axisymmetric
squeeze-film equation were experimentally verified by Salbu (1964), who noted the
presence of a central region dominated by viscous damping where the film pressure is
effectively uniform and a near-edge region where the pressure drops to ambient conditions,
the latter of which was treated by DiPrima (1968) as a mathematical boundary layer of
thickness O(σ−1/2). Ideal squeeze-film lubrication theory, wherein the pressure at the
edge of the film can be considered equal to the ambient pressure, was later proven invalid
for diminishing values of σ by Minikes & Bucher (2006), who determined numerically
that imposing instead a non-reflective radiation boundary condition at the edge, allowing
acoustic energy leakage, caused a relative reduction of approximately 50 % in the predicted
film force.

One of the first clarifying analyses of the role of fluid inertia in incompressible squeeze
films Λ � 1 was contributed by Terrill (1969), who determined the time-dependent
overpressure in the gas layer for asymptotically small values of the inner Reynolds number
α2ε. Following this work, a number of studies have been conducted to account for
time-averaged pressure corrections introduced by convective acceleration in the near-edge
region (see, for example Hori 2006), including a recent model proposed by Li et al. (2010)
that employs an approximate boundary condition at the edge of the gas layer, yielding
satisfactory agreement with experimental results (i.e. the time-averaged overpressure at
r = a contributed by downward strokes of the disk oscillation is assumed to be zero and
that contributed by upward strokes is estimated by applying integral conservation laws to
a control volume extending an arbitrary distance from the edge).

The limit of large Stokes numbers α2 � 1, where the flow is nearly inviscid outside
thin near-wall boundary layers, has been the subject of widespread interest in the context
of acoustic levitation, which typically concerns the suspension of light objects in the
antinodes of standing pressure waves between a vibrating piston and a reflector plate
separated by an integral multiple of the half-wavelength of sound (see Shi et al. 2019).
In 1902, Lord Rayleigh presented a foundational formulation of acoustic radiation inside
a cylindrical piston of air undergoing transverse vibrations, expressing the overpressure
in terms of the volumetric energy density (see Rayleigh 1902). After several years of
disagreement over the application of Rayleigh’s theory to acoustic levitation, Chu &
Apfel (1982) detailed the one-dimensional Rayleigh and Langevin radiation pressures
– for flows with and without radial confinement – imposed by a vibrating piston on a
perfectly reflecting parallel surface for arbitrary mean separation width. Clarifications
were provided regarding distinctions between the Eulerian and Lagrangian definitions of
the time average, the role played by second–order acoustic straining in reducing the mean
pressure and the additional hydrostatic pressure contributed by edge flow confinement.
Experimental verification of their theory was provided by Ueha, Hashimoto & Koike
(2000), who demonstrated that when the mean separation width is small enough to deter
interference of transverse acoustic waves, the reflector plate itself may experience repulsive
forces of the order of 100 N. Sadayuki (2002) experimentally demonstrated the onset of
weak adhesive forces below critical vibration frequencies, a finding that was substantiated
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Squeeze-film force on an oscillating disk

computationally by Andrade et al. (2020). Their direct numerical simulations, which
assumed isentropic flow, helped clarify that the transition from levitation to adhesion is
caused by steady negative overpressures near the edge of the slender gas layer becoming
comparable to the positive inner contributions.

While the limits of lubrication theory and acoustic levitation are accurate for small and
large values of α = ho/[μa/(ρaω)]1/2, respectively, neither is valid for bearings with mean
film widths ho comparable to the thickness of the viscous shear layers [μa/(ρaω)]1/2.
Practical applicability of either theory in hydrodynamic bearings is further complicated
because equilibrium separation distances are typically unknown prior to operation, which
yields uncertainty in the choice of the needed analytical framework. Melikhov et al. (2016)
addressed this problem by numerically computing the levitation force for a compressible
squeeze-film system with arbitrary Stokes number. In determining the time-averaged
pressure distribution across the slender film, Melikhov et al. (2016) imposed a Robin
boundary condition that enforces strictly acoustic wave propagation at its edge, which
yielded a model that demonstrates reasonable agreement between theoretically predicted
and experimentally determined levitation heights ho. To the best of our knowledge, a
complete viscoacoustic theoretical analysis of the axisymmetric squeeze-film problem that
accounts for the existence of the edge flow region is yet to be developed. Such analysis,
which is the objective of the present paper, is needed to delineate precisely the parametric
conditions associated with transition from repulsive to attractive forces.

The limit Λ ∼ 1, α2 ∼ 1 and ε ∼ δ � 1 addressed herein enables the analysis of effects
of local acceleration, viscous dissipation, thermal diffusion, acoustic wave propagation
and nonlinearities introduced by convection and compressibility, while encompassing
the specific cases investigated in the past as limiting solutions for extreme values of
the controlling parameters Λ and α2. The method of matched asymptotic expansions
will be used to relate the solution in the two distinct flow regions, ultimately providing
quantitative information regarding the dependence of the time-averaged force on the
governing parameters Λ, α2 and St = δ/ε, and the specific edge geometry (see figure 1).
The squeeze-film force will be shown to involve two comparable contributions – the first
accounting for variations of the pressure across the slender gas layer from its value at the
edge r = a and the second involving the pressure drop across the near-edge region from
said value to ambient conditions.

The remainder of this paper is organized as follows. The reduced conservation equations
governing each of the two distinct flow regions are presented in § 2 in dimensional
form, accompanied by justificatory discussions of the associated characteristic scales. The
dimensionless conservation equations pertaining to the slender inner region are written
in § 3 and their leading-order time-harmonic solution is presented in § 4. Associated
first-order corrections to the film pressure are computed in § 5 and used to determine the
first contribution to the time-averaged levitation force, along with simplified expressions
of both for limiting values of the Stokes number and the compressibility parameter.
The dimensionless conservation equations describing flow in the edge region of the
squeeze film are written in § 6, supplemented by a boundary condition that accounts
for the driving radial velocity present at the edge of the slender gas film, obtained by
asymptotically matching with the leading-order inner solution. Numerical computations
of the time-averaged pressure drop across the edge region are presented, along with
predictions of its behaviour for limiting values of the Stokes number and the edge Strouhal
number. The dependence of the steady squeeze-film force acting on the oscillating body –
which accounts for comparable pressure contributions from the two distinct flow regions
– on the three governing parameters is discussed in § 7 with specific attention dedicated
to the criteria required for a transition between levitative and adhesive forces. The force
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predicted by our asymptotic analysis is compared with that determined in the recent
direct numerical simulations of Andrade et al. (2020). Closed form analytical expressions
facilitatory for low-cost computation of the steady film pressure and squeeze-film force are
provided in an appendix, and finally, concluding remarks are given in § 8.

Our asymptotic analysis: (i) reveals that the time-averaged pressure variations across
the edge region are comparable in magnitude and opposite in sign to those found along the
wall-bounded gas layer; (ii) leads to simplified expressions that expedite the evaluation
of the steady squeeze-film force over a wide range of conditions of practical interest,
facilitating the operation and control of high-frequency systems; (iii) unveils a boundary
on the α2 − Λ parametric plane across which the force switches from repulsion to
attraction; (iv) demonstrates numerically that the force is only weakly dependent on the
specific geometrical configuration and (v) compares favourably with recently published
computational results (see Andrade et al. 2020).

2. Distinct regions and characteristic scales

An asymptotic analysis of the flow induced by the harmonic disk oscillations defined in
(1.1) is to be given for α2 ∼ 1 and Λ ∼ 1 in the distinguished double limit ε � 1 and
δ = ho/a � 1 with ε ∼ δ. The axisymmetric periodic motion will be described in terms
of the radial and axial velocity components u(r, y, t) and v(r, y, t), with y and r denoting
the axial distance from the wall and the radial distance from the disk centre, as indicated
in figure 1. The description must account for the variations of the pressure p, density ρ

and temperature T of the gas from their ambient values pa, ρa and Ta. The analysis must
consider the existence of two distinct regions, namely, the slender gas layer separating the
disk from the planar wall, where the streamlines are nearly parallel to the bounding solid
surfaces, and the boundary region of non-slender flow extending over distances of order
ho from the disk edge. We shall give below the reduced conservation equations and the
associated scales for the flow in these two regions.

The full compressible Navier–Stokes equations governing the axisymmetric flow
investigated here can be found in Schlichting & Gersten (2016) in cylindrical form. In the
slender gas film separating the two parallel solid surfaces, where r ∼ a and y ∼ h0 � a,
these conservation equations can be simplified to the boundary-layer form

∂ρ

∂t
+ 1

r
∂

∂r
(ρru) + ∂

∂y
(ρv) = 0, (2.1)

∂p
∂y

= 0, (2.2)

ρ

(
∂u
∂t

+ u
∂u
∂r

+ v
∂u
∂y

)
= −∂p

∂r
+ ∂

∂y

(
μ

∂u
∂y

)
, (2.3)

ρcp

(
∂T
∂t

+ u
∂T
∂r

+ v
∂T
∂y

)
−
(

∂p
∂t

+ u
∂p
∂r

)
= μ

(
∂u
∂y

)2

+ ∂

∂y

(
κ

∂T
∂y

)
. (2.4)

For the slender flow analysed here, molecular-transport terms involving radial derivatives
are a factor (ho/a)2 = δ2 � 1 smaller than those involving transverse derivatives, so
that only the latter have been retained in writing the viscous force per unit volume
in (2.3) and the heat-conduction and viscous-dissipation terms in (2.4). At the same
level of approximation (i.e. with small relative errors of order δ2 � 1), the analysis
neglects the variations of the pressure across the gas layer, as reflected by the reduced
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equation (2.2). In the proceeding analysis, the specific heat at constant pressure cp is
assumed to be constant, while the viscosity coefficient μ and the thermal conductivity κ

are assumed to vary from their ambient values according to (μ/μa) = (κ/κa) = (T/Ta)
ν

with ν ≈ 0.77, an excellent approximation for air (Chapman & Cowling 1990), for which
the Prandtl number takes the value Pr = cpμ/κ = 0.7 and the ratio of specific heats takes
the value γ = 1.4. The above equations must be supplemented with the equation of state

p
pa

= ρ

ρa

T
Ta

. (2.5)

In the slender gas layer, the axial velocities induced by the displacement rate dh/dt =
−εωho sin(ωt) of the moving surface are of order vc = εωho. The associated radial
velocities are much larger, of order uc = vc/δ = εωa, as follows from the straightforward
order-of-magnitude balance uc/a ∼ vc/ho stemming from (2.1). Since it is assumed
that the characteristic time for the oscillatory motion ω−1 is comparable to the
characteristic viscous and heat conduction times across the gaseous film tv = h2

o/(μa/ρa)
and th = Pr tv ∼ tv , viscous stresses and heat conduction can be expected to have, in
general, a significant effect on the oscillatory flow. In contrast, convective acceleration
has a negligible effect at leading order in the limit ε � 1, because the associated
Strouhal number is ε−1 � 1, as can be seen by comparing the orders of magnitude
of the local acceleration ∂u/∂t ∼ ωuc and the convective acceleration u ∂u/∂r ∼ u2

c/a
in (2.3). A similar order-of-magnitude analysis in the energy equation (2.4) provides
(u∂T/∂r)/(∂T/∂t) ∼ ε, indicating that convective heat transport is also negligible at
leading order. Note that since the characteristic value of the radial pressure variations
p − pa needed to produce velocity changes of order uc = εωa in times of order ω−1 is
�p = ρaεω

2a2, as follows from the balance ∂p/∂r ∼ ρ ∂u/∂t, the resulting instantaneous
levitation force acting on the disk is expected to be of order Fl ∼ �p a2 = ρaεω

2a4.
In the limit Λ ∼ 1 considered here, the pressure variations p − pa ∼ �p induced

in the gap are small compared with the ambient pressure, as can be seen by writing
�p/pa ∼ ε(ω2a2)/( pa/ρa) = εΛ. Correspondingly, the relative density and temperature
variations from their respective ambient values are also small, of order (ρ − ρa)/ρa ∼
(T − Ta)/Ta ∼ εΛ, as follows from the equation of state (2.5). The conservation equations
(2.1)–(2.5) at leading order will be shown to reduce to a linear problem describing
compressible unsteady lubrication flow, which will be solved analytically in closed-form.
The leading-order flow variables will be shown to vary harmonically with time, thus
yielding no time-averaged contributions over a period of the driving oscillations, with
the time-averaging operator formally defined by

〈·〉 = ω

2π

∫ t+2π/ω

t
· dt. (2.6)

We shall see that because the pressure distribution at leading order has a zero
time-averaged value, the computation of the time-averaged levitation force 〈Fl〉 requires
quantification of higher-order corrections associated with nonlinear convective and
compressibility effects, which involve time-averaged pressure differences 〈p − pa〉 of
order ρaε

2ω2a2 = ε�p. The associated time-averaged levitation force 〈Fl〉 ∼ ε�p a2 =
ε2ρaω

2a4 can be expressed conveniently in dimensionless form as

〈Fl〉
ε2ρaω2πa4 = 2

ε

∫ 1

0

〈p − pa〉
�p

r
a

d
( r

a

)
. (2.7)

933 A15-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
72

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1072


S. Ramanarayanan, W. Coenen and A.L. Sánchez

The slender gas layer, where the radial velocity is of order u ∼ uc, connects with the
ambient atmosphere through a non-slender near-edge boundary region where r − a ∼
y ∼ ho and u ∼ v ∼ uc. The flow in this region involves small pressure variations of
order ( p − pa)/pa ∼ ε2Λ, as follows from a balance between the pressure force per unit
mass ρ−1∇p ∼ ( p − pa)/(ρaho) and the convective acceleration v · ∇v ∼ u2

c/ho, with
v = (u, v) and ∇ = (∂/∂r, ∂/∂y). As can be expected from the equation of state (2.5),
the associated density and temperature variations in this region are also small, of order
(ρ − ρa)/ρa ∼ (T − Ta)/Ta ∼ ( p − pa)/pa ∼ ε2Λ, so that at leading order in the limit
ε � 1, the flow is effectively incompressible and features constant transport properties.
Also, because r − a ∼ y ∼ ho � a, the leading-order flow is locally planar, with a velocity
field determined from the familiar incompressible two-dimensional equations

∇ · v = 0, (2.8)

∂v

∂t
+ u

∂v

∂r
+ v

∂v

∂y
= −∇p

ρa
+ μa

ρa

(
∂2v

∂r2 + ∂2v

∂y2

)
. (2.9)

Using u ∼ v ∼ uc = εωa in (2.9) provides the orders of magnitude of the local
acceleration ∂v/∂t ∼ ωuc, convective acceleration v · ∇v ∼ u2

c/ho and viscous force per
unit mass (μa/ρa)∇2v ∼ (μa/ρa)uc/h2

o, giving values that are comparable in magnitude
in the limit α2 ∼ 1 considered here, so that all terms in (2.9) must, in general, be retained
in the description. It will be shown that the pressure drop across this boundary region,
of order p − pa ∼ ρaεω

2aho = δ�p, contains a non-zero time-averaged component. In
the distinguished limit δ ∼ ε, this local pressure drop is comparable in magnitude to
the time-averaged pressure differences 〈p − pa〉 ∼ ε�p induced along the gas film and
must therefore be accounted for in computing the steady levitation force, as done in the
following perturbation analysis.

The asymptotic analysis will consider separate solutions in the slender gas layer and
in the near-edge region. The scales identified above will be used in defining appropriate
dimensionless variables of order unity in each region. Following standard practice (see
Lagerstrom 1988), asymptotic expansions in increasing powers of ε will be introduced
for the different flow variables, leading to a hierarchy of problems that will be solved
sequentially with account taken of the matching conditions arising at each order. To
compute the time-averaged levitation force (2.7) with small relative errors of order ε ∼ δ,
the description must consider two terms in the expansions for the slender region, whereas
only the leading-order terms are needed in the near-edge region.

3. Formulation of the problem in the slender gaseous film

The analysis uses the dimensionless time τ = ωt and dimensionless gap width

H = h
ho

= 1 + ε cos(τ ). (3.1)

Substitution of the appropriate order-unity variables ξ = r/a, Y = y/ho, U = u/uc,
V = v/vc, P = ( p − pa)/�p, R = (ρ − ρa)/(εΛρa) and Θ = (T − Ta)/(εΛTa) into the
governing equations (2.1) and (2.3)–(2.5) gives, with errors of order δ2 ∼ ε2,

Λ
∂R
∂τ

+ 1
ξ

∂

∂ξ
[(1 + εΛR)ξU] + ∂

∂Y
[(1 + εΛR)V] = 0, (3.2)

(1 + εΛR)

[
∂U
∂τ

+ ε

(
U

∂U
∂ξ

+ V
∂U
∂Y

)]
= −∂P

∂ξ
+ 1

α2
∂

∂Y

[
(1 + εΛΘ)ν

∂U
∂Y

]
, (3.3)
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Squeeze-film force on an oscillating disk

(1 + εΛR)

[
∂Θ

∂τ
+ ε

(
U

∂Θ

∂ξ
+ V

∂Θ

∂Y

)]
−
(

γ − 1
γ

)(
∂P
∂τ

+ εU
∂P
∂ξ

)
= ε

(
γ − 1

γ

)
(1 + εΛΘ)ν

α2

(
∂U
∂Y

)2

+ 1
Pr α2

∂

∂Y

[
(1 + εΛΘ)ν

∂Θ

∂Y

]
, (3.4)

P = R + Θ + εΛRΘ, (3.5)

while the axial momentum equation (2.2) becomes ∂P/∂Y = 0, whence P = P(ξ, τ ).
The present system of equations admits analytic periodic solutions that satisfy isothermal
non-slip conditions at the bounding walls,

U = V = Θ = 0 at Y = 0
U = V + sin(τ ) = Θ = 0 at Y = H(τ ),

}
(3.6)

together with the regularity condition at the axis of symmetry, which implies that

U = ∂P
∂ξ

= ∂R
∂ξ

= ∂Θ

∂ξ
= 0 at ξ = 0. (3.7)

The needed boundary condition for the pressure P at the edge of the gas layer (i.e. at ξ = 1)
is to be obtained from matching with the near-edge solution, as described in the following
analysis. Substitution of the scaled variables into (2.7) yields

〈Fl〉 = 2
ε

∫ 1

0
〈P〉ξ dξ (3.8)

for the dimensionless levitation force 〈Fl〉 = 〈Fl〉/(ε2ρaω
2πa4). For future reference, it is

of interest to note that (3.2) can be integrated across the gas layer to give

Λ
∂

∂τ

(∫ H

0
R dY

)
+ 1

ξ

∂

∂ξ

(
ξ

∫ H

0
(1 + εΛR)U dY

)
− sin(τ ) = 0, (3.9)

with use made of the well-known Leibniz integral rule to exchange the time derivative
and spatial integral involved in the first term. Computing the time average of (3.9) and
integrating the result in the radial direction gives〈∫ H

0
(1 + εΛR)U dY

〉
= 0 (3.10)

upon imposing the boundary condition U = 0 at ξ = 0.

4. Leading-order solution in the gaseous film

The above problem is to be solved for ε � 1 by substituting the expansions

U = U0 + εU1 + · · ·
V = V0 + εV1 + · · ·
P = P0 + εP1 + · · ·
R = R0 + εR1 + · · ·
Θ = Θ0 + εΘ1 + · · ·

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.1)

into (3.2)–(3.5) and solving sequentially the problems that arise at different orders in
powers of ε. Only the first two terms are to be considered in our analysis, consistent with
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S. Ramanarayanan, W. Coenen and A.L. Sánchez

the accuracy of (3.2)–(3.5) (note that the terms of order δ2 ∼ ε2 and smaller that were
neglected in writing those equations would need to be retained if the analysis were to be
carried out to higher orders).

To simplify the development, the axial coordinate Y will be replaced in the conservation
equations (3.2)–(3.4) by its normalized counterpart η = Y/H(τ ), with use of the
substitutions, each accurate to order ε,

∂

∂Y
→ (1 − ε cos τ)

∂

∂η
and

∂

∂τ
→ ∂

∂τ
+ εη sin τ

∂

∂η
. (4.2a,b)

At leading order, the problem reduces to the integration of the linear system of equations,

Λ
∂R0

∂τ
+ 1

ξ

∂

∂ξ
(ξU0) + ∂V0

∂η
= 0, (4.3)

∂U0

∂τ
= −∂P0

∂ξ
+ 1

α2
∂2U0

∂η2 , (4.4)

∂Θ0

∂τ
− γ − 1

γ

∂P0

∂τ
= 1

Pr α2
∂2Θ0

∂η2 , (4.5)

P0 = R0 + Θ0, (4.6)

subject to
U0 = V0 = Θ0 = 0 at η = 0

U0 = V0 + sin(τ ) = Θ0 = 0 at η = 1

U0 = ∂P0

∂ξ
= ∂R0

∂ξ
= ∂Θ0

∂ξ
= 0 at ξ = 0.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (4.7)

Because the pressure variation across the near-edge region is of order δ�p, as described
in the paragraph following (2.7), at leading order in the limit ε ∼ δ � 1, the pressure in
the gap must satisfy

P0 = 0 at ξ = 1. (4.8)

We shall see that the pressure drop across the near-edge region enters when matching with
the following term in the expansion of the inner pressure, producing a non-zero first-order
correction P1 /= 0 at ξ = 1 that must be accounted for when computing the time-averaged
levitation force.

We begin the solution process by integrating (4.3) in the transverse direction using
V0(η = 0) = 0, yielding

V0(η) = −
∫ η

0

[
Λ

∂R0

∂τ
+ 1

ξ

∂

∂ξ
(ξU0)

]
dη, (4.9)

which will be useful later. Evaluating (4.9) at η = 1 gives∫ 1

0

[
Λ

∂R0

∂τ
+ 1

ξ

∂

∂ξ
(ξU0)

]
dη = sin τ, (4.10)

which, along with (4.4)–(4.6), forms a closed system from which the four constituent
variables P0, Θ0, R0 and U0 can be fully determined. Because the leading-order problem in
the gas layer (4.3)–(4.6) is linear and driven purely by time-harmonic boundary conditions
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Squeeze-film force on an oscillating disk

(4.7), the five flow variables must necessarily vary harmonically with time. Additionally, it
can be deduced from the discussion below (3.1) that the film pressure at this order does not
vary in the transverse direction, that is, P0 = P0(ξ, τ ). Upon consideration of these facts
and close inspection of (4.4)–(4.6), we may anticipate that the solution can be expressed
using separation of variables in the form

P0 = Re
[
eiτΠ(ξ)

]
Θ0 = γ − 1

γ
Re

[
eiτΠ(ξ)G′

Θ
(η)

]
R0 = Re

{
eiτΠ(ξ)

[
1 − γ − 1

γ
G′

Θ
(η)

]}
U0 = Re

[
ieiτΠ ′G′

U(η)
]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(4.11)

where the transverse functions G′
U(η) = dGU/dη and G′

Θ
(η) = dGΘ/dη have been

expressed as derivatives in anticipation of the integral in (4.9) necessary to determine
V0. Substituting (4.11) into (4.4) and (4.5) gives

− 1
α2i

d3GU

dη3 + dGU

dη
= 1 and − 1

Prα2i
d3GΘ

dη3 + dGΘ

dη
= 1, (4.12a,b)

respectively. Since the functions GU(η) and GΘ(η) satisfy identical boundary conditions
G′

U = G′
Θ

= 0 at η = 0, 1, as follows from (4.7), it is convenient to recast the above
equations in the consolidated form

− 1
4β2

d3G
dη3 + dG

dη
= 1, with βU = α

2
(1 + i)√

2
and βΘ =

√
Pr

α

2
(1 + i)√

2
, (4.13)

where the function G′(η;β) = dG/dη describes the transverse variations G′
U(η) =

G′(η;βU) and G′
Θ
(η) = G′(η;βΘ) of the radial velocity component and temperature

deviation, respectively. The constant-coefficient ordinary differential equation in (4.13)
can be integrated using (4.7) to give

G = η − sinh[β(2η − 1)] + sinh β

2β cosh β
and G′ = 1 − cosh[β(2η − 1)]

cosh β
. (4.14a,b)

To determine the radial function Π(ξ), we substitute (4.11) and (4.14a,b) into (4.10),
whereby we obtain the classical Bessel’s equation

1
ξ

d
dξ

(
ξ

dΠ

dξ

)
+

1 − γ − 1
γ

GΘ(1)

GU(1)
ΛΠ = − 1

GU(1)
, (4.15)

which can be integrated using the boundary conditions Π(ξ = 1) = Π ′(ξ = 0) = 0,
consistent with (4.7), to give

Π =
J0

(
ξ
√

CΛ
)

/J0

(√
CΛ

)
− 1

GU(1)CΛ
and Π ′ = −

J1

(
ξ
√

CΛ
)

/J0

(√
CΛ

)
GU(1)

√
CΛ

,

(4.16a,b)

933 A15-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
72

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1072


S. Ramanarayanan, W. Coenen and A.L. Sánchez

where J0 and J1 represent the Bessel functions of the first kind of order 0 and 1,
respectively, and the constant C is defined as

C =
1 − γ − 1

γ
GΘ(1)

GU(1)
, with GU(1) = 1 − tanh βU

βU
and GΘ(1) = 1 − tanh βΘ

βΘ

.

(4.17)

The final step of the solution process is to substitute the known forms of U0 and R0 into
(4.9), which yields

V0 = Re
{

ieiτ
[GU(η)

GU(1)
+ ΛΠ

(
CGU(η) + γ − 1

γ
GΘ(η) − η

)]}
(4.18)

for the transverse velocity component.
The above results can be used to evaluate the limiting value of the radial velocity at the

outer edge of the gaseous film

U0(ξ = 1, η, τ ) = A Re

⎧⎪⎪⎨⎪⎪⎩iei(τ+ϕ)

⎡⎢⎢⎣1 −
cosh

[
α(1 + i)

2
√

2
(2η − 1)

]
cosh

[
α(1 + i)

2
√

2

]
⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ , (4.19)

where the boundary value of the pressure gradient

Π ′(1) = −
J1

(√
CΛ

)
/J0

(√
CΛ

)
GU(1)

√
CΛ

(4.20)

has been written in terms of its modulus A = |Π ′(1)| and argument ϕ = arg[Π ′(1)].
Equation (4.19) will be needed in computing the flow in the edge region (see § 6.1). The
order-unity factor A is a measure of the stroke volume driven by the moving disk, as can
be seen by writing, for example,

∫ 2π

π
[
∫ 1

0 U0(ξ = 1, η, τ )2π dη] dτ = 4πA Re[eiϕGU(1)].
Its value will enter in the determination of the time-averaged levitation force (see §§ 5.2
and 6.3). The dependence of A = |Π ′(1)| on α and Λ, evaluated with use of (4.20) and
displayed in figure 2(a), will be discussed later.

5. First-order correction for the pressure in the gas film

5.1. Time-averaged pressure distribution
Since the solution (4.11) is harmonic, the time-averaged values of all flow variables are
identically zero (i.e. 〈U0〉 = 0, 〈P0〉 = 0, . . . ), so that the pressure at leading order does
not contribute to the steady levitation force 〈Fl〉 exerted on the disk. As a result, the
computation of 〈Fl〉 from (3.8) requires consideration of the time-averaged first-order
correction 〈P1〉(ξ) for the pressure, which yields

〈Fl〉 = 2
∫ 1

0
〈P1〉ξ dξ, (5.1)

with small relative errors of order ε ∼ δ. To determine the pressure distribution 〈P1〉(ξ),
one may begin by noting that the associated time-averaged radial-velocity correction 〈U1〉
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Figure 2. Variation with α2 and Λ of (a) the stroke volume A = |Π ′(1)| evaluated with use of (4.20) and (b)
the inner contribution to the levitation force 〈Fi〉 evaluated from (5.14). Computations are carried out using
ν = 0.77, Pr = 0.7 and γ = 1.4.

must satisfy ∫ 1

0
〈U1〉 dη = −

∫ 1

0
〈cos(τ )U0〉 dη − Λ

∫ 1

0
〈R0U0〉 dη, (5.2)

obtained at order ε from (3.10). Time averaging the equation that results from collecting
terms of order ε in the momentum equation (3.3) provides

f = −d〈P1〉
dξ

+ 1
α2

∂2〈U1〉
∂η2 , (5.3)

where the known function

f (ξ, η) =
〈
ΛR0

∂U0

∂τ
+ U0

∂U0

∂ξ
+ V0

∂U0

∂η

+η sin τ
∂U0

∂η
+ 1

α2
∂

∂η

[
(2 cos(τ ) − νΛΘ0)

∂U0

∂η

]〉
(5.4)

can be compactly re-expressed by adding to it the time average of the left-hand side of the
order-unity continuity equation (4.3), which gives

f (ξ, η) = 1
ξ

∂

∂ξ

(
ξ
〈
U2

0

〉)
+ ∂

∂η
〈V0U0〉

+ η

〈
sin(τ )

∂U0

∂η

〉
+ 2

α2

〈
cos(τ )

∂2U0

∂η2

〉
− Λν

α2
∂

∂η

〈
Θ0

∂U0

∂η

〉
, (5.5)

both of which can be evaluated in terms of the expressions given in (4.11). Note that the
terms in the expressions for f that involve cos(τ ) and sin(τ ) stem from the change of
variables described in (4.2a,b). Integrating the reduced momentum equation (5.3) with

933 A15-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
72

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1072


S. Ramanarayanan, W. Coenen and A.L. Sánchez

the no-slip conditions 〈U1〉 = 0 at η = 0, 1 gives

〈U1〉
α2 = −d〈P1〉

dξ

(1 − η)η

2
+ η

∫ η

0
f dη̃ −

∫ η

0
f η̃ dη̃ − η

∫ 1

0
f (1 − η̃) dη̃, (5.6)

where η̃ is a dummy integration variable. The associated radial flux,

1
α2

∫ 1

0
〈U1〉 dη = − 1

12
d〈P1〉

dξ
− 1

2

∫ 1

0
η(1 − η)f dη, (5.7)

can be substituted into (5.2) to give

〈P1〉′ = 12
α2

[∫ 1

0
〈cos(τ )U0〉 dη + Λ

∫ 1

0
〈R0U0〉 dη

]
− 6

∫ 1

0
η(1 − η)f dη (5.8)

for the derivative of the time-averaged pressure 〈P1〉′ = d〈P1〉/dξ . The above equation can
be readily integrated to give

〈P1〉(ξ) − 〈P1〉(1) = −
∫ 1

ξ

〈P1〉′ dξ (5.9)

for the pressure variation from the unknown boundary value 〈P1〉(1). The above integral
can be evaluated with use of (5.8) along with the identity 〈Re(eiτA)Re(eiτB)〉 =
Re(AB∗)/2, which applies to any generic time-independent complex functions A and B,
with the asterisk ∗ denoting complex conjugates. The resulting expression can be cast in
the form

〈P1〉(ξ) − 〈P1〉(1) = 3 Re
{
− 2i

α2 (X∗
1 + ΛX2)H1 + i(γ − 1)Λ

γα2 X2 (2H2 + νH3) + X3H4

+
[

X∗
1

GU(1)
+ CΛX2

]
H5 + ΛX2

(
γ − 1

γ
H6 − H7

)
− X1H8

}
, (5.10)

which involves the complex functions Xi(ξ) and the complex constants Hj (with i = 1–3
and j = 1–8), whose expressions as functions of Λ and α2 are given in Appendix A.

5.2. An expression for the squeeze-film force
Substitution of (5.9) into (5.1) yields

〈Fl〉 = 〈Fi〉 + 〈Fe〉, (5.11)

where

〈Fi〉 = 2
∫ 1

0
[〈P1〉 − 〈P1〉(1)]ξ dξ and 〈Fe〉 = 〈P1〉(1). (5.12a,b)

The first term on the right-hand side of (5.11), to be evaluated with use of

〈Fi〉 = −
∫ 1

0
〈P1〉′ ξ2 dξ, (5.13)

obtained by integration by parts, is associated with the pressure increase in the gas film
from its value at the disk edge. The integral in (5.13) can be expressed in the form

〈Fi〉 = 3 Re
{
− 2i

α2 (X ∗
1 + ΛX2)H1 + i(γ − 1)Λ

γα2 X2 (2H2 + νH3) + X3H4
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+
[ X ∗

1
GU(1)

+ CΛX2

]
H5 + ΛX2

(
γ − 1

γ
H6 − H7

)
− X1H8

}
, (5.14)

where the complex constants Xi = 2
∫ 1

0 Xi ξ dξ (with i = 1–3) are given in
Appendix A. The associated variation of 〈Fi〉 with Λ and α2 is depicted in figure 2(b).
Limiting expressions for 〈Fi〉 are to be derived below for Λ � 1, α2 � 1 and α2 � 1.

The second term 〈Fe〉 in (5.11), comparable in magnitude to 〈Fi〉, arises from the
departure of the time-averaged pressure at the disk edge from its ambient value in the
surrounding stagnant gas. The computation of this quantity requires consideration of the
flow in the non-slender near-edge region, a problem to be addressed in § 6.

5.3. Limiting cases of interest
The spatial pressure variation 〈P1〉(ξ) − 〈P1〉(1) and its contribution 〈Fi〉 to the levitation
force, given respectively in (5.10) and (5.14), admit simplified forms for limiting values
of the two controlling parameters Λ and α2, to be investigated below. Consistency
between each limiting solution and the respective original expression was confirmed
computationally.

5.3.1. The incompressible limit Λ � 1
In the limit Λ � 1, the gas behaves effectively as incompressible, in that the motion
is independent of the density variations, with the leading-order pressure and velocity
distributions reducing to

P0 = 1 − ξ2

4
Re

[
eiτ

GU(1)

]
, U0 = −ξ

2
Re

[
ieiτ G′

U(η)

GU(1)

]
, V0 = Re

[
ieiτ GU(η)

GU(1)

]
,

(5.15a–c)
as follows from (4.11), whence the dimensionless stroke volume simplifies to

A = 1
2

∣∣∣∣ βU

βU − tanh βU

∣∣∣∣ . (5.16)

Using these expressions in (5.8) yields the parabolic steady overpressure distribution,

〈P1〉(ξ) − 〈P1〉(1) = 3
8

(
ξ2 − 1

)
Re

[ |G′
U|2 − 2GUG∗

U
′′

|GU(1)|2 + 2ηG′′
U − 4(1 − G′

U)

GU(1)

]
, (5.17)

substitution of which in (5.12a,b) gives

〈Fi〉 = Re
{[

30βU tanh βU tan βU − (24β2
U + 3) tanh βU

+(24β2
U − 105) tan βU + 4β3

U

]/
[128βU(βU − tanh βU)(βU − tan βU)]

}
, (5.18)

which is found to depend purely on the Stokes number through βU = α(1 + i)/
√

8.

5.3.2. The lubrication limit α2 � 1
When the Stokes number assumes small values α2 � 1, fluid acceleration driven by
disk oscillations becomes negligibly small relative to viscous diffusion of momentum. To
preserve non-trivial dominant balances in the momentum (3.3) and state (3.5) equations
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with α2 → 0, the dimensionless pressure, temperature and density variables must be
rescaled appropriately as

P̄
α2P

= R̄
α2R

= Θ̄

α2Θ
= 1, (5.19)

substitution of which into the energy equation (3.4) gives ∂2Θ̄/∂Y2 = 0 for α2 → 0,
whence Θ̄ = 0 owing to the isothermal conditions on the bounding surfaces. It follows
then from the state equation that P̄ = R̄, and from the reduced momentum equation
∂P̄/∂ξ = ∂2U/∂Y2 that the radial velocity component varies across the gas layer in terms
of the classical Poiseuille profile

U(ξ, Y, τ ) = −∂P̄
∂ξ

(H − Y)Y
2

, (5.20)

consistent with the non-slip conditions on the walls. Integrating the continuity equation
(3.2) across the gas film using the known expressions for R̄ and U yields

σ
∂(HP̄)

∂τ
− H3

ξ

∂

∂ξ

[(
1 + ε

σ

12
P̄
)

ξ
∂P̄
∂ξ

]
− 12 sin τ = 0, (5.21)

the relevant isothermal squeeze-film equation, whence the radial pressure distribution can
be determined solely in terms of

σ = 12Λ

α2 = 12μaωa2

pah2
o

, (5.22)

a similarity parameter unique to the lubrication limit known as the squeeze number (see
Langlois 1962). Solving (5.21) using the truncated expansion P̄ = P̄0 + εP̄1 yields

α2A = 12
∣∣∣∣ J1 (βσ )

βσ J0 (βσ )

∣∣∣∣ , where βσ = √
σ

(1 + i)√
2

, (5.23)

for the characteristic value of the stroke volume and

〈P̄1〉(ξ) − 〈P̄1〉(1) = 3
σ

Re
{[

1 − J0(ξβσ )

J0(βσ )

] [
J0(ξβ

∗
σ )

J0(β∗
σ )

+ 5
]}

(5.24)

for the time-averaged pressure distribution, the latter providing

α2〈Fi〉 = 15
σ

Re
[

1 − 2J1 (βσ )

βσ J0 (βσ )

]
(5.25)

for the corresponding contribution to the levitation force. Since, as shall be proven in
§ 6.4, the edge pressure 〈P̄1〉(1) is identically zero when α2 = 0, (5.24) recovers exactly
the results found by Taylor & Saffman (1957). Expressions for the large values of A and
〈Fi〉 found near the origin of the Λ − α2 diagrams of figure 2 follow from taking the limit
σ � 1 in (5.23) and (5.25) to give

A = 6
α2 and 〈Fi〉 = 15

4
Λ

α4 . (5.26a,b)
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Squeeze-film force on an oscillating disk

5.3.3. The inviscid limit α2 � 1
When α2 → ∞, viscous diffusion, significantly outpaced by fluid acceleration, is confined
to vanishingly thin near-wall boundary layers. Note that under the limit of slender flow
ho/a � 1, the interference of transverse acoustic waves in the gas film can be neglected
because the acoustic wavenumber K = √

Λ/γ ∼ 1 is of order-unity. Upon relaxation of
the non-slip boundary conditions, the leading-order solution reduces to

P0 = Π cos(τ ), U0 = −Π ′ sin(τ ), V0 = −η sin(τ ), (5.27a–c)

where the reduced pressure Π and its gradient Π ′ have simplified to

Π(ξ) = J0 (Kξ)
/

J0 (K) − 1
K2 and Π ′(ξ) = − J1 (Kξ)

/
J0 (K)

K
, (5.28a,b)

which yields

A =
∣∣∣∣ J1(K)

KJ0(K)

∣∣∣∣ , (5.29)

〈P1〉(ξ) − 〈P1〉(1) = J2
1(K) − J2

1(Kξ) + [
J2

0(K) − J2
0(Kξ)

]2

4K2J2
0(K)

(5.30)

and

〈Fi〉 = 1
4K2

[
1 + J1 (K)

J0 (K)

(
J1 (K)

J0 (K)
− 2

K

)]
, (5.31)

all of which depend solely on Λ through the acoustic wavenumber K = √
Λ/γ . Note

that in the inviscid limit, the predicted values of A and 〈Fi〉 become unbounded when
K = √

Λ/γ = 2.4048, 5.5201, . . . corresponding to the zeros of the Bessel function J0.
For example, for the value γ = 1.4 used in generating the results of figure 2, the first
singularity develops at Λ = 8.096 as α → ∞ from the local maxima of A and 〈Fi〉
observed near Λ � 6 for α2 = 50.

6. Leading-order solution in the edge region

6.1. Problem formulation
As previously discussed, the non-slender flow at distances of order ho from the disk edge
involves velocities of order u ∼ v ∼ uc = εωa and spatial pressure differences of order
δ�p ∼ ε�p = ρau2

c . The description below employs the local rescaled coordinates X =
(r − a)/ho and Y = y/ho. The velocity must match with that found at the edge of the
slender gaseous film, given at leading order in (4.19). To facilitate the matching and reduce
the parametric dependence of the solution, it is convenient to introduce a shifted time
variable τ̂ = τ + ϕ and use the local velocity Auc in the definition of the dimensionless
variables V̂ = (Û, V̂) = [u/(Auc), v/(Auc)] and P̂ = ( p − pa)/(ρaA2u2

c). Substitution of
these definitions into the reduced local conservation equations (2.8) and (2.9) gives, with
errors of order ε ∼ δ,

∇ · V̂ = 0, (6.1)

Ŝt
∂V̂
∂τ̂

+ V̂ · ∇V̂ = −∇P̂ + Ŝt
α2 ∇2V̂ , (6.2)
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where ∇ = (∂/∂X, ∂/∂Y). As a result of the choice of velocity scale, the Strouhal number
enters above in the normalized form

Ŝt = ho/(Auc)

ω−1 = δ/ε

A
. (6.3)

This additional parameter is of order unity in the distinguished limit ε ∼ δ considered
here, with R̂e = α2/Ŝt = ρaAucho/μa being the corresponding Reynolds number.

Equations (6.1) and (6.2) must be integrated for each of the three geometric
configurations of the edge region (see figure 1), with the condition that the velocity must
be zero on the walls:

V̂ = 0 at

⎧⎪⎨⎪⎩
(X � 0, Y = 1); Y = 0; (X = 0, Y � 1) for piston–wall
(X � 0, Y = 0, 1); (X = 0, Y � 0 | Y � 1) for piston–piston
(X � 0, Y = 1); Y = 0 for disk–wall,

(6.4)

and must vanish in the open atmosphere, where the pressure must correspondingly
approach its ambient value, so that

V̂ → 0 and P̂ → 0 as X2 + Y2 → ∞. (6.5)

Matching with the velocity found at the edge of the slender gas layer, given at
leading order in (4.19), provides the additional boundary condition (common to all three
geometries)

Û − Re

⎧⎪⎪⎨⎪⎪⎩ieiτ̂

⎡⎢⎢⎣1 −
cosh

[
α(1 + i)

2
√

2
(2Y − 1)

]
cosh

[
α(1 + i)

2
√

2

]
⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ = V̂ = 0 as X → −∞ for 0 � Y � 1, (6.6)

consistent with an accompanying pressure distribution of the form

P̂ = Ŝt cos(τ̂ )X + P̂∞(τ̂ ) as X → −∞ for 0 � Y � 1, (6.7)

where the time-dependent pressure offset P̂∞(τ̂ ) exhibits a time-averaged component
〈P̂∞〉 = P̂e.

6.2. Selected numerical results
The solution in the near-edge region depends on two parameters, namely, the Strouhal
number Ŝt, which measures unsteady effects in (6.2), and the Stokes number α2, which
measures viscous forces in (6.2) and enters also through the boundary condition (6.6). The
numerical integration was based on the weak formulation of the Navier–Stokes equations
(6.1) and (6.2). A Lagrange–Galerkin second-order temporal finite difference scheme
using the rescaled time variable τ̂/Ŝt was employed along with P2/P1 Taylor–Hood finite
elements for velocity and pressure. The resulting system of partial difference equations
was implemented in the open source software FreeFEM (Hecht 2012) in conjunction with
the MUMPS framework (Multifrontal Massively Parallel sparse direct Solver). Further
details regarding the numerical method are available in an exemplary analysis by Carpio,
Prieto & Vera (2016).

Three computational meshes were designed to represent the different geometrical
configurations of the edge region (see figure 1), each consisting of non-slip boundaries
representing the solid surfaces listed in (6.4), an inner boundary at −X = 	n � 1 for 0 �
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Figure 3. Streamlines for α2 = 20, Ŝt = 0.5 (R̂e = 40) in the edge flow regions of the three geometric
configurations presented in figure 1, shaded to represent the flow speed (Û2 + V̂2)1/2. The images of outflow
along the top row (a–c) correspond to values of time τ̂ = 2nπ − π/2 and those representing inflow (d–f )
correspond to τ̂ = 2nπ + π/2, where n ∈ N.

Y � 1, where the matching velocity (6.6) was imposed and a circular-arc outer boundary at
(X2 + Y2)1/2 = 	p � 1 representing the stagnant surroundings. The advective boundary
condition Ŝt ∂V̂/∂τ + V̂ · ∇V̂ = 0 was applied along this finite ambient boundary in
place of the original condition (6.5) to assist numerical convergence. To ease constraints
on spatial discretization, the disk in the disk–wall configuration was given a finite relative
thickness of 0.1. Each triangulated grid was refined near the mouth of the gas film X = 0 to
allow better characterization of the anticipated shedding of vorticity into the surroundings.
Convergence tests were conducted to verify the validity of each mesh with regards to the
choice of dimensions 	n and 	p and of spatial and temporal resolution.

Each computation was initialized with stagnant conditions (V̂ = 0, P̂ = 0) and carried
out until a 2π periodic solution was reached, the criterion for convergence being that
the relative difference between the computed values of the constant P̂e be less than or
approximately 0.5 % over subsequent cycles. While the number of cycles necessary for
convergence was found to vary weakly with the two governing parameters, the time step
required for stability became restrictively small for large values of the Reynolds number
R̂e = O(100).

Illustrative results obtained for α2 = 20 and Ŝt = 0.5 for the three geometrical
configurations (piston–wall, piston–piston and disk–wall) are shown in figure 3. The plots
represent distributions of flow speed and associated instantaneous streamlines at selected
instants of time τ̂ differing by a semi-period of the driving oscillations (6.6). The results
shown in panels (a–c) are for τ̂ = 2nπ − π/2, corresponding to outflow, while those in
panels (d–f ) are for τ̂ = 2nπ + π/2, corresponding to inflow (where n is any positive
natural number).
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Although the driving velocity (6.6) is time-harmonic, the nonlinearity induced by
convective acceleration in (6.2) yields non-harmonic velocities V̂ and pressures P̂ in
the region of fluid exchange between the gaseous film and the stagnant surroundings.
This non-harmonic periodicity, clearly noticeable for the Reynolds number R̂e = 40 � 1
represented in figure 3, is evidenced by the asymmetry between the streamlines depicting
outflow (3a–c) and those depicting inflow (3d–f ), associated with non-zero values of the
resulting time-averaged velocity 〈V̂ 〉. The degree of nonlinearity can also be anticipated
to hold strong correlation with the magnitude of the time-averaged pressure 〈P̂〉, which
approaches the asymptotic value 〈P̂〉 = P̂e in the gas film as X → −∞, as indicated below
(6.7).

6.3. Pressure drop across the edge region

The constant P̂e, which represents the time-averaged pressure drop across the near-edge
region, was determined as part of the numerical integration. Its value is related to the
unknown boundary value 〈P1〉(1) of the pressure distribution in the gaseous film, which
determines the second contribution 〈Fe〉 = 〈P1〉(1) to the levitation force (5.11). Their
relation can be established by noting that the variables P and P̂ satisfy P = εA2P̂, as
follows from their respective definitions. Substituting the two-term expansion P = P0 +
εP1 and using the limiting pressure distribution (6.7) reveals that matching the pressure
fields in the slender film and in the near-edge region requires that P0 = 0 at ξ = 1, which
is the boundary condition imposed for the inner problem at leading order in (4.8), and
additionally that

〈Fe〉 = 〈P1〉(1) = A2P̂e, (6.8)

where A = |Π ′(1)|(Λ, α2) is the dimensionless stroke volume represented in figure 2(a).
The computation of P̂e is therefore essential to enable the evaluation of the force
experienced by the disk. It is worth noting that the expression for the steady squeeze-film
force (5.11), originating from (2.7), does not account for the variations of 〈P̂〉 from P̂e
that occur in the edge region at distances −X ∼ 1. This higher-order effect, not considered
here, could be incorporated into the analysis, providing a small relative correction, of order
δ ∼ ε, to the force experienced by the disk.

The variation of P̂e with α2 corresponding to the piston–wall geometry is represented in
figure 4(a) for selected values of Ŝt. As can be seen, P̂e is always negative, which indicates
that the time-averaged pressure near the entrance of the gas film is always smaller than the
ambient value, with the magnitude of the pressure drop becoming larger for larger values
of Ŝt. As demonstrated by the results shown in figure 4(b) for Ŝt = 5, the dependence of
P̂e on the geometrical configuration is fairly weak, well in qualitative accordance with
the experimental observations of Hong et al. (2014). The curves corresponding to the
piston–piston and piston–wall configurations are nearly indistinguishable, while that for
the disk–wall geometry exhibits departures of little over 5 % from the other two curves.
It is worth noting that the dependences of P̂e on Ŝt and on the geometrical configuration
entirely disappear as the Stokes number becomes small, where all solution curves adopt
an identical parabolic shape. Also of interest is that, as seen in figure 4(b), the variation
of P̂e with α2 is in general non-monotonic, with the pressure drop reaching a minimum
at an intermediate value of α2 before increasing to approach a finite asymptotic value as
α2 → ∞. The limiting behaviours of the solution for α2 � 1 and α2 � 1 are to be further
investigated below.
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Figure 4. Variation of the steady edge pressure P̂e with α2 and (a) selected values of Ŝt, for the piston–wall
configuration and (b) the three geometrical configurations indicated in figure 1, for Ŝt = 5. The dashed curve in
panel (a) corresponds to the asymptotic prediction P̂e = Pα4 corresponding to α2 � 1, while the horizontal
dashed lines in panel (b) correspond to the asymptotic predictions given in (6.23) and (6.28) for α2 � 1 and
extreme values of Ŝt.

6.4. Creeping flow for α2 � 1
Because the motion is driven by the boundary velocity profile at the edge of the gas film,
the analysis of the limit α2 � 1 begins by expressing (6.6) in the power-series form

Û = α2[1
2 Y(Y − 1) cos τ̂ + α2S1(Y) sin τ̂ + α4S2(Y) cos τ̂ + · · · ], (6.9)

where S1(Y),S2(Y), . . . are polynomial functions of increasing degree. Since Û ∼ α2

while P̂ ∼ 1, the latter following from the balance between viscous and pressure forces
in (6.2), it appears convenient to introduce perturbation expansions of the form

V̂ = α2(V̂ 0 + α2V̂ 1 + α4V̂ 2 + · · · )
P̂ = P̂0 + α2P̂1 + α4P̂2 + · · · .

}
(6.10)

Substituting the above expressions into (6.1) and (6.2) and collecting terms in powers of
α2 leads to a hierarchy of problems that can be solved sequentially.

At leading order, both V̂ 0 and P̂0 are linearly proportional to cos τ̂ . The solution can be
simplified by introduction of the time-independent reduced variables

Ṽ 0(X, Y) = V̂ 0/cos τ̂ and P̃0(X, Y) = P̂0/(Ŝt cos τ̂ ), (6.11a,b)

which satisfy

∇ · Ṽ 0 = 0, 0 = −∇P̃0 + ∇2Ṽ 0, (6.12a,b)

with no-slip boundary conditions (6.4) at the walls, the stagnant-flow condition (6.5) in
the ambient atmosphere and

Ṽ 0 → [1
2 Y(Y − 1), 0

]
as X → −∞ for 0 � Y � 1, (6.13)

the latter corresponding to a pressure gradient ∂P̃0/∂X = 1, consistent with the first term
in (6.7). The parameter-free problem defined above, corresponding to steady Stokes flow at

933 A15-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
72

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1072


S. Ramanarayanan, W. Coenen and A.L. Sánchez

the mouth of a planar channel, was solved numerically to determine the function Ṽ 0(X, Y)

for the three different geometries considered here. Note that the associated pressure P̂0 =
ŜtP̃0(X, Y) cos τ̂ has a vanishing time-averaged value 〈P̂0〉 = 0, which indicates that the
pressure drop P̂e is identically zero at this order.

At the following order (α2), the conservation equations are

∇ · V̂ 1 = 0,
∂V̂ 0

∂τ̂
= − 1

Ŝt
∇P̂1 + ∇2V̂ 1, (6.14a,b)

with the first-order correction for the velocity satisfying

V̂ 1 → [S1(Y) sin τ̂, 0] as X → −∞ for 0 � Y � 1. (6.15)

Inspection of the above equations reveals that V̂ 1 and P̂1 are both linearly proportional to
sin τ̂ , so that their time-averaged values are also identically zero. Hence, the computation
of the pressure drop P̂e requires consideration of the problem that arises at O(α4), which
comprises the conservation equations

∇ · V̂ 2 = 0, Ŝt
∂V̂ 1

∂τ̂
+ V̂ 0 · ∇V̂ 0 = −∇P̂2 + Ŝt∇2V̂ 2, (6.16a,b)

with V̂ 2 satisfying the matching condition

V̂ 2 → [S2(Y) cos τ̂, 0] as X → −∞ for 0 � Y � 1. (6.17)

Because V̂ 0 = Ṽ 0(X, Y) cos τ̂ and 〈cos2 τ̂ 〉 = 1/2, the nonlinear convective acceleration
yields a non-zero contribution 〈V̂ 0 · ∇V̂ 0〉 = 1

2 Ṽ 0 · ∇Ṽ 0 when taking the time average
of the above problem, which results in a steady-streaming motion with non-zero values
of 〈V̂ 2〉 and 〈P̂2〉. To emphasize the parameter-free nature of the resulting time-averaged
pressure distribution, it is of interest to incorporate the Strouhal number in the definition
of the steady-streaming velocity V̂ SS = Ŝt〈V̂ 2〉, to be determined, along with the pressure
P̂SS = 〈P̂2〉, by integration of

∇ · V̂ SS = 0, 1
2 Ṽ 0 · ∇Ṽ 0 = −∇P̂SS + ∇2V̂ SS, (6.18a,b)

with boundary conditions V̂ SS = 0 at the solid boundaries, V̂ SS = P̂SS = 0 in the
surrounding atmosphere and

V̂ SS → 0 as X → −∞ for 0 � Y � 1. (6.19)

Numerical integration of the above hierarchy of problems, with use of an advective
condition at the finite outer boundary analogous to that described in § 6.2, determines, in
particular, the (negative) value P of P̂SS as X → −∞ for 0 � Y � 1, which yields

P̂e = Pα4 for α2 � 1. (6.20)

With Ṽ 0 being also independent of Ŝt, the solution depends only on the geometrical
configuration. The resulting values of P were found to be effectively identical for all
three configurations (i.e. P = −(2.67803, 2.67815, 2.67714) × 10−3 for the piston–wall,
piston–piston and disk–wall configurations, respectively), which indicates that for α2 � 1,
the pressure drop across the edge region is fundamentally related to the flow between the
two parallel surfaces, while the flow outside exerts a lesser influence. To illustrate the
accuracy of the asymptotic results for α2 � 1, the parabolic prediction (6.20) is compared
in figure 4(a) with the results of the numerical integrations of the complete Navier–Stokes
equations (6.1) and (6.2).
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6.5. Inviscid flow for α2 � 1
In the limit of large Stokes numbers, the conservation equations describing edge flow (6.1)
and (6.2) reduce to the Euler equations

∇ · V̂ = 0, Ŝt
∂V̂
∂τ̂

+ V̂ · ∇V̂ = −∇P̂, (6.21a,b)

subject to the condition of no penetration along the solid boundaries and the oscillating
plug-flow velocity

V̂ → [− sin τ̂, 0] as X → −∞ for 0 � Y � 1, (6.22)

the latter following from (6.6) when α2 � 1. Vorticity is confined to thin layers of relative
thickness α−1, which include near-wall boundary layers and a vortex sheet of evolving
shape (two for the piston–piston geometry) originating at the rim(s) of the disk/piston(s). In
this limit α2 � 1, numerical integration of the associated time-dependent free-boundary
problem, needed to determine the nearly inviscid value P̂i(Ŝt) of P̂e, is a difficult task, not
to be pursued below. Instead, we shall focus on the solutions arising in the two limiting
cases Ŝt � 1 and Ŝt � 1, which are amenable to an analytical description.

In the quasi-steady limit Ŝt � 1, the local acceleration term in (6.21a,b) can be
neglected in the first approximation, so that the familiar Bernoulli’s equation P̂ +
|V̂ |2/2 = const. applies along streamlines. The solution that emerges can be anticipated to
be drastically different for inflow (i.e. 0 < τ̂ < π) and outflow (i.e. π < τ̂ < 2π). During
the outflow semi-cycle, the stream along the gas film separates at the exit section to form a
planar jet that discharges with parallel streamlines surrounded by nearly stagnant ambient
fluid. In that case, the pressure along the film remains equal to the ambient pressure P̂ = 0.
For inflow, however, the ambient gas accelerates from rest along streamlines approaching
the canal entrance from all directions. Conservation of total head P̂ + |V̂ |2/2 = 0 yields
P̂ = − sin2(τ̂ )/2 for the pressure along the film away from the entrance. Consequently,
because P̂ = 0 in the gas film during outflow (i.e. for π � τ̂ � 2π), the time-averaged
pressure drop, obtained by taking the time average of the gas-film pressure over a period,
reduces to

P̂i = − 1
2π

∫ π

0

1
2

sin2 τ̂ dτ̂ = −1
8

for Ŝt � 1. (6.23)

In the nearly acoustic limit of large Strouhal numbers Ŝt � 1, it is convenient to
introduce perturbation expansions in integral powers of the inverse of the Strouhal number

V̂ = V̂ 0 + Ŝt−1V̂ 1 + · · ·
P̂ = Ŝt(P̂0 + Ŝt−1P̂1 + · · · ),

}
(6.24)

based on the anticipated scales of pressure and velocity. At leading order, we find the linear
equations

∇ · V̂ 0 = 0,
∂V̂ 0

∂τ̂
= −∇P̂0 (6.25a,b)

to be integrated with the boundary condition

V̂ 0 → [− sin τ̂, 0] as X → −∞ for 0 � Y � 1. (6.26)

The velocity field is potential and can be correspondingly determined for each geometrical
configuration with use of conformal mapping techniques (Birkhoff & Zarantonello 1957;
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Gurevich 1966). Note that since P̂0 ∝ cos τ̂ , the time-averaged pressure is identically zero
at this order. The value of P̂i can be obtained by taking the time average of the momentum
equation that emerges at the following order,

∂V̂ 1

∂τ̂
+ ∇

(
P̂1 + |V̂ 0|2

2

)
= 0, (6.27)

which yields 〈P̂1〉 + 〈|V̂ 0|2〉/2 = const., which can be evaluated in the ambient gas to give
〈P̂1〉 = −〈|V̂ 0|2〉/2 for the spatial distribution of time-averaged pressure. Upon evaluating
〈P̂1〉 inside the slender film with use of (6.26), we finally obtain the limiting value

P̂i = − 1
2π

∫ 2π

0

1
2

sin2 τ̂ dτ̂ = −1
4

for Ŝt � 1. (6.28)

The asymptotic values (6.23) and (6.28) serve as bounds of the large–α2 asymptotic
behaviour of P̂e. Both values are indicated using dashed lines in figure 4(b). It should be
noted that these bounds do not apply for finite values of the Stokes number, for which
the computation of P̂e requires numerical integration of the problem formulated in § 6.1,
which yields values of −P̂e that may exceed 1/4, as seen in figure 4(b).

7. Time-averaged squeeze-film force

As revealed by (5.11), the time-averaged force 〈Fl〉 experienced by the disk has two distinct
contributions 〈Fl〉 = 〈Fi〉 + 〈Fe〉. The first contribution, always positive, accounts for the
spatial distribution of the time-averaged pressure along the gas film. Its value, the variation
of which is represented in a parametric domain spanned by α2 and Λ in figure 2(b), can
be evaluated using the closed-form formula (5.14). The second contribution 〈Fe〉 = A2P̂e,
always negative, corresponds to the time-averaged pressure drop (from the ambient value)
found across the edge region. Its value can be computed as the product of the square of
the reduced stroke volume displaced by the oscillating disk A = |Π ′(1)|, represented in
figure 2(a) as a function of Λ and α2, and the reduced pressure P̂e, given in figure 4 as a
function of α2 and Ŝt.

Since the two competing contributions present in (5.11) have comparable orders of
magnitude, their combined effect may, in principle, result in net forces that are either
levitative (if 〈Fl〉 > 0) or adhesive (if 〈Fl〉 < 0) depending on the values of the controlling
parameters. The typical dependence of 〈Fl〉 on α2 and Λ is exemplified in figure 5 for the
piston–wall geometry with Ŝt = 5. Positive values of the force, corresponding to levitation,
are coloured red, while negative values, representing adhesion, are coloured blue, with
darker shades signifying larger magnitudes |〈Fl〉| in both cases. The dotted curves, across
which 〈Fl〉 transitions in sign, are referred to in the proceeding discussion as ‘neutral
contours’.

It is natural to note from figure 5(a) that under the classical lubrication limit α2 → 0,
which has been the subject of thorough investigation for well over a century, the steady
squeeze-film force 〈Fl〉 is levitative for all Λ and unaffected by edge flow effects.
Figure 6(a) portrays the convergence of the film force, computed with Ŝt = 1 for the
piston–piston edge geometry, to the classical lubrication solution (reported in § 5.3.2) for
decreasing values of α2. The predominance of levitative forces extends also to order-unity
values of α2, provided that the compressibility parameter remains above a critical value
Λc, which is larger for larger values of α2. The value Λc(α

2) defines a neutral contour
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Figure 5. The variation with α2 and Λ of the time-averaged force 〈Fl〉 given in (5.11)–(5.12a,b), for Ŝt = 5
and the piston–wall geometric configuration, with levitative forces 〈Fl〉 > 0 coloured red and adhesive forces
〈Fl〉 < 0 coloured blue. The computations are carried out using ν = 0.77, Pr = 0.7 and γ = 1.4. The dotted
curves represent contours of zero force 〈Fl〉 = 0.

C1 that marks the transition from levitation to adhesion. Of particular interest is the form
of C1 near the origin of the diagram, which corresponds to weakly compressible systems
operating near the lubrication limit. In the associated double limit Λ � α2 � 1, the film
force is given by

〈Fl〉 = 15
4

Λ

α4 + 36P, (7.1)

obtained by substitution of (5.26a,b) and (6.20) into 〈Fl〉 = 〈Fi〉 + A2P̂e. Correspondingly,
for α2 � 1, the critical value Λc(α

2), obtained by equating the above expression to zero,
exhibits the parabolic dependence

Λc =
[

48(−P)

5

]
α4, (7.2)

where −P � 2.68 × 10−3 for all three geometrical configurations, as reported earlier
below (6.20). It is remarkable that this fundamental parametric relation, applicable to
squeeze-film systems with relatively low oscillation frequencies, is independent of both
the Strouhal number and the specific geometry pertaining to the near-edge region. Using
(7.2) together with the definitions given in (1.2) and (1.3) provides

hc = 2.497
(aμa/ρa)

1/2

( pa/ρa)1/4 (7.3)

for the critical value of the mean gap width at which the force, for such systems, switches
from levitation (for ho < hc) to adhesion (for ho > hc).
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Figure 6. Verification of the predicted steady film force (denoted by solid curves) with (a) the classical
limiting lubrication solution obtained from Taylor & Saffman (1957) and (b) time-dependent direct numerical
simulations conducted by Andrade et al. (2020) (both denoted by dots). For the former case, the dimensionless
force is plotted against the squeeze number and for the latter, the dimensional force is plotted against the mean
gap width.

The region of the α2-Λ parametric domain that lies below C1, which encompasses
the strictly incompressible case Λ = 0, consists entirely of weakly adhesive forces.
Interestingly, the dimensionless adhesive force for incompressible squeeze films, to be
computed from 〈Fl〉 = 〈Fi〉 + A2P̂e with use made of (5.18) and (5.16) to evaluate 〈Fi〉 and
A2, is seen to approach constant limiting values for α2 � 1 and α2 � 1. In the former case
α2 � 1, with 〈Fi〉 = 33/560, A = 6/α2 and P̂e = Pα4, as indicated in (6.20), it follows
that

〈Fl〉 = 33
560

+ 36P � −0.0375, (7.4)

whereas in the latter case α2 � 1, with 〈Fi〉 = 1/32, A = 1/2 and P̂e approaching its
inviscid value P̂i(Ŝt), the solution reduces to

〈Fl〉 = 1 + 8P̂i(Ŝt)
32

, (7.5)

a function of the Strouhal number that is necessarily negative because P̂i lies in the range
−1/4 < P̂i < −1/8, bounded by the limiting values given in (6.23) and (6.28).

As revealed by figure 5(a), the critical value Λc defining the contour C1, the inverse
relative acoustic wave speed in the gas film for which the steady pressure variations
along the film and near its edge provide cancelling contributions to the film force, is seen
to approach a limiting value Λ∞ as α2 → ∞. This asymptotic behaviour is consistent
with the fact that in the limit of nearly inviscid flow, the relative wave speed necessary
to produce such a cancellation must cease to depend on viscosity, effects of which are
confined to near-wall boundary layers of small relative thickness ∼ α−1 � 1. The region
of the parametric domain that lies above C1 consists largely of levitative forces, but
is interrupted by a second neutral contour C2, which encloses a peninsular region of
adhesion that develops for α2 � 400 and Λ � 36. To determine the value of Λ∞, as well
as the possible existence of additional regions of adhesion, it is of interest to evaluate
〈Fl〉 = 〈Fi〉 + A2P̂e in the inviscid limit α2 → ∞. Using (5.29) and (5.31) gives

〈Fl〉 = 1
4K2

[
1 − 2J1(K)

KJ0(K)

]
+
(

P̂i + 1
4

)[
J1(K)

KJ0(K)

]2

, (7.6)

933 A15-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

10
72

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1072


Squeeze-film force on an oscillating disk

96423834840

–0.005

0.0050.010.08

0 20

0.04

0.02

–0.02

–0.04

0

40 60 80 100 120

–0.08

0〉Fl

〈

〉Fl

〈

–0.01

0

–0.2426–0.2312

0

100
ΛΛ

Λ

Λ

104

P̂i = –0.2466P̂i = –0.2412

P̂i = –0.2

P̂i = –0.2

–0.2486–0.2462

–0.2466

–0.2412

–0.23

–0.14

(b)

(a)

(c) (d )

Figure 7. Variation with Λ of (a) the steady squeeze-film force in the inviscid limit (7.6) for different values of
P̂i(Ŝt), computed using γ = 1.4. Represented in the bottom row are (b) the first zero of the force, which exists
for all Ŝt (i.e. any value of P̂i in the range −1/4 < P̂i < −1/8) and (c,d) subsequent zeros, which emerge for
increasing critical values of Ŝt (i.e. decreasing critical values of P̂i given by P̂i � −0.2412, −0.2466, . . .).

where P̂i(Ŝt) is the inviscid value of P̂e and K = √
Λ/γ . The above expression is plotted

in figure 7 for selected values of P̂i. As can be seen, the number of zeros, which determines
the number of parametric regions of adhesion, depends on the value of P̂i, which in turn
is a decreasing function of Ŝt that evolves from P̂i = −1/8 for Ŝt � 1 to P̂i = −1/4 for
Ŝt � 1. Regardless of the value of Ŝt (i.e. for all values of P̂i in the range −1/4 < P̂i <

−1/8), there always exists at least one zero, which corresponds to the asymptotic value
Λ∞ of Λc as α2 → ∞. As suggested in figure 7(b), this asymptotic value approaches
Λ∞ = 0 for Ŝt � 1 and Λ∞ � 8.096 for Ŝt � 1, the latter coinciding with the location
of the first singularity of (7.6), associated with the first zero of J0(

√
Λ/γ ) for γ = 1.4.

As seen in figure 7(c), two more zeros, bounding the second neutral contour C2, emerge
when the value of P̂i decreases below P̂i � −0.2412. Additional zeros, which correspond
to new regions of adhesion, appear for decreasing values of P̂i (i.e. increasing values of
Ŝt), so that, for instance, the existence of a third neutral contour requires P̂i � −0.2466,
as revealed by figure 7(d). The number of zeros diverges as P̂i → −1/4 (i.e. as Ŝt → ∞),
creating an infinite cascade of adhesive peninsulas. In this connection, it is worth pointing
out that while the existence of the primary neutral contour C1 for all relevant values of P̂i

(i.e. all finite Ŝt and all three geometries) is a key finding with important consequences
for the operation of practical systems, the anticipated relevance of the additional neutral
contours C2, C3, . . . and the corresponding regions of adhesion is somewhat limited, since
they only develop for very large values of Λ.

Recently, time-dependent direct numerical simulations of the piston–piston squeeze-film
problem have been conducted by Andrade et al. (2020), who found that assuming adiabatic
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constant-viscosity flow (corresponding to Pr → ∞ and ν = 0) yields reasonable accuracy
relative to their experimental data. In their two-dimensional axisymmetric computations,
the dimensional film force 〈Fl〉 was quantified for varying mean separation distance and
fluid viscosity, while keeping all other dimensional parameters constant. In particular,
in terms of the dimensionless governing parameters of our formulation, their operating
conditions pertain to the case 0.05 � ε � 0.25, 2 � α2 � 65, Λ � 0.334 and 0.07 �
Ŝt � 5.12. Displayed in figure 6(b) is a comparison of their results with those of the
present asymptotic formulation, the latter computed using Pr = 104 and ν = 0, which
demonstrates clearly the transition from adhesion to strong levitation when the mean
separation width ho is decreased below its threshold value hc. It must be noted that
although the agreement between our theoretical results and the numerical results of
Andrade et al. (2020) is generally satisfactory, it deteriorates in the levitation regime
ho < hc because the dimensionless amplitude ε is no longer small, which compromises
the accuracy of the asymptotic predictions.

8. Conclusions

A unifying analytical model of slender axisymmetric gas-lubricated bearings was
developed in this study to predict the steady squeeze-film force acting on an axisymmetric
rigid body undergoing asymptotically small-amplitude time-harmonic axial oscillations
in the vicinity of a parallel surface. Three geometrical configurations involving a disk or
a piston as the oscillator and a piston or an infinite wall as the stationary surface were
considered as part of the analysis (see figure 1). The method of matched asymptotic
expansions was used to relate the Navier–Stokes solutions describing the flow in two
distinct regions – a slender region between the parallel surfaces featuring radial flow driven
by the disk oscillations and an asymptotically smaller non-slender near-edge region where
the motion is driven by said radial flow. The problem was solved in the general case in
which the oscillation time is comparable to the three relevant fluid-mechanical times,
namely, the characteristic time for radial acoustic-wave propagation, the characteristic
viscous time across the gas layer and the characteristic residence time in the near-edge
region.

Historically, a major obstacle to computing the viscoacoustic film force has been the
determination of a proper boundary condition for the fluid pressure at the edge of the
gas layer. The present formulation relies on the distinguished double limit ε ∼ δ � 1
defined by comparable small values of the dimensionless vibration amplitude ε and the
aspect ratio δ, whereby the time-averaged spatial pressure variations across the edge
region are comparable to those found along the wall-bounded gas layer. The harmonic
leading-order flow inside the slender film was solved analytically, providing a closed-form
expression for the radial flow to be used as a matching boundary condition for the
near-edge region. Upon computing first-order corrections, the radial departures of the
time-averaged pressure inside the gas layer from its value at the edge were found to depend
on the Stokes number α2 and a compressibility parameter Λ, two order-unity parameters
that respectively quantify the relative magnitudes of the viscous and acoustic time scales.
Characterizing the near-edge flow required numerical integration of the full Navier–Stokes
equations, shown to reduce to their incompressible planar form at leading order, with α2

and a modified local Strouhal number Ŝt entering as relevant controlling parameters. The
dependence on the geometrical configuration was found to be relatively weak, with the
magnitude of the pressure drop being slightly larger for wider angles of the near-edge
opening of the bounding surfaces.
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Our analysis revealed that the time-averaged pressure decreases across the edge region
from its value in the stagnant atmosphere and then principally increases along the air gap to
reach a local maximum at the axis. These two competing effects determine the sign of the
steady dimensionless perpendicular force 〈Fl〉 felt by the oscillating body (and also by the
stationary parallel surface), so that both attractive and repulsive forces can be generated.
The resulting value of 〈Fl〉 was found to vary strongly with the Stokes number α2 and the
compressibility parameter Λ, but comparatively weakly with the edge Strouhal number
and the geometrical configuration. The typical behaviour of 〈Fl〉 for a fixed choice of Ŝt and
geometry was depicted on a diagram (see figure 5) structured with the principal parameters
α2 and Λ as the bounding axes, showing that there is a critical separating contour C1 in
the associated parametric domain across which the steady squeeze-film force switches
from positive to negative values, which indicates a transition from repulsion to attraction.
The accuracy of the present asymptotic analysis near this transition region was verified
by means of comparison with the results of a time-dependent direct numerical simulation
conducted recently by Andrade et al. (2020) (see figure 6b). It was proven that the contour
C1 exists for all values of Ŝt and different geometrical configurations, and that its shape near
the origin is universal, which resulted in an accompanying prediction (7.3) for the critical
gap width hc separating adhesion from levitation for relatively low-frequency squeeze-film
systems. The accuracy of this theoretical prediction, in qualitative agreement with the
early observations of Popper & Reiner (1956) and Taylor & Saffman (1957), should be
tested in future work by means of carefully monitored experiments. Also of interest in
connection with the force diagram is that additional regions of adhesive force, in the form
of peninsulas, develop for large values of the Stokes number α2 when the value of Ŝt is
sufficiently large.

The closed-form analytical expressions provided for the computation of the
time-averaged pressure distribution in the slender gas layer as well as the corresponding
integral contribution to the steady force, applicable for arbitrary values of the
principal parameters α2 and Λ, circumvent tedious numerical computations and expedite
the evaluation of the force, a potentially enabling advantage for the operation of
high-frequency squeeze-film systems that require real-time feedback control. It is worth
pointing out that the analysis of the first-order corrections in the gas film can be readily
extended to provide the steady film temperature 〈Θ1〉 in closed form, if needed in
applications. Simplified expressions of the pressure distribution and force for limiting
values of α2 and Λ were provided in §§ 5.3 and 7 to allow accelerated computation for
systems that operate near the lubrication (α2 � 1), inviscid (α2 � 1) or incompressible
(Λ � 1) limit.

The ability to controllably generate and transition between levitative and adhesive forces
using a single squeeze-film system is of significant interest in contemporary applications
including acoustic levitation and soft robotics. The construction and assembly-line
transport of micro-electronic components would be greatly assisted by acoustic levitation
devices capable of suspending sensitive objects from various angles and releasing them
on command (see Andrade et al. 2020). A controllable transition to adhesion is also
desirable in the context of contactless locomotion of soft robots over diverse terrains (see
Weston-Dawkes et al. 2021). Gaseous squeeze films may be preferable in this context over
other adhesive mechanisms such as electromagnetic and dry fibrillar attraction owing to
reasons including weight requirements, complexity of manufacturing and limitations in
the type of operational surface. The present theoretical study demonstrates that a rigid
squeeze-film oscillator can alternate between repulsion and attraction through control of
operational variables such as the oscillation frequency and the mean separation width.
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As previously noted, the closed-form expressions provided in this study may serve to
accelerate the feedback response required for the stable operation of such systems.

Practical applicability of the present analysis is limited by the possibility of elastic
deformations in the oscillating body that may be non-negligible in the analysis of
the induced flow (see Shi et al. 2019). Of particular interest beyond this study is the
characterization of axisymmetric squeeze-film systems involving radially non-uniform
driving oscillations h = h(r, t). In an appendix in their seminal paper, Taylor & Saffman
(1957) provided analytical expressions for the mean radial pressure distribution produced
by piece-wise linear oscillations h(r, t) of a squeeze-film system in the lubrication
limit. Specifically, oscillations of the form h/ho = 1 + ε(1 − 2r/a) cos(ωt), where the
mid-circle r = a/2 of the disk is fixed and the centre r = 0 and edge r = a oscillate
out of phase, were shown to produce weak adhesive film pressures for low frequencies
ω. The ability of smoothly flexible disks to generate stronger adhesive film forces was
demonstrated in a recent experimental study by Weston-Dawkes et al. (2021), where a soft
robot equipped with a rapidly oscillating circular disk constructed using plastic shim stock
adhered to the bottom surface of a horizontal wall while carrying 35 times its own weight.
Comprehension of the physics of such non-rigid high-frequency squeeze-film systems may
additionally warrant the modelling of fluid–structure interactions, a problem that should
be addressed in future studies.
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Appendix A. Analytical expressions used in the evaluation of the gaseous-film
overpressure and its contribution to the steady squeeze-film force

The expressions given in (5.10) and (5.14) involve the complex functions

X1 = Π(ξ) =
J0
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(√
CΛ

)
|GU(1)CΛ|2
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∫ ξ
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and the complex constants

X1 =
√

CΛ − 2J1

(√
CΛ

)/
J0

(√
CΛ

)
GU(1)(CΛ)3/2 , (A4)

X2 = i∣∣∣GU(1)CΛJ0

(√
CΛ

)∣∣∣2
{

C∗Λ
Im(CΛ)2 Im

[√
C∗ΛJ0

(√
CΛ

)
J∗

1

(√
CΛ

)]

+
√

C∗Λ
2 Im(CΛ)

[√
C∗Λ

∣∣∣J0

(√
CΛ

)∣∣∣2 +
√

CΛ

∣∣∣J1

(√
CΛ

)∣∣∣2]

+
J0

(√
CΛ

)
i
√

C∗Λ

[
2J∗

1

(√
CΛ

)
−

√
C∗ΛJ∗

0

(√
CΛ

)]⎫⎬⎭ , (A5)

X3 =

∣∣∣J1

(√
CΛ

)∣∣∣2 + Im
[√

CΛJ0

(√
CΛ

)
J∗

1

(√
CΛ

)]/
Im(CΛ)∣∣∣GU(1)

√
CΛJ0

(√
CΛ

)∣∣∣2 , (A6)

calculated using the tabulated integrals from Rosenheinrich (2012), and

H1 = 1 − tan(βU)

βU
, (A7)

H2 = 1 − tan(βU)

βU
− tan(βΘ)

βΘ

− βU tan(βU) − βΘ tanh(βΘ)

β2
U + β2

Θ

, (A8)

H3 = 2βU − 2 tan(βU)

βU
+ 2βU

β2
U + β2

Θ

[
βΘ tan(βU) tanh(βΘ)

−βU +
(
β2

U − β2
Θ

)
tan(βU) + 2βUβΘ tanh(βΘ)

β2
U + β2

Θ

]
, (A9)

H4 = −4β3
U + 15 [tan(βU) − tanh(βU)] − 6βU tanh(βU) tan(βU)

24β3
U

, (A10)

H5 = 1
12β3

U

[
βU

(
15 − 2β2

U

)
+
(

6β2
U − 9

)
tan(βU)

− 6 tanh(βU) − 3βU tanh(βU) tan(βU)
]
, (A11)

H6 = −1
6

+ 2βU + (
β2

U − 2
)

tan(βU)

2β3
U

+ βΘ − tanh(βΘ)

2β3
Θ

− 1
2βΘ

(
β2

U + β2
Θ

) [βΘ + βU tan(βU) tanh(βΘ)
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+
(
β2

U − β2
Θ

)
tanh(βΘ) − 2βUβΘ tan(βU)

β2
U + β2

Θ

]
, (A12)

H7 = βU

(
6 − β2

U

)+ 3
(
β2

U − 2
)

tan(βU)

6β3
U

, (A13)

H8 =
(
β2

U + 1
)

tanh(βU) − βU

2β3
U

. (A14)

The symbols Re, Im and the asterisk ∗ represent the real part, imaginary part and conjugate
of a complex function, respectively. The definitions of βU and βΘ are given in (4.13) while
those of C and GU(1) are given in (4.17).
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